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Abstract. We utilize the notion of kinetic energy instability due to Reynolds and Orr to examine instability of steady
flow past a bluff body subject to slip boundary conditions with friction. We consider in detail flow past a cylinder. One
such solution is given by potential flow with a particular friction coefficient. We compute numerically the eigenproblem
determining the most unstable modes. These correspond to modes previously observed in dynamic simulations, confirming
the previous observations.

The method of Reynolds and Orr [34] has recently been used [33] to determine the most unstable
mode for Couette flow. We extend this analysis to flow around a cylinder, including a slip boundary
condition due to Navier [25]. It should be noted that the slip boundary conditions are deduced from the
weak formulation, in the weak sense.

Serrin [34] used techniques that he attributed to Reynolds and Orr separately to prove stability
of fluid flow. The method is called the kinetic energy stability criterion in [31]. It provides an exact,
nonlinear instability criterion that rigorously predicts exponential growth of perturbations, as opposed
to the linear instability criterion that is widely used [4,14,20–22,28,31]. Linear stability theory predicts
stability of Couette flow [1,30] for all Reynolds numbers, contrary to experimental and computational
evidence [7,26,37,38]. A detailed comparison of the two approaches to instability is given in [33]. One
conclusion is that any instability found by linear instability theory will also be found by the nonlinear
Reynolds–Orr kinetic energy instability theory, so the latter is significantly more general as well as being
more rigorous.

A summary of the history of the slip condition is given in the appendix of Goldstein’s book [13, pages
676–679], in the introduction to [19], and in [25]. The latter reference describes the effects caused by
Stokes advocating a universal no-slip condition (u = 0 on solid boundaries), as well as the original insight
of Navier regarding slip conditions (3) and friction. We expect that, as the Reynolds number increases,
the flow profile should tend to a solution of the Euler equations [6,8,39,40], for which the slip boundary
condition is appropriate and the flow in simple domains is plug-like. On the other hand, as the friction
coefficient tends to infinity, the Navier condition converges to the Stokes condition. Thus the Navier
slip (friction) condition generalizes the Stokes (Dirichlet) condition and gives something more physically
rigorous.

The Stokes no-slip condition is a good approximation in many cases, but it introduces a hard constraint
that can be a computational impediment for some flows. Here we are using terminology from optimization:
the Navier condition can be thought of as relaxing the Stokes constraint u = 0. Variationally, we work
in a larger, less constrained space.

By contrast, the Navier boundary condition expresses a balance between the amount of slip and the
shear stress. Thus there is no need to over-refine near boundaries. Having a constraint on the normal
component of flow is only an orientational restriction: fluids flow in only one direction at each point. But
the Stokes condition forces the flow velocity to vanish, and full resolution may require substantial mesh
refinement near the constraint region.
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Thus we see that the Navier slip-with-friction boundary condition is both physically more accurate
[25,27,42] and computationally easier to work with. By taking the friction coefficient arbitrarily large,
we can recover the Stokes no-slip condition, so nothing is lost in using the more general Navier condition.
Surprisingly, we find that flow instabilities (both the Reynolds numbers at which they are activated and
the form of the unstable fluid velocity mode) appear to converge at rather modest friction coefficient
values.

We also find that there is a convergence of the instabilities regarding increasing Reynolds number
(decreasing viscosity). We derive rigorously an approximate scaling rule regarding the critical viscosities
at which instabilities get activated, and we observe computationally strong similarity of the corresponding
flow modes. Thus we can predict with some confidence the form of the most unstable modes for even larger
flow speeds than our current computations support. The most unstable modes are supported downstream
of the cylinder, in concert with what was observed in [17]. Thus we provide support for the observations
in [17] with both mathematical theory and extensive computations.

To incorporate the Navier slip boundary condition, we modify here the energy instability criterion
for viscous, incompressible fluid flow [31,33,34] to allow slip boundary conditions. We focus on flow past
a cylinder since it is both a very simple flow geometry and also a very well studied problem [43,44].
However, our methodology easily extends to more general geometries.

One striking result is that potential flow around a cylinder is an exact solution of the Navier-Stokes
equations when a relation holds between the kinematic viscosity and the Navier friction coefficient. This
means that there is no boundary layer for such a solution. For these solutions and others, we compute
the most unstable modes in both two and three dimensions.

Our results support a dramatic shift in thinking about computational fluid dynamics. As advocated in
[17], there is a great deal of fluid flow that can be described as laminar base flows modified by instabilities.
Such a view can have substantial impact not only on simulation of aircraft flight, but also in modeling ab-
normalities in flow of bodily fluids, in designing energy generation systems, novel transportation systems,
and much more.

1. Base Flow Equations

Suppose that (u, p) is a weak solution of the Navier-Stokes equations in a bounded, Lipschitz domain
Ω ⊂ R

d (d = 2 or 3) containing an obstacle with boundary Γ ⊂ ∂Ω:

ut − νΔu + u · ∇u + ∇p = 0 in Ω,

∇·u = 0 in Ω,
(1)

where ν is a nondimensional parameter related to the kinematic viscosity, together with boundary con-
ditions

u = g on ∂Ω\Γ, u · n = 0 on Γ, (2)

together with Navier’s slip condition [12,25] linking tangential velocity and the shear stress on Γ:

β u · τ i = −ν nt(∇u + ∇ut)τ i, i = 1, 2, (3)

where τ i are orthogonal tangent vectors and β is the friction coefficient. We assume initial conditions
u(x, 0) = u0(x) for x ∈ Ω. The equations hold in a domain Ω and for t ∈ [0, T ]. We assume that g = 0
on Γ for simplicity.

The flow is inside Ω but outside Γ which represents some obstacle, such as a cylinder. The theory
behind the Navier-Stokes equations is well known [23,36], except that the slip condition is somewhat
novel. Define the spaces V and H by [36]

V =
{
v ∈ H1(Ω)d : ∇·v = 0 in Ω, v = 0 on ∂Ω\Γ, v · n = 0 on Γ

}
,

H =
{
v ∈ L2(Ω)d : ∇·v = 0 in Ω

}
.

(4)
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Fig. 1. Solution of the Navier-Stokes equations (1,2,3) for ν = 1 with (a) β = −2 and (b) β = 2. The computation was
done in a box of dimensions 5 × 5, and the cylinder of radius 1 is centered vertically and placed one-third of the way from
the inflow (left) side of the box. Dirichlet/Stokes conditions on the boundary of the box were given by the potential flow

solution

We view V as a Hilbert space with the H1(Ω) norm. In [36, Theorem 3.1, page 282], it is proved that,
for any u0 ∈ H, there is some T > 0 such that a solution of the system (1—2) together with Dirichlet
boundary conditions on Γ satisfying

u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H), (5)

and u is weakly continuous from [0, T ] into H. It is explained in [6, Theorem 2.3] how to extend such
results to slip boundary conditions.

With such weak assumptions on the initial data, we cannot guarantee uniqueness of solutions. But we
will see that instability depends only on the initial data, so our results apply to all solutions.

The Navier boundary condition simplifies variationally, as we now recall. The coefficient β can vary in
space to match the geometry of Γ appropriately. It also would be possible to have different β’s for each
tangential direction τ i. In the case of the cylinder, we can choose one tangent direction parallel to the
axis of the cylinder, and the other tangent direction parallel to the main flow direction. It is conceivable
that for some materials, different βi would be appropriate.

Define

D(v) = ∇v + ∇vt.

