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Abstract. The stabilizing and damping phenomenon of a background magnetic field on electrically conducting fluids has
been observed in various physical experiments and numerical simulations. This paper establishes this observation as math-
ematically rigorous decay results on a 2D magnetohydrodynamic (MHD) system with only partial dissipation. Without
the magnetic field, the fluid velocity obeys a 2D anisotropic Navier—Stokes equation and is not known to be stable in the
Sobolev setting H? due to the potential double exponential growth of its H2-norm in time. However, when coupled with
the magnetic field in the MHD system concerned here, we show that the H2-norm of any perturbation near a background
magnetic field actually decays algebraically in time. This result demonstrates that the magnetic field indeed stabilizes and
damps the electrically conducting fluids. Mathematically this result along with its proof offers a new and effective approach
to the large-time behavior on partially dissipated systems of partial differential equations. Existing methods are mostly
designed for systems with full dissipation and do not apply when the dissipation is anisotropic.
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1. Introduction

This paper intends to understand the stability problem and especially the precise large-time behavior on
the perturbations near a background magnetic field governed by the incompressible magnetohydrodynakic
(MHD) system. This study is partially motivated by a remarkable stabilizing phenomenon exhibited by
electrically conducting fluids. Extensive physical experiments and numerical simulations have performed
to understand the influence of the magnetic field on the bulk turbulence involving various electrically
conducting fluids such as liquid metals. These experiments and simulations have observed a remarkable
phenomenon that a background magnetic field can smooth and stabilize turbulent electrically conducting
fluids (see, e.g., [1,2,6,11-13,21,22]).
We focus on a very special 2D incompressible MHD system with anisotropic dissipation,

Owu+u-Vu+ VP =vdpu+ B-VB,
04B+u-VB+nB=B-Vu, (1.1)
V-u=V-B=0,

where u represents the velocity field, P the total pressure and B the magnetic field, and v and 7 denote
the viscosity and the magnetic damping coefficients, respectively. The MHD systems, the center piece
of the magnetohydrodynamics initiated by H. Alfvén [2], models electrically conducting fluid such as
plasmas, liquid metals and electrolytes, and have a very wide range of applications in astrophysics,
geophysics, cosmology and engineering (see, e.g., [4,13,35]). The MHD equations are also mathematically
important. They not only share many crucial features with the Euler or the Navier—Stokes equations, but
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also exhibit many more fascinating characteristics such as various wave phenomena that the Euler or the
Navier—Stokes equations lack.

Clearly, (1.1) admits a special class of steady-state solutions represented by the background magnetic
field. Attention is focused on the steady-state solution

u® = (0,0), BO(z) =e; = (1,0).
The perturbation (u,b) around this steady solution with b = B — e; obeys

Ou+u-Vu+ VP =vdpu+b-Vb+ 01b,
Ob+u-Vb+nb=0>-Vu-+ O1u,
V-u=V-b=0,

u(z,0) = up(x), b(z,0) = by(x).

The system (1.2) differs from the original system (1.1) by two extra terms, 0;b and dju. As we shall
see later, these two terms generated due to the background magnetic field play an important role in
the stability properties of the perturbation as well as in the large-time behavior. These terms reflect the
influence of the background magnetic field on the behavior of the fluids.

Our goal has been to understand the stability problem and the large-time behavior of solutions to
(1.2). Due to the lack of the horizontal dissipation, these problems are not trivial. even when the magnetic
field is identically zero, b = 0, the velocity u satisfies the 2D anisotropic Navier—Stokes equation

(1.2)

O +u-Vu=—-VP +vdpu, xcR?t>0,
(1.3)
V-u=0
or, in terms of the vorticity w = V X u,
Ow +1u-Vw =vpw, xR t>0, (1.4)
u=VItA W = (=09,0;) A7 w. .

The stability problem on (1.4) in the Sobolev setting H? remains an open problem in the whole space
case, although this problem in some other domains such as R x T has been resolved [17]. In the case of
the whole space domain, the dissipation in one direction is insufficient to control the nonlinearity when
we estimate the H?-norm of u or the H'-norm of w. In fact, in the estimate of |[Vw||zz,

d
%HVw(t)HQLQ + 20|02 Vw(t)|32 = —Z/Vw -Vu - Vwdz,

the nonlinear part contains four component terms

Hard := — Vw - -Vu-Vwdr
R2
= — 81u1 (81&])2 dr — 81’11,2 alw 82(4) dx
R2 R2
— ('92u1 (’91w 82w dr — 32u2 (Ggw)2 dx (15)
R2 R2

and the first two terms in (1.5) do not admit any time-integrable upper bound. As a consequence, the
best upper bound for the gradient of the vorticity |[Vw(t)||r« with 1 < ¢ < oo is double exponentially in
time,
Clw(lpeot
[Vw(®)llLe < ([[Vw(0)]|La) (1.6)
Indeed in the case of the 2D Euler equation in a unit disk, Kiselev and Sverak were able to construct
an explicit vorticity solution whose gradient grows double exponentially [28]. Furthermore, classical ap-
proaches on the MHD well-posedness problem treat the magnetic field related terms as bad terms. As
a consequence, the stability problem and large-time behavior concerned here in the classical framework
appear to be hopeless.
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The novel idea here is to treat the magnetic field related terms as good terms and to explore the
smoothing and stabilizing effects of the magnetic field through coupling and interaction. In a previous
work [20], the authors were successful in implementing this strategy to establish the stability of solutions
to (1.2). For the sake of convenience of later references, we reproduce Theorem 1.3 from [20] here.

Theorem 1.1 [Theorem 1.3, [20]]. Let v > 0 and n > 0. Consider (1.2) with the initial data (ug,by) €
H?(R?), and V -ug = V - by = 0. Then there exzists a constant ¢ = £(v,n) > 0 such that, if

luoll 2 + [[boll ez < e,

then (1.2) has a unique global classical solution (u,b) satisfying, for any t > 0,
t
lu(®) 1=+ [16(E)[[72 +/0 (01ullZ2 + 102ullzg + [[bl32) dr < Ce?

for some universal constant C' > 0.

The goal of this paper is to give a precise account on the large-time behavior of these stable solutions.
Clearly we need to continue to pursue the stabilizing and damping effect of the magnetic field. To do
so, we combine the equations of v and b to derive an equivalent system of wave equations to reveal the
stabilizing mechanism. We start by separating the linear terms in (1.2) from the nonlinear ones. Applying
the Helmholtz-Leray projection operator

P:=1-VA~'V.
to the velocity equation in (1.2), we eliminate the pressure to obtain
Oyu = vOaou + 010 + Ny, Ny =P(—u-Vu+b-Vb). (1.7)
By separating the linear terms from the nonlinear ones in (1.2), the equation of b can be written as
0¢b = —mb 4+ O1u + No, No=—u-Vb+b-Vu.

Thus, (1.2) can be written as

Ou = vOsou + 010 + Ny,

Ogb = —nb 4+ O1u + No,

1.8
V-u=V -b=0, (18)
w(x,0) = up(x), b(z,0) = bg(x).
Differentiating (1.8) in time and making several substitutions, we find
8ttu — (1/322 — n)@tu — (811u + 77V(922’U,) = Ng, (1 9)
Oitb — (vdaz — 1) O;b — (O11b + nrdazb) = Ny,

where N3 and Ny are given by
N3 = (8t + T])Nl + 61]\[27 Ny = (3t — VaQQ)NQ + 01 N;.

Surprisingly, both u and b are found to satisfy nonhomogeneous wave equations with exactly the same
linear parts. Clearly, (1.9) exhibits much more regularization than its original counterpart in (1.2). The
stabilizing and damping properties of (1.9) is a consequence of the background magnetic field and inter-
actions within the MHD system. By exploiting these properties, we are able to establish the following
theorem assessing the large-time behavior of the solutions of (1.2).

Theorem 1.2. Let v > 0 and n > 0. Assume (ug,by) € H? N L' satisfies V - ug = V - by = 0,
(o, bo)|lg2nn < & for sufficiently small 6 > 0. Let (u,b) be the corresponding solution obtained in
Theorem 1.1, then, for a pure constant ¢ > 0,

[1(w(t), b(t) ]2 < cd(1+1)"2, (1.10)
1(Dru(t), 01b(1))l|L> < c6(1+1)77,

[N

N
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1(2u(t), ab(t)) || 12 < ed(1+ ). (1.11)

In contrast to the potential double exponential growth rate in (1.6), Theorem 1.2 asserts that the
solution of (1.2) actually decay algebraically in time. This result rigorously confirms the experimentally
observed stabilizing and damping effect of the background magnetic field. The decay rates in (1.10) and
(1.11) are the same as those for the fully dissipative heat equation, and reveal the stabilizing and damping
effect of the magnetic field.

Theorem 1.2 is also mathematically important. It establishes the precise large-time behavior of a
partially dissipated system. Many powerful classical methods designed for the large-time behavior of
fully dissipated systems such as Schonbek’s Fourier splitting scheme ( [38-40]) may not apply to partially
dissipated systems. The approach presented in this paper serves as a new method that work for some
partially dissipated systems of partial differential equations.

Due to its physical applications and mathematical significance, the stability and large-time behavior
problems on the MHD equations near a background magnetic field have recently attracted considerable
interests. The stability problem on either the ideal MHD system or the fully dissipated MHD system
with identical viscosity and resistivity has been thoroughly investigated and significant results have been
obtained [2,3,7,23]. The requirement that the viscosity coefficient be the same as the resistivity coefficient
comes from the use of the Elsésser variables. [44] allows these two coefficients to be slightly different.
The paper of Lin et al.[31] initiated the study on the stability problem of the 2D MHD system with
only velocity dissipation. By using the Lagrangian approach and controlling all quantities in terms of
the trajectory, they were able to establish the desired stability. The work of Ren et al.[36] examined
the stability and the large-time behavior simultaneously of the 2D MHD system without resistivity
in an anisotropic Besov setting. The approach in [36] is Eulerian and establishes extensive anisotropic
energy estimates. Instead of the velocity dissipation, Wu et al. [48] studied the stability of the 2D MHD
system with only velocity damping and without resistivity. Their paper exploits the wave structure of
the system. More recent studies on the MHD stability problem focuses on the anisotropic MHD systems.
The paper of Boardman, Lin and Wu [5] deals with the stability problem on the 2D MHD system with
the fluid vorticity satisfying an Euler-like equation. Wu and Zhu established the stability of the 3D
anisotropic MHD system with velocity dissipation in two directions and the magnetic diffusion in only
one direction [49]. We remark that there are substantial recent developments on the well-posedness and
stability problems on the MHD systems and many other important results are also available (see, e.g.,
[8-10,14-16,18,19,24-27,29,30,32-34,37,41,43,46,47,49-53,55-59]). This list is by no means exhaustive.

