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Abstract. We present a dissipative measure-valued (DMV)-strong uniqueness result for the compressible Navier—Stokes
system with potential temperature transport. We show that strong solutions are stable in the class of DMV solutions. More
precisely, we prove that a DMV solution coincides with a strong solution emanating from the same initial data as long as
the strong solution exists. As an application of the DMV-strong uniqueness principle we derive a priori error estimates for a
mixed finite element-finite volume method. The numerical solutions are computed on polyhedral domains that approximate
a sufficiently a smooth bounded domain, where the exact solution exists.
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1. Introduction

In meteorological applications the following system of compressible Navier—Stokes equations governing
the motion of viscous Newtonian fluid is often used, see, e.g., [1,6,12,14],

Oro + divg (ou) =0 (1.1)
Ot(ou) + divy (ou @ u) + Vi p(ef) = divg (S(Vpu)) (1.2)
0t(00) + divy (0fu) = 0, (1.3)

where ¢ > 0, u, and € > 0, denote the fluid density, velocity, and potential temperature, respectively. The
viscous stress tensor S(Vyu) is determined by the stipulation

S(Veu) = u(Vzu + (Veu)T — % div, (u)]I> + Adivg (u) 1, (1.4)

where d is the space dimension, here d = 2,3, and the viscosity constants p and X satisfy p > 0 and
A> —% 1, respectively. The state equation for the pressure p reads

p(ef) = a(pd)”, a = const. >0, (1.5)

where v > 1 is the so-called adiabatic index. System (1.1)—(1.3) is solved on (0,T") x €, where T'> 0 is a
given time and Q C R% a bounded domain. It is accompanied with the initial data

Q(O’ ) =00, 9(07 )=t u(0, ) = Uop, (1.6)
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and no-slip boundary conditions
uljo,71x00 = 0. (1.7)

In the sequel, we shall call system (1.1)—(1.5) the Navier-Stokes system with potential temperature
transport. For a brief overview of analytical results for this system we refer to our recent paper [15]. It is
to be pointed out that the existence of global-in-time weak solutions to (1.1)—(1.5) is available in three
space dimensions only for v > 9/5, see Maltese et al. [17, Theorem 1 with 7 (s) = s7]. However, physically
relevant values of the adiabatic index «y lie in the interval (1,5/3] for d = 3. This drawback motivated
our recent paper [15], where we have identified a larger class of generalized solutions, dissipative measure-
valued (DMV) solutions, to the Navier—Stokes system with potential temperature transport. Analyzing
the convergence of a suitable numerical scheme, the mixed finite element—finite volume method, we have
proved global-in-time existence of DMV solutions for all adiabatic indices v > 1 for d = 2, 3.

The first goal of the present paper is to show that the strong solutions to the Navier—Stokes system
with potential temperature transport are stable in the class of DMV solutions. To this end we establish a
DMV-strong uniqueness principle. This result states that the DMV and strong solutions emanating from
the same initial data coincide. The key concept for the proof of this principle is the relative energy. This
approach for proving weak-strong uniqueness is not new; see, e.g., [3], where DMV-strong uniqueness is
proven for the Navier—Stokes system, and [7, Chapter 6], where DMV-strong uniqueness is proven for the
barotropic Euler system, the complete Euler system, and the Navier—Stokes system. However, till now
the weak-strong uniqueness principle was not available for the Navier—Stokes equations with potential
temperature transport (1.1)—(1.5). The essential difficulty lies in the pressure law that only depends
on the total potential temperature pf, without any independent control of the density o. To cure this
problem, we will rewrite the pressure as a function of the density and total physical entropy. This allows
us to separate the effects of the density and potential temperature in the derivation of the relative energy
and finally to show the DMV-strong uniqueness principle.

The second goal is to derive a priori error estimates for the finite element—finite volume method
proposed in [15]. To this end, we assume that the strong solution exists and apply a relative energy
inequality and a consistency formulation for the numerical method. Such an approach has already been
applied successfully to the compressible Navier—Stokes equations, see Kwon and Novotny [13], and to the
compressible Euler system, see [16]. However, in those works, the approximation of a sufficiently smooth
domain Q C R? by a sequence of polygonal approximations €, C R h | 0, was not considered. In the
present paper, novel consistency estimates are presented that allow to compare a strong solution on a
smooth domain 2 with numerical solutions computed on polygonal domains , 2 C ;. Here, we only
assume that dist(z,9Q) = O(h) for all z € 9Oy, see also Feireisl et al. [4,8] for related results for the
compressible Navier—Stokes equations on general domains under slightly more restrictive assumptions.

The paper is organized as follows: In Sect. 2, we briefly repeat the relevant notation and our definition of
DMV solutions to Navier—Stokes system with potential temperature transport proposed in [15]. Section 3
is devoted to the proof of the DMV-strong uniqueness principle. Further, the error estimates are derived
in Sect. 4 where we also present some numerical results.

2. DMV Solutions

We start by introducing the pressure potential P : [0,00) — R as
a
P(z) = 7. 2.1
()= 5= (21)
In what follows we write ; = (0,) x Q whenever t > 0. If V = {V;2)}t,2)c, IS a space-time
parametrized probability measure acting on R4+2, we write

<V(t,w)7g> = /Rd+2 g dv(t,w) = / g(éa év ﬁ') dv(t,w)(@a éa ﬁ’)
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C(R%2). In particular, we tend to write out the function g in terms of the integration
) € R x R x R? =2 R2: if, for example, g(g,0, %) = ¢, then we also write

whenever g €
variables (9,0, 4
Vit,z); 0w) instead of Vt,2); 9) -

We recall the definition of dissipative measure-valued solutions to the Navier—Stokes system with
potential temperature transport (1.1)—(1.5) from [15].

Definition 2.1 (DMV solutions, [15, Definition 2.1]). A parametrized probability measure V =
WVit,2) Fta) e or that satisfies

V€ Lyue (U PRT2)), R ={(5,0,a)|5,0 e R,acR'},
Land for which there exists a constant ¢, > 0 such that
Vi ({6 >01n{0>c}) =1 foraa. (t,z)€ Qr, (2.2)

is called a dissipative measure-valued (DMV) solution to the Navier—Stokes system with potential tem-
perature transport (1.1)—(1.5) with initial and boundary conditions (1.6) and (1.7) if it satisfies:

e Energy inequality
1 e
wy = i) € PO, (Vigalal + Plad) € L),

and the integral inequality

/ <V(T7 Zglal? + P(g §)>dw+/ / S(Vewy) : Veuy dedt
Q 0Ja

1
d@(T) + do < / |: Q0|UO|2 + P(Qoeo):| dx (23)
Q Q- ol?

holds for a.a. 7 € (0,T) with the energy concentration defect
€€ Lo (0, T; MT(9))
and the dissipation defect
D e M (Qr);
e Continuity equation
(V;0) € Coeax([0,T); L7 (), (V(0,2);8) = 00() for a.a. & € Q
and the integral identity

{/(V(t7.);g> olt, - dmLO // (V;6) Oy + (V @a>.vm¢]dxdt (2.4)

holds for all 7 € [0,7] and all ¢ € W (Qr)?;
e Momentum equation

2y
(V; 0t) € Cyeax ([0, TY; Lm(ﬂ)d) v Vo,2); 00) = 0o(x)uo(x) for a.a. x € )
and the integral identity

[/QW(t,-);éﬁ).sa( ] // Viou) - op + (V; ’ljl,®’ljl,+p(§é)]1>;vm(p:|dmdt

_/O/QS(VEUV):VEQO dwdt—k/OT/Qnga:dS‘{(t)dt (2.5)

1P(R9t2) denotes the space of probability measures on R4t2.
2Here, the (Lipschitz) continuous representative of ¢ € W1 (Qr) is meant.

T Birkhauser



1 Page 4 of 38 M. Lukacovia-Medvid’ova and A. Schomer JMFM

holds for all 7 € [0, 7] and all ¢ € C''(Qr)? satisfying (o, 7)xo0 = 0, where the Reynolds concen-
tration defect fulfills
R € Ligae (0, T MO L)
and de < tr(M) < de¢ for some constants d > d > 0;

e Potential temperature equation
(V;00) € Cyear ([0, T); L7 (), V0,23 50) = oo(x)bp(x) for a.a. x €
and the integral identity

[/Q<V(t,.)§§é> o(t, - de ) // 8t<,0+<V;§9~'l~L>'Vmap dadt (2.6)

holds for all 7 € [0,7] and all ¢ € W (Qr);
e Entropy inequality

(V0.2): 0 1n(0)) = 0o(z) In(fo(z)) for a.a. x € Q
and for any 1) € W1°°(Q7), ¥ > 0, the integral inequality
[ [ W yia @), ] -/ / Now+ (viom(@)a) V| dwdt  (27)
Q
is satisfied for a.a. 7 € (0,T);

e Poincaré’s inequality
there exists a constant Cp > 0 such that

//o}; i — U2 dwdt§0p</ |Vw(uv—U)|2dmdt+/ d@E(t)dH—/ d@) (2.8)
0JQ 0J0 0 Q Q-

for a.a. 7 € (0,T) and all U € L2(0,T; Wy 2(Q)4).

Remark 2.2. As we shall see in the next section, the entropy inequality (2.7) and Poincaré’s inequality
(2.8) included in the definition of DMV solutions to the Navier—Stokes system with potential temperature
transport are fundamental to guarantee DMV-strong uniqueness.

3. DMV-Strong Uniqueness

The aim of this section is to derive a DMV-strong uniqueness principle for our measure-valued solutions.
For this purpose, we rely on the concept of relative energy. We introduce the (physical) entropy S as

S = S(0,0) = % oln(6) (3.1)

and realize that the pressure p = a(pf)? can be rewritten with respect to o, S as

p(0,8) = 11,50y a0” exp <(7 —1) i) . (3.2)

We proceed by defining the relative energy between a triplet of arbitrary functions (g, 8, u) belonging to
a regularity class

0,0€CY(Qr), 00>0, wel'(Qr)NL*0,T;W>¥(Q), ulgr)xon =0, (3-3)

SMEQ )Sym 4 denotes the set of bounded Radon measures defined on Q and ranging in the set of symmetric positive
semi-definite matrices, i.e., M(Q)%X = € M(Q)dxd GERE)  :dp>0forallé eRe, e C(Q), ¢ >0).
’ ’ Sym,+ H sym Q H ’ ’
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and a DMV solution V to the Navier—Stokes system with potential temperature transport (1.1)—(1.5) as

0P(0,5) (5, _ OP(.5)

1 _, . L o=
E(V]o.0,u) = (Vi g alis —uf’ + P(3,8) = =222 (0 - 0) = =

(§-9)-Ple.9), (34)
where P(p,S) = ﬁp(g, S) is the pressure potential expressed in terms of o and S, S = S(p,0), and
S =5(3,0).

Remark 3.1. We note that P = P(p, S) satisfies the following identity on (0,00) x R:

J0P(0,9) JdP(0,9)
20 2T a5

We further note that we only consider the case in which 9,9 are bounded from below by some constant
¢ > 0 (for 6 this is reflected by (3.3) and for 6 by (2.2)). Consequently, (3.1) makes sense. In particular,
S(p,0) and the composition p(g, S(p,0)) are continuous functions of (g,8) on [0,00) X [c,00) for every
¢ > 0. In addition, we shall always construe S and S as functions of , 6 and g, 9~, respectively. Accordingly,
for example, (V;S) = (V; 50 In(A)).