In [6,12], it is shown that the variational formulation for the time-dependent problem is

(ut,v) +
ν

2
(D(u),D(v)) + (u · ∇u,v) +

∮

∂Ω

β
d−1∑

i=1

(τ i · v)(τ i · u) ds = 0 (6)

for all v ∈ V , since (p,∇·v) = 0 for v ∈ V . The tangent vectors τ i were defined subsequent to (3). The
boundary term can be written in coordinate-free form by introducing the tangent space T to Γ, and the
projection PT onto the tangent space. Then

d−1∑

i=1

(τ i · v)(τ i · u) = (PTv) · (PTu). (7)

We see that, in general, β could be a matrix, with the boundary term involving (PTv)tβ(PTu), but we
will stick here to the scalar case.
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2. Flow Instability

Similarly, suppose that (w, q) is another solution of the Navier-Stokes equations

wt − νΔw + w · ∇w + ∇q = 0 in Ω × [0, T ],

∇·w = 0 in Ω × [0, T ], w = g on ∂Ω\Γ × [0, T ], w · n = 0 on Γ × [0, T ],

βw · τ i + νntD(w)τ i = 0, i = 1, . . . , d − 1, on Γ × [0, T ],

(8)

with friction coefficient β and with initial conditions w(x, 0) = w0(x) for x ∈ Ω. We assume w0 ∈ H,
where H is the space defined in (4). Like u in (5), we have

w ∈ L2(0, T ;V ) ∩ L∞(0, T ;H), (9)

and w is weakly continuous from [0, T ] into H.
Suppose that u and w differ slightly at t = 0: v0 = u0 − w0 �= 0.

Definition 2.1. Suppose that v0 ∈ H. Define the kinetic energy difference

E(t) =
∫

Ω

|u(t) − w(t)|2 dx, (10)

where w is defined by (8) with w(0) = u0 −v0. We say that the flow u is kinetic energy unstable at t = 0
due to the perturbation v0 for viscosity ν and friction coefficient β if

d

dt
E(0) > 0. (11)

If E ′(0) ≤ 0 for all v0 ∈ H, then we say that the flow u is kinetic energy stable at t = 0.

The terminology kinetic energy (un)stable is derived from [31, Section 5.6]. We will frequently drop
the modifier ‘kinetic’ and just say energy (un)stable.

The regularity required to make E differentiable at t = 0 will be discussed in section 2.5.

2.1. Interpreting the Energy Instability Condition

If we define v for all time by

v = u − w,

then we see that the condition (11) is equivalent to
d

dt

∫

Ω

|v|2 dx > 0 (12)

at t = 0. By subtracting w from u, we have

v ∈ L2(0, T ;V ) ∩ L∞(0, T ;H), (13)

with v weakly continuous from [0, T ] into H, and we see that v solves the equations

vt − νΔv +
(
u · ∇u − w · ∇w

)
+ ∇o = 0 in Ω × [0, T ],

∇·v = 0 in Ω × [0, T ], v = 0 on ∂Ω\Γ × [0, T ], v · n = 0 on Γ × [0, T ],

βv · τ i + νntD(v)τ i = 0, i = 1, . . . , d − 1, on Γ × [0, T ],

(14)

where o = p − q and v(t = 0) = v0 = u0 − w0. We expand the nonlinear terms as follows:
u · ∇u − w · ∇w = u · ∇u − u · ∇w + u · ∇w − w · ∇w = u · ∇v + v · ∇w

= u · ∇v + v · ∇(u − v) = u · ∇v + v · ∇u − v · ∇v.
(15)

Thus the first equation in (14) becomes

vt − νΔv +
(
u · ∇v + v · ∇u − v · ∇v

)
+ ∇o = 0 in Ω × [0, T ]. (16)
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Therefore we can determine if an instability occurs by solving (16). We will see that we can determine it
more simply.

2.2. An Exact Nonlinear Bound for Kinetic Energy

Subtracting the variational formulations (6) for u and w, and choosing v = u − w as test function, we
get

1
2

d

dt

∫

Ω

|v|2 dx +
ν

2

∫

Ω

|D(v)|2 dx +
∮

Γ

β |PTv|2 ds

+
(
c(u,v,v) + c(v,u,v) − c(v,v,v)

)
= 0,

(17)

where the projection PT onto the tangent space is defined in (7),

c(u,v,w) =
∫

Ω

(u · ∇v) · w dx, ∀ u,v,w ∈ H1(Ω)d [23, Lemme 6.1], (18)

and the boundary integral on Γ results from the Navier slip boundary condition (3). It is well known [32,
Section 20.1.2], that

c(u,v,w) = −c(u,w,v) +
∮

∂Ω

u · n (v · w) ds.

For v ∈ V , we thus have c(u,v,v) = 0, and c(v,v,v) = 0, in (17), since u · n = 0 on Γ and v = 0 on
∂Ω\Γ. Moreover

c(v,u,v) =
∫

Ω

(v · ∇u) · v dx =
∫

Ω

vt(∇u)v dx =
1
2

∫

Ω

vt
(
∇u + ∇ut

)
v dx.

Thus we find
1
2

d

dt

∫

Ω

|v|2 dx = −ν

2

∫

Ω

|D(v)|2 dx −
∮

Γ

β |PTv|2 ds − 1
2

∫

Ω

vt(∇u + ∇ut)v dx. (19)

The kinetic energy relation (19) is similar to what is found in [34, (4)] and [31, Section 5.6.1]. For v ∈ V ,
we have v · n = 0 on Γ, so we have v = PTv in the boundary term in (19). However, we prefer to
keep the projection explicit as in the numerical approximation using Nitsche’s method we will relax the
requirement v · n = 0.

For all x ∈ Ω and t ∈ [0, T ], the matrix B(x, t) defined by

B(x, t) = ∇u(x, t) + ∇u(x, t)t (20)

is symmetric and has trace zero. Thus B may have eigenvalues of both signs, and in particular it might
happen that

−ν

2

∫

Ω

|D(v0)|2 dx −
∮

Γ

β |PTv0|2 ds − 1
2

∫

Ω

vt
0

(
∇u0 + ∇ut

0

)
v0 dx > 0,

in which case ‖v‖L2(Ω) would initially increase. This suggests a criterion for stability.

2.3. Energy Instability Criterion

Now we assume that u0 ∈ H1(Ω)d. Recall the definition (4) of the space V . If there exists v0 ∈ V that

− 1
2

∫

Ω

vt
0(∇u0 + ∇ut

0)v0 dx >
ν

2

∫

Ω

|D(v0)|2 dx +
∮

Γ

β |PTv0|2 ds, (21)

then (19) implies that the flow is energy unstable at t = 0, leading to the following criterion for instability.
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Theorem 2.1. The flow u that is the unique solution of the system (1—3) is energy unstable at t = 0 for
viscosity ν and friction coefficient β if and only if

− inf
0 �=v∈V

1
2

∫
Ω
vt(∇u0 + ∇ut

0)v dx
1
2ν

∫
Ω

|D(v)|2 dx +
∮
Γ

β |PTv|2 ds

= sup
0 �=v∈V

−
1
2

∫
Ω
vt(∇u0 + ∇ut

0)v dx
1
2ν

∫
Ω

|D(v)|2 dx +
∮
Γ

β |PTv|2 ds
> 1.

(22)

If (22) holds, it means there is some v0 that could lead to instability. What we need to show is that
it is smooth enough. We postpone complete details to sect. 3.4.