We explain the main idea in the proof of Theorem 1.2. Clearly Theorem 1.2 can not be established via
direct energy methods. Instead the approach here is to represent (1.2) in an integral form and then apply
the bootstrapping argument. To convert (1.2) into an integral form, we first take the Fourier transform
of (1.8) to obtain

(1.12)

O/ = —vedi + igrb+ Ny,

(1.12) can be written as a 2D system associated with a matrix A,
m m N
~ ) =A ~ —~ |.
(3)-+()+(5)
A:(yﬁﬁﬁ.
&1 =1

(E0)- (@) Lo (55)

where

By Duhamel’s principle,
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The fundamental solution matrix e* can be made more explicit via the eigenvalues and eigenvectors of

A. In fact, if A\; and Ay are the roots of the characteristic polynomial associated with A,
N+ (n+vE)A+ €& +vngg =0
or

(n+v€3) — VT
2

_ —(+v&) +VT
2

)‘1 = - ) >\2
with

T = (n+v€35)* — 4(&F +vné3),

then e? can be written explicitly as
oo (B Ky
Ky K3 )’

where
P e)\lt _ e/\gt )\16)‘1t o )\26)‘2t
Ky =n=—5—73 M-
Mt gt
Ky = 151W7
_ /\1€>‘2t _ )\26)\115 e)\lt _ e)\gt
A v v

Thus we have converted (1.2) into the integral form

t
ﬁ(t) = Klﬂa‘f‘Kgbo +/ Kl(t—T)Nl(T) +K2(t—T)N2(T) d’T,
0, (1.14)
b(t) = Kotug + Ksbg +/ Ko(t — 7)N1(7) + K3(t — 7)No(7) dT.
0

More technical details are provided in Proposition 2.1.

The next step is to extract the desired large-time decay estimates from the integral representation
in (1.14). We use the bootstrapping argument (see, e.g., [42, p. 21]). As a preparation, we first derive
suitable upper bounds for the kernel functions. Clearly the kernel functions are anisotropic and frequency
dependent. By dividing the frequency space R? into suitable subsets, we are able to obtain definite upper
bounds for the kernel functions in each subset. The details are given in Proposition 2.2. To implement
the bootstrapping argument, we make the ansatz

[ (u(t),b(t))|lL> < co(1+1)" 2,
[[(O1u(t), 01b(t)) |2 < Eo(1+1t)~ 2, (1.15)
[(Dau(t), D2b(t))] 2 < E6(1+1t)~",

D=

Nl

where ¢ will be specified later. We show through the integral representation of u and b in (1.14) that

N

Iutt), b= < 601 +1)72,

I@ruut), (1)) 22 < S50+ )%, (1.16)

[(@ou(e), b0 |2 < S50+ 1),

N

with the coeflicients being half of the corresponding ones in (1.15). Then the bootstrapping argument
implies that (1.16) holds for all 1 < ¢ < co. The process of establishing upper bounds in (1.16) is very
long and tedious, and the details are presented in three subsections in Sect. 3. We just want to mention
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some of the technical points. Due to the higher decay rate for the vertical derivative than the horizontal
one, efforts have been made throughout to replace the horizontal derivatives by the vertical ones. One
way to do so is to make use of the divergence-free condition, V -u = V - b = 0. Another helpful way is to
invoke the anisotropic type inequalities such as

1 1 1 1
||fHL°°(]R2) < CHf||f2(R2)||81f||i2(R2)||a2f|‘i2(]1§2)||812f||f2(11g2)~

These type of technicalities are used throughout the proof such as in (3.30) and many other places. The
proof also employs many other helpful strategies such as dividing the time integral involving the nonlinear
terms into two parts such as

t
/ ||K1(t — T)u . VUHL2(A1) dr
0

t

t/2 — - _
:/ ||K1(t—7')u~Vu||L2(A1)dT—|—// HKl(t—T)U’VU||L2(A1)dT~
0 t/2

This division would help distinguish different properties of the integrand in different time intervals. The
decay of the first piece relies on the kernel function while the decay of the second piece comes from the
nonlinear term. We leave more technical details to Sect. 3.

The rest of this paper is divided into two main sections. Section 2 provides the details in the derivation
of the integral representation (1.14). In addition, this section divides the frequency space R? into suitable
subdomains and establishes explicit upper bounds for the kernel functions in each subdomain. Section
3 presents the proof of Theorem 1.2 by applying the bootstrapping argument to (1.14). This is a very
long and tedious process. For the sake of clarity, we divide this section into three subsections with each
devoted to one of the inequalities in (1.16).

2. The Integral Representation and Bounds for the Kernels
This section details the derivation of the integral representation and establishes upper bounds for the
kernel functions involved in the integral representation. These upper bounds will be used in the proof of

Theorem 1.2. Proposition 2.1 and its proof are devoted to the integral representation while Proposition
2.2 focuses on the upper bounds for the kernel functions.

Proposition 2.1. Let v > 0 and n > 0. Assume (u,b) is a solution of (1.2). Then (u,b) satisfies
¢
u(t) = Kqug + Kabg + / Ki(t — 7)N1(7) + Ka(t — 7)No(7) dr,
0
t
b(t) = Koug + K3by + / Ky(t — 7)Ni(7) + K5(t — 7)Nao(7) dr,
0

where the kernel functions K, through IA(g are given by

A1t Aot At Aot

—~ eMt —e et — e

K, = = G G
SR VR A= A e G

/\1t >\2t

Ko =i —m—— = i6G
2 =161 N 161G,

o )\1€A2t _ A2e>\1t eA]t _ e)\Qt

K3 = — = -Gy + Gs.
3 N = TN = nG1+Gs

with A1 and Ao being the roots of
N+ (n+vEA+ €& +vngl =0

) Birkhauser
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or
—(n+v&) —vT —(n+v€) + VT
a= TS VL, SOV VT (e (e o))
and G1, G2 and G3 given by
G = et — e>‘2’57 Gy — Apertt — >\26)‘2t’ L= Aperzt — \gettt
)\1—)\2 )\1—)\2 )\1_/\2

In the case when Ay = Ay or I' = 0, the formulas of the kernel functions I?l through I?g are replaced by
the corresponding limiting formulas

Ky=n lim Gy+ lim Gy=nted + (1+ Nt

2— A1 Ao — A1
Ky = i&iteM?, (2.2)
Ky = —nteMt 4+ (1 — At)e?.

Proof. As explained in the introduction, any solution (u,b) of (1.2) would solve (1.13), namely

()= () [ (50) -

A:(yﬁﬁﬁ.
ST
The characteristic polynomial of A is

N+ (n+vE)A+E + g =0

with

and thus the eigenvalues of A are

m+v8)-VT | —(+ve) + VT
2 ’ 2 2 )
The eigenvectors corresponding to A1 and Ao are given by

W _ (nth @ _ [(n+ A
(M) = (M),
respectively. Therefore,
A1 0 -1
— (@™ @ 1 1) @
Af(v v)<0>\2)<v v ) .
QA ! n+Ain+A) (et 0 €1 —(n+A2)
G =) \ & i& 0 M )\ =& n+M

_ (KK
=52

A= — L= (n+v&)* — A + vné3),

where
P e)\lt _ ez\gt )\16)\1t _ )\26>\2t
Ky =n——3 VISV
- Mt Aot
S e W
—~ ettt — \yettt Mt _ gAat
L Vi e v
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To simplify the notation, we define

e)\lt _ e}\gt )\16)\1t _ )\2e>\2t )\16)\2t _ )\26)\1t
Gi=—F——7— Gi=———"-—+7", 3=
)\1—)\2 )\1—)\2 )\1_)\2
and write
eAt _ -E{:l -[EZ _ <G2 + 77G1 7:é-lcll ) (2 4)
Ky Ks i§&Gh1 Gz —nGy )~ '

Inserting (2.4) in (2.3) yields (2.1). In the case when A\; = Aq, the associated eigenvector of A is

a_(n+tM

and the general solution of 0,V = AV is given by
a; v eMt 4 g, (v(l) t+ a)e)‘lt,
where a7 and as are to be determined by the initial data, and o solves

(A= M I)o =0,

()

We determine ay and ay by the initial data @y and 50. This process leads to the kernel functions in (2.2)
when A1 = A\g. This completes the proof of Proposition 2.1. O

After some simple computation, we find

The next proposition provides upper bounds for the kernel functions K 1 through IA(;;. It is clear that
the kernel functions depend on the Fourier frequency and are anisotropic. Consequently we need to divide
the frequency space R? into suitable subsets so that the behavior of these kernel functions are definite.
Our decomposition will be based on the second eigenvalue,

_ 2 T
_ (n+V§z)+\f7 T = (n+v&3)? — 4(62 + vned).

A natural choice is to separate the domain where Ay behaves like — (n+v&3) from the rest. In particular,
this occurs if

A2

1 3
VT < S+ vE) or wngG+&E > TG(U+V€§)2~

This explains the decomposition in the following proposition.

Proposition 2.2. Let v > 0 and n > 0. We decompose R? into two subsets Ay and Ao with

3
Av={E R, v +& > 1o+ v€)%),

A= (E€ R, g +8 < (n+vE)).
Ay is further divided into Ay and Ass with
Ay = {E €R?, €€ Ay, vE5 <n},
Agy = {€ €R? € Ay, v&5 >}
Then
(1) For any & € Ay, there is co > 0 and C > 0 such that

|f(\1|, |[/(\2‘7 |f(\3| < C oo+t

) Birkhauser
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(2) For any & € Agy, there is ¢g > 0 and C > 0 such that
Kl R, | Kol < € (emoltredt  meolel™t).

(3) For any £ € Aza, there is co > 0 and C' > 0 such that
: 31
|[/(\1|, |]/(\2‘7 |[/(\3| <C (e—co(l-i-gg)t + e—co(l-&-g)t) .

Proof of Proposition 2.2. We start with the case when £ € A;. For any £ € Ay,

D= (n+v8)? ~ 4w + &) < (n+ v — 0+ 1) = {(n + v

Therefore, either v/T is pure imaginary or vT' < 5(n + v€3). Hence, the real parts R(\1) and R(\z) are
bounded by

ROW < ~3+ug), RO < — 0+ ved).

To bound l/(\l, I/(\z and @7 we realize that they all involve only A1, Ao and G;. In fact, since Gy and G35
can be written as

)\16>\1t — )\1€>\2t —+ )\1€>\2t — A2€A2t

Gy = =eMt 4 NG
2 = e+ A1Gy
A1 — Ao)er2t 4 )\, (er2t — At
Gy = (AL = Ag)e™?" 4 Ag(e eMt) At MGy,
W
we have
[?1 = €A2t + MG+ T]Gl, [/(\2 = Z{lGl, K3 = 6 — AGq — 77G1. (26)

When I' > 0, both A\; and )\, are real. Then the mean-value theorem implies that there is i < a < 1such
that

G — ‘ii:it -
When I' = 0, A\ = A\ and (2.2) implies that G is replaced by
Gy =teMt,
When I' < 0, both A; and Ay are complex and
Gy = —e 3 (1HvEd) ”mg )
2

Therefore we always have
|G1| < te—i(mru&%)t.
We can check that A; and Ao admit the following upper bound,
IMl, [Ae| < m+ v
In fact, if A\ is real, then

n+vés n+vés 3
M| € T2 4 TR = S+ vE).