The relative energy inequality corresponding to (3.4) reads as follows.

Lemma 3.2 (Relative energy inequality). Let (o, 0,u) be a triplet of test functions, cf. (3.3), andV a DMV
solution to (1.1)—(1.5) in the sense of Definition 2.1. Then the relative energy defined in (3.4) satisfies
the inequality

D e L R
[

Vin(a.5) - apgfj N0 - P (5 - 5) - p(0,9) ) diva (w) dac

Vpu- (@ —u))dedt

FDz

(u — 11)> 00w + oV u - u + Vip(0,5) — dive (S(Vpu))| dedt

<
(
< ; Ea >> [Be0 + diva (ou)] dedt
+/OT ) <v; (Q_Q)Q g)s )> (0,5 + divy (Su)] dzdt
(
<
<

dp(o,5)

+

—

s~
<
Cl)
CI)z

0
0
+/O/Q Vv (is-s**) (ﬁ—u)>-Vmﬁdwdt—/oT/QVmu:d%(t)dt

V(06— 0) é divg (S(Vpu)) - (u — '&)> dadt (3.6)

div, (u)] dadt

for a.a. 7 € (0,T). Here,

1 09p(e,S) 0P(p,9)
V= y—1 08 08 (3:7)

denotes the absolute temperature.
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Proof. Using Gauss’s theorem we easily verify that

//s wy — w) dadt = //< dlvz(S(VzU))'(U—ft)>d:cdt
- /O /Q <V;Q(u—ﬁ)>~divm(S(un))dwdt. (3.8)

Next, using the definition of the absolute temperature, cf. (3.7), and (3.5) we deduce that

[ oo rte] = [ [ 0o (Fluteop - 2 LS oo

- ) i
R ) e
+ {/Q <V(t,.)§%§‘ﬂ|2 + P(o, 5’)>dmI_OT + [/QP(Q(t,-),S(t,.)) dm]t;— |
_ (3.9)

Combining (3.8) and (3.9) with (2.3)—(2.7), we obtain

|:/E(V|Q,9,U)(t,~) dw}t:;—i—/g de&(T) / d@—l—//S (uy —u)) : Vi (uy —u) dedt
//< dlvm(S(Vzu))~(u—ﬁ)>dmdt—/0/Q [(v:8) 00 + (v; 51y - V0] dwat
// V; o) - 8tu+<V;§'&®'&+p(§75’)H>:Vzu} d:cdt—/OT/Qun:dm(t)dt
+// {<v;@>at<1 |u2—(9ﬂai)"g)>+<v;gﬁ>-vw<; |u2—a}.%aé;’s)>}dwdt
//@p 0,5 dmdtf/ /< > divg (S(Vpu)) dedt.

In the next step, we carry out the partial derivatives on the right-hand side of the above inequality. In

doing so, we take into account that (3.5) implies that for any w € {t,z1,...,24},
OP 0?P 0%P 19p S O°P 10p SO°P
y — = Ow OwS = |- —— w - = — == | OuwS
90~ 002 "¢ 9500 L}@Q Q@g@S} +{ 05 352]

oS oS

ap S, P 1[dp
9o 03

—Hgf;awg+as+ By 2 = Doy +apas]+saq9

where the last equality is due to (3.7). Consequently, we get
{/ E(V]o,0,u)(t, )dw:|t_7+/g de&(r) / d’)DJr// e (uy —u)) : Vg (uy —u) dedt
t=0
/ /Q< le;c(S(un)) (u— u)>dscdt / ; [(V;8) 00 + (v; §@) - V0] dat
/ / Vioa) O+ (V;ou®a+ p(s,9)) : Vmu dadt 7/0 /vau D d9R(t)de

+/ /<v;é> {u.atu—1<8p(9’s) atg+ap(9’5) ats) +Saﬂ9} dxdt
0Ja 0 0o oS 0

) Birkhauser
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// . 5l) - { —1(8p(g’S)VxQ+8p(Q’S)VwS>+5sz9}dwdt
Q 0 do 08

+/O/Q{3pai; 6p((9QS,S as}d dt—/ /< )> divg (S(Vpuw)) dedt.

To finish the proof of Lemma 3.2, we add and subtract the following terms on the right-hand side of the
above inequality

/T/ Viou" - Vou- (@—u)) dedt, /T/ <V;§S—§>U-Vz19dxdt,

// L S e
[fv > Dy )
//< %) (G- o) diva (u )>d:cdt, //< ‘9”’ (S-is)mx( )>d:cdt,

L (25 (E )t

and regroup the resulting expressions adequately. (|

From the relative energy inequality we can deduce the DMV-strong uniqueness result.
Theorem 3.3 (DMV-strong uniqueness). Let v > 1, Q C R?, d € {2,3}, be a bounded domain of class

C3. Further, let T* > 0 and (9,0, wu) be a strong solution to system (1.1)—(1.5) on Qp~ belonging to the

reqularity class (3.3). Let V be a DMV solution in the sense of Definition 2.1 emanating from the same
initial data. Then

¢=0, D(0,T)xQ)=0, K=0,
and the DMV and strong solutions coincide on [0,T%), i.e
Vita) = O(o(t,2) 0(ta)u(ta)) Jor a.a. (t, @) € Qp-.

Proof. Plugging the strong solution (g, 6, u) into the relative energy inequality (3.6), we obtain

{/ E(V|o,0,u)(t, )d:cI;:Jr/ de&(r) / d@Jr// e (uy — ) : Vi (uy —u) dedt
S/OT/“<V; <55—5> (ﬁ—u)>-Vm19d:cdt—/O/Q<V;§(11—U)T-un-('&—u)>d:cdt
—/T/Q <V;p(§7§) - ap(ais)(@—g) - %(S—S) —p(Q,S)>din('u,) dedt
//< dlvx(S(qu)) (u— u)>dwdt //Vu dR(t)dt

§//E(V|g7<97u) d:cdt—i—/o /ﬁ d@(t)dt—i—/o /Q<v; (QS—S“) (ﬁ—u)>-Vw19d:cdt

/ / < lez (S(Vzu)) - (u— ﬁ)> dadt (3.10)

T Birkhauser
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for a.a. 7 € (0,7%). To handle the last two integrals, we first observe that

/ / SV (uy —w) : Vi —w) dadt = / [l (s — w) 2 + wldiv, (wy — )] dadt
>M/ / |V (uy —w)|? deedt. (3.11)

Next, we set

(@@99)<(minf {e(t,®)}, sup  {olt,®)}, —inf {0(t,x)}, sup {G(f,w)}>

&) € Q= (t,x) € Qp= (t,@) € Q= (t,x) € Q=

and apply Lemma A.1 to find constants ci,ca,c3 > 0 that only depend on o, 9, 0, 0, c,, and 7, and
corresponding sets
cro < <i<eb),

fb
rc
re\
™

such that
/ E(V|0,0,u) dwdtz/ (Vilz(a,0,a)(|a — ul* + (3 — o + |5 — 5I%)) dadt
070 0J0
+/ / (Vi1s(0,0,a)(1+0|a — ul®> + (30)")) dadt. (3.12)
0JQ
Seeing that
(25-5) @-w| <15 - S0 w| 5 |- 0@ - w)] + |o(s - $)(a - w)

Sla—u+a— o +5 - 5P

as well as

1500, (25-5) @-w)
S1s(6.0.9) (2la—ul+ Sla—ul) S 15(2.0.9) (6]a —ul + 60"/ @ — u|)
S 15(2.0.3) (2460 + 6la—uf?) S 1s(2,0.@) (1+ 6l —ul + (20)7).

we may use (3.12) to deduce

‘//< < )('&u)>.Vz19da:dt‘§/OT/QE(V|Q,9,'U,) dzdt. (3.13)

We proceed by observing that
(G- o) (u—a)| <o~ of +|a—uf
and
S1s(8.0,a) (6+ 6|t —ul* +aja—ul> +at)
f, ]ls(év év
for all & > 0, where here and in the sequel the constant hidden in “<” does not depend on «. Together
with (3.12) and Poincaré’s inequality (2.8), these observations yield

‘/ / < dl"w(S(VwU))~(U—ﬁ)>dmdt

) Birkhauser
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5u+w5//Ewmam¢muﬂ<//nMw—mFm&+/ %@w+/(m)
0JQ 0J0 0 Q Q,

(3.14)
Finally, combining (3.10), (3.11), (3.13), and (3.14), we arrive at
t=1
[/ EV|o,0,u)(t, )dm] +/ deé(r) + / d©+u/ / Ve (wy — u)|? deedt
(1+at //EV|Q,0u dedt + ( 1+a//d€ t)dt
+a(/ / |V ( Vfu)|2da:dt+/ d@)
a.

for a.a. 7 € (0,7*) and all & > 0. In particular, there exists a constant C' > 0 such that

t=1

[/EW@, )} + [ ae)+ [ ao
t=0 Q Q,
<C (/ / EV]o,0,u) d:cdt+/ / d@(t)dt—l—/ / d@dt)
0/ 09 0 JQ

for a.a. 7 € (0,7*). Consequently, the desired result follows from Gronwall’s lemma. ([

Remark 3.4. The local existence of strong solutions to (1.1)—(1.5) for the Cauchy problem (i.e. Q = R?) is
guaranteed by [11, Theorem 2.9] and the global existence for small initial data by [11, Theorem 3.6]. These
results apply to a class of systems of hyperbolic-parabolic composite type. The local existence result just
mentioned was generalized in [19]. We expect that these results can be transferred to the initial-boundary
value problem considered here provided € is of class C® and the initial data satisfy suitable compatibility
conditions. This can be an interesting topic for future studies.

4. Error Estimates for a Numerical Scheme

In our recent paper [15], we have introduced a mixed finite element-finite volume (FE-FV) numerical
method and showed that in a suitable (weak) sense its solutions converge to a DMV solution to the
Navier—Stokes equations with potential temperature transport (1.1)—(1.5). Moreover, we proved that if
a strong solution exists, then the numerical solutions converge strongly to this strong solution, cf. [15
Theorem 6.1].

The ultimate goal of this section is to strengthen the just mentioned result and derive a priori error
estimates for the finite element-finite volume method applying the relative energy method.

The section is organized as follows: In Sect. 4.1, we formulate minimal reqularity assumptions required
for the strong solution and the initial data. Sections 4.2 and 4.3 are devoted to the recapitulation of
the numerical scheme presented in [15] and its properties. In Sect. 4.4, we present a novel consistency
formulation taking the approximation of a smooth domain 2 by a sequence of polygonal computational
domains €, h | 0, into account. The desired error estimates are presented in Sect. 4.5. We finish this
section by presenting some numerical results illustrating the convergence of the scheme.