On the other hand, if by chance

− inf
0 �=v∈V

1
2

∫
Ω
vt(∇u0 + ∇ut

0)v dx
1
2ν

∫
Ω

|D(v)|2 dx +
∮
Γ

β |PTv|2 ds
≤ 1,

then
d

dt

∫

Ω

|v|2 dx ≤ 0

for all v0 ∈ V , and thus the flow is energy stable.
Therefore Definition 2.1 and (22) are equivalent. In [33], (22) was taken as the definition of kinetic

energy instability, but we are using Definition 2.1 as it is more transparent.

2.4. Most Unstable Mode

A central result of the paper is that the parameter λ, defined by

λ = inf
0 �=v∈V

1
2

∫
Ω
vt(∇u0 + ∇ut

0)v dx
1
2

∫
Ω

ν|D(v)|2 dx +
∮
Γ

β |PTv|2 ds
, (23)

is [33] a generalized eigenvalue for the following variational equation, to find vλ ∈ V such that
ν

2

∫

Ω

D(vλ) : D(z) dx +
∮

Γ

βPTvλ · PT z ds = λ−1

∫

Ω

(
Bvλ) · z dx ∀z ∈ V, (24)

where B = 1
2

(
∇u0 + ∇ut

0

)
. If (22) holds, then λ < −1.

We can clarify this eigenproblem by writing the following variational problem: given w ∈ V , find
v ∈ V such that

ν

2

∫

Ω

D(v) : D(z) dx +
∮

Γ

βPTv · PT z ds =
∫

Ω

(
Bw) · z dx ∀z ∈ V. (25)

We will discuss the coercivity of this problem in sect. 3.1. Define the operator K : V → V by Kw = v.
Then (24) is equivalent to Kv = λv. Thus the λ’s in (24) correspond to the eigenvalues of the operator
K. We can think of K as extended to a mapping on L2(Ω)d, and it is a compact operator in this setting.
Coercivity in (25) implies that K is invertible, so λ �= 0. Thus the notation vλ does not conflict with the
notation v0 for the initial data.

We will identify all eigenfunctions with a negative corresponding eigenvalue as a potential unstable
mode. Our justification for this is the scaling law presented in Sect. 3.3, where we show that λ scales
with the Reynolds number. Thus, all modes with λ < 0 will eventually become unstable as the Reynolds
number increases.

We collect the above analysis in the following.

Theorem 2.2. Let λ be the most negative eigenvalue for the equation (24), where B = 1
2

(
∇u0 + ∇ut

0

)
.

If λ ≥ −1, the flow starting with u(0) = u0 is energy stable at t = 0. If λ < −1, the flow u is energy
unstable at t = 0, with vλ in (24) being the most unstable mode.
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2.5. Regularity Requirements

We can now explain the regularity requirements for energy instability determination. We have seen that
(11) and (21) are equivalent. For u0, v0 ∈ H1(Ω)d, the terms in (21) are all well defined. Thus the energy
instability definition applies for all perturbations v0 ∈ V and for all initial flow velocities u0 ∈ V . But
that is not to say that the L2 difference E is really increasing at t = 0. If u0 and v0 are a bit smoother,
then regularity results for Navier–Stokes (see [36, Theorem 3.7] or [6, Theorem 2.3]) show that the time
derivative of E is in L∞(0, T ) for some T > 0, as follows. Define

W =
{
u ∈ V ∩ H2(Ω)d : (3) holds on Γ

}
.

In [6, Theorem 2.3], it is proved that, for some T > 0, there is a unique solution of the system (1—3)
satisfying

u ∈ L2(0, T ;V ) ∩ L∞(0, T ;L2(Ω)), ut ∈ L2(0, T ;V ) ∩ L∞(0, T ;L2(Ω)), (26)

provided u0 ∈ W .
If we take one of the eigenmodes vλ of (24) as initial perturbation, then this will have extra smoothness

and (as we show in sect. 3.4) exponential growth will occur. But for general non-smooth perturbations
satisfying (21), we are not able to predict growth in time of E . It is beyond the scope of this paper to
consider such pathological cases even though we recognize that they may be of significant interest.

3. The Eigenproblem

We give some properties of the eigenproblem (24). To begin with, we give a coercivity result that will be
used subsequently.

3.1. Coercivity

Due to the boundary condition on ∂Ω\Γ, there is a Poincaré inequality [32, (30.28)] of the form
∫

Ω

|v|2 dx ≤ Cb

(
1
2

∫

Ω

|D(v)|2 dx +
∮

Γ

b |PTv|2 ds

)
∀v ∈ V, (27)

at least for |b| sufficiently small if b < 0. In particular, we take Cb to be the smallest positive constant
such that (27) holds.

In particular, C0 < ∞ exists for b = 0 just using the boundary conditions on ∂Ω\Γ. Define

V0 =
{
v ∈ H1(Ω)d : v = 0 on ∂Ω

}
,

observe that V ⊂ V0, and apply Poincaré’s inequality [3, (5.3.3)] on V0.
The constant Cb depends on Ω and Γ, as well as b. However, we imagine fixing Ω and Γ and varying

b, so we have made the dependence explicit. The form of the dependence on b is not obvious, but it is
monotone, as we now show. We can show that

Cb ≤ Cb′ if b′ ≤ b, (28)

as follows. Our definition of Cb as the smallest constant satisfying (27) is equivalent to

Cb = sup
0 �≡v∈V

∫
Ω

|v|2 dx
1
2

∫
Ω

|D(v)|2 dx +
∮
Γ

b |PTv|2 ds
. (29)
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Then for b′ ≤ b,
∫

Ω

|v|2 dx ≤ Cb′

(
1
2

∫

Ω

|D(v)|2 dx +
∮

Γ

b′|PTv|2 ds

)

≤ Cb′

(
1
2

∫

Ω

|D(v)|2 dx +
∮

Γ

b|PTv|2 ds

) (30)

for all v ∈ V . Therefore
∫
Ω

|v|2 dx
1
2

∫
Ω

|D(v)|2 dx +
∮
Γ

b|PTv|2 ds
≤ Cb′ (31)

for all v ∈ V . Taking the supremum over v ∈ V completes the proof that Cb is nonincreasing in b.
In particular, Cb ≤ C0 for all b > 0. But it is not clear that Cb is strictly decreasing, and in any case,

taking b arbitrarily large does not make Cb go to zero. To see this, let CZ denote

CZ = sup
0 �≡v∈Z

∫
Ω

|v|2 dx
1
2

∫
Ω

|D(v)|2 dx
,

where

Z =
{
v ∈ H1(Ω)d : ∇·v = 0 in Ω, v = 0 on ∂Ω

}
. (32)

This is the Poincaré constant for Ω and Γ with full Dirichlet conditions. But then

CZ = sup
0 �≡v∈Z

∫
Ω

|v|2 dx
1
2

∫
Ω

|D(v)|2 dx
= sup

0 �≡v∈Z

∫
Ω

|v|2 dx
1
2

∫
Ω

|D(v)|2 dx +
∮
Γ

b|PTv|2 ds

≤ sup
0 �≡v∈V

∫
Ω

|v|2 dx
1
2

∫
Ω

|D(v)|2 dx +
∮
Γ

b|PTv|2 ds
= Cb.

(33)

Therefore

0 < CZ ≤ Cb ≤ C0 (34)

for all b ≥ 0.
The inequality (27) expresses the coercivity of the bilinear form

1
2

∫

Ω

D(u) : D(v) dx +
∮

Γ

b PTu · PTv ds.

