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Abstract. The two-dimensional Stokes IBVP on (0, T ) × Ω is investigated under the assumptions that Ω ⊂ R
2 is a smooth

exterior domain, the initial datum v0 belongs to L∞(Ω) and (v0, ∇φ) = 0 for all φ ∈ L1
�oc(Ω) with ∇φ ∈ L1(Ω). The

well-posedeness in L∞((0, T ) × Ω) and the maximum modulus theorem are achieved, in particular one deduces that the
Stokes semigroup on L∞(Ω) is a bounded analytic semigroup.
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1. Introduction

We consider the following initial boundary value problem for the Stokes system:

vt − Δv + ∇π = 0 , ∇ · v = 0 , in (0, T ) × Ω ,
v = 0 on (0, T ) × ∂Ω , v = v0 on {0} × Ω ,

(1)

where Ω ⊂ R
2 is a smooth exterior domain. Following [3,4], we consider v0 ∈ L∞(Ω) with∫

Ω

v0 · ∇ϕdx = 0 , for all ϕ ∈ L1
�oc(Ω) with ∇ϕ ∈ L1(Ω) . (2)

We are interested to prove

Theorem 1. (Maximum Modulus Theorem) For all v0 ∈ L∞(Ω) enjoying (2), there exists a unique solu-
tion (v, π) to problem (1) such that

||v(t)||∞ + t||vt(t)||∞ ≤ c||v0||∞ , for all t > 0 , (3)

for all q > 2,

t
1
2

1+t
1
2
||∇v(t)||Lq

�oc(Ω) + t
1+t ||∇∇v(t)||Lq

�oc(Ω) ≤ c||v0||∞ , for all t > 0 ,

for all R0 > 0 , lim
t→0

||v(t) − v0||Lq(Ω∩BR0 ) = 0 ,

μ ∈ (0,
1
2
) , t

1
2 +μ

1+t
1
2 +μ

||π(t)||∞ + t
t+1 ||∇π(t)||q ≤ c||v0||∞ , for all t > 0 .

(4)

where c is a constant independent of (v, π).
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We conclude the introduction of the result of the theorem with further possible statements.
If the initial datum belongs to L∞(Ω) ∩ C(Ω), then, for all x ∈ Ω, limt→0 v(t, x) = v0(x) holds.
If we assume that v0(x) → 0 for large |x|, then, for all t > 0, the solution has the same property and

limt→∞ ||v(t)||∞ = 0 holds too.
The pointwise estimate that one could deduce from (3)-(4)1 for |∇v(t, x)| is sharp in the following

sense: if v0 ∈ L∞(Ω) no asymptotic decay holds, and just an o(1) for large t provided that v0(x) → 0
for large |x|. Of course, this relates to the nature of the exterior domain Ω. In the case of the Cauchy
problem or IBVP in Ω bounded, one obtains suitable decay properties.

One can proves that the solution (v, π) is smooth for all t > 0.
Via the same approach proposed in this note, the uniqueness can be deduced in a wider set of solutions.

Roughly speaking, on the “boundary of the uniqueness set” we find the solutions whose associated pressure
field grows as |xi|, i = 1, 2, that are not unique.

With the exception of the uniqueness remark, all the statements are considered and proved in [16] for
Ω ⊂ R

n, n ≥ 3, exterior domain. The argument lines work with no change also in the two-dimensional
case. For the sake of brevity we omit any detail. Concerning the non-uniqueness, there is today a wide
literature, we refer the interested reader to the one contained in the recent paper [18].

Last, but not least, Theorem 1 is interesting in order to modify the approach used in the papers [20,21]
for the 2D-Navier-Stokes IBVP in exterior domains in L∞-setting and as a consequence to improve some
related results.

Theorem 1 follows a series of papers concerning with the well posedeness in L∞-setting and developed
by some authors in the last decades.

The first results of the kind stated in Theorem1, as far as we know, are due to Solonnikov in the articles
[25,27,28]. Succesively, the Stokes initial boundary value problem with an initial datum in L∞, jointly
with L∞-estimates of the solutions, has been considered by several authors, both with homogeneous
boundary data, see e.g. [3–6,13,16], and with non-homogeneous, see e.g. [7].

In the literature devoted to the question, a distinction is made in connection with the nature of domain
Ω. The IBVP in Ω bounded can be considered achieved, whether by means of the methods of the potential
theory (essentially [25–28]) or by means of the methods of functional analysis ([3,4]). Instead, in the case
of the IBVP in exterior domains, the n-dimensional case, n > 2, can be considered achieved (cf. [6,16]
too), while in the two-dimensional exterior domain the following results hold.

The contributions given in [27,28] related to the non-homogeneous and homogeneous boundary data
respectively, based on the theory of the hydrodynamic potentials, while the quoted literature, based on
methods of functional analysis, achieves some results in a sequence of different papers [3,4] and [1,2].

The result in [3,4] is partial, in the sense that the L∞-estimate a priori holds locally in time:

||u(t)||∞ ≤ c||u0||∞ , for t ∈ [0, T0) , (5)

where the constant c and the size T0, a priori < +∞, are independent of u.
Subsequently in [1] estimate (5) is obtained for all t > 0, but the result holds losing in terms of

generality. Indeed, in [1] the author considers the set of solutions for which the net force satisfies
∫

∂Ω

ν ·
T (u, πu)dH1 = 0, where the symbol T (u, πu) denotes the stress tensor and ν is the normal to ∂Ω .

Finally, in [2] the author proves that the Stokes operator is a bounded analytic semigroup of angle π
2

on the subset L∞
σ (Ω) of L∞(Ω), in particular estimate (5) holds for all t > 0. The symbol L∞

σ (Ω) denotes
the following set:

L∞
σ (Ω) := {u0 ∈ L∞(Ω) : ∇ · u0 = 0 in Ω , u0 · ν = 0 on ∂Ω} ,

where ν is the normal to the boundary. However, as remarked in [1], L∞
σ (Ω) coincide with the set of initial

data considered in Theorem 1. As far as we know, the result in [2] is the most complete in the scope of
the 2D-Stokes semigroup results.
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We do not know an estimate of the pressure field πv like the one given in (4). In our approach to the
uniqueness, this kind of estimate is crucial. In this regard, we deem it appropriate to make a digression
in relation to the problem of the uniqueness of the solutions to the problem (54).

In the L∞-setting the difficulties to obtain a sharp result are connected essentially with the lack of
the Helmholtz decomposition of L∞, decomposition that in Lq-setting, for all q ∈ (1,∞), holds. The lack
of the Helmholtz decomposition does not allow to state a posteriori the existence of the pressure field as
in the case of the Lq-theory or to define the Stokes operator like in the Lq-theory.

In the recent paper [18], the present author proves the existence of solutions (u, π) enjoying (3)-(4)1,2

with a pressure field π := u∞(t)·x+π, ∇π ∈ Lq(Ω), that is different from (4)3 of Theorem 1. Moreover, the
field v enjoys the property: lim|x|→∞ |u(t, x) − u