4.1. Regularity Class for the Strong Solution and the Initial Data

We will consider strong solutions (g,6,u) to (1.1)—(1.5) that belong to the regularity class

0.0€C*Qr), 060>0, weC'(Qr)NL*0,T;W>*(Q)"), uljprixo0=0. (4.1)
Accordingly, the initial data satisfy
00,60 € CH(Q), 00,60 >0, uoeC'(Q), wuglon=0. (4.2)

) Birkhauser
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For functions such as g in (4.1) and gg in (4.2), we further introduce the following notation:

(t,x) € Qr (tix) €Qr

(Q*,Q*,(@o)*,(go)*)=< inf  {o(t,x)}, sup {Q(t,w)},mirelfﬂ{go(w)h5161%{@0(90)}>~ (4.3)

In addition, we consider the initial data (oo, 6o, o) to be extended by ((00)x, (6o)«,0) outside €.

4.2. Mixed Finite Element-Finite Volume Method

We recall the mixed FE-FV numerical method introduced in [15]?, see also [5, Chapter 7].

4.2.1. Spatial Discretization. Let H € (0,1). The spatial domain Q@ C R? is approximated by a family
{0} h € (0,17 that is connected to a family of (finite) meshes (75) e (0,5#] Via the constraint

Q= |J K forallhe(0 H]
KeTy,
We assume that the following conditions are satisfied:

e There is a constant D > 0 such that
QCQp C {xeR|dist(z,Q) < Dh} forall h € (0, HJ; (4.4)
e Each element K of a mesh 7}, is a d-simplex that can be written as
K = hAg (K,of) + ag , Ag € R™X9, ag € R?,

where the reference element Ko is the convex hull of the zero vector 0 € R? and the standard unit
vectors ey, ...,eq € R ie., K =conv{0,ey,...,eq4};

e There exist constants C' > ¢ > 0 such that spectrum(ALAx) C [¢,C] for all K € Uy, ¢ (o, m7h s

e The intersection of two distinct elements K7, Ko of a mesh 7}, is either empty, a common vertex, a
common edge, or (in the case d = 3) a common face.

The symbol &, denotes the set of all faces, d = 3, or all edges, d = 2, in the mesh 7. & oxt and Ep int
stand for the sets of exterior and interior faces, respectively, i.e.,

5}11@“ = {O’ €&y, | o C 8Qh} and gh,int = gh\gh,cxt .

Moreover, for K € T, we put E,(K) = {0 €&y | o C K} and &, .(K) = {J € é'h,z}o - K}, where
z € {int, ext}. In connection with these sets, we shall use the abbreviations

=2 [ wa [ = % [

0 €Eh,int KeThoec&n(K)" 0

Each face o € &, is equipped with a unit vector n, that is determined as follows: We fix an arbitrary
element K, € 7, such that o € £,(K,) and set n, = nk, (,). Here, x, denotes the center of mass of
o and nk, (x,) is the outward-pointing unit normal vector to the element K, at x,. Finally, it will be
convenient to write A < B whenever there is an h-independent constant ¢ > 0 such that A < ¢B and
A ~ B whenever A < B and B < A.

4 Note that the numerical setting is slightly different from that in [15]. We now approximate the spatial domain Q from the
outside (cf. (4.4)). In addition, we introduce a new operator H(\)/,h s WH2(Qp) — Vo,p, (cf. Sect. 4.2.3).
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4.2.2. Function Spaces and Projection Operators. The space of piecewise constant functions is denoted
by

Qn = {v e L*() | v|x € Py(K) for all K € T }.

SFor v € Qp, and K € T}, we set v = v(x k), where x denotes the center of mass of K. The projection
g p="": L2(9,) — Qp, associated with @, is characterized by

1
(HQ,hv)|KEU|KE—/vdy for all K € 7j,.
K Jxe

The Crouzeix-Raviart finite element spaces are denoted by
v|g € P(K) for all K € 7}, and

_ 2
Vi = v € L) / 511118+ (U(CL’ —on,) —v(x+ 5n0)) dSz =0 for all o € Epint
o —
Vo = {v eV, / 611113+ v(iex —dny,)dS, =0 forall o€ Eh,ext} )
o —_—

With these spaces we associate the projections Iy, : W12(Q,) — Vi, H?/,h : Wh2(Qp,) — Vo, that are
determined by

/Hv,hv dS, = /v dS, for all o € &, /H?ﬁhv dsS; = /v dS, for all o € & int,

respectively. Additionally, we agree on the notation
;:{vth|v|K>0 forallKGTh}, [,)L’+:{U€Qh}v|K20 forallKG'Th},
Qrn=@Qn* Va=M* and  Vyu=(Von).

4.2.3. Mesh-Related Operators. Next, we recall the necessary mesh-related operators. We start by re-
peating the definitions of the discrete counterparts of the differential operators V, and div,. They are
determined by the stipulations

(Viv)|x = Vi (v]) forall v € (V, UV,) U (WH(Q,) UWHH(Q,)?) and all K € T,
and  divy,(v)|g = divg(v]gk) for all v € V, UWH1(Q,)? and all K € T,
respectively. We continue by recalling the trace operators. For arbitrary o € &,, € o, and
v € (QrnUQn) U (ViU VL) U(C(Em) UC(m)?)

we set
. lim v(x+ on,) if o € Ex jut,
vm,U(a}): lim U(w_5n0)7 vout,a(w): 50+ ( g') int ’
o 0 else
; out, o in, o 1 .
[['Uﬂg:vOut,a,vm,U, {U}g:% and <v>gw/vm,o s, .
ag

The convective terms shall be approximated by means of a dissipative upwind operator. For o € &,
v € Vo, and r € Qp UQp we put

Up[r,v], =77 [(v-n)o]” + 7™ [(v-10)6]"

u h® 1 c
F, p[r’v]g = Up[r,v]o_ Y [rlo = {r}o({v-ns)s — B} [[T]]U(h + (v - na>0|) )
where € > 0 is a given constant, [z]T = max{z,0} and [z]~ = min{z,0}.

Remark 4.1. As in [15], we tend to omit parts of the subscripts and superscripts of the operators defined
in Sects. 4.2.2 and 4.2.3 if no confusion arises. This includes the letters h and o as well as the word in.

5P, (K) denotes the set of all restrictions of polynomial functions R? — R of degree at most n to the set K.
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4.2.4. Time Discretization. To approximate the time derivatives, we employ the backward Euler method.
Consequently, the discrete time derivative D; is given by

k k-1
Sh— Sh

At

where At > 0 is a given time step and sl,i*l and SZ are the numerical solutions at the time levels
tr—1 = (k — 1)At and t;, = kAt, respectively. For the sake of simplicity, we assume that At is constant
and that there is a number Ny € N such that NyAt =T.

k
Dtsh ==

4.2.5. Numerical Scheme. The mixed FE-FV method introduced in [15, Definition 3.2] reads as follows.

r

Given (09,07, u9) € Qif x QF x V4, we search for a sequence (of,0F, ul)ren C QF x QF x Vo,
such that the following equations hold for all k € N, ¢5, € Qp, and ¢y, € V-

| @dyonaz= [ Frihutl1odas, o, (45)
h int

D) on do = | F®[ohof ] [on] a5 = 0. (4:6)
Qh gint

/Q D (9’2172) -y dz — /5 F® [gﬁig,uﬁ} : ﬂﬁ]] dS, + /Q Viul : Vg de (4.7)

int h

+v . divy (uy) div,(én) d — /Q (p(ehbh) + h°[(eh) + (65)°]) divy(¢n) dz =0,
h h
Where6>0andu:d%d2u+)\20.

\

4.2.6. Discrete Initial Data. The initial data for the mixed FE-FV method (4.5)—(4.7) are determined as
follows:

0) =Tlgoo, 0y =Ty and uy =Tlyug. (4.8)
As a consequence of this stipulation, we observe that (09,67, u?) € Q; X Q; x Vo,n with
0<(o0)e < 0p <(00) and  0<(6o)e <0 < (60) (4.9)

4.3. Discrete Energy and Entropy Inequalities

The solvability of the FE-FV method (4.5)—(4.7) is guaranteed by [15, Lemma 3.4]. In particular, it
follows from a combination of this lemma with (4.9) that for every k € Ny
QI;; > 07 (00)* S 9}’: S (60)*7 ||Q§’||L1(Qh) = ||Q%||L1(Qh) ? H‘QQQ’ISHLI(Q}L) = ||Q29}?|‘L1(Qh) ° (410)

In addition, it turns out that the numerical solutions satisfy an energy balance and an entropy inequality
that read as follows:
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Discrete energy balance: (cf. [15, Lemma 4.2])
For every k € N and suitably chosen {9 p € Qp and (5210),13,1@,0)0 € Eimes (Q?,P,k,(y)o c & C R it holds

D.EF dx —|—/ [ Vhub? + v|div, (uf)? ] dz (4.11)
Qn Qn
1 kek; _ k*lekfl 2 hE
e b A R Py R P DA L Ty R
Qh Eint

— % /5 ( H(§QG Pk, 0) [('U/Z : no’>0'] //(590 P,k a) [<u§ ' ng>g] _> [[Qﬁ@}f]]Q 45z

ey N A
_ ;/g (Ceby™ [Cuf - mo)a] " = (ah)o [(uf - ng>o]’) Wiﬂ s,

%
up — “h

At

5 (of — o) ")? 5 k k
_h / len=on )" 4oy /g (h° + | (uf - o )ol) [05]2 dSa

int

kpk k—1pk—1\2

opty —op 0 .

‘hé/ st >dﬂc—h‘s/ (h° + (k- no)al) [ehORT dSa
Qpn p

int

where

1 N
By, = By (dhy 00> uh) = 5 ehluk|? + Plonth) + h° (k) [1 + (6)°]

Discrete entropy inequality: (cf. [15, Lemma 4.5])
For every k € N and every pair (x, ) € C2(0,00) x Q%Jr it holds

0< [ Dilehx(@) v dz— [ Uplekx(6f).uk] [44] a5, (4.12)

gint

+ % /am[[gl’w’ﬂ] [x'(6F)vn] dSs + % /&m[[gii]] [(x(6F) — X (65)6F)vn] dS.

Given a solution (oF,0F, uf)ren C QF x Q) x Vo, to the FE-FV method (4.5)—(4.7) starting from
the initial data (4.8), we define the functions o, , 0n, 0 : R x Q5 — (0,00), up, : R x ), — R? that are
piecewise constant in time by setting

_ N (gi_l, oF 0F uk) ift € (tg—_1,tx] for some k € N and
(thghuaihuh)(tv ) - { (‘92,9(})”9}?’112) if ¢ S 0.

In addition, we introduce the functions Sy, E : R x € — R via the stipulations

1
S, = = 1 conln(8).  En=g onl@n|? + P(on, Sp) + h 02 [1 + 62] .
Next, let us state two consequences of the discrete energy balance (4.11).