Coercivity fails if there is a u ∈ V and constant b0 such that
1
2

∫

Ω

D(u) : D(v) dx = −b0

∮

Γ

PTu · PTv ds (35)

for all v ∈ V . This is an eigenproblem that we can compute for a given Ω and Γ. Coercivity then holds
for b > −b0. Coercivity implies the well-posedness of the eigenproblem (24), and it can have an impact
on the choice of eigensolvers.

3.2. Bounds for the Eigenvalues

Recall that B = 1
2

(
∇u0 + ∇ut

0

)
. Let us now assume that ∇u0 ∈ L∞(Ω). From Hölder’s inequality,

∣
∣
∣
∫

Ω

(
Bv) · v dx

∣
∣
∣ ≤ sup

x∈Ω
‖∇u0(x)‖F

∫

Ω

|v|2 dx,

where ‖∇u0(x)‖F denotes the Frobenius norm of the matrix ∇u0(x). The coercivity bound (27) thus
shows that for any v ∈ V , we have

∣
∣
∣
∫

Ω

(
Bv) · v dx

∣
∣
∣ ≤ Cb sup

x∈Ω
‖∇u0(x)‖F

(
1
2

∫

Ω

|D(v)|2 dx +
∮

Γ

b |PTv|2 ds

)
. (36)
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Any eigenvalue λ of (24) satisfies

1
2

∫

Ω

D(vλ) : D(vλ) dx +
∮

Γ

β

ν
PTvλ · PTvλ ds =

1
νλ

∫

Ω

(
Bvλ) · vλ dx

≤ Cb

ν|λ| sup
x∈Ω

‖∇u0(x)‖F

(
1
2

∫

Ω

|D(vλ)|2 dx +
∮

Γ

b |PTvλ|2 ds

) (37)

for any b. Taking b = β/ν, dividing by 1
2

∫
Ω

|D(vλ)|2 dx +
∮
Γ

b |PTvλ|2 ds, and multiplying by |λ| yields

|λ| ≤
Cβ/ν

ν
sup
x∈Ω

‖∇u0(x)‖F . (38)

The constant Cb was defined in (27) and is a coercivity constant that can be computed via an eigenproblem
similar to the instability computations.

3.3. Eigenvalue Scaling

We can write the most negative eigenvalue of (24) as λν,β to emphasize its dependence on the two
parameters. For flow around a cylinder with β = −2ν, it turns out that uν,−2ν = u1,−2 = potential flow,
for any ν > 0, as we show in sect. 4.3. But in general, uν,β �= u1,β/ν , so some care needs to be taken.

It follows from (23) that

νλν,β = λ1,β/ν , (39)

provided that u does not change as ν and β are varied, as is the case for potential flow with β = −2ν.
This follows from

λν,β = inf
0 �=v∈V

1
2

∫
Ω
vt(∇u0 + ∇ut

0)v dx
1
2

∫
Ω

ν|D(v)|2 dx +
∮
Γ

β |PTv|2 ds

=
1
ν

inf
0 �=v∈V

1
2

∫
Ω
vt(∇u0 + ∇ut

0)v dx
1
2

∫
Ω

|D(v)|2 dx +
∮
Γ
(β/ν) |PTv|2 ds

.

(40)

Thus for potential flow

ν λν,β = λ1,−2. (41)

A similar remark follows for all eigenvalues since they are critical points of the Rayleigh quotient in (40).
Alternatively, we can see that the scaling is valid for the PDE system (24), not only for the Rayleigh
quotient. This gives us the option to compute all eigenvalues for potential flow with ν = 1 and β = −2,
and then simply divide by ν.

In general, the bound (38) shows that

ν |λν,β | ≤ Cβ/ν sup
x∈Ω

‖∇uν,β(x)‖F . (42)

Thus for general ν and β, we have an approximate scaling rule (42) instead of the exact scaling rule (41)
for potential flow. We will show by numerical computations in Table 3 that the rule

ν λν,β ≈ constant (43)

holds to a remarkable extent.
The instability condition in Theorem 2.2 is that λν,β < −1. For potential flow, with β/ν = −2, we

have instability when

ν < −λ1,−2.
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3.4. Rate of Growth of Instability

From (19), we know that
1
2

d
dt

∫
Ω

|v|2 dx
1
2ν

∫
Ω

|D(v)|2 dx +
∮
Γ

β |PTv|2 ds
= −1 −

1
2

∫
Ω
vt(∇u0 + ∇ut

0)v dx
1
2ν

∫
Ω

|∇v|2 dx +
∮
Γ

β |PTv|2 ds
= −1 − λ (44)

at t = 0 if v(t = 0) is the most unstable mode with eigenvalue λ. Here we are dropping the dependence
on ν and β for the moment. Therefore

d

dt

∫

Ω

|v|2 dx =
(

− 1 − λ
)
(

ν

2

∫

Ω

|∇v|2 dx +
∮

Γ

β |PTv|2 ds

)
. (45)

If λ < −1, then the kinetic energy of the perturbation grows with a positive rate

r = −1 − λ. (46)

In particular, this completes the proof of Theorem 2.1.
We can relate (45) to a more familiar expression for energy growth as follows. First, define the kinetic

energy k(t) =
∫
Ω

|v(x, t)|2 dx. Second, divide (45) by k(t) to get

d

dt
log k(t) = r

1
2ν

∫
Ω

|∇v|2 dx +
∮
Γ

β |PTv|2 ds
∫
Ω

|v|2 dx
≥ rν

Cβ/ν
, (47)

where Cb is the constant in the Poincaré inequality (27), valid for all v ∈ V and for b > −b0, where
b0 > 0 depends on the domain. The inequality (47) implies that kinetic energy k grows at least as fast as
an exponential with exponent rν/Cβ/ν , at least initially. For sufficiently smooth data, this would hold in
a neighborhood of zero, but in general holds only at t = 0.

3.5. Spaces of Perturbations

Suppose that the eigenproblem (24) has several eigenvalues satisfying

λ1 ≤ λ2 ≤ · · · λk < −1 (48)

with corresponding eigenfunctions vi. Then any combination of the vi’s can lead to a growing perturba-
tion, as follows.

Let us introduce some notation involving bilinear forms:

a(u,v) =
ν

2

∫

Ω

D(u) : D(v) dx +
∮

Γ

β u · v ds,

Bu(v,w) =
1
2

∫

Ω

vt(∇u + ∇ut)w dx.

(49)

Then the eigenvalue problem may be written as

a(vi,w) = λ−1
i Bu(vi,w) ∀w ∈ V, (50)

where V is the subset of H1(Ω)d consisting of divergence-free functions vanishing on the boundary, defined
in (4). As is well known, the eigenvectors can be chosen to be orthogonal in the sense that

a(vi,vj) = 0 = Bu(vi,vj) ∀i �= j.

Consider

v =
k∑

i=1

cjvj . (51)
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Table 1. Values of the smallest eigenvalue λ for two-dimensional domains of size S. The definition of the domain size S
is given in (54). The choice of β for these computations was β = 0

S 8 12 16 32 64 128

λ −0.123 −0.151 −0.178 −0.275 −0.429 −0.638

Then

−Bu(v,v)
a(v,v)

=

∑k
i=1 c2

j (−λi)a(vi,vi)
∑k

i=1 c2
ja(vi,vi)

≥ −λk. (52)

Thus

a(v,v) ≤ λ−1
k Bu(v,v),

and the conditions for energy instability at the beginning of Sect. 2.3 are satisfied if λk < −1. In this
case, the entire span of v1, . . . ,vk can lead to instability. Summarizing these arguments, we have proved
the following.