If A1 is complex-valued, then

M < (n+vE)2+1(n+vE3)? 5
= 4 4

= —(n+vé).
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It is then clear that A\, always satisfies
Ail <+ vl

A similar argument leads to the bound || < 1+ v€3. Then the upper bound K 1 follows easily from the
definition of i 1 and the upper bound above for ;.

Using the simple fact that pe=¢1? < Oy for any p > 0 and C; > 0 and suitable Cy > 0, we have, for
co>0and C >0,

K| < €] + [MGa| + n|Gi| < e 7Vt L 9(n 4 pe2)te— 3 (1HVEDE < o148
[Ks| < 12! + PG| +0[Ga| < e80! 4o 4 v&G)te 2 (D < o+,
To bound f{\g7 we divide the consideration into two cases:

Gl o, o
Moy

[€1] ; _ S
When Nal < 1, we write, due to A\; — Ay = —V/T,

> 1.

‘[/(\2| < [S1 (|| + |e2t]) < e~ 3 (HvEDt | o~ (ntved)t < (7 p— (4,

~ VT

When “j%ll > 1, then

|(n+v€3)* — 4(vng3 + &7)| < €7
which is equivalent to
0< (n+v€3)* —4(vng + &) <& (2.7)
or
0 < 4(wngs +€7) — (n+v&3)* < €. (2.8)
Clearly, (2.7) implies
—(n+vE)* < —4(vn&} + &) < —4g
while (2.8) yields
—(n+vE3)* < —4(vn€3 +€7) + & < 367
In either case, we have, for ¢ > 0
—(n+ &) < —clél.
Therefore,
K| < |&|te 2 rTEDE = ¢ |t 8 (et o= 5 (ntvEd)t
< |§1|te_%0|51|te_%(”+”5§)t < Ceco(H+E)E o co>0and C > 0.

We now turn to the case when £ € As. For £ € A,
1
A < —5(77 + v3).

By I' = (n +v&3)* — 4(vnés + &1) < (n + v€3)?,
~(+v&) + VT _ (= +v€3) + VI)(=(n + &) — VT)

Ao =

i 2 —~2((n+ve3) + VT) (2.9)
_ 2+ &) 2vmgE+ &) wngE+ &
—(n+ v +VT) ~  20n+v€) n+vés

) Birkhauser
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Since I' = (n+v€5)* —4(vnés +€7) > (n+v€3)* = §(n+vE5)* > 1 (n+vE5)?, we obtain VT > J(n+vE3).
It follows that

VI T n+vé

Furthermore, for £ € Ay, we have

At Aot _ wvned+ed
|G1| — e e < 2 (e—é(nﬁ-uég)t +e 7l+21/€§1 t) . (210)

Gl _ V3

n+vé 4

3
2 o 9 212
& < 16(77+sz)

and thus

vned+e2
|f(\2‘ <lgllGi<C (e—é(n+u£§)t te ,7'+2us%1 t> .

In addition, by (2.6) and the bound |A| < 1+ vE€3,

vngd+e? 2 vngd+€3

— - t v — t

TP AUy PRI T
n+ v

_ vnedted
<C (e—é(n+l/£§)t Lo ntvEd t) .

|I/(\3| admits the same upper bound. By further using the definitions of As; and Asy in (2.5), we obtain
the desired upper bounds. This completes the proof of Proposition 2.2. O

3. Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. The framework of the proof is the bootstrapping
argument. The proof involves the estimates of many terms and is a long and tedious process. It will be
divided into three subsections after we present several tool lemmas.

We need several basic tool lemmas. The first one provides the LP? — L9 estimate for a general fractional
Laplacian heat operator e’*A”. The fractional Laplacian operator A* with o € R is defined via the Fourier
transform

A f(&) = [E[7F(8)-
The proof of this LP — L? estimate can be found in many references (see, e.g., [45]).
Lemma 3.1. Leta >0, 3>0 and 1 <p <qg < oo. There is a constant C > 0 such that for t > 0,
o A® _B_a1_1
1A%l paay < CH7 27257 fll o ra)-

The next lemma presents an 1D Sobolev inequality involving fractional derivatives. This 1D inequality
is at the core of many higher dimensional anisotropic Sobolev inequalities. The proof of this lemma can
be found in [54].

Lemma 3.2. Assume that f is in LY1(R),

1,1 1
1-1(4-1

) |[As
[fllzawy < CNfll"7 “TlIA°f
where 2 < g < o and%(%fé)gl.

L-1)
L2

)

Anisotropic Sobolev inequalities have become a necessary tool in the study of anisotropic equations.
The next lemma states a 2D anisotropic inequality, which can be seen as a consequence of the previous
lemma.

T Birkhauser
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Lemma 3.3. The following estimates hold when the right-hand sides are all bounded.
1 1 1 1
||fHL°°(]R2) < CHf||E2(R2)||61f||i2(R2)||a2f|‘i2(R2)||612f||22(11g2)~

For the convenience of later reference, we also provide two standard inequalities. The first one is a
Sobolev inequality while the second one is a calculus inequality on the fractional derivative of a product.

Lemma 3.4. Assume that f € LY(R?) with 2 < q¢ < co. Then
2 1—2
[fllze < CIAILIV A L2

Lemma 3.5. For any s > 0, then for all f,g € H° N L*>®, and we have the estimates

IA°(fo)llr < C (1A fllLerllgllLes + 1 flles [A%glra)
= p% + p%. and p,p2,p3 € (1,00). In particular,

[A*(flle < C(IA°fllz2llgllzoe + I flL<IA%gllL2) -

We are ready to prove Theorem 1.2.

1

where 5= +

1, 1
P1 P2

Proof of Theorem 1.2. We prove Theorem 1.2 by the bootstrapping argument. We make the ansatz, for
1<t<T,

(u(t), ()| L2 < &@6(1 + )72,
1(Dru(t), 1b(1)) || L2 < @(1+1)" 7, (3.1)
1(D2u(t), D2b(t)) ]| L2 < &6(1 + 1)~

where ¢ will be specified later. We show through the integral representation of u and b in (1.14) that

[N

Iutt), b= < 2601 +1)72,

S

1(Oru(t), 01b(t))[| > < 56(1 +1)7 2, (3.2)

N O

1(D2u(t), 2b(t))] L2 < 56(1+1)7"

N O

Since the coefficients in (3.2) are just half of those in (3.1), the bootstrapping argument then implies
(3.2) holds for all 1 <t < 0.

The main efforts are devoted to the inequalities in (3.2). This process involves the estimates of many
terms and is very long. For the sake of clarity, we divide the rest of this section into three subsections
with each subsection devoted to one of the inequalities in (3.2). g

3.1. Estimates of ||(u(t),b(t))] 12

This subsection proves the first inequality in (3.2). To estimate ||(u(t),b(t))||z2(r2), We estimate it in the
three subdomains A, As; and Ass defined in Proposition 2.2. By (1.14),

t
@) z2(ay) < 1K (ol L2 ar) + 1K2(8)bol 2 a,) +/0 [ K1 (t = T)N1(T)|[22(a,) dT
t
+ [ IRate = DR ncn dr
0
2211+12—|—13+I4.

By Part (1) in Proposition 2.2,

I = | K1 ()l r2(ay) < Clle™ 02105 12,

) Birkhauser
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< Ce“!|[g]| 2 (r2) < C(1+1) 72 Juo]| 2, (3.3)

where we have used e~%! < C(1+t)~2 for t > 0. Similarly,

I = | Ka(®)boll2(a,) < C(1+)7 [boll 2. (3.4)
Noticing that N; = (I- %25 )(—ﬁu + b/%) and using the boundedness of the Riesz transform on L2,

we have
t
13:/ ||K1(t—T)N1(T)HL2(A1) dr
0

t —_— e~
<C [ (1Rl + Kb Tl as,) dr
=131+ I3p.

I3 is further decomposed into two parts,

t/2 —
Ly <C / 1R (= ) Va(r) |2,y dr
0

t
+C | Ki(t —7)u-Vu(r)| L2ca,) dr
t/2

=1I311+ 131,

By Proposition 2.2, Holder’s inequality and Ladyzhenskaya’s inequality,
t/2 %
Is1q < C/ e - Vu(r)| L2 dr < Ce 0% / ||l ]| V|| Lo dr
0 0

. /2
< Ce / il Y2l 2 [ A 22 i

< t/2 1.1 1 1
<Ce#t [y B e ) ) ) dr
0

C t/2 C
< 053/25%—7”/ (1+7)"%/* dr < CE¥/252e= 5 (1 4 1)/4
0

S 063/252(1 4 t)71/2’
where we have used the ansatz in (3.1) and the fact that ||u||g2z < ¢d. In addition, in the last step, we
have used e~ %" <C(l1+ t)_3/4 for C' > 0. We estimate I3 1 o.

t
I37172 =C ||K1(t—T)U'VU(T)||L2(A1) dr

t/2
t

e T R PR
t/2
t 5 o

<C [ eSOy Ty, 7) || 12 (a,) dT (3.5)
t/2

t 1 3
<C [ et — 1) i u(r)|| ||Vl 2, dr
t/2

t
<C | et —7) i@ (14+7)" 51 dr < C352(1+1)7 1,
t/2

T Birkhauser
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t

where we have used e~ =T)(t —1)7% dr = C for C > 0 in the last inequality of (3.5), and invoked
t/2

the following estimate in the fourth inequality of (3.5),
—C 2 —T - —C 2 —T —
le™ 020w Vu(€, 7)|[72(a,) = llle 02 VU(EJ)HL@H%EI

— [ [l s na Ve P de
< [ [l s agla Vute, )l des
= [ [ty he bl Fue i de

== [ Vae iy da

< Ct—7) 2l Vuliy g2

< C(t = 7) 2 lllullzz, I Vullz, 172
<Ot =) |lulis, 1 [ Vull 12

< C(t = 7)7 % [ull 2 | 9rul 12 | V| 72

Similarly,
Is0 < C@ +&/%)8°(1+ 1) 2.