4.3.1. Stability Estimates. From (4.11) we obtain the subsequent energy estimates (cf. [15, Corollary

4.4)):
th‘uh| H OTLl(Q ))S./]'? ||Qh|| OTL’?(Q ))517 ||Qhuh|| OTLQ///+1(Q’))<]‘7 (413)
thuh||L2(0,T; L‘Z(Q]})dxd) 5 17 ||leh(’LLh)HL2 0,T; LQ(Q )) S; 13 ||uhHL2 0,T; Lq(Q )d) 5 17 (414)
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HQhehH O T- L'(Q )) S ]‘7 ||h6/29h” 0 T LZ(Q ) < 17 Hhé/Qghah” 0 T LZ(Q))) < 17 (415)
d+38
thehuh” 0 T, Lz// (v+1) (Q )d) 5 17 ||Qhuh”L2 0,T; LZ(Q )d) 5 h B ’ (416)
hé/ / max {1, |(un - no)o|} [on]? dSedt S 1, (4.17)
h5/ / max {5, | (un - no)o|} [on6h]? dSedt S 1, (4.18)
/ / {on}[@wr]? dS.dt <1, At/ / 0, (Dyuy)? dedt 1, (4.19)
Eint Qp
/ / no)o] " = o [(un - mo)o] 7) [@n]? dS, dt S 1, (4.20)
/ / |[on](un - 1) | dSzdt S h™O2(1 4+ h712), (4.21)
0 gint
T
[ [ ot no)a asede s 2+ 02, (422)
O .
T T
h%t/ (Dyop)? dedt <1, h‘SAt/ (Dy¢(onbp))? dedt <1, (4.23)
Qh Qh

where g € [1,00) if d =2 and ¢ € [1,6] if d = 3.

Remark 4.2. Note that the proof of [15, Corollary 4.4] can be extended to include the estimates in (4.23).
In addition, the different way of approximating the spatial domain © (we now have Q C ), instead of
Q, C Q) requires some minor and straightforward modifications. We leave the details to the interested
reader.

Moreover, for further application it is convenient to observe that the energy balance (4.11) provides
us with the following

Energy inequality:

[ m]

t=71

< —/ / [ | Vhun|® + v |div, (up)[?] dedt for every 7 > 0.  (4.24)
t=0 0 JQn

4.4. Consistency

We proceed by stating a suitable consistency formulation of the numerical scheme (4.5)—(4.7).

Theorem 4.3 (Consistency of the FE-FV method). Let § = min {5 -1, 1_725} and T € [0,T]. Further,
suppose (0n, On, Wn)n e (0, 15 a family of solutions to the FE-FV method (4.5)-(4.7) with

v>1, At =~ h, e>1 and  0<d<3 (4.25)
starting from the initial data (03,05, ud); e (0,r] defined in (4.8). Then

[/Q(Qh‘ﬂ)(t, ) dm} tT _ /OT/Q (018 + oy, - V] dazdt + O(h?) (4.26)

for all p € C*(Qr) as h | 0,

|:/Q(Qhuh' p)(t,-) dw}t ; + /OT/Q [V, : Vi + v divy (up) dive ()] dedt + O(h?)
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= / / [ont, - Opp + onr @y, : Vo + (p(onbh) + 1° [0} + (0nh)?]) diva (@)] dedt  (4.27)
0 Jo
fOT all pEe Cl(m)d7 ‘P|[0,T]><SQ =0, as h l 0,

t=1 T
[/(ghehw)(t,-) dw} =/ / [0n0n01p + 0n0 T, - V] daxdt + O(hP) (4.28)
Q t=0 0 JQ

for all g € C*(Qr) as h | 0 and

{ / (on (69 (1) dw} s / ' / [0 I0(6) 0t + 0n In(64) W - Vo] dadt + O(RF)  (4.29)
Q t=0 0JQ

forallyp € CH(Qr), 9 >0, as h | 0. Here, the constants in the O notation do not depend on the particular
time T € [0, 7).

Proof. The proof is given in Appendix A.3. (]

4.5. Error Estimates

We continue with the derivation of a priori error estimates for the FE-FV method. For convenience, we
agree that in this section the constants hidden in the <-symbols and the O notation neither depend on
the times 7 € [0, 7] nor on the number a > 0 that will appear in the sequel.

4.5.1. Discrete Relative Energy. To begin with, we introduce a suitable extension of the relative energy
E(-]-) that we will refer to as the discrete relative energy. It will be used to measure a “distance” between
a numerical solution (gp, 0r,up) and a triplet (g, 0, u) of functions of the class (4.1) and reads

- 1
E(on,0n,unlo,0,u) = 3 on|an, — ul* + 1°(on — 0)* + 1’ (0nbh — 00)?

OP(p,S) _ 9P(0,5)

(Sh—5) = P(e,5).

Our aim is to repeat the proof of Lemma 3.2 on the numerical level to obtain a version of the relative
energy inequality for E(-|-). First, our initial observation is that

t=1

/ E(on, 0n,un|0,0,u)(t,-) de + En(t,-) d:c]
Q

Qr\Q =0

Qp

t=0
" Uﬂ (plo(t, ), S(t,)) + 103 (t, ) [L+02(2,)]) dw] _0 - UQ St )o(t, >_dm] -

_ [/Qgh(tw)uh(tw) cu(t, ) dw] (4.30)

t=0

t=1

—2h° [/QQh(t,-)Hh(t7-)g(t,-)9(t7-) dw]

t=0

for every 7 € [0, T]. To be able to transfer the next step in the proof of Lemma 3.2 to the discrete setting,
we need to derive a suitable analogue of (3.8).
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4.5.2. Partial Integration for Diffusion Terms. For the treatment of the diffusion terms, we extend the
velocity u € L?(0, T; W2°°(Q)?) to a function @ € L™(0, T; W2 (R%)?) using Stein’s extension operator
€stein, see [20, Chapter VI, Theorem 5], i.e., we put @(t, ) = Esgein[u(t, )], As a consequence,

||’LL|| < C'Stem(Q 2 ||UH k= 0,1,2, (431)

L0, T; Wk (R%)?)
where Cgyein(€2,2) > 0 is given by

L0, T; Wk (Q)?)

COstem(2,2) =, o2} {Heswinuwm(ﬂ) = W"‘”(Rd)} '

Having extended wu as described above, we may use Gauss’s theorem to observe that
- / / vdivg (w) divy,(up — w) dedt
0 Jay,
= / / v|divy (u)|? dedt — / / vdiv, (u) divy,(up,) dedt + O(h)
Qp
/ / v Vpdivy (u) - u dedt — / / vdivy (u) divg (up) dedt + O(h)
Q 0 KeT,

7//Vdeivz -u dedt + /VV div, (@) - wp daedt
0JQ

0 ke,

_// v divy (@) wp - ni dS, dt + O(h)

0 JEK)

:/ / v Vgpdivg (u) - (up —u) d:cdt+/ /l/divw('ii) [un] - g dS, dt + O(h/?)
0o Ja 0 Je

= / / v Vpdivg () - (uy, —u) dedt + O(h/?)
0JQ

for all 7 € [0,T]. Here, the first, the fourth and the fifth equality are due to (4.4), (4.31) and the first
and the last estimate in (4.14) which yield

/ / v|divg (@)|?* dacdt
0 Jano

v Vpdivy (@) - up, dedt

~112 2
S ‘Qh\Q| ||uHL2(0,T; er‘oo(Rd)d) S h ||uHL2(0,T; u/l,oo(Q)d) 5 hv

<19\Q1Y2 4|

Qne L2(0,T; W2 (R)?) ”uh”Lz(o,T; LX(Qn)%)

< W2 | <hY?

oy llun]]

L0, T; W2>(Q) L0, T; LA Q)% ~

an

‘ / / v dive (@) [un] - 7 dSs dt‘ ‘ / / (dive (@) — dive(@)(@,)) [un] - o dSadt
S R TIY 78 [E R
<h/ 1806y e [ |[Thn] (@ = )] S, e
1 [0y e [ ([Tl S

< h/ u(t,- -~ / Viup| dedt
182 gy Q;,l |

6This stipulation is to be understood componentwise.
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h ||u||L2 0,T; W2 (RY)) ||thh”L2 0,T; L1 (95)2%%)
< h ||u||L2 0 T 1}[/200 ||thh”L2 0 T LZ(Qh)dxd)
< h.

Similarly, we deduce that

7// uVpu : Vi (uy, — ) dacdt://uAmu(uhfu) dzdt + O(RY/?)
0 Ja, 0 /0

for all 7 € [0,T]. In addition, we may employ (4.4), (4.31) and the first and second estimate in (4.14) to
observe that

/ / [V : Vot + vdivy (up) dive (@)] dedt
Q\Q

S 19001 (190l 1200,

< h1/2 HUHLZ 0, T wh oo(ﬂ)d) r\/ h1/2 :

sty 19 @) 2 ) 18 e

Combining the previous estimates, we obtain the subsequent analogue of (3.8):

- / / (v divg (@) divy,(up, — @) + pVi @ : Vi (uy, — @)] dedt
Qp
_ / / [V, : Vi + v divy, (un) dive (@)] dzdt
Q}L\Q
/ / divg (S(Vew)) - (wy, — w) dzdt + O(h'/?)
/ / dive (S(Vew)) - (@y — u) dzdt + O(h'/?)

= /0 /Q(Qh —0) Ediw (S(Vpw)) - (w —@p) — % (u — ) - divy (S(Vpu)) dedt + (’)(hl/2) (4.32)

for all 7 € [0, T], where the second equality is due to the first estimate in (A.3) and the first estimate in
(4.14) which imply

’/OT/Q divy (S(Vow)) - (up — wy) dedt

l[un — @] <h.

< h thuhHLQ 0 T: LZ(Qh)dxd) ~

<
~ Hu| |L2<0, T; WQ,OO(Q)d) L2 0,T; LZ(Q d

4.5.3. Relative Energy Inequality for E—General Form. It is now easy to transfer the remaining part of
the proof of Lemma 3.2 to the discrete setting. Indeed, starting from (4.30) and ignoring the ho-terms, a
repetition of the steps of the proof of Lemma 3.2 using (4.24), (4.26)—(4.29) and (4.32) instead of (2.3),
(2.4)—(2.7) and (3.8) yields

t=7

/E on, On, unlo,0,u)(t,-) dz + En(t,-) dw]

i\ t=0

+/ / (1Y (up, — @) + v|div, (up — @))?] dedt
0 JQp

—//gh(uh—u)T~Vzu-(uh—u)d$dt+//(QhS—Sh>(uh—u)-Vz19d:cdt
0JQ o\ @

-, (om0~ 2L (- g) = B (5, 5) — p(0.5)| divs ()
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/ / (uw—up) - 00w+ oVpu - u+ Vpp(o,S) — divy (S(Vyu))| dedt

/ / Rt QQ’ %) [or0+ div, (ou)] + (e~ on) % % (00 + dive (Su)] dadt

// (9”5 S;L> {aﬂwu vwapf%, ) div, (u )}d dt

— o) = div u)) - (u—up)de A
+/O/Q<gh o) = diva (S(Vow)) - (u— ) dadlt + O(h”)

- h5/OT/Q o7 [1+ 67] divy (w) dedt + [h‘S/Q 0%(t, ) [L+67(t,)] dw}

_ond [/Qgh(t,-)g(t,-) dw} o [/QQh(t,-)Gh(t,-)g(t,~)9(t,-) dw]

for all 7 € [0,T)]. Then, using (4.26) and (4.28), we easily verify that
—hé/ / o [1 4 67] divg (u) dedt + [fﬁ/ 0%(t, ) [L+67(t,)] dw}
0 Ja Q

o | [ et rete) dw]t_T—zhé | [T da

t=71

t=0
t=1

t=0

t=1

t=0
t=1

t=0

t=0
—2h5//ghu ) xgdacdt+2h5//gh9hu ) - Vi (00) deedt
Q
+2h5/ /(gfgh) [0r0 + divg (ou)| dadt
0J0