Theorem 3.1. Consider the eigenvalues specified in (48). If λk < −1, the flow u is energy unstable at
t = 0, with any initial perturbation v of the form (51) being an unstable mode.

The most negative eigenvalues correspond potentially to the most unstable modes, and by contrast
the most positive eigenvalues correspond to the most stable modes. For this reason, we consider both
extremes computationally.

4. Example: Flow Around a Cylinder

Flow around a cylinder is one of the most widely studied phenomena in fluid mechanics, from theoretical,
experimental, and computational points of view. In sect. 5, we examine stable and unstable perturbations
of this flow. With this in mind, we first give some background on this topic.

The Reynolds number is R = UL/ν̂, where ν̂ is the kinematic viscosity and typical choices are U = the
free-stream speed and L = the diameter of the cylinder. To see what Reynolds numbers are of practical
interest, consider the following. For air at −40 degrees (F or C), ν̂ = 0.1 cm2/sec. Thus R = 103 for
L = 1 centimeter and U = 1 meter per second (= 3.6 kilometers per hour, a leisurely walking speed). In
our computations, we took the radius of the cylinder to be 1, so L = 2. Similarly, the free-stream speed
U ≈ 1, so R ≈ 2/ν̂.

The flow around a cylinder is quite complex but well studied at low Reynolds numbers. The flow is
steady until about R = 50 when the the Karman vortex street (Hopf bifurcation) occurs. This corresponds
to ν ≈ 0.04 in our computations. Near R = 200, three-dimensional vortices appear, with various modes
(A,B,A*) [18] and hysteresis. Not much is reported beyond that until the drag crisis [16,24], at about
R = 5 × 105.

4.1. Domain Size Dependence

The base flows (for positive Reynolds numbers) around a cylinder are known [9,10] to decay sufficiently
fast at infinity that they can be approximated effectively on a finite box, as indicated in Fig. 2. But the
eigenproblems behave differently, since there is no advection term. Solutions of the Stokes equations for
flow around a cylinder [9,11] do not decay at infinity. They are in the space H1

w(Ω) defined by the norm
[11]

‖v‖H1
w(Ω) =

√∫

Ω

|∇v(x)|2 +
(
1 + |x| log |x|

)−2|v(x)|2 dx. (53)
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Fig. 2. Base flows for the indicated values of ν and β. The top row, with β = −2ν, corresponds to potential flow. The
computations were done in a box of dimensions 18 × 12, and the cylinder of radius 1 is centered in the box vertically and
one third of the way from inlet to outlet. This is the domain S12 as defined in (54). Dirichlet/Stokes conditions on the

boundary of the box were given by the potential flow solution

A Poincaré inequality holds for this space, but to use it to replace (36) would require the gradient of the
base flow to decay sufficiently fast. However, the best estimates [10, Remark XII.8.3] for the decay rate
suggests this is not valid. Thus we expect the eigenvalues for the two-dimensional problem to increase as
the size of the domain increases. We have verified this in Table 1, where the parameter S is defined as
follows. Define the computational domain ΩS to be

ΩS =
{
x ∈ R

2 : −S/2 < x1 < S, |x2| < S/2
}

. (54)
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Thus the domain used in Fig. 1 is for S = 4, whereas the subsequent figs. 2, 3, 7, and 8 and tables 2 and
3(a–d) are for S = 12.

Therefore, we have chosen to present our eigencomputations on a fixed domain. The data presented
here are for small domains, to maximize the quality of the images. However, we have an on-line database
of computations for various domain sizes at Zenodo1.

Thus the eigenproblem for an infinite cylinder involves infinite eigenvalues, so the relationship between
the 2D and 3D cases is only formal. However, we will see that the 2D computations for a bounded domain
give valuable guidance regarding the 3D case. In particular, the on-line database shows that the form of
the 2D eigenfunctions does not change as the domain size S is increased. They just spread out a bit.

4.2. Base Flows

The details regarding numerical implementation of (6) are given in appendix A.5.
In Fig. 1(a), we show the solution of the Navier-Stokes equations (1,2,3) with ν = 1 and β = −2. This

turns out to be the same as potential flow, described in sect. 4.3. By contrast, we show in Fig. 1(b) the
solution of the Navier-Stokes equations (1,2,3) for ν = 1 with β = 2. We see that the tangential flow has
been substantially retarded by the Navier boundary condition (3). Details regarding the computations
are given in the caption to Fig. 1.

Figure 2 explores other values of β and ν. In Fig. 2, the computations were done in a box of dimensions
18×12, and the cylinder of radius 1 is centered vertically and placed one-third of the way from the inflow
(left) side of the box. Dirichlet/Stokes conditions on the boundary of the box were given by the potential
flow solution. Table 2 also indicates the dependence of flow around a cylinder on ν and β.

In the 3D case, the size of the domain in the direction parallel to the cylinder was 12, and the (Dirichlet)
boundary conditions on the ends of the box were given by the 2D base flow.

4.3. Potential Flow

Potential flow provides an exact solution of the Navier-Stokes equations that is independent of Reynolds
number, as we review in sect. A.3. The potential equation is well posed with pure slip boundary conditions,
but obtaining this as a solution of the Navier–Stokes equations requires appropriate Navier friction
boundary conditions. In particular, Table 2 shows that you do not get the potential flow solution by
taking β = 0.

Potential flow around a cylinder of radius 1 and aligned with the z-axis is given by u = ∇φ where p
is given in (57):

φ(x, y, z) = x +
x

x2 + y2
.

We can take the normal and tangent vectors on the cylinder to be

n = −(x, y, 0), τ 1 = (y,−x, 0), τ 2 = (0, 0, 1).

The potential flow solution satisfies u · τ 2 ≡ 0 and by direct calculation (sect. A.4), we find that
nt(∇u)τ 2 = 0 and

nt(∇u)τ 1 = 2y = u · τ 1

on the cylinder. Thus (3) is satisfied for β = −2ν.
In sect. A.2, an explicit formula for ∇u for potential flow suggests some possible features of unstable

modes.

1https://zenodo.org/record/6566937#.YoeotDlBxMk.

https://zenodo.org/record/6566937#.YoeotDlBxMk
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Table 2. Difference ‖u0 − upf‖H1 . u0 is the solution of the Navier–Stokes equations for a given ν and β, and upf is the
solution of the Navier–Stokes equations for β = −2ν, that is, potential flow. The computational domain was chosen to be

S12, cf. (54)

β ν

1 0.1 0.01

0 2.19 2.19 0.94
10 3.02 3.93 5.48
100 3.24 3.97 5.48

4.4. Dependence on β

Table 2 indicates how the solution differs from potential flow as a function of ν and β. We see substantial
dependence on ν, as expected, but little dependence on β for β sufficiently large. Here u0 denotes the base
flow, depending on ν and β, for which we will measure the basic instabilities. And upf denotes potential
flow, the solution for β = −2ν for all ν. Figure 2 depicts these flows.