Therefore, for a constant C' > 0,

I; < C(@+&/?)8%(1+1) 2. (3.6)
By invoking Ny in (1.7) and going through a very similar process, we have
I <C@+ &) (1+1) 2. (3.7)
Combining (3.3), (3.4), (3.6) and (3.7) yields
[(®)22(a,) < CO+6) 72 (luollz2 + [[boll2) + CE*6*(1 4+ 1)~ 2. (3.8)

We now turn to |[(u(t),b(t))||2(a,,)- By (1.14),
@)l L2 (a0) < 1K1 ()80l L2(A00) + HK2()boll 2451

t
+ / IRt — 1R (1) 2 any dr
0

[ 1Rale = 20y
=J1 4+ J2 + Js + Ju.
By Part (2) in Proposition 2.2 and Lemma 3.1,
Iy = Ky (0] 12400y < Clle™ G| ) + Clle 04T

< Cem||ugl| p2(rey + Clle* uo | 12 (v2)

o~

u0||L2(A21)

< O(L+ ) uoll 2 g2y + Ct 29 [lug|| 1 (g
< C(1+1)72 uol|2n-
where we have used e~“! < C(1+t)~2 for t > 0. Similarly,
Ty < C(L+1)72 [boll2nzo-

) Birkhauser
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By Proposition 2.2,
5= [ 1R - DRz i
<0 [ e DD T €, sy e
+ C/Ot ||e_00(1+£g)(t_7)|b/'%|(§7T)HL2(]R2) dr
+CAWeW““ﬂW?%memwﬂh

+0 [P 7 e
=J31 +0J3,2 + J33+ J34.
By (3.6), for C > 0,
Js1 + Jso < C(E + /)52 (1 4t)" 2.
We further decompose J3 3 as
B = [ eSO T € e dr

t/2 o
= c/ l|emcole*(t=7) |y, Vul(€,7)| L2 g2y dT
0

t
+C [ e D T (¢ ) o ey dr
t/2
=J331+ J332.

By Lemma 3.1, and the ansatz (3.1),
t/2 , -
Jaar=C [ e DN TEUE T2 dr
0

t/2
< c/ (t—7)" 2730 |y @u| . dr
0
t/2

gC(t/z)—l/ u & ul|p dr
0

/2
<ot [ fulfar

t/2 .
gCt—l/ (@1 +7)~4)2dr
0

< CEt ' In(1 4t/2) < C(o)&6%t 117,

33

where we have used t~7In(1 +¢/2) < C(o) for ¢ > 0 and for all ¢ > 1. By Lemma 3.1, the ansatz (3.1)

and Holder’s inequality,

t
Jssa=C [ |le &0 (g, 7)||| 2 dr
t/2

t
< c/ (t—7)" 302 ||y Vu| 1 dr
t/2

T Birkhauser
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t 1
<c //2<t—7>2|u<f>||L2||Vu<T>||L2 dr
t
t 1 1 1
< C’/ (t—71)"2e0(1+71)"2e0(1+71)" 2 dr
/2
t 1
< 06252/ (t—7)"2(1+7)"tdr
t/2
t

< 06252(1+t/2)_1/ (t—7)"2 dr

t/2
< CAE (1 +1)7 (t/2)Y?
< CPP(1+1) 2,
J3.4 admits the same upper bound as J3 3,

Jsa < C(o)F6 117 4 CE6%(1+1) 2.

Jy4 admits the same bound as J3. By taking o sufficiently small, say o < %, we have

@) 22 (anr) < C(L+6)7% (Jluoll 2zt + [[bollzenrs) + C( +/2)62 (1 + 1)~ 2.

We estimate ||u]|12(a,,)- By (1.14),

()] L2 (Ass) < 1K1 (1) U0l L2 (A02) + 1K1 (8)D0 ] £2(A40)

t
4 / 1Rt — 7)N1 (1) 22 am) dr
0

t
+ / 1Rt — 1) Na(r) 12 ()
0
5:M1+M2+M3+M4.

By Part (3) in Proposition 2.2,

My = || K ()0 £2 ()

- —eo(1+ 5yt
< Clle DG L2 + e W L2 g

&
_ - —eo(1+51 )t
<Cle co(1+f§)tu0”L2(R2) + le eof 55) UO||L2(R2)

< Ce™*fug| 2 < C(1+ 1)~ |Juo]| 2
Similarly,

My < C(141)"2 |[bo]| 12

) Birkhauser
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By Proposition 2.2,
t
My = [ Rt = DR 124
0
t g2 o (15 (t=7), —— —
< C/ [(emcot+&2)(=m) 4 ¢ E J(lw-Vu(r)|+ [b- Vo(T))|| L2 dr
0
t
<C [ e (fu- Tulr) g + - VH(r)12) dr
0
t/2
< c/ e (|lu - Vul[p2 + ||b- Vb||L2) dr
0
t
+C [ e (|lu-Vullg2 + ||b- Vb||p2) dr = Msy + Ms.
t/2
We set
Mz = Ms11+ Msqo.
For 2 < ¢ < oo and ¢ satisfying % + % = %, we have, by Lemma 3.4,
2 1—2 1—2 2
lullze < Cllullf=(Vull2* [Vulle < Cl[Vul[ * | Au] {2 (3.10)

and thus

2 2
Msq, < C’efTOt/ |- Vul|p2me) dr < C’efTOt/ lu|lpa||Vul| e dr
0 0

. t2 2 2(1-2) 2
<Ce® [ ulfulvul S | Aul fudr
0

o

t/2 )
< ceﬁt/ (&(1 4 1))/ 9@E@s(1 + 7)72)20=2/D (¢5)?/9 dr
0

t/2
< Ce—%”eQ—?/%?/ (14 7)1 Vadr < CP2/952(1 4 1)~ /2,
0

where we have used (1 + t)%e’%ot < C(14t)~Y/2. Similarly, M » obeys the same bound,
M3,1 < 05272/(152(1 + t)il/z.

M3 o is naturally divided into two parts,

t

M3’2 S C 6_00(t_7) (||u . V'LLHLz + ||b . Vb”Lz) dr = M3,271 + M372’2.
t/2

By Holder’s inequality and (3.10),

t
Msa, < C / e ()| | V(7 | 1 dr
t/2
t 2 2(1—2 2
<c //Qe-%“—ﬂnunzz|w|;2 )\ Aul|2.dr
t

t
< c/ e~ (@5 (1+ 7)) U(e5(1 4 )7 2) 202D (68)2/9 dr
t/2

t
<ot +t/2)’1+1/q/ e~ dr

t/2

< OFB72952(1 4 t/2) "L,

T Birkhauser
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By taking ¢ = 3, we obtain
Mz o < CE35%(1 +1)72/3.
M3 2 5 admits the same bound,
Mz < C&E8*(1+)71/2 4 C&/352(1 + )72/
Similarly, M, obeys the same upper bound. Therefore,
()] 22(az) < C(L+ )72 (Juol| 2 + boll 2)
+ OB+ 1)V 4 0362 (1 + )7/,

By (3.8), (3.9) and (3.11),

lu(®)llz= < Co(1+ )72 (u, bo) | 222

+ Co@02(1+ 1) 2 + C3d26%(1 4+ )72 4+ Cu/362(1 + t)~2/3,

Therefore, if we choose ¢ and § satisfying

c 1 1 1 1 1
< - co < — 2 < — c3) < —
Gisg  Gdsg  GEosg,  Gietds gy,
then (3.12) implies
¢ 1 ¢ 1 c 1
<SS bl t) T+ —S(1 4 1) 2
||u(t)HL2 < 8(5( +t) 2 + 16(5( -‘rt) 2 + 16(5( +t) 2

C 1
=—-0(1+1t)" 2.
So0 40
Similarly, ||b]|z2 obeys the same bound. Therefore,
u(e),b(E)ll 2> < 56(1+6)75.

This completes the proof of the first inequality in (3.2).

3.2. Estimates of ||(2u(t), O2b(t))|| L2

The goal of this subsection is to prove the third inequality in (3.2), namely
¢ _
1(02u(?), 02b(t))ll = < 56(1 +1) g
Applying 0 to (1.14),
t
32u(t) = K182u0 -+ Kgazbo + / Kl(t - 7)82]\71(7) -+ Kg(t - T)aQNQ(T) dT
0

1
(92b(t) = K282u0 + Kgagbo —+ / Kg(t — T)aQNl(T) -+ Kg(t - T)aQNQ(T) dr.
0

We estimate [|8yu]|12(,), [|0atl|12(ay,) and [|Bau]| 12 (). We start with [|yul|L2(a,). By (3.14),

18ou(t) ]| 22 ary < 1K1 (1)Bauol L2y + [ Ka(t)aboll 12 (ay)

t
+/ ||Kl(t*7_)82N1(7_)HL2(A1) dr
0

t
+/ 1Ba(t — 7)3aNa (1)l 12ayy dr
0

=01+ 03+ 03+ O,.

) Birkhauser
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By Proposition 2.2,
0, < ||€760(1+E§)t3/2u\0||1:2(ﬂ§2) < e Bqugll 2 < CHL+1)7,
where we have used (1 + t)e~* < (. Similarly,
Oy < CO5(141) 1

Os is naturally decomposed into two parts,

t t
0s g/ 1R (¢ — 1) - Va) () 22 an d¢+/ 1K (= 730 - V07 2cay dr
0 0
=031+ O039.

We further write
t

t/2 __ _
Os1 = [ IR (0= 0BV () acay b+ [
0 t

/ K1 (t = 7)8a(u - Vu)(7)] 24, ) dr
2

=031,1+ 0312
By Ladyzhenskaya’s inequality, Proposition 2.2 and Lemma 3.3,

t/2
03,11 S/ e |0y (u- V)| 2 dr
0

. t/2
< 6_7”/ (I02ullLal Vel Lo + [lufl L |82 Vu| L2) dr
0

c ¢/2 1 1 1 1 1 3.15
<ce [ ol dul eVl + ol forul ol sl ar )
0

~3

. /2
< Ce—%’t/ (1+7)7 36+ (1+7)" 262 dr
0
<CEP(1+1) "+ CES(1+1)7Y,
where we used e_%ot(l + )7 < C(y) for any v > 0. To bound Os 1 2, we write the norm in O3 ;2 from
the frequency space to be in the physical space, and then use Holder’s inequality, Lemma 3.1 and Lemma

3.2 to obtain

t
O312 = / emeot=) || =& (=) 9, (y - Vi) || 12 dr
t/2

t
< / e || Ape 030D - V) 2 dr
t/2 2Lz,
t
<C | et — 7)1 ||u- Vulp dr
t/2 o2
t
Nl
<o et oyt s 1Vulle || . ar (3.16)
1/2 =2 231173

t
<C [ e @Dt =) lull g2 r VUl 2 dr
t)2 T2 T]

t 1 1
< C/ eI (¢ — 1) [u] 2 |Ovul 2. |Vl 2 dr
t/2
<CEFPA 417

) Birkhauser
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t 3
where we have used e~ W) (t — 7)71 dr < oco. Since O34 admits the same bound as Os 1,

t/2

03 < Ce?(1+1) "+ Ceid>(1+ 1)+ C382(1+ 1)~ L.