+2h° /OT/ (00 — 0n6n) [0:(00) + divy (0fu)] dzdt + O(h”)
Q

for all 7 € [0, T]. Consequently,

t=71

E(Qh,9h>uh|£)79 u)(t,) d93+/ En(t,") daz]
Qh\Q t=0

// [ Vi(u, — @) * + v|div, (w), — @)|*] dedt
Qpn

—//gh(uh—u)T~un~(uh—u)dmdt+//(Q}LS—Sh)(uh—u)-Vzﬁdwdt
0/ 0oJa\?@

_ /OT/Q [p(Qh,Sh) - %;S) (on —0) — % (Sy, —S) —plo, S)} divy (u) dedt

- hg/ / (on — 0)* divg (u) dedt — h5/ / (onbh — 00)? divy (u) dadt
0 Jo 0Ja

+ / / on (u —uy) - [Qatu + oVeu - u+ Vipp(o, S) — divy (S(qu))] ded?
Q

/ / [ap(ﬁi; %) + 2h‘sg} [0r0 + divg (ou)]| dedt
1 dp(o,5) .
/ / Q 55 [0S + divy (Su)| dadt
+// (é)hS—Sh) {atmu.vzm 92(0:5) vy ()| dwat
0o Jo \e oS
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+ 2h‘s/ / (08 — o1r61) [8,5(@9) + divm(gﬁu)] dzdt
0JQ
+ 2h6/ / on(u —uy) - Vyodedt + 2h5/ / onbh(u —ay) - Vi (00) dedt
0JQ 0JQ

+ /OT/Q(Qh —0) édivgc (S(Vew)) - (w — @y) dedt + O(RP) (4.33)
for all 7 € [0, T].

4.5.4. Relative Energy Inequality for E—Reduced form for Strong Solutions (Part I). In a particular
situation when (g, 6, u) is a strong solution to (1.1)—(1.5) of the class (4.1), the relative energy inequality
(4.33) reduces to

t=1

/E9h76h7uh|g79u)( )dw—’_
Qr\Q2

Eh (t, ) d$‘|

t=0

Jr/ / [ Vi(u, — @) + v|div, (w), — @)|*] dedt
0 Qpn

//gh(uhu)TonUo(uhu)d:cdtJr//(QhSSh)(uhu)~Vw19d:cdt
0J0 o\ @

- /OT/Q [p(QmSh) - %;S) (on —0) - 317((95; ) (Sn—S) = (o, S)} divy () dedt

- h‘S/ / (on — 0)* divy (u) dedt — h‘s/ / (onbh — 00)? divy (u) dadt
0 Ja 0Ja

+2h6//Qh(u—fh)-vmgdwdt+2h5//QhHh(u—ﬁ)-Vw(QQ)dmdt
0J0 0/

—|—/OT/SZ(Qh —0) %divw(S(un)) - (w— ) dadt + O(h7)

=T+ To+T5+ Ty +Ts + T+ Tr + Ts + O(h”) . (4.34)

Our goal is now to rewrite (4.34) in such a way that we can apply Gronwall’s lemma. To this end, we
first consider the terms T}, j € {1,...,8}. Clearly,

|T1|+|T3|+|T4\+|T5|s//E@h,eh,uhw,e,u) dedt
0 Q

Moreover, the second and third estimate in (4.13) yield

| Ts| + 77| < h° 0| Vel

+ HQhuhH (0, T:Ll(szh)"))

5 s
<h mmgﬂb (||gh|| S ||u|| iyt TN g oy ) S B
Then, exactly as in the proof of Theorem 3.3, we see that

|T2|§//E(Qh,9h,uh|g,0,u) dedt.
0 Ja

To handle the term Tg, we need a suitable analogue of (2.8).

4.5.5. A Discrete Analogue of Poincaré’s Inequality (2.8). For the derivation of the discrete analogue of
(2.8) it shall be convenient to introduce the following notation:

Thext = {K €Ty | Eext(K) #0}  and  Qpeq=int| () K

K S %L,ext

) Birkhauser
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With this notation at hand, we observe that

// w7 — a2 dedt
0 Qh

5/ / ([ar — unl® + lup — 109, @l + IR, @ — Ty, sl + [y, 4t — af®) dedt
Qp
<h?+ / / Vi (up, — 119, ,@)|? deedt
Qp
§h2—|—// (I (un — @) + |Va(@ — Ty y @) + Vi (v pi — 19 ,@) %) dzdt
0 Qp

<h +/ / |V (up — @))? deedt, (4.35)
0 Qh

where in the second step we have used (A.11) as well as the estimates

-
_ 2
/0 /Q, |uh - Uh|2 dedt S h‘2 ‘|thh||L2(O,T;L2(Qh)d><d) 5 h2 ;

// s, @ — HV;Lu\Qdacdt+// ypG — @ dedt
o Ja, Q)

~ ~112 2
rg hz‘/o vau(t, ')HLw(Rd)dxd dt S/ h2 ||u||L2(O,T; Wl,oo(Rd)d) g h2 HUHLQ(O’T; Wl,oo(Q)d) 5 h2 b

which are based on the first estimate in (A.3) and the estimates (4.31), (A.13), (A.15). The last step in
(4.35) is due to the estimates

T =N - T = 2 . 2
| 9= M@ dedt [ INERE I s A 1o
h

< h2 Hu”Lz 0,T; W2oo(52)d) 5 h2 )

// Vi (I, @ — 119, ,@)[* dedt = / > /|Vh(H?,7hﬁ—HV7hﬁ)|2dwdt
0 JQy

K €Tp, ext

~ 2
5/0 ||un(t7.)”Lm(Rd)dXd Z / dﬂgdt

K €Th, ext K
~112
< HVOUuH 2 O,T;LOO(R‘{ d><d |Qh ext‘

S hlfalf; S hlfull}s Sh

0 T I’Vl oo(Rd d 0 T Wl ao(Q)d) ~

that are based on (A.14), (4.31), (A.15).

4.5.6. Relative Energy Inequality for E—Reduced form for Strong Solutions (Part II). With the help
of (4.35) we can now estimate the term T in (4.34) analogously to its continuous counterpart. We obtain

|T8|5(1+a—1>//E(gh,eh,uh|g,9,u) dwdt+a(// |Vh(uh—ﬁ)|2dwdt+(’)(h)>
0J0 0 JQy

for all o« > 0. Together with the estimates for the terms T}, j € {1,...,7}, stated in Sect. 4.5.4, this
observation allows us to rewrite (4.34) as
t=71

/ E(Qh79h,Uh|Q,9,u)(t,') dzx + Eh(t7) dx
Qr\Q2

t=0

/ /Q (1| Vi(uy, — @) |? + v|div, (u), — @)|*] dedt
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< (1+a—1)/0 B(on, 0, un 0,0, w) dazdt—i—oz(/o /Q Vi (un — @) d:cdt+(’)(h)>
Q h

+ O(pminiB:0hy (4.36)

for all & > 0. Next, let us turn to the first line in (4.36). Using Holder’s inequality, the first estimate in
(A.3), (A.13) and (A.16), we deduce that

/Q%E—uwdw+/ o [uf? de
9} Qp\Q

L — 2
_ / onlup, = wol® dz S [[opll < g l[eh = woll 2q, o

Qp
-0 2 2
S ool gy (1 = w1132 0, 0 + 12k = w0l 52y, ) S 52 (V21 5y oo + 120l 0)
2 2
S (R A P A S [ )
< h? ||u0HW1 2q)d ~ Sk ||u0||w/l @)l ~ < h2’

[ (Plefs) + W2 L+ (0)7]) da
Q\Q
S 190 (eh 1} g, 1811} g, + B MR e, [1+ 1671 e ])
Qh)
S 1 (llooll oy 101 g +mnmu h+nw| ])sm
2
hﬂé@%m)dwsm(muumm+nmmﬂm)5M|mmﬂmsh%
2 2 2 2
szwﬂw%fm&w%mmﬁﬁm%m%m+mmﬁ@wwﬁ@)
2 2
5 h6 ||QO||L°O(Q) ||90HL°C(Q) 5 h(S :

Moreover, denoting

’Th’g = {K € T‘K C 9}7 Qh7Q = int U K
K €Tho

A(20, 80) = [(€0)+: (00)*] x [ = (00)* max{[In((6b).)], n((60)*)[}, (e0)* max{[In((fo).)I, tn((6o)*)I}] ,

5[0
and employing Hoélder’s inequality, Taylor’s theorem, (A.12) and (A.16), we observe that
)

9P (00, S 9P (00,5
/ (P(@%S?L)— %(@2 —00) — 9P(e0, 50) (S — So) — (Qo,So)> da
Q 0 aS

2 0
<m0 Pl (6] — ool 1157 = Sollpyg)

5 ||Qh _QOHLZ(Q\Q]MQ) + ||Sg SO||L2 (N\ Qg +HQ?L_QO||L2(Q +|‘Sh SOHLQ(Q} Q)
S 1\ 0l (11eh11; 1+ [[in(of)][? +1leoll? ) (LI (60)I[7
~ h,Q On LOC(Q;Z) n(oyp L%(Q 00 Leo n(bo
2
+h’2||490||v[/12 17 + Hg(f)ligOHLl( ||1n(9h)”Loo Q + ||QO||L°°(Q}MQ> Hln(eh) 71n(00)||L2(Q
2 *
N@mmﬁ®+MmmW%mQ@+meﬂ%MHM@omﬁ
2 _ 2
+ ||Q0||L°O(Qhﬁg) (90)*2 HG}(L) - GOHLQ(Q

— 2 2 ’ — 2 2
5 h + h2 (90)* 2 ||QO||LOC(Q) ||90HVV1'2(Q}L,Q) 5 h + h2 (90)* 2 ||1Q0HL>O(Q) HHOHVVLQ( S h

Q) ~
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Consequently, we may rewrite (4.36) as

/ E(on, 0n,un|0,0,u)(r,-) de +/ / (1| Vh (up, — @) + v|div, (up — @)|?] dedt
Q 0 JQp,

5(1+a*1)//E(gh,Qh,uh|g,0,u) dar:dt+oz<//Q |V (wy, — @))? da:dt+(9(h))
0Jq o Ja,

+ O(R™iis0}y (4.37)

Fixing a sufficiently small a > 0, we deduce from (4.37) the inequality
/ E(on, 0n,un|0,0,u)(r,-) de +/ / |V (uy, — )| dadt
Q 0 JQp
< / / E(on,0n,un|0,0,u) dedt + O(R™50}) (4.38)
0JQ

4.5.7. Error Estimates. We are now ready to apply Gronwall’s lemma to (4.38) which yields

IVh(un = w)ll 2 yaxa S IV (un — )] S W02, (4.39)

) Lz 0 T) x Q, )dxd N

sup { E(Qh, On,up|0,0,u)(T,") d:c} < proin{s.0} (4.40)
T €[0,T]

Combining (4.39) with (4.35), we get

len = 2l g g0 S Nt = Bl 7y pp0 S Nsn = TRl 2 7y s g0 118 = Bl .7 0
min 5
S PV 2 7y o gy + W2 4 || Vi (up, D)l 0,1 et S 1 {8.6}/2

Furthermore, using Lemma A.1 and 6, < 6, < 6*, it is easy to see that for all p € [1,4], all ¢ € [1,00)
and all T € [0, 7]

~ 1/2 B 1/p
||(Qh - Q)(Tf)HLI)(Q) 5 (/ E(Qh,eh,Uh‘Q,67u)(T,') d$) + (/X;E(Qh79h7uh|9797u)(7a') d.’lf) )

16 =00 gy % ([ BlonBhonlonb () dw>1/2+(/ﬂéwlueh,uhm,e,u)m~> dm)l./q

Consequently, (4.40) yields

llon — Q|| (0,T: 1/(2)) < pmin{f.0}/ max{2,p} for all p € [1,4],

[|0h — 6||Loo 0.7: L9(Q) < pin{B.0}/ max{2,q} for all p € [1,00).