4.5. General Geometries

As noted following (3), it makes sense to have separate friction coefficients βk for the different tangential
directions, and that they can vary as functions of space. Thus (68) gives a general prescription for choosing
β to make the solution of the Navier–Stokes equations with Navier slip/friction boundary conditions the
same as potential flow, for any geometry:

βk = −ν nt(∇u + ∇ut)τ k

u · τ k
= −2ν nt(∇2φ)τ k

∇φ · τ k
, k = 1, 2. (55)

For any flow u, we can refer to the quotients βk as the effective Navier friction for that flow. Thus the
effective Navier friction for potential flow is equal to −2ν, and hence tends to zero with ν. Thus we can
think of the effective friction as zero for the Euler equations.

5. Eigensolutions for the Cylinder

Here we explain the main conclusions regarding the unstable modes for flow around the cylinder. The
main things to notice are two-fold. First, the instability eigenfunction is largely supported downstream
of the cylinder. Second, an instability occurs at a lower Reynolds number than the one associated with
the Karman vortex street. In addition, we add the following observations.

5.1. Eigenfunction Form

The form of the eigenfunctions shows very little variation as ν and β are varied. This is illustrated in Fig.
3 for the most unstable mode. We found this behavior to be pervasive for all modes and for every variation
of β and ν (further data not shown). Curious readers are invited to download a dataset containing all
the computed eigenmodes.

As seen in Fig. 3, the most unstable mode takes the form of two rotations aft of the cylinder. As ν
decreases, the support of the eigenfunction moves downstream a bit from the cylinder. Figure 7 shows
the two most unstable modes for ν = 0.1 and β = 10, and Fig. 8 shows four the most unstable modes for
ν = 0.01 and β = 10. We see that the most unstable modes are all rotations, but that the frequency of
the eigenmodes increases together with the associated eigenvalue.
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Fig. 3. Most unstable modes for values for flow past an infinitely long cylinder. Under each figure is listed the triple of
values ν : β : λ. The perturbations are identified by computing the eigenmode v with the most negative associated

eigenvalue λ. Flow modes are shown for values of ν ∈ {0.01, 0.1, 1.0} and β ∈ {0, 1, 10}. The most unstable mode was
consistently identified as a downstream rotation. Note that the eigenmodes are invariant with respect to multiplication by
a scalar. In particular, v and −v are equivalent, and thus the rotation direction is arbitrary, as seen in some panels. See

the caption for Fig. 2 for more computational details

5.2. Eigenvalue Scaling Examined

The scaling ‘law’ indicated in (43), and anticipated in the inequality (42), is largely supported in Table
3, albeit only approximately. Thus the eigenvalues grow like ν−1 as ν is decreased. This occurs despite
the fact that the wake region of the base flow is increasing.

5.3. Another Scaling Relation

We know from the scaling law (43) that the quantity β/ν influences the relationship between viscous
energy and the boundary integral in the variational formulation (24). Thus it is not surprising that we
obtain more and more digits of agreement for the eigenvalues for fixed values of β as ν is reduced (compare
subtables (c) and (d), or subtables (g) and (h), in Table 3). Even though β is fixed, the quantity β/ν
is increasing by a factor of ten each time ν is reduced by a factor of ten. Each time ν is reduced by a
factor of ten, the agreement between eigenvalues increases by one digit (i.e., a factor of ten), as we go
from ν = 1 to ν = 0.001. This leads to the following conjecture. Number the eigenvalues λ1 < λ2 < · · · .
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Fig. 4. Minimum eigenvalue with ν = 1, γ = 25 and varying β. The computational domain for 2D was Ω12 as defined in
(54). For 3D, the domain was Ω12 × [0, 20]

Then the data in Table 3 suggest that

|λν,β
n − λν,∞

n | ≤ Cλν,∞
n

ν

β
, (56)

where λ∞
n is the apparent limit. Thus the typical issues that one would worry about (small ν and large

β) become irrelevant in terms of instabilities. This is consistent with the observation that the unstable
modes all are quite small on the boundary of the cylinder, so it is reasonable to conjecture that they tend
to zero there as ν/β → 0.

5.4. Most Unstable Mode and β Scaling

Figure 4 presents the lowest eigenvalue as a function of β for ν = 1. Not surprisingly, the 3D lowest
mode has a smaller eigenvalue than the 2D case, since the 3D mode is the result of minimizing over a
much larger space. For β ≤ 0 the flow becomes significantly more unstable as β decreases. Physically this
can be interpreted as the instabilities growing as the flow is being accelerated more and more over the
cylinder boundary.

Figure 5 shows how the flow field changes as β is increased from β = −2 (corresponding to potential
flow) to β = −1. For potential flow the most unstable mode is a single rotation around the cylinder. As
β increases the instability mode develops a second rotation aft of the cylinder. In Fig. 3 we see that for
β ≥ 0 the instability eigenvalue does not change significantly with respect to β. This is consistent with
Fig. 4.

5.5. 2D Versus 3D Modes

All 2D modes are also 3D modes, but not conversely. Comparing panels (c) and (g), or panels (d) and
(h), in Table 3 shows the interleaving of the 2D and 3D unstable modes.

As the number of periods in the z-direction increases for a given type of (2D) mode, the corresponding
value of λ decreases (data not shown), as would be expected from examining the quotient (23), or its
equivalent (52). As there are more oscillations in the z-direction, the a(·, ·) form increases, since it involves
derivatives in the z-direction, whereas the B form does not.

6. Conclusions

We used the theory of kinetic-energy instability [33,34] to exhibit instabilities of steady flow past a
cylinder subject to slip boundary conditions with friction. One such solution is given by potential flow
with a negative friction coefficient.
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Fig. 5. Most unstable modes in 2D for ν = 1 and β ∈ {−2, −1.5, −1}. For β = −2 the eigenmode is a single rotation
around the cylinder. As the friction increases the eigenmode develops a second rotation aft of the cylinder

We computed numerically the eigenproblem determining the most unstable modes. These correspond
to modes previously observed in dynamic simulations [17]. The most striking observation is that the most
unstable modes are supported primarily downstream of the cylinder, typically well separated from the
back of the cylinder.

The kinetic-energy instability theory was developed here for general bluff-body flows, and the compu-
tational techniques developed in [12] and applied here could be used for general geometries [17], including
complete aircraft.
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A. Additional figures and information

Here we collect additional information regarding potential flow and the computational techniques used.

A.1. Potential Flow Details

Potential flow around a cylinder of radius 1 and aligned with the z-axis is given by u = ∇φ where

φ(x, y, z) = φ(r, θ, z) =
(
ar +

1
r

)
cos θ = ax +

x

x2 + y2
, (57)

where the constant a must be adjusted to incorporate the boundary conditions on the cylinder. If a = 1,
it satisfies the pure slip boundary condition u · n = 0 on the cylinder. Otherwise, we have

∇φ · n = (a − 1) cos θ =
a − 1
a + 1

φ
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Fig. 6. Three-dimensional most unstable modes for ν = 1 and β = 10, seen in profile (left), from the front (top right) and
from the side (bottom right). The extreme modes for 3D are similar to the extreme modes for 2D, but with modal

behavior in the z-direction. The size of the domain here was 18 × 12 × 20, that is, Ω12 × [0, 12], cf. (54)
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on the cylinder. The velocity components are given by

ux(x, y, z) = a − x2 − y2

(
x2 + y2

)2 , uy(x, y, z) =
−2xy

(
x2 + y2

)2 , uz = 0. (58)

Thus |u(x)| → a as x → ∞. On the cylinder (x2 + y2 = 1), with a = 1,

u(x, y) = (2y2,−2xy, 0)t, |u| = 2|y|. (59)

In particular, the flow speed does not depend on x. From now on, we take a = 1.
We can take the characteristic length L to be the radius of the cylinder, that is, L = 1. We can take

the characteristic velocity U to be 1 (the speed at infinity if a = 1). Thus the Reynolds number R = UL/ν
is simply R = 1/ν.