0,4 obeys the same bound as Os. Therefore,
1Bou(t)]| 12 (ay) < CO(1L+ )~ + CE0>(1+ 1)~ + CET62 (1 + 1)~
+CE8(1+t)7 "t (3.17)

Next we bound [|8ul|12(4,,)- By (3.14),

1020(t) | 2 421) < 1K1 (D20l L2 an) + [E2(t)D2b0l| 240

t
+ / IRy (t — 73N ()| 24y I
0

+ / Rt = B R aany
=P +P,+ P;+ P,.
By Part (2) in Proposition 2.2 and Lemma 3.1,
Py = || K3 (4)0u0| 120
< Ol Baug| 2y, + Clle™ 0 Byug | 12,0
< Ollem 00+ 00| 12y + Cllee™ TG L2y
< Ce™!|Bauo| z2(ge) + Clle™ A" Aug| 2 (ra)
< C(1+ ) M|auol L2r2) + Ct Hluo | 1 (r2)
<O+ ) Muollgrarr < C5(1+1)~"

(3.18)

where we have used e~ < C(1 +¢)~! for ¢ > 0. Similarly,
Py < C(L+t) " bollgin: < CS(L+1t)~

We rewrite P3 as
P= [ IR~ BNl
<C /0 e DG ) ey
+C /0 e 0Tl VB2
+C /O el Gl | ey dr

¢
+C/ el =Gy (b - Vb)|| 12 g2y dr
0
=P31+ P30+ P33+ Pay.

P51 can be bounded similarly as Os,
P31 < CE2(1+1)" 4+ CE 8 (1+1) " + C&62(1+ 1)~ L. (3.19)

) Birkhauser
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P35 admits the same bound as the one for P; ;. To bound Ps 3, we divide it into two parts,
t/2 ) o
Pys — c/ le=eolé 3, (- ) | ey dr
0

¢
+C ||€_CO|§|2(t_T)82(u . VU)HLQ(RZ) dr
t/2
=P531+ P30

By Lemma 3.1 and Holder’s inequality,

t/2 o
Praan £C [ e 00T ey dr
0

t/2
<c / li€atle P D TE a2y dr
0

/2 .
= C/ [[1€]2e ol =)y ® ulll L2 (r2) dT
0

t)2 . L2
< c/ t =) Huwul dr < C(t/2)‘5/ |22 dr
0 0

t/2 . ,
<ot / (@(1+7)"4)? dr < C&26% 3 In(1 + £/2)
0

< CEFP(14t)7h

33

where we have used t~2 In(1+¢/2) < C for all t > 1. By Lemma 3.1, Lemma 3.4 and Holder’s inequality,

t
Pysp <C [ le k=10, (- Vu)| 12 ge) dr
/2

t

<C / 1€l =78, (u @ w)|| 2 dr
t/2
t 1 271 1

<C | (t-7)"2720G"2) |0y (u @ )| padr
t/2

t
< c/ (t— ) s lopul el irdr  (1<q<2, r>2)
t/2

t _1 2 1—2
<c [ @=n el Valz dr
t/2
t

=), (t=7) 73 (@(L+ 7))@ +7)" %) dr

t
§06252(1+t)’%/ (t—7)"a dr
t/2

Therefore,

P33 <CESP(1+1t)7L (3.20)

Similarly, P 4 obeys the same bound. By (3.19) and (3.20),

Py < Ces*(1+1) " + Cei82(1 + 1) + CPS*(1+ 1)L (3.21)

) Birkhauser
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Furthermore, Py admits the same bound as Ps in (3.21). By collecting all the bounds for P;, Py, P; and
Py from (3.18) to (3.21), we obtain

180 (t)]| 120y < CO(1+ )" + CE82(1+ )~ + CEIS2(1+ )1 + CE2(1 +1)~". (3.22)
Next we estimate [|9zul| 12 (4,) By (3.14),

102u(t)[| L2 (Az0) < [ E1(E)O2uo || L2 (4,50) + 1K 2(1)02b0]| 2 (As0)

t
+ / 1R (= 7)32 (1) 12y T
0

t
+ [ IRalt = BN 124
0
= Q1+ Q2+ Q3+ Qq.
By Part (3) in Proposition 2.2,
Q1 = [ K1 (£)D210]| 12 (4s0)

2
—co(1+ 2%
&3

_ 2y, Yt
<Clle cO(Hgﬁaﬂto||L2(,422) + e O2uo || 12 (A,9)

) (3.23)
< Ol Tl sy + e Tt e
< Ce™ ! daug| 2 < C(1+ 1) |Bauol| L2 < COH(1+1)7
Similarly, Q2 admits the same bound, namely,
Q2 < C(L+t)7HDabol|r <Cs(1+1)~ L (3.24)
The bounds in Proposition 2.2 are not sufficient for estimating Q3 and @4, so we drive some alternative

upper bounds. Recall that

3
Ay ={€ € R? vné + ¢ < T vEd)?, ves > ),

and G5 and G5 can be rewritten as

- /\2€A2t — )\16)‘1t )\2(6)‘225 - eAlt) + (/\2 - )\1)6)‘125

G fd = == Alt )\ G .

2 N — A N — A; e+ Ay

Gs = )\2e>\1t — )\16>\2t _ )‘1(6>\1t - e)\2t) + (>\2 - )‘1)6>\1t — Mt AMGr.
)\2 — )\1 )\2 - )\1

Furthermore, by the statement of Proposition 2.1,
Ky =Mt 4+ 0G4+ 16y, K» = i&,Gh, K3 =Mt — A Gy — G
By (2.9) and (2.10), we obtain the new upper bounds for K1 and Ko,

_ Une2 4 €2
|K1| < 6750(1+§§)t + C(% + T])‘G1|
2
2 2 vned+ed

<ot 20 (vna & N (s (3.25)

- n+vE \ n+vés ’
_ _ vne3+ef
|Ks| < ‘QLHZ 6*%(?7+V£§)t+e 7:+2u£§1t . (3.26)

n+ v

To bound Q3, we first decompose it as

t
Qs = / IR (t = 7N (1) 22 () b
0
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t

=/ [ K1 (t = 7)02N1(T) | 12 (A20) dT+/ [ K1 (t —7)02N1(T)|| L2 (4,0) dT
0 t

/2
= Q3,1 + Q3,2
Invoking the upper bounds in Part (3) in Proposition 2.2 and further dividing @3, into four parts, we
can show via similar techniques as for O3 11 in (3.15) that

t/2 - .
Qa1 = / 1B (= )85 N (7| 22y I
0

t/2 I
< c/ le= 00D G, (0 - V) || L2 g2y dr
0

t/2 o
+C e c0+E )G, (b Vb)|| 12 (m2) dr

0

t/2 €2

—co((I+23)t-T) 57 =~

+C/ e & Jo(u - Vu dr

A 2 V) e o)

t/2 &7 e
—I—C ||6 CO(H_??Z)(t )82<b~Vb)HL2(R2) dr

0

t/2
= C/ e (||0y(w - V)| 2 + [|02(b - Vb)||2) dT
0

. /2
< Cem# / (192t - V)| = + [Ba(b - Vb 2)dlr
0

< CEP(1+1) " +Ceio>(1+1) "
To bound Q3 2, we use the new bounds in (3.25) and (3.26). By Hélder’s inequality and (3.25),

dr
L2

dr

t
Qa2 <C [ [lem @O+ 15, (u - Va) || 12 + [le D9, (b - Vb)||| 12 dr
vnés + & —co(+€2)(t—7) (1370 . o L 1A (h. o
—=2>=+1 0 2 IREN) . Os(b- Vb
t
e /
t)2 |[n+ v\ n+rés
=Q321+ @322+ Q323

t/2
t
e /
t/2
1 2 2 _wmE3 e, oy, —
(un£2 + & Jrn) T G >(‘32(u.vu)|+|82(b.w)|)
We rewrite (Q32,1 into two parts,

L2

t
Qs21=C | |em0+E=7)5,(u - V)| 2 dr
t/2

t
+C | (e oM E)15,(b - Vb)||| 2 dr
t/2
=@3,2,1,1 + 32,12

Following similar estimates as those for Os ;1 2 in (3.16), we have

Q37271,1 < 052(52(1 + t)il.

Clearly, @3,2,1,2 admits the same bound,

Q321 < CE*(1+1t)" (3.28)
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2 2
For £ € Ass, we have (‘;;f;g)g < 2. By (3.28),

K vnés + &2 2 _
Quaasc [ (PB4 1) e T ar
t/2 (77 + V€§)2 L2
t 2, ¢2 o
+ c/ (W + 1> e+ |5 (b Vh)|||  dr
t/2 (n +v&3) L2
t
<C [ e U+DEDg,(y - Vu)|| 2 dr
t/2
¢ ) o
+C [ e @0FEIE=IGy (b Vb) || 2 dr
t/2
< CQs21 < CEFP(1+1)7"
Q@3,2,3 can be further rewritten as
t 1 2 2 _wmE3 et
Q323 =C 3 (1/7752 - gl + 77> e g )\82(u -Vu)| dr
t/2 || n+vE \ N+ v L2
t 1 2 2 _wmed+ed
+0/ . (”752 to +77>e e O g0 Vo)l dr
t/2 || n+vE \ n+vé; 12

= Q3,231+ 3232

We first estimate (03231,

3,2,3,1 = e 2 b(u - u T
t/2 (1 +€%)2 L2
t o8 iy —
+C/ 1—|E§26 "ig )u-Vu dr
t/2 2 L2

= 3,231,011+ @3,2,31,2-

The process of controlling @3.2,3.1,1 is tedious, so we first estimate Q)32 31,2. By Lemma 3.3,

t 2
[3 1 _1 et —=-
Q32,312 < C’/ ————(t—T7)2(t —T) 2e  1FE: u-Vu dr
t/2 || \/1+ &3 13

¢ L (1 (=7
<C (t—7)"z2lle * €
t/2
t . .
<C | (t—7)2e TED||u- V|2 dr
t/2
t L .
<C | (-2 Tl g~ || Vull g2 dr
t/2
¢ 1 co(4_ 1 1 1 1
<C ) (t—7) 2+ )| L | 0vul| F2 |02l 1o |Vl 2 || Aull . dr
t/2

t
< c/ (t—7) 2 D@1+ 7)72)2(E0(1 + 7)) (cd) Fdr
t/2
<CEFP(A+t/2)7 <01 +1)7

V| dr
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t

where we have used the facts that / (t— T)*%e*%(t”) dr < oo and ye
t/2

< 2
_J2lfy

co €12
—% a2 (t—7)

_ e (t— 7')% e
N

<C.