Remark 4.4. The optimal convergence rates are obtained for ¢ > 7/6 and § = 1/6. In this case,
min{3,6} = 1/6 and, in particular, the convergence rates for w; in the L?-norm, for g, in the L>-
L"-norm (provided v < 2) and for 6, in the L>-L?-norm are 1/12.

4.6. Numerical Results
We conclude this section by illustrating experimentally convergence behaviour of the FE-FV method

(4.5)—(4.7). More specifically, motivated by the numerical experiments presented in [21, Section 5.1] and
[7, Chapter 14.6.2], we simulate a vortex flow in = [0,1]?> C R? with the initial data

Bl @) =g 0@, i =) (72,

2~
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where
N 5 10 if r(z) < &,
@) =y[(m-3) +(5-0) . w@=vii2(d-5) @<t
0 if r(x) > 1,
50r(x)? if r(z) < &,
0,(x) = < 4In(10r(z)) + 4 — 40r(z) + 50r(x)?  if {5 <r(z) < 1,
41n(2) — 2 if r(z) > 1.

The parameters of the FE-FV method are chosen as p = 0.1, v = 0, ¢ = 2.0, § = 0.1667 and the final
time for our convergence study is 7" = 0.1. The nonlinear algebraic system (4.5)—(4.7) is solved using a
fixed point iteration. Thus, in each subiteration, the CFL stability condition

0.4h ) - —
k s where ¢, L \/fy (‘Qh 1)'\/—1(6}1 1)7’
||Ch

Atk =k — k1 <

— k—1 -1

LX(@)?
is required. This is ensured by the choice At = 16h/130. We concentrate on the following errors:
Errz))o”y(h) = ||Qh - Qhref”LOC(O,T; LQ)’ Err;9077(h) = ||Qh0h o Qhref&href“L%(O,T; L)’

Err2?(h) = ||lun — up Errg?(h) = || Vitn — Vi Wh,

‘LQ(U-,T; @)%’ |L2(0,T; L2(Q)ixd)

ref

Err;%(h) = |Jup — wp, Err22(h) = ||E(on, O wh | Ohyer s Onreg» Uhyor)

ref

‘L”(OyT;Lz(Q)d) ’ ||L°°(0,T;L1(Q)) ’

where her = 1/1024 and

1 .
E(0hs Oy W | Ohyors Onyer» Uhror) = 3 onlun — Un, |
OP(0hyer s Shye
+ P(on, Sp) — % (0n — Ohyer)
0
N ap(ghref7shref)

59 (Sh = Shyer) = P(Ohyers Shyer) -

Tables 1 and 2 show the experimental order of convergence for two different values of the adiabatic
exponent v = 1.4 and v = 1.67.
Here, the experimental orders of convergence were computed using the standard formula

EOC(h) = log, (”SQ” e |> ,
[18h — Sl

where s, stands for a numerical solution on a mesh €2, analogous notations are used for sg;, and sp,,.
We observe that EOC for the density, velocity, gradient of velocity and potential temperature are around
1, while the second order EOC are obtained for the relative energy. Similarly as in theoretical analysis the
convergence rates in the relative energy are twice as good as those of the density, velocity and potential
temperature. Our numerical experiments indicate that theoretical results obtained in Sect. 4.5 might be
suboptimal, such a behaviour was observed in the literature also for other numerical methods and models,
see, e.g., [9,13,16]. Figure 1 illustrates time evolution of the solution computed at different times on a
mesh with A = 1/128 and for v = 1.4.

5. Conclusions

In the present paper, we have proved the DMV-strong uniqueness principle for the Navier—Stokes system
with potential temperature transport (1.1)—(1.5). This result shows that strong solutions are stable in
the class of DMV solutions introduced in [15]. We have derived the relative energy by taking the total
physical entropy into account. More precisely, the pressure was rewritten as a function of the density and
entropy, instead of the total potential temperature only. Moreover, we also require the entropy inequality

) Birkhauser
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I 0.693 I 1.150 I 1.150
I 0.500 I -1.150 I -1.150

I 0.695 I 0.110 I 0.110
I 0.493 I -0.110 I -0.110

I 0.697 I 0.046 I 0.046
I 0.518 I -0.046 I -0.046

I 1.040 I 0.693 I 0.009 I 0.009
I 0.996 I 0.521 I -0.009 I -0.009

F1a. 1. Numerical solutions for g, 06, ui, uz at times ¢t = 0,0.1,0.2,0.5

1.000

I 1.000
I 0.985

I 1.040
I 0.993

(2.7) that is included in our definition of DMV solutions. The importance of Poincaré’s inequality (2.8)
became clear from the proof of DMV-strong uniqueness: It allowed us to rewrite viscosity terms in such
a way that Gronwall’s lemma was applicable and yield the DMV-strong uniqueness principle.

As an application of the DMV-strong uniqueness principle we derive a priori error estimates by ap-
plying the relative energy to numerical solutions. Our theoretical error estimates include not only the
errors between the numerical and the strong solutions but also the so-called variational crime errors

due to the approximation of a smooth domain Q by polygonal approximations 5, © C € such that
dist(z, 9Q) = O(h) for all x € IQy,.
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A. Appendix
A.1. An Auxiliary Result Concerning the Relative Energy

Here, we prove the auxiliary result used in the proof of DMV-strong uniqueness.

Lemma A.1. Let 9 > 0, 0 >2c>0,0<p<p<p, 0< 6<6<80, and v > 1. Then there exist constants
c1,¢2,¢3,¢4 > 0 that only depend on 9,9,0, 0,c, and vy, and corresponding sets

R:{(éaé)€R2‘01Q§§§62§7 c*<9~§639}, S:{(§,5)€R2’§20, 520*}\72
such that

F(@.510.5) = P(0.5) - 2 - o) - L5 - 5) - pio.5)
> es [12(2.0)(12 — o + 15— S1) + 1s(2.0)(1 + (20)")] . (A1)

where P(p,S) = ﬁp(g, S) with p from (3.2), S = S(o,0) is defined in (3.1), and S = S(, 9~)

Proof. To begin with, let 0 < ¢; < ¢, and c3 > ¢,/ 0 be arbitrary numbers. Further, let R, S be defined
as described in the lemma. We decompose S into the sets

s ={@heslo<ee}, st ={@hesli>mn}, S'=5\(STUS)

and observe that
1 ~

F(2.512.8) = (@07~ 25 67075 (1~ (o) + (8) + L (20"

- 1 -
>a ((90)7 - ﬁ 0107 5 (1+ |In(0)| +01/2) + o (@9)W>

wherefore

~ - _ _ 2~ —1 -~ =
1s-(@,0)F(2 510,5) 2 a(ed)” = =27 (1+ max {| (@)}, n(@)]}) @0)" - 1" %@” /g

a cl/?
1- 237797 (a6)”
+7_1< 5 0 (09)",
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1s+(2,0)F (3,5, )>G(QQ)V+%<1—’V@ V(g) (1+max{|ln ), [ In(0 ‘}+Cl/2>) (80)7,

1 19

150(8,0)F (8,50, 5) > a(00)” + % (1 — ey (iy_ (1 +max {|In(0)], | In(9)|} + (CB9)1/2)> (80)" .

Here, the first inequality is obtained using Young’s inequality. Together, the above observations show
that we can specify ci, c2, c3 in dependence of 9,0,8, 0, ¢y, such that

15(6,0)F (8,50, S) > ca1ls(8,0)(1+ (80)7),

where ¢4,1 > 0 solely depends on o, 9,8, 0, c,,~. Having fixed ¢y, ca, c3 as described above, it remains to
show that

]173(97 ) (QvS|Qa )>6472]173(@75)“@7Q|2+|‘§75|2)7

where ¢;2 > 0 only depends on p,79,0, 0, c,,~. This inequality is a direct consequence of the fact that
P = P(p,S) is strongly convex on every compact convex subset of (0,00) x R which, in turn, follows from
the positive definiteness of the Hessian of P on (0,00) x R. O

A.2. Mesh-Related Estimates

We recall several important mesh-related estimates; see, e.g., [7] and the references therein. We begin
with the discrete trace and inverse inequalities. We have

1_1
il gy S 0Nl ey and el S UG g (A2)

for all r € Qp, all K € Ty, all 0 € E,(K), and all 1 < g < p < co. In addition,
||'U*@||Lp(K) ShHVhUHLpKd? ||U*<v>o||Lp <h||th||L1, d (A3>
and  [|©)all ) S P (110l + R 1V00N ) (A4)

are valid for all p € [1,00], all v € Vo p, all K € 7p, and all o € &,(K). Moreover, given ¢ € C(Q4) N
Whoo(Qy,), it is easy to see that

||[[$]]||m [ SRl forall o € Enns (A.5)
||¢—$K||m )Nh||¢||Wm ) for all K € 7;, and all o € &,(K), (A.6)

16 = D)ol x(p) S PlSI 1w, forall K € Ty and all o € Ex(K), (A.7)
H[[m]mm S8l — forall o € Enm, (A.8)

¢ — mKHW) < ||¢||w1-°cmh,) for all K € 7;, and all o € &,(K), (A.9)

and \|¢>—mumm) S hllgllyeq,) - (A.10)

Next, combining [18, Theorem 6.1] with [10, Lemma 2.2] we obtain a discrete version of Poincaré’s
inequality, namely

||UHL thHLQ(Qh)d (All)

h

for all v € Vy 3, where ¢ € [1,00) if d = 2 and ¢ € [1,6] if d = 3. Due to [2, Theorem 5|, we have the
following estimates for the projection operators Ilg 5 and Iy, p:

16 = Bll ) = 116 = Tandll g ) S BBl (A.12)

16 =Ty, nll 1o,y + P IIVed = VhHVh¢||LqQ)thI|¢|\W1q o) (A.13)
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19 = Ivndl] o,y + 1 IVe ¥ = Vallyndll o 10 S h? 101y, (A.14)

for all ¢ € [1,00], all $ € W9(Qy,), and all op € W29(€2y,).
Furthermore, we record the following estimate concerning the comparison of the operators Iy ;, and
H&h, see [4, Corollary 2.12]:

0
Hl_[V,h(l5 - HV,h(b' |LOC(K)

for all ¢ € C1(RY) and all K € Tj,.
Finally, we report the boundedness of the projection operators Il j and Iy, ;. It follows from Jensen’s
inequality, cf. [5, p.90], that

||HQ”LUHL4(Qh) < ||U||Lq(Qh) for all v € LY(Q4), q € [1, 00]. (A.16)

+h ||V$ (Hv,h(b - H(\)/,h(b)HLOC(K) ,S h HVZ¢||LOO(Rd)d (A15)

Furthermore, we may use (A.13) and the triangle inequality to deduce that there exists an h-independent
constant C' > 0 such that

||HV,hU||Lq(Q < (1+Ch)||v|| for all v € WH4(Qy,),q € [1, o0]. (A.17)

wha(Qy,)

A.3. Proof of Theorem 4.3

This appendix is devoted to the proof of Theorem 4.3. Its proof is an adaption of the proof of [15, Theorem
5.1]. Apart from the estimates listed in Appendix A.2, we need the subsequent results.