By simple calculus, we can compute ∇u:

r6 ∇u =
(
x2 + y2

)3 ∇u =

⎛

⎝
2x3 − 6xy2 −2y3 + 6x2y 0

−2y3 + 6x2y −2x3 + 6xy2 0
0 0 0

⎞

⎠ . (60)

Note that the constant a disappears from the expression for ∇u.

A.2. Examining ∇u: Rotational Modes

Analyzing the explicit formula (60) for ∇u for potential flow can suggest the form of unstable modes.
For all x and z, we have

∇u(x, 0, z) =
1
x3

⎛

⎝
2 0 0
0 −2 0
0 0 0

⎞

⎠ . (61)

Note that

∇u(x, 0, z)

⎛

⎝
0
1
ζ

⎞

⎠ = − 2
x3

⎛

⎝
0
1
0

⎞

⎠ , (62)

for any ζ ∈ R. Therefore
⎛

⎝
0

ψz(x, y, z)
−ψy(x, y, z)

⎞

⎠

t

∇u(x, 0, z)

⎛

⎝
0

ψz(x, y, z)
−ψy(x, y, z)

⎞

⎠ = − 2
x3

ψz(x, y, z)2, (63)

for any function ψ, indicating instability of the perturbation

v = (0, ψz,−ψy) (64)

for x > 0, but stability for x < 0. Functions of the form (64) are divergence free. This heuristic calculation
is consistent with the observation [17] of vortices rotating in the y, z plane, indicated in Figures 11 and
13 in [17] for flow past a cylinder. It also suggests that taking ψ constant in z would not lead to an
instability, since (63) is zero if ψz = 0.

Since the perturbation (64) is stable at the front of the cylinder, we consider a different perturbation.
For perturbations in the x − z plane, of the form

v = (ψz, 0,−ψx),

rotating around the y-axis, the expression analogous to (63) is negative. But the no-penetration condition
v · n = 0 on the front of the cylinder implies that ψz = 0 there, and thus does not lead to a substantial
instability contribution. Therefore we expect the most unstable mode to have a small magnitude at the
leading edge of the cylinder.
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Perturbations of the form v = (ψy,−ψx, 0) correspond to two-dimensional modes. Then (62) again
implies

⎛

⎝
ψy(x, y, z)

−ψx(x, y, z)
0

⎞

⎠

t

∇u(x, 0, z)

⎛

⎝
ψy(x, y, z)

−ψx(x, y, z)
0

⎞

⎠ = − 2
x3

(
ψx(x, y, z)2 + ψx(x, y, z)2

)
(65)

for any function ψ, indicating instability of the perturbation as long as it is concentrated near the
centerline y = 0 and for x > 0.

A.3. Verifying the Equations

The verification that potential flow is a solution of Navier-Stokes stems from the vector-calculus identity

u · ∇u + u × (∇ × u) = 1
2∇|u|2. (66)

For u = ∇φ, ∇ × u = 0. Since Δφ = 0, Δu = ∇Δφ = 0. Thus with u = ∇φ,

−νΔu + u · ∇u =
1
2
∇|u|2,

and we have a solution of (1) for any ν with

p = −1
2
|u|2 = −1

2
|∇φ|2. (67)

Thus the expression in (57) with a = 1 gives a steady solution of Navier-Stokes with p as given in (67).
The natural form of dissipation in Navier-Stokes is ∇·

(
∇u + ∇ut

)
. But

∇·
(
∇u + ∇ut

)
= Δu + ∇(∇·u),

so the two forms are equivalent for divergence-free functions.

A.4. Potential Flow Boundary Conditions

The boundary condition (3) is satisfied if the friction coefficient β satisfies

β u · τ k = −ν nt(∇u + ∇ut)τ k, k = 1, 2. (68)

We can take the normal and tangent vectors on the cylinder to be

n = −(x, y, 0), τ 1 = (y,−x, 0), τ 2 = (0, 0, 1).

Since the potential flow solution satisfies u · τ 2 ≡ 0 and

(∇u)tτ 2 = (∇u)τ 2 =
(
x2 + y2

)−3

⎛

⎝
2x3 − 6xy2 −2y3 + 6x2y 0

−2y3 + 6x2y −2x3 + 6xy2 0
0 0 0

⎞

⎠

⎛

⎝
0
0
1

⎞

⎠ = 0, (69)

the equation in (68) for k = 2 is satisfied for any β. From (59), we have

u · τ 1 = (2y2,−2xy, 0) · (y,−x, 0) = 2y3 + 2x2y = 2y (70)
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on the cylinder. Similarly, (60) implies

(∇u)τ 1 =

⎛

⎝
2x3 − 6xy2 −2y3 + 6x2y 0

−2y3 + 6x2y −2x3 + 6xy2 0
0 0 0

⎞

⎠

⎛

⎝
y

−x
0

⎞

⎠

=

⎛

⎝
y(2x3 − 6xy2) − x(−2y3 + 6x2y)

y(−2y3 + 6x2y) − x(−2x3 + 6xy2)
0

⎞

⎠

=

⎛

⎝
−4x3y − 4xy3

−2y4 + 2x4

0

⎞

⎠ =

⎛

⎝
−4xy

−2y4 + 2x4

0

⎞

⎠

(71)

on the cylinder. Therefore

nt(∇u)τ 1 = −(x, y, 0)

⎛

⎝
−4xy

−2y4 + 2x4

0

⎞

⎠ = 2y
(
2x2 + y4 − x4

)
. (72)

But

2x2 + y4 − x4 = 2x2 + (1 − x2)2 − x4 = 1

on the cylinder. Thus the shear stress is equal to the tangential velocity, that is,

nt(∇u)τ 1 = 2y = u · τ 1 (73)

on the cylinder. Therefore (68) is satisfied for β = −2ν.
Thus potential flow for the cylinder provides an exact solution of Navier-Stokes for any Reynolds

number, and without any boundary layer, for β = −2. This may be viewed as nonphysical, as it represents
an active boundary condition: the tangential stress increases the tangential velocity. On the other hand,
it may also be viewed as motivating concepts for active control of turbulence [5]. In any case, potential
flow with β = −2 provides an exact solution for Navier-Stokes with Navier boundary conditions suitable
for verifying an implementation, as we do in [12].

A.5. Numerical Implementation

The details regarding numerical implementation of (6) together with boundary conditions (2) and (3),
are given in [12]. Briefly, we use lowest-order Taylor–Hood approximation with Nitsche’s method [35,41]
to enforce slip conditions in the limit of small mesh size.