< C or more explicitly

As (3.1) indicates, the decay rates associated with the horizontal and the vertical derivatives are different.
To bound 323,11 properly, we need to distinguish the horizontal derivative from the vertical one. By

V -u =0, we write
Os (U . Vu) = 010- (uul) + 0905 (UUQ)

and divide @3 2.3,1,1 into two parts,

¢ 2 2
€] e ()
R32311 < C —e T2 |0102 (uuy) + 0202 (uus)| dr
t/2 (]‘ + 53)2 L2
¢ 9 2
[3 —co Ly (t—7) T ——
S C 5.5 € 1163 ‘3182(UU1)| dr
t/2 (1 + §§)2 L2
¢ 2 2
I3 —co Ly (t—7) =
+C — e 1t& 0202 (uug dr
12 || (1+€3)2 | (wnz)] L2
=Q32,3,1,1,1 + @323,1,1,2-
Since £ € Agy, we have [£]? < O(1 + £3)%. By Lemmas 3.5 and 3.3,
t 2 o 2—0o
€] €]
@3,2,31,1,1 < / ( t—71
H\Trgt ") \ave
1 700|§7‘22(t77) —
X|&]7T(t—T1) e e |02 (wuy)| dr
L2
! 1o RO+
< C(U)/ (t—71)"7&] % & |02 (uuy)| dr
t/2 L

t , I
<C(o) [ (t=m e AT @aunn) |, dr
t/2 L2

t c o g _ 20
< C(o0) // (t— 7)™ F O |l Lo [Vl o | Aull o (02ull 2 dr
t/2

t

+C(0)/ (t—7)"%e 7)) 0yul| 72|01 Opul 127

t/2
1 1 1 1

X (| Oaull g2 1Ovull 2 [[ull f2 | Aul[* dr

t
< C’(U)/ (t— 7)o T @1+ )3 F (C0) - Fes(1+ 1)t dr
t/2

+C(o) /tt (t—7) e TE(@ES(1 + 7))o (C8)i T (E5(1 +7)"2)2

/2
< Clo)F¥ 1021+ )71 75 + Clo)e 1021+ 1) 7773
< C(0)E22(1+1)7 Y,

dr
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t

where we have set 0 = 3, and used [ (¢t —7) 7”17 dr < o0, and
t/2
2 T _ea 1€ o
1 f|§ < C(o), <1|i|§2 (fT)> e P <), (3.29)
2 2

In addition, we have used the following upper bound on ||A1~7 (82 (uu1))|| in the fourth inequality above,
by Lemma 3.5,

AL~ (02 (uur)) |2 < [[A]77 (Bouwr)| 2 + [[A] 77 (udoun) || 2
< Cllaull 2| AT ua || o 4+ Cll AT Doul| L2 [|u || L
+ C||Oaur || L2 [| AT Tull Lo + CII AT Du || 12 ||ul| Lo (3.30)
1— 22

< Cllull Z=lIVull L[| Aull . 102wl 2

1 1 1 1
+ C102ul 21101 02ull 27 |0zl £ |1 Orull o lull £ | Al 7.

(1?25% - ”)U (4 |+§|£§>>2_0

Similarly, by (3.29),

t
@32,31,1,2 < /
t/2

DT S
x|&a' =t = 1) T Bl dr
L2
! ~2+He-n
SC(U)/ (t—7)7& % TS |02 (uug)|||  dr
t/2 12

t -
<Clo) [ (t=m e H | @atu))|, dr
t/2 L

t 20
<C(o) /t/z(t = 7) 7 T | | Vul £ | Az [|0yul e dr

t
+C(o) / (t—7)"7 % 7)1 0gu) 72| 02050l 127
t/2

1 1 1
x | 0oull 12 |9yull fallul 2 | Aul * dr
< C(0)e282(1+ 1),
where we have set o = %, and used (3.30) and the following estimate

— o o 1_20
14277 (D2 (uuz)) |22 < Cllull f21|Vul £ [ Aul 2 * |9zull 2

+ Cl0zul| 5 [ 9adaull 2zl vl ul 2 | A .
Therefore,
Q3231 < CES(L+1)" +C(0)Ez6(1+1)"".
Similarly, Q32,32 admits the same bound. Collecting the bounds for Q3 2,1, @322 and Q32 3 yields
Q32 < CES(1+1) " +C(0)E26>(1+ 1)L (3.31)

Combining the estimates for Q31 and Q32 in (3.27) and (3.31) respectively, we obtain

3

2

Qs < (E+et +& 480821 +1)"" (3.32)
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Next we bound Q4. By (3.26), we rewrite Q4 as

t
Qs = / | Bat — 7)32 N ()| 12 (anny dr
0

t

t2 -
/ [K2(t — 7)02No(7) | L2 4,0) dT+//
0 t
= Q41+ Qa2
By Part (3) in Proposition 2.2 and by (3.27), Q4,1 obeys the same bound as ()3 1, namely,
Qa1 < CEs*(1+ 1)1+ Ceis2(1+1)~ L. (3.33)

Since the bound for K3 in (3.26) is not the same as the bound for K, in (3.25), we need to estimate Q4.2
differently from Q3 2.

1K (t — 7)0Na (1) || 12 (s dT
2

t

(S A+ A=) (1Tl . T (b
< 0 . .
Q12 <C o 1+€§e 2 (\32(11 Vb)| 4 |02(b Vu)|) . dr
t _wmeted o,
+c/ 1i1!§26 v (77) (192 V) + 1300 V)| )||
t/2 2 L2
= Qua21 + Qa22-

Since € € Ay, |€]2 < O (1 +£2)2. By the same process as in (3.16),

t
Qu21 <C [ e @UHEE5, (4. Vb)|| 2 dr
t/2

t
v O e 8,0 Va)| e dr
t/2
<CEP(1+1)7"

We further decompose Q4,22 into two parts,

el e )
Q22 <C Tt e e |02 (u - Vb)| dr
t/2 2 2
t _wmEdded
+C/ '5”2@ i a0 vyl dr
2 || 1+ & 2

= Q4221+ Q1222.
As before, we write 0a(u - Vb) = 0102(buy) + 0202(bug) and thus decompose Q4,221 into two parts,

+ —co A8 (t—7)
Q4’2,2’1 <c ‘§1| e 0@( )|6182(bul) 4+ 8262(bU2)| dr

t/2 L+& v

t e €12 —T) 5 A /1 %
<C ‘§1|2€ 011e2 ( )|8182(bu1)| dr
2 11+ v
t S e
t 2 .

=Qu221,1+ Q12212

The first part Q4,2,2,1,1 can be bounded by

Q42211</t <|€|2
s \ieg

(t— T)) el -

14

2
Co%(t—T”/\

82(bu1)|

dr

L2
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t o 0 (1) () ———
< C(o) / I3 s AT L PN ] s
t/2 1

<o) [ t-n et ) [ G, o

t

_1+4o c 1-2¢

SC(U)//Q(t—T) F e (¢ = )ull L | Vull 2 | Aull 192l e dr
t

¢ 140 < 1
+C(0)/ (t =) 2 e 051721101020 2 D2l £
t/2
1 1 1
X [|Ovull pellull 2 [[Aul f2 dr
1,i

t

_ 1o _ ¢

+C(0)//2(t—7) e T (= )bl LIVl 1Ab] 2 (180w |2 dr
t

t
+C(o) / (t =) e (t = 1) 0|2 | 0100 | 2
t/2
X (02011 12 010l 2 10| 2 | ADI| 7 dr
¢ = 1, 20 20
<Co) [ (=) F e HOI @140 HF (o) F e dr
t/2

w(")/t (t=7) e FO@ (14 7)) TH(CE) T (@ (1 + 1) 73)* dr
< C(o)cs +152(1+t) -3 +C(O‘)éo+%§2(1+t)—0—§

<ces(1+07

t

where we set 0 = 2, and have used (t— T)_HTU ~ 207 dr < oo and
t/2
2 5 1€l
_co —r
2

In addition, we have also used the following upper bound on ||A1~7(82(bu1))||, by Lemma 3.5,
14177 (D2(bun))ll 2 < [|A177 (ebua) |2 + AT (b0zur )| 2
< C|abl 22 A1~ 7ua || e + ClIAT™7D2b| 2 |ur || L=
+ Cl|02us || L2 | AT bl Lo + ClIAT™7 Daun | 22 [1B]] L=
< Clul IVl fa Al 021
o+ CbIIZ 1010201157 0aeal o |9real ol | Al
R L AN AP Py XN PR
1 Oz (17210102 | 527 102] 101011 12 ]2 | AB] .
Similarly,
Quo212 < CEF(1+1)""
Since (4,222 obeys the same bound as Q4,22 1, we find

Q4,272 < 0(0)62(52(1 + t)_l
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Therefore,
Qa2 <CES(1+1) +Ce282(1+ 1) (3.34)
Putting (3.33) and (3.34) together yields
Qi< (G481 +2+e2)C8 (1 +1)"" (3.35)
Combining (3.23), (3.24), (3.32) and (3.35), we have
Datu(t) | L2 (g < CO(1+ )" + (E+ &1 +&2)C6%(1 + 1) (3.36)

Collecting the estimates in (3.17), (3.22) and (3.36), we find
192u(t)||z2 < C16(1+ 1)1 4+ 6C82(1 + ) + (61 + &2 4+ 63)C36%(1 + 1)L

If we choose ¢ and § satisfying

then we obtain

18au(t)|| 2 < S6(1+1)"1 + 1%5(1 r) 4 1%5(1 +1)7!

™Mool O

= s,
78(1+1)
The same upper bound holds for ||02b|| 2. Thus we have obtained
¢
1@2u(t), 0:b(8))2 < 50(1+1)7".

This completes the proof of the third inequality in (3.2).

3.3. Estimates of ||(81u(t), D1b(t))]| L2

This subsection establishes the second inequality in (3.2), namely
c 1
|@vu®), 21b(t)) | < 56(1+1)7%.

Applying 0; to (1.14) yields

t
81u(t) = K101ug + K201bg + / Ky (t — T)@lNl(T) + Kg(t — 7)81N2(7'> dr
0 (3.37)

o~

t
81b(t) = K901ug + K301bg + / Kg(t — T)alNl(T) + Kg(t — T)alNQ(T) dr.
0
To estimate [|Oyul/z2(r2), we estimate ||§17L||L2(A1), H@Hmmm) and ||517LHL2(A22). We start with
||(91u||L2(A1). By (3.37),
1Oru() L2 ay) < KT (#)ruoll L2 ay) + [ K2()d1bol 24,
t
+ [ IR~ oW aca dr
0
t
+ [ IRalt = DN 12, dr
0
:H1+H2+H3+H4

By Proposition 2.2,

Hy < Jem 019 ug|| p2m2) < e Dyugl| 2 < C(1+1)73,
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where we have used (1 + t)e~* < C. By the same technique, Hs obeys the same bound, namely,
Hy < CS(1+1)7 2.