Lemma A.2. Let ¢ € C*(Qr), 7 € {At,...,NrAt}, (r¥)ren, C Qn, and define the functions ry, 7, :
R x Q, — R via

k k-1 k ;
vy [ E T (= ) Derk) it € (th, 1] for some k € N and
(rn, 7h)(t, ) {(T(F)L,rg) ift <0.

Then

/OT/S2 [(Dern) 6 + 11 04) dazdlt — Uﬂ(w)(t, ) daz} :

T
S 106l g, //Atuytrh|dgcdt<||at¢>||yos2 (A)'/2p=0/2 <h5At/ (Dyrp)? dedt

1/2

Qp
(A.18)

Proof. Let m € N be such that 7 = mA¢t. Then

//rh3t¢dxdt Z/(’f 1/t 8t¢dt+]:7fl/t (t—tk—1)3t¢dt>d:c

- Z/ D(th,) — dti—1,")) + bt ) (ry — ') de
_ Z/ " b dtdae

tr—1

_ U(rhqs)( dmy ' // Dyry) ¢ dzdt.

"Compared to [4, Corollary 2.12] we only have the factor h instead of h? on the right-hand side which is due to the fact
that (4.4) only ensures that there is a constant dg > 0 such that dist[z, Q] < doh for all x € Q.
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Moreover, using Holder’s inequality, we deduce that

‘// # — 1 8t¢dxdt’<||8t¢||m //|rh—rh|dxdt

tr

S0l g, At+tk | —t)| dadt

smmbmﬂAAAumﬂmw

T 1/2
5||8t¢||LW(QT)(At)1/2h‘5/2 (hmt /0 (Dtrh)zd:cdt> .

Qp

Together, the previous computations yield the desired result. ([l

Lemma A.3. Letr, f € Qn, v € Vo, and ¢ € C(Q,) NWE(Qy,). Then

/Q ro - ngda:—/ F,[r,v] [ f] dSs

ult

=/'uf—@mwwMM+/’<f—wwaww»rd&
Qp E(K)

+/S(K) (0= (B)o)r (v -nKg — (v 1K)y)dSs +7/ [711f] dS, . (A.19)

lllt

8

Corollary A.4. Let 5,9 € Qp, w € Vg1, and ¥ € C(Qp)4 N WL°(Qy)?. Then

/ s@w: Vv de 7/ F,P[s,w]-[g] dS.
Qp, 2

int

:/ s (g — ) divy(w) dw+/ (g—9) [s] [(w-nK)s] dS:
Qp E(K)

+/£(K) (¥ — (¥)o) - s (w-ng — (w-ng),) dSz + —/ [s]-[g] dSz - (A.20)

lnt

Lemma A.5. Let 7 € Qn, v € Vo, ¢ € Wy (Qn), and ¢ € Wy > (Qp)%. Then

/ Vv - Vplly ¢ de = / Vv Veoddxr  and / rdiv,(Ily ¢) de = / rdivg (¢) de.
Qp Qpn Qp

Qp

For the proof of the Lemmata A.3 and A.5, we refer to [5, Chapter 9.2, Lemma 7 with y = 1] and [5,
Chapter 9.3, Lemma 8], respectively. For the proof of Lemma A.3, we additionally need to observe that

/<<i>>a?ﬂ(v~m(—<v-nK>a)dSz =0,

g

which follows from the fact that r € Q. Corollary A.4 can be proven by applying Lemma A.3 with
(r?favv¢) = (Siagiawawi)7 1E {177d}

Having all necessary tools at our disposal, we can approach the proof of Theorem 4.3.

8In integrals of the form -]é(K) we consider the vector n, in the definition of the trace operators (-)™¢ and (-)°"? to be

replaced by n .
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Proof of Theorem 4.3 (Part I). In this part, we only consider the case 7 € {At,..., NrAt}. We choose
arbitrary test functions o, € C1(Qr), ¥ > 0, and ¢ € C*(Qr)?, #l,mxa0 = 0. By extension with 0,
we consider ¢ € C([0,T] x R4 N L>®(0,T; WL>°(R%)?). Moreover, since Q is a smooth domain, Q7 is
also a smooth domain. Thus, we may use Stein’s extension operator €giein, see [20, Chapter VI, Theorem
5], to extend ¢, 1) in such a way that ¢, € WH°(R¥1) 0 C(R4*!) and

||SOHW]¢‘X‘(R‘1+1) S CStein(QTy 1) ||SDHCI€(97T) I ||1/)||Wk.oc(Rd+l) S CSteil’l(QT’ 1) H’(/}HC}{(QiT) (A21)

for all k € {0,1}, where Céstein(Q7,1) > 0 is given by

Csten(@r,1) =, {01 {HGS“‘“”W *(Qr) - W""x(Rd“)} '

Putting @5, = g, ¥y = oy and ¢, = Iy ¢, we make the following observations.

The continuity equation.
From (4.5) we deduce that

/ Dt@h Ph dedt — / / gh,uh [[(ph]] dS dt=0. (A22)
Qp Eint
Using the fact that op(¢,-) € Qy, for every ¢ € [0, 7], we see that
/ (Dsop) o dedt = / (Dion) ¢ deedt . (A.23)
0 Qh 0 Qh
Next, we observe that
— on(t — At,
/ / (Dyon) ¢ dadt = / / on( ) o(t,) dwdt
Q0 Q0 At
/ / (one)(t,-) dedt — —/ / ot + At,-) dedt
T At Q0 At Qh\Q
T—At
o(t+ A :
/ / +AL) =) Goar
(zh\sz At

/ / t,-) dedt
T—At Q;\Q
At
/ / t,-) dedt.
Q;\Q

Consequently, (4.4), the second estimate in (4.15), (A.16) and (A.21) yield

(Dion) ¢ daxdt | < T [Q\Q[Y2 R0/

5/2
ane ||<'0||WJ’°°(R'”1) Hh Qh||L°°(O,T; L2(0))

+ 1Y R ol gy 1B

©(RIH) QhH

+ 1N el oy 10h]] (g,
,S h'(l 5)/2 ||¢|‘Cl(ﬂi) 5 h 1 6)/2 .
T

(0, L()

Combining (A.23), (A.3) and the first estimate in (4.23) with At ~ h and Lemma A.2 applied to (rp, ¢) =
(on, ), we obtain

T t=7 T
JRGIE [ [ @oe) dm} ~ [ [ v awar + 002,
0 Qpn (9] t=0 0 9]
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Next, let us consider the second term on the left-hand side of (A.22). Employing Holder’s inequality, the
first estimate in (A.3), the second estimate in (4.15), the first estimate in (4.14) and (A.21), we see that

// on(un —up) - Vo dadt
o Ja,

S H@HWIOO Rd-H ||Qh| |L2(0,T;L2(Qh)) Huh - u7h| |L2(0,T;L2(Qh)d)

S [ [

| V||

ciQr QhHLO‘(O T; L3 () | L0, T; L2(Q,)4%4)

<h1 5/2.

Moreover, applying (A.21), (4.4), the second estimate in (4.15) and the first estimate in (4.13), we obtain

// oy - Vpp dedt
0 J,\Q

T
S lellyrgarny 1AL [ IVE g IVETTEDE 1,

T
1/2 _ 1/2
SR el / 11272 0n (8, e, , 1on @m ) 2 )15y, )

S hUTOAT |02y |

~

12 < 1 (1=8)/4
L0, T; L2(Qn)) ||Qh|uh| ||L°“0TL‘(Qh))Nh '

Consequently,
// ghuh~vzsodwdt://gm-vmsodwdtw(h“”)“) as h | 0.
0 Ja, 0Jq

Then, using Lemma A.3 with (r,v, f, ) = (on, un, ¢r, ©)(t,-), t € [0,7], as well as the estimates (A.5)—
(A.7), (A.12) and (A.21), we deduce that

I

T
ol S MRl [ [, Mondlfun ]| a e,

Plon,un] [en] dSzdt = // Qhuh-V$c,0d:17dt—|—§:lj’h7
Qn

=2

mt

T

T
1ol S bl [ [ lonawnlaodr, Vil S0 ol [ [ Jlaidlasiar

lnt

These terms can be further estimated as follows.
e Term |I5;|. Due to (4.21), we obtain

T
Ion| < h/ / [Ton] (un - o )o| dSe dt < AO/2(1+ h71/2).

e Term |I3,|. By means of Holder’s inequality, the second estimate in (A.3), the first estimate in
(A.2), the second estimate in (4.15), and the first estimate in (4.14), we derive

s S 010l 7. g2 19000

g hl 6/2 ||h6/2gh||

LZ 0, T: LZ(Q )dxd)

||thh|| < ploo/2,

L=(0,T; L*(Q LX0,T; L2(Qp)4x4) ~

e Term |l ;|. Employing Holder’s inequality, the second estimate in (4.14), and the second estimate
n (4.15), we conclude that

Hanl S Bllonll 2 1 12,
hl 5/2Hh5/2

||d1Vh(uh)HL2 0,T; L*())

) lldivy (un ) SR

Q’L”Lx 0,73 L2(2) L20,T; L2(Q))
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e Term |I5 ;|. Applying the first estimate in (A.2) and the second estimate in (4.13), we get

‘15 h| S hE ||Qh||L1 0 T Ll(ﬂ )) 5 hE ||QhHLOC(07T;L’Y(Qh)) 5 ht' °
Consequently,
[/ (onp)(t,-) dw} :/ / [0n0rp + onTn - Viep] dedt + O(h®Y)  as h |0, (A.24)
Q t 0 JQ

where oy = min {e, 132 }.

The potential temperature equation.

The proof of (4.28) can be done by repeating the proof of (4.26) with gy, and o) replaced by g6, and
0967, respectively.