We begin by approximating the domain with curved boundary by simplicial complexes Ωh, where
the edge lengths of Γh are of order hΓ in size. Then conventional finite elements can be employed,
with the various boundary expressions being approximated by appropriate quantities. In particular, we
assume that Ωh is triangulated with a non-degenerate mesh Th of maximum simplex size h. We define
the Taylor–Hood spaces

W k
h =

{
v ∈ C(Ωh) : v = 0 on Ωh\Γh, v|T ∈ Pk(T )d ∀T ∈ Th

}
,

Πk
h =

{
q ∈ L2(Ωh) : q|T ∈ Pk−1(T )d ∀T ∈ Th

}
,

and the Nitsche bilinear form

ah((u, p, ρ), (v, q, σ)) =
ν

2

∫

Ωh

D(u) : D(v) dx +
∮

Γh

∑

i

β(u · τ i)(τ i · v) ds

+
∫

Ωh

ρ q + σ p dx −
∮

Γh

nt
(
νD(u) − pI

)
n(n · v) ds −

∮

Γh

nt
(
νD(v) − pI

)
n(n · u) ds

− (p,∇·v)h − (q,∇·u)h + γh−1

∮

Γh

(u · n)(n · v) ds,

(74)
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where

(p, q)h =
∫

Ωh

p q dx.

For normal and tangential vectors, we define the orthogonal projection πh from Γh to Γ and we take
n|Γh

= n ◦ πh and τ i|Γh
= τ i ◦ πh, as analyzed in [12]. Then the Taylor–Hood approximation [32] finds

uh ∈ gI + W k
h , ph ∈ Πk

h, and ρ ∈ R satisfying

ah((uh, p, ρ), (v, q, σ)) = f(v) (75)

for all (v, q, σ) ∈ W k
h × Πk

h × R, where gI denotes a suitable interpolant of g. This method satisfies

‖u − uh‖H1(Ω) ≤ C
(
h

3/2
Γ + hk

)

for k ≥ 2 [12]. The approximation order cannot be higher than 3/2 due to the polygonal approximation
of the boundary [2]. However, the results of [12] suggest substantial benefit if mesh refinement is done
near Γ.

The nonlinear problem (6) involves solving (75) for f(v) = −(u · ∇u,v) via various techniques. Many
automated systems will apply Newton’s method automatically just based on the request to solve

ah((uh, p, ρ), (v, q, σ)) +
∫

Ωh

(uh · ∇uh) · v dx = 0 (76)

with the indicated spaces and Dirichlet boundary condition on ∂Ω\Γ. The cylinder problem, with potential
function solution, has been used to validate the implementation of the algorithm (75) in [12].

For ν = 1, we often used γ = 25. But we found that it was important to reduce γ as ν decreased. The
general rule γ = 100 ν worked well.

A.6. Eigenvalue Computation

The eigenvalue problem (24) requires solving the variational problem: find (uh, ph, ρ) ∈ W k
h × Πk

h × R

such that

ah((uh, p, ρ), (v, q, σ)) = λ−1

∫

Ωh

ut
h

(
∇u + ∇ut

)
v dx (77)

for all (v, q, σ) ∈ W k
h × Πk

h × R. Since we use a mixed method to approximate the flow problem, the
resulting matrix associated with the bilinear form ah(·, ·) is of the form

A =

⎛

⎝
Aβ D 0
Dt 0 M
0 M t 0

⎞

⎠ .

Suppose we pose the eigenproblem in the form

A

⎛

⎝
U
P
ρ

⎞

⎠ = λ−1

⎛

⎝
B 0 0
0 0 0
0 0 0

⎞

⎠

⎛

⎝
U
P
ρ

⎞

⎠ = λ−1

⎛

⎝
BU
0
0

⎞

⎠ , (78)

where temporarily we use the notation U to denote the coefficients of uh in W k
h and similarly P to denote

the coefficients of ph in Πk
h.

The last equation of the system (78) is M tP = 0, which means that ph has mean zero. Let us define

Πk
h =

{
q ∈ Πk

h :
∫

Ωh

q dx = 0
}

,

so that (78) implies that ph ∈ Πk
h. The middle equation of the system (78) is DtU + ρM = 0, and so uh

is (weakly) divergence free. That is, uh ∈ Zh where

Zh =
{
v ∈ W k

h : (q,∇·v)h = 0 ∀q ∈ Πk
h

}
.
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Fig. 7. Two most unstable modes in 2D for β = 10 and ν = 0.1. See the caption for Fig. 2 for more computational details

The top equation of the system (78) is

AβU + DP = λ−1BU. (79)

Consider the variational problem to find uh ∈ Zh such that
ν

2

∫

Ωh

D(uh) : D(v) dx +
∮

Γh

∑

i

β(uh · τ i)(τ i · v) ds

−
∮

Γh

nt
(
νD(uh) − phI

)
n(n · v) ds −

∮

Γh

nt
(
νD(v) − phI

)
n(n · uh) ds

+ γh−1

∮

Γh

(uh · n)(n · v) ds = λ−1

∫

Ωh

ut
h

(
∇u + ∇ut

)
v dx

(80)

for all v ∈ Zh. Expanding in basis functions, we see that (79) and (80) are equivalent. We recognize (80)
as Nitsche’s method applied to approximate (24).

A.7. Estimating Cb

The constant Cb in (29) can also be estimated by solving for (ṽh, ph, ρ) ∈ W k
h × Πk

h × R satisfying

ah((ṽh, ph, ρ), (w, q, σ)) = λb

∫

Ωh

wtṽh dx (81)

for all (w, q, σ) ∈ W k
h × Πk

h × R. Then Cb = 1/λb. We can determine the limiting value b0 in (35) by
solving for (ṽh, ph, ρ) ∈ W k

h × Πk
h × R satisfying the eigenvalue problem

ah((v̂h, ph, ρ), (w, q, σ)) = b0

∮

Γh

∑

i

(w · τ i
π)(τ i

π · v̂h) ds (82)

for all (w, q, σ) ∈ W k
h × Πk

h × R.

A.8. Using SLEPc

We used the software system SLEPc [15] to compute eigenvalues for the system (78). We can rewrite (78)
as

A−1BX = λX. (83)

SLEPc writes this in terms of λS = λ−1:

AX = λSBX.
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Fig. 8. Four most unstable modes in 2D for β = 10 and ν = 0.01. See the caption for Fig. 2 for more computational
details

Solving the eigenproblem for systems of this form is described in section 3.3.2 (Shift-and-invert) in the
SLEPc manual [29]. In particular, [29, (3.7)] allows solving for

(
A − σB

)−1
BX = θX,

where σ is a user-defined shift. When σ = 0, we recover (83), and λ = θ. When σ �= 0, the eigenvalues θ,
λS , and λ are related by

λ =
θ

1 + σθ
, θ =

λ

1 − σλ
=

1
λS − σ

.

Note that the values of θ will be extreme when σ is close to λ−1 = λS . In view of (38), the eigenvalues
λ that we seek lie in an interval [−Λ,Λ]. The mapping λ → θ takes the λ interval [−Λ,Λ] to the θ interval

[ −Λ
1 + σΛ

,
Λ

1 − σΛ

]
.

In this mapping, λ = 0 goes to θ = 0 for any value of σ. Suppose σ < 0, and define ρ = −σΛ > 0. Suppose
further that ρ < 1. Then the interval [−Λ, 0] is stretched out to [−Λ/(1 − ρ), 0] whereas [0,Λ] is squeezed
into [0,Λ/(1 + ρ)]. In practice, we want to choose Λ large enough so that all of the λ’s are contained in
[−Λ,Λ]. Then we pick σ = −ρ/Λ for ρ < 1. If by chance we pick σ = −1/Λ, then the λ interval [−Λ,Λ]
is mapped to the θ interval [−∞, 1

2Λ].
If we know the value of the most negative λ, we pick σ such that

λ−1 < σ < 0.

But the closer σ is to λ−1, the more separated the negative eigenvalues will be from the positive ones.
As σ → 0, the separation disappears.
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