Hs can be decomposed into two parts,
t

H3§/ HKl(th)al(U'VU)(T)||L2(A1) dT
0

t
+/ | K1(t —7)01(b-Vb)(T)||L2(a,) dT
0
= H3 1+ Hso.
We further divide Hs; into two parts,

t/2 _ -
Hyy = / 1R (¢ — )81 (- V) (1) 2ayy dr
0

t

+ // 1Rt — 10 (e Vo) () 12y, dr
t/2

= Hs 11+ Hs 1.

By Ladyzhenskaya’s inequality, Proposition 2.2 and Lemma 3.3,

t/2
Hoa < [ e Doy Val dr
0
. t/2
< 6’70’5/ (Iovull sl VullLs + [lull L 101 Vul| L2) dr
0
T S 3 TP ONTE ST PAITE PN
sCem=t | Nl Aulle [Vull L. + lull )10l 192l 2 | Aull 22 d7

co t/2 1 3 1
SC’eiTt/ Gl4+7) 282 +et(L+7)" 262 dr
0
< CE(1+1)77 + Ceis>(1+ 1) 2, (3.38)

where we have used e~ 2¢(1+t)? < C(y) < oo for 4 > 0. We write the norm in Hs » from frequency
space to physical space, by Holder’s inequality, Lemma 3.1 and Lemma 3.2,

t
Hjpo = / et || gm0 TG (y - V) || 2 dr
t/2

t
S/ e—co(t—T)) H”e_COA%(t_T)al(U'VU)HL2 dr
t/2 20Lg,
t
<C e_c‘)(t_")(t—T)_i |01 (w - V)2 dr
t/2 2 Lz
t
gc/ et (¢ — )7 x <] 01w - Vullpr + |lu- 01Vl 1 ‘ )dr
t/2 2 “2 Lz,
t
—co(t—T) (4 _ -1
<C e (t—7)°% <’ |0yl s, [V ul 12, v
+ iz vl |, Yar
Lgl

t
- c/ e—eo(t=7) (¢ _ )=} (||61uHL52L;<i IVallz2 + flullz2, 2 ||Au||L2) dr
t/2
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t
<C [ et — 1)~ o) Ll Aul| 2| Vul| 2 dr
t/2

t L N
+C / e (4 — )7 [fu) 2, |0y ul 2o | Au| o dr
t

/2
< CETGX(1+1)"7 +Cas*(1+1)72, (3.39)
¢
where we used et (4 — 7')_i dr < oo. Since H3 > admits the same bound as Hj 1,
t/2

Hs < Ces®(14t)72 + CE162(1 + 1) 2.
H, obeys the same bound as Hs, hence,
[B1u() || L2(a,) < CE(1+1)72 + Cas (1 + )77 + CE182(1+ ) =. (3.40)
Now we estimate ||8/171,||L2(A21). By (3.37),

l01u(t) ]| 22 a5y < [[E1(E)01u0 || L2 (a50) + 1 K2(8) 010l L2 (A1)

t
+ / 1R (= )0 (1) 22y
0

t
+ [ IRalt = N 1240
0
:=L1+ La+ L3 + Ly.
By Part (2) in Proposition 2.2 and Lemma 3.1,

Ly = | K1 (8)0ruol| 2 (a0)
< Cllem 00D g | 2y, + Clle™ 1 Brug|| 2,
< Ol D Gy ug| 12y + Cllee™ M R 12 4,0
< Ce™ ! |Drug| 2 g2y + Clle™ " Aug| 2 g2)
< C(1+t) 01wl 22y + Ct ™ Hluol 1 2
< O+ ) Huollgnprs < CO(1+1¢)7%.
where we have used e~“* < C(1+1t)~! for ¢ > 0. Similarly,
Ly <COA+t) " Yoollgrar: < C8(1+ t)_%.
We divide L3 into four parts,
Ls = /Ot 1K (t = 7)1 N1 ()| 2 (g0 7
<cC /0 e ot G T gy
+ C/t |lem 0@+, (b - Vb) | p2eey dr
Ot
+C/o le= <0l =D8, (u - V)| Loy dr

t
+ C/ He_colglz(t_ﬂ@l (- Vb)HLz(Rz) dr
0
=L31+Lss+ Lsz+ Laa.
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Clearly, L3 ; can be bounded similarly as Hs, namely,
Lsy < Ce?(14t)72 + Ce1s2(1+1) 2. (3.41)

L3 5 admits the same bound as L3 ;. L3 3 is decomposed into two parts,
t/2 ) -
L3’3 = C/ H6_00|5| (t_T)al (’LL . VU)HLZ(R2) dT
0

t
+ C ||67C0‘E‘2(t77-)81 (u . VU)HLQ(RZ) dT

/2
= L3371+ L33pe.
By Lemma 3.1 and Holder’s inequality,

t/2 -
Loga £C [ e 00T ey dr
0
¢/

2
: C/ llagle= =D W& | L2 gey dr
0

/2

< C/ |Hf|2€_colf|2(t_7)|u®U|||L2(R2) dr
0
t/2 , L, U2

<c / (t—n) Huouly dr < Ct/2)} / ul2 dr
0 0

3 t/2 1 3 1
<t / (@1 +7)~3)2 dr < C&6%$ In(1 + £/2) < C262(1 + 1)~
0

where we have used ¢~ 2 In(1 +¢/2) < C for all ¢ > 1. By Lemmas 3.1, 3.4 and Hélder’s inequality,
¢

Ly <C [ e 8w - Va) | paee) dr
t/2

t
<C / [€e= €PN (u @ u)|| > dr
t/2

t
<c [ (t-7)7 G799 (u@ )| padr
t/2

t
< C/ (t— )t ol e lullrdr  (1<q<2, r>2)
t/2

! _1 2 1—2
SC/ (t = 7)" @ l|Ovull 2 [[ull L= [ Vull . ™ dr
t/2

t
<C [ (t—7)"a(@1+7)"2)E(1+7)"7) dr
t/2
t
< 06262(1+t)’1/ (t—r)"% dr
t/2

<OPPA+1) W8 < CPRR(1+1) 1 < CRP2(1+1) 5.
Therefore,
Lss < C&6(1+1)72. (3.42)
Similarly, L3 4 obeys the same bound. By (3.41) and (3.42),
L3 < Ce*(1+1)"2 + CEis3(1+1) % + C6%(1+1) 2. (3.43)
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L4 admits the same bound as L3 in (3.43). By collecting all the bounds for Ly, Ly, L3 and L4, we obtain
181u(t)]| L2 () < CO(1+1)"2 + CE6*(1+1)"% + CE102(1 + 1) 2 + CE6*(1 +1)72.  (3.44)
Next we estimate [[01ul|z2(4,,)- By (3.14),
[01u(t) || 2 (A20) < [[EK1(8)01u0[L2(As0) + | K2(¢)01b0] 12 (A5)
¢
4 [ IR = DIND) 124 dr
0
t
+ [ IRt = 0N )
0
=51+ 5+ 53+ S54.
By Part (3) in Proposition 2.2,

S1 = | K1 (£)D1uol 12 (4z0)

< CHefco(H{g)taluOHLZ(AQZ) + ||e o 5%) 81U0||L2(A22)
o (3.45)
— —c SV —
< CHQ*C“(lJrgg)talUOHLZ(]RQ) +le 0(1+5§ )t81u0||L2(R2)
< Ce | 0yuol|r2 < C(1+1)"2||Orugl2 < CS(1+1)7=.
Similarly, So admits the same bound, namely,
Sy < C(1+1)"7||Orboll> < C6(1+1)"2. (3.46)

We decompose S3 into two parts,
t — —_—
53 = / ||K1(t — 7')81N1(T)||L2(A22) dT
0

t/2 _ t _

:/ [ K1 (t = T)O1N1(T)] 22 (As0) dT+// K1 (t = T)OLN1(T)|| L2 (A50) AT
0 t/2

= Sg’l + 53’2.

To bound S5 1, we first apply Part (3) in Proposition 2.2 to decompose it into four terms
t/2 -
5371 :A ||K1(t—7)81N1(7)||L2(A22) d’T
t/2 , -
< C/ le= 05, (0 - V) | 2 ey dr
0
t/2 ) o
+c/ |e=0HEIE=1G, (b Vb)|| 12 (g2 dT
0
82 Sy
+C/ ||€ 0(1+s%)(t )61(U'VU)”L2(R2) dr
0

e 1 Pt
+C/ ||€ €3 81(be)||L2(R2) dr.
0
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JMFM
Then we use the same techniques as in the estimates of Hs ;1 in (3.38) to obtain
t/2
Sy < c/ 0= (|10 (u - V)| 2 + 01 (b V)| 12) dr
0
o, (U2 3.47
< 0677”/ (|01 (u - Vu)|| L2 + |01(b - VD) || L2)dT (347)
0

< CE2(1+1)77 + Cis>(1+ 1) 2.
Now we use the new bounds in (3.25) and (3.26) to estimate S5 2. By Holder’s inequality and (3.25),
t
S32 < C [ e+ G (w V)| 12 + [le”OHEED|G (b V)| 12 dr

t/2
N[ vngd+ & . -
c 282 TS1 4 ) oo (4 (E=T) (15, (1 - V 5.0
' /t/z ((n+V£§)2+ >e (| L(u - V)| + |0 )|)

dr

L2

t 2 2 vnée3+£7
1 _YMERTEY (¢—r _ _
+C/ i (1/7752 +§1 +77>€ niveg O )<|81(U-VU)|+|al(b‘Vb)|) dr
t/2 ||+ &\ n+rés L2
= S3921+ 5322+ 5323
We further rewrite S3 2 ; into two parts,
t
S301 = C/ le=e0HEDE) 15 (0 - Vi) ||| 2 dr
t/2
t ) o
+C [ e U+ )ET)19, (b Vb)||| 12 dr
t/2
=53211+ 532,12
By the same estimates as for Hs 1 2 in (3.39),
Sso11 < CEIO3(1+1)"2 + Ceb>(1+1)"2
Clearly, S3.21,2 admits the same bound, namely,
S301 < CETS(1+1)"7 + Ca6>(1+1) 2. (3.48)

2 2
Since ¢ € Ay, we have (jz’f;;g < 2. By (3.48),

t 2 2
vnés + & ) —eo (&) (-7 5w - T0)
S <C (—i—l e OUTS2UTTN0, (u - Vu dr
2220 ) I\G+vap S
t 2 ¢2 S
+C (W + 1) e—Co(1+§§)(t—T)|31(b - Vb)| dr
t/2 I\ (n + vE3) L2
t
<C \\e‘c0(1+5§)(t_7)81 (u-Vu)||2 dr
t/2
t ) o
+C | (e @MHIEG (b V)| 2 dr
t/2
< OS50 < CE12(141)"2 + CEs*(141) 2.
Furthermore, S5 3 can be rewritten as
t 1 2 2 _wmevet
S323=0C 3 (1”752 h fl + 77) e g )|31(u -Vu)| dr
t/2 [N+ V& \ n+ré L2
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t

+C
t/2

2u(b- V)| dr

v 2 2
1 (vné‘% +& n) g )
n—+vés \ n+vés

= 53231+ 53232.