The momentum equation.
Realizing that ¢y (¢, ) € Vo for all ¢ € [0,T], we deduce from (4.7) that

/ D:(oruy) - pp dedt — / / Plopuy,up) - [@r] dSz dt + u/ Viuy : Vipn dedt
0 Qp Eint 0 Qp

+ V/ divy, (up) divy (ep) dedt — / / p(onbh) + 1[0} + (0nbr)?]) divy(¢p) dzdt = 0.
0 Jo Q
" " (A.25)

Let us consider the first term on the left-hand side of (A.25). Since ¢ vanishes on [0,7] x (2,\2), we
have

/ Dy (onuy,) - pp, dedt = / / Dy (onup,) -  dedt +/ / o, Dy, - (Ily ¢ — ) dedt
0 Qh 0 Q 0 Qh

+/ (Dion)up - MMy — ) dedt,
o Ja,

where by Holder’s inequality, the second information in (4.10), (A.16), the second estimate in (4.19),
(A.13) and At~ h

// QthUh'(chp—gO)dwdt‘
0 JQp

1/2

T 1/2 T
h(At)_l/QHgoHol(STT)d (/0 /Q o, d:cdt) (At/o /Q 0, (Dyar,)? d:cdt) < ht/?
h h

and by Hélder’s inequality, the first estimate in (4.23), the third estimate in (4.14), (A.16), (A.5) and
At~ h

‘ / (Dion)uy, - (Iyp — ) dmdt‘
o Ja,

T 1/2
< B2 (AL 1ol iy <h5At A 5 (Dyon)? dwdt) 1R 20, 7 12000y S [ (1=)/2

In view of the previous two computations, it is easy to verify that

T T T
[ [ s aeas [ [ sl vl azais [ [ se0ignm| asar < 10072,
0 J0 0 JQ 0 JQ

whence Lemma A.2 applied to (rp, ¢) = (0nTn.i, i), ¢ € {1,...,d}, yields

T t=T1 T
//imﬁmy¢ma—[/@mewom] - [ [ - o awar+ om0
) (9] (9] =0 0 [9)

(
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as h | 0. Next, we turn to the last three terms on the left-hand side of (A.25). It follows from Lemma A.5
that

M/ Vhup : Vi dedt +/ / (vdivy(un) — plonbh) — B’ [0} + (0nh)?]) divy, () dadt

= ,u/ / Viup : Vy dedt +/ / (vdivy,(up) — p(onbh) — h? (07 + (0n6h)?]) dive () dedt .
Qh Qh

Finally, let us examine the second term on the left-hand side of (A.25). Using Holder’s inequality, the
first estimate in (A.3), the second estimate in (4.16) and the first estimate in (4.14), we deduce that

— =\ < — o
‘ / /Qh Qhuh ® (uh Uh) VE"P dZBdt ' ~ HSDHC“(QiT)d thuh||L2(0,T; LZ(QIJ‘Z) Huh uh||L2(0,T;L2(Qh)d)

||thh‘| hl_(d+36)/6.

< h||QhUh|| LZ O T LQ(Q )dxd) ~

L0, T; L2 (0

Applying Corollary A.4 with (s,w,g,v) = (Qhuh,uh,cph,cp)(t, ), t € [0,7], as well as the estimates
(A.8)-(A.10) and (A.13), we deduce that

5
// P oy up] - [@R] dS, dt = //gmmmM%¢m&+Z%W
mt Qh

j=2

where

|J2h|Nh|\90|\C1 // \lonwn] [(un - nk)o] | dSedt,
|J3,h| 5 h HLPHCl(m)dA /5([() ‘Qhuih| |’U,h - <'Uzh>o’| ngg dt,

T
[Tl € h|\¢|\cl(wd/ / | 0w divy (un)| ddt

sal S B el // lowr]| dS, dt.

zlxt

We continue by estimating the above terms.
e Term |Js5|. We observe that [on@r] = o [@n] + [on]@n ™, which implies

T
|J2,h|§h/0 /m of" [wn] [(un - nx)s] | dSe dt+h// \Lon]@n [(un - nk)o] | dSydt. (A.26)

Employing Holder’s inequality, (4.20), (A.4), the first estimate in (A.2), the first and third estimate
n (4.14), and the second estimate in (4.15), we see that

T
A R o [ M EEA
0 Je)

1/2
. </OT/5(K) _Qﬁut[[u—h]]2[<uh -’I’lK>o]_ dSwdt> (/ /g(K) out| )| AS, dt)
1/2
- ( / / [ )] " = 0 [(un - )] ) [T dsmdt> x
1/2
x (/OT/W) 0™ (wn) | dSs dt)

< h(h

2\

oy + R Vaunl]

-1 1/2
H‘QhHLQO T LZ( (|| hHLZO T LZ(Q L20 T: L2<ﬂ})d><d)))
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S (R0 |82y | +h||vhUh||

1/2
LOC(O-’T:’ LZ(SZ (H h||L2 0,7; L2< ) LZ 0,7; LZ(Q; )dxd)))
5 h1/27§/4 + h176/4 ) (A27)

Next, using Holder’s inequality, the estimates (A.2), (A.4), (4.17), the first and third estimate in
(4.14), the second estimate in (4.15), and the fact that At ~ h, we deduce that

T
nl [Tt ]| asea

T 1/2
< prmos? <h5/ / Lon]?|(un - i) o| dSl.dt> (/ / )o| dS, dt)
0 JEK) g(K)

1-6/2 -1 1/2
5 h’ / ( ||uh”LZ 0, T LU(Q d (|| h||L®0 0, T Ld/z(ﬂ )d + h”th’hHL% 0, T L&/Z(Q ):]xd)))

S (e OA e ([ v |\ VA |

< RL/A=8/2 4 p3/4=6/2 (A.28)

1/2
Lz 0 T: L%/Z(Q] )dxd)))

Consequently, plugging (A.27) and (A.28) into (A.26), we obtain
Ton| < RL/2=0/4 4 p1=6/4 | p1/4-5/2 | p3/4-6/2
e Term |J3 |. Applying Holder’s inequality, the first estimate in (A.2), the second estimate in (A.3),
the first estimate in (4.14) and the second estimate in (4.16), we conclude that

< p1-(d+38)/6
||thh||L2 0 T: L2<Qh)d><d) ~ h N

L*0,T; L2(Q

e Term |J 5|. Employing Holder’s 1nequahty7 the first estimate in (4.14), and the second estimate in
(4.16), we obtain

[ Janl S Bllonnl] oy vy (un) | < pL-(@+39)/6

L0, T; L*(, LX0,T; L*(Qp))

e Term |J5 1|
Using the first estimate in (A.2) and the third estimate in (4.13), we deduce that

|5l S h° lonunll S he ||onun|| She.

Yo, T; LY (Qp)4) ~ L>(0,T; L2/ O+ D)) ~

Keeping in mind that ¢ vanishes on [0,T] x (Q2,\€2), we may summarize the previous observations as
follows:

[/Q(Qh’uh‘ P)(t,) dw] ;; + /OT/Q (1Vhuy : Vi + v divy (up) divg ()] dzdt + O(h*?)

_ / / (o - Ohp + 0w © i Voo + (p(ondh) + W[ + (onh)?]) diva ()] dedt  (A.29)
0

as h | 0 with ag = mm{s, 26} > 0.

The entropy inequality.
Taking ¥ (t,-) = ¥n(t,-) + Cstein(Qr, DR[|, s t € [0,7], as a test function in (4.12) with x = In,

we deduce that

0< /OT 5 D¢ (on In(6y)) ¥y, dcdt — / /m Uplon In(0r),un] [¥n] dS. dt — Z (A.30)

Jj=1

where

he [T
= [ lodlwlassdr, o= [ [ im@vilassar,

lnt
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== [ /mt[[ghehﬂﬂ ] as,ar,

Hyp = —Cstein (O, 1>Dh||¢||01<97> [/Q (on In(6))(2,-) dw]

t=1

t=0
Now we may rewrite the first two integrals in (A.30) following the procedure used to handle the continuity
equation. The error terms appearing during this process are exactly the same as in the case of the
continuity equation with gp, replaced by gy In(6y) and ¢, replaced by 1y,. However, the analogue of the
error term I5 ;, will not be there since (A.30) contains the usual upwind operator Up|[-, -] instead of the
dissipative upwind operator F,'"[-, -]. Since (6p). < 6 < (6p)*,

| Lok (0] | = [[or]o{n)}o + {oh}o ()] = ’[[Q’;i]]a{ln(@’f)}a + 1651

= ‘[[QZ]]G{IH(%C)}U + ([[Qzeilfﬂo - HQZHU{Hﬁ}U) s ’[QE]]U‘ + H[Qﬁeflf]]a‘
for every (k,o) € N x &y and suitably chosen values (9.k,0 )0 € £ C [(60), (f0)*] and, analogously,
|Di(on (0n))| < [Deonl + |De(enbh)l,

it is easy handle these error terms. Thus,

[/ (on In(On))(t, - } / / or In(6,)0:) + op, In(6p) Ty, - Vi 1/)] daedt + O(h*) + ZH
Q Q j=1
(A.31)

as h | 0. For the error terms H;, j € {1,...,4} we proceed as follows. Since Hy j, = —I5 p, we have
|Hyp| < h*r. Combining (6)x < 0, < (6h)* with Hélder’s inequality, the first estimate in (A.2), the
second estimate in (4.13) and the first estimate in (4.15), we deduce that

|Hanl, |Hap| S h570
Moreover, using (6h)« < 6n, < (6h)*, the second information in (4.10) and (A.16), we easily verify that
Ha £ 110y 108 L) S 1l gy Dol

Consequently, we may rewrite (A.31) as

|:/ (Qh ln(ﬁh)w)(t, ) dCC:| - > /T/ [Qh ln(gh)atl/} + on ln(t‘)h)'zTh . Vmi/)] dadt + O(has),
Q 0 0 J0Q

as h | 0 with ag = min{ay,e — 1}. O
Proof of Theorem 4.3 (Part II). In this part, we turn to the situation in which 7 € [0, T] is arbitrary. Since
the case 7 = 0 is trivial, we may assume without loss of generality that 7 € (0,7]. Let m € {1,..., N}

be the smallest number such that ¢,, = mAt > 7.

The continuity equation.
Using Holder’s inequality, (A.16) and At = h, we deduce that

[ @it )dw]:

Moreover, employing Hélder’s inequality the second and third estimate in (4.13), we see that

tm
[ [ vt + ovn - Vo dae| £ 80l (sl 1888 1)
T Q s 4 L s 4 3
<h.

Consequently, (4.26) holds for any 7 € [0, 7.
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The potential temperature equation and the entropy inequality.
Keeping in mind that (6y)x < 6, < (6h)*, one easily reduces the setting of the potential temperature
equation and the entropy inequality to that of the continuity equation.

The momentum equation.
From Holder’s inequality, the third estimate in (4.13) and At &~ h we deduce that

t=tm,

[t de | | S Aol g 1ol 1 S0

t=T1

Furthermore, Holder’s inequality, At ~ h, the first two estimates in (4.14) as well as estimates in (4.13)
and (4.15) yield

t'f?l
‘ / / [V, Vi + v divy (up) dive ()] dedt
T Q

tm

lon@h - 0rp + onn @ < Vi + (p(onbh) + 1’ (07, + (enh)?]) diva ()] ddt ’

< (A0l gy (11 Fcun

i + Hleh uh)||L2 0,T; Ll(Qh)))

LX0,T; LY ()

+ Aol 1 gy (”Qh Ul 0,7 L0 () + || on[@n|?  zo=(0, 7 1) +||9h9h||zm<07T;L~/<Qh))

+||h6/2gh”L9¢OTLZ(Q +||h6/2gh0h||L°@OTL2<Q ))) §h1/27
which implies that (4.27) holds for any T € [0,7T]. O
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