L2

S3,2,3,1 is naturally divided into two parts,

t
S3231 < C/
/2
¢

+C

t/2

2 B S
& e gl )|31(u~Vu)| dr

(1+&3)
oo €2y —
e T

= 532311+ 532312

L2

dr

L2

The process of estimating S3 23,11 is tedious, so we first estimate S5 3,12. By Lemma 3.3,

t 1 1 —c e —7T) ——
ot ar

t/2 ||/ (1 +&3)

t co €2
1 _T(1+?Z)(t_"')
3

<C | (t—71)"%e

S392312<C

L2

|- Va2 dr

‘o
T a

<C (t—T)_%e E=Dlw - V|2 dr

(0]

t
= C/ (t—=7)"2e” T ul| o [V 2 dr
t

<o

_ 1 _co(4_ 1 1 1 1
<C [ (-7 ze O || Ll|ovull Lo 1 02ull fo | Vull 2 | Aul £ dr

<C | (t—m) TR TEDE(1+ 7)) (E(1+ 7)) (ed) T dr
t/2

< CEP(1+1/2)7 < CESP(1 +1) 3,

t

where we have used 76_0072 < C and (t—T)_%e_%(t_T) dr < oo. To estimate S5 31,1, we first write

t/2

o1 (’LL . Vu) = 6162(UUQ) + 0101 (uul),

t 2
|£|2 e—Cg%(t—T

) -
5372,37171 < C |6162(UUQ) + 6181 (uul) dr
t/2 (1 + 53)2 | L2
t 2 2
€] —co Ly (t—7) =
<C — e 1*% 0102 (uu dr
<c| lorer oLl
CEP eodig e s
+C — e *% 0101 (uu dr
T+ ar o]
= 53.2,3,1,1,1 +53,2,3,1,1,2-
Since £ € Aga, |€]? < C(1 + €2)%. By Lemma 3.5 and Lemma 3.3,
t 2 o 2—0o
€ [3
S,H,,S/ ( (t—1)
3,2,3,1,1,1 t/z 1+€§ (1+€§)
g ey —
e =t — )¢ g T B tumn)l||  dr
L2
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t 2-o 0 (14 Y () ———
<o) [ N(15) tara- e D g
/2

1+&2
t

t -
<Clo) [ (t=m e e [ Gatu)), dr
t/2 L

dr

L2

oip e, RO D)
t—m)l&l "% e |02 (uug) ||| dr

L2

t

g ¢ _r o a 1— 29

< C(o) // (t =) Tl 2 | Vull [ Al 2 (|05ull 2 dr
t/2

t -
1 C(o) / (t = 1) PO | 9yu] 2,10, Oul| 157
/2
1 1 1 1
x 10gu] s 0y b ull 22 | Al 2 e

t
< C(o)/ (t— ) e TG4+ 1) B (o) F e+ 1)L dr
t/2

t ”, 1 5 1 1
+ Clo) / (t — )7~ (G5(1 + )~ )7+ (00 =7 (@5(1 + 1)~ 3)} dr
t/2
(@)EFHP (146775 + Clo)e a2 (1 +1)77 =
(0)c26%(1+1)2,

t

where we have set o0 = %, and used / (t—7)"% T dr < oo, (3.29) and the following inequality
t/2
from (3.30),

1— 22

1177 (92 (uu2)) | L2 < Cllull 22 [Vull 22| Aull 2 * | 02ull 2

1 1 1 1
+ Cl102ul 2 110102ull 2 7 |0zl £ 1Orull o |l £ | Al £

(1?1% - ”)g (& E|5§>>2_0

,Coﬁ(t, )

Similarly, by (3.29),

t
S3231,1,2 < /
t/2

< e ot — 1) BT |0y (wwy))| . dr
L
t 2—0o co 134
— —o 2+ 57
<o) [ (7)) larre-n e O mm)| o
t/2 2 L2

) 31 —
T(H‘g)(t*ﬂ

|81 (uul)\ dr

L2

(t—m) okl e

oo

t -
<Clo) [ (t=r e H [ @), dr
t/2 L

t c fed o _ 20
< C(o) // (t =)™ L ul L |Vl | Aull s * 0wl 2 dr
t/2

t n
+Clo) / (t— )" T Bu) 2.0, 0yu) 57
/2
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1 1 1 1
x |02ull 2 0vul| fallull 2 | Aull . dT
< C(0)E282(1+1)"2,

where we have set o = %, and used the inequality below following from (3.30),

1— 2o

IAF7 @1 () |z= < Clull 2 [Vl 2 | Aull 2 9y 12
o+ Cllovul 7al10n0rull 27 Dzl vl ol | Al ..
Therefore,
S3081 < CE2(141)"2 +20%(1+1)" 2.

Similarly, S5 23,2 admits the same bound. Collecting the bounds for S5 1,5322 and S5 2.3 yields

S50 < CEIGX(1+1)7 + CES(L+1)"2 +C(0)E 6> (1 + 1) 2. (3.49)
Combining the estimates for S3 1 and S3 2 in (3.47) and (3.49) respectively, we have

Sy < (461 4+ 4810821 +1) 7. (3.50)

Next we estimate Sy. We first divide Sy into two parts according to (3.26),

t
S :/ | Ba(t — )0 N (1)l 12 (any dr
0

- / 1Rt — 7)0Na(r) |22 ams) dr + / | Rat — )0 Na(7) |12y
0 t/2
= 5471 + 54,2.

By Part (3) in Proposition 2.2 and by (3.47), Sy,1 obeys the same bound as Ss 1, namely,
Sy1 < CEs*(1+1)"7 + CE16%(1+1) 2. (3.51)

Since the bound for K in (3.26) is not the same as the bound for K; in (3.25), we need to estimate Sy o
differently from S5 5.

t

161l it ion) (AT, A =
Si0<C B emeo(1+&) (=) (19, (u - V)| + 81(b- Vu dr
220 Iie (o1 901 + 106 vl ) |
t _wme3 e, oy o, I
+C/ Sl R T (VB + G val)||
2 || 1+ & L2
= S421 4+ Su2,2.

Since £ € Agg, @ < C. By the same process as in (3.39), we write

t
54’2’1 S C ||e_C°(1+5§)(t_T)61 (’LL . Vb)||L2 dr
t/2
t
+CO [ e @HEENG (b V)| 2 dr
t/2

< CEt (1 +1)77 + Ces>(1+ 1) 2.
We rewrite Sy 22 as

t |£1‘ vned+£3 (

5l o ntved

1+&2

t—T) — =~
Si22<C )|81(U - Vb)|

t/2

dr

L2
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t _wme3ef
o T AR |
t/2 2 2
= S4221+ 54222
To bound Sy 221, we write 01 (u - Vb) = 0102(bug) + 0101 (buq),
61 —eo Sl
54,272,1 <(C T+ 5 6 |6182(bUQ) + 8181(bu1)| dr
/2 2 L2
< O |£1 | e_ 1‘+|g22 T) |m‘ dT
a t/2 ]‘ + é-% L2
vo [ Lot anmn]| e
101 (0u1
t/2 1+ 55 L2

=S54221,1+ 542212

145454y 3Ly4y Ly

The first piece is bounded by

1€12

t 2 o=t .
Si2211 < / <1|£ 5 (t— T)) &' ot — 1) g wngl |52(buz)| dr
t/2 +&3 2
! et~ 0+ -7
<o) [ flerre-n- D Gmm|
t/2 12
t I
< C(U)/ (t— T)_GTHe_TO(t_T) ‘A}fa(ag(bug))u dr
t/2 L2
t o+l _ <o (t—T) 17*
< C(o) // (t—7)" 7 e el 3 [V 22 | Al 2 ¥ (102l 2 dr
t/2

t
+00) [ (6= F e P00l
t/2

1 1 1 1
X N|Ogul| o [[Orvul Lo llull £z | Aull L dr

t

_otl _ & T 17—

+C(0)//2(t—7) 2o O b 3, Vb F | Abl 1 (10usl e dr
t

t
+C0) [ (=17 T Oy Or0ua 7
t/2
X [[920l1 2211010 L2 [1Dl| L2 [| Ab >
t
<Co) [ (t=m) e HON@( ) ¥ (o) F e dr
t/2
t
—|—C(U)/ (t—7)" % e D@1+ 7)) ()@ + 1) F)E dr
t/2
< C@)EFTRA+1)717F + C(o)e 102 (1+)77 3

<8 (1+1) 7,

t

where we have set o = 3, and used (t— T)_%He_%l(t_") dr < oo, and
t)2
o+1
2 T2 _eo 1612 4.
(Fge-n) e 57 <o
2
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In addition, we have used the following estimate above, due to Lemma 3.5,
IAT™7 (D2 (buz)) | 2 < |77 (B2bus)|| 2 + | A1~ (bO2us)] | 2
< Cl|02b|| 2 | A1~ 7wz Lo + Ol A7 2b]| 2|z ||
+ C|0zus|2[|AT b L + Cll A1~ Bous| 2 [1b]]
1020]] 22
+ C10:bI5 101928527 |9zul | nul o [l Aul

1-2¢
< Cllull 1 Vull £ | Aull 3

1-2¢
+ Ol Vbl 1 Ab] °

+ Cl|0ua |2 10 Bpus |7 1105 £ 9101 bl 5 | A ..

| O2ual| L2

Similarly,
Si2212 < Ce282(1 + t)_%.

Since S4.2.2.2 obeys the same bound as S 22,1, we obtain

S22 < C(0)E38%(1+1)7 2.
Therefore,
Sio < CPS(141)"7 +CE6>(1+1)"7 + Ceis2(1+ 1) 2. (3.52)
Collecting (3.51) and (3.52) yields
Sy < (E+E+ et 4800821 +1) 7. (3.53)
Combining (3.45), (3.46), (3.50) and (3.53), we obtain

3 ..§
4+c CQ

1910(t)]| L2 (n) < CO(1+1)72 + (¢4 & )OS (1+1)"2 (3.54)
Putting (3.40), (3.44) and (3.54) together leads to
[Oru(t)||p2 < C18(1+1)"2 + Co02(1 + )72 + (61 + &% + ¢2)Cy2(1 + 1)~ 2.

If we choose ¢ and ¢ satisfying

c 1 3 3 c
<= < i+ & + ¢z < —
C S g 025_16, (C4+C +02)C35_16,
then we obtain
Joru(llzs < T6(1+8)73 + 55(1 £ o1+
c 1
=-0(1+¢t)"2

A similar bound holds for ||01b]|| 2. Therefore,

[N

c _1
101u(t), 016(t))ll > < 5(L +1)72.
This completes the proof of the second inequality in (3.2). (I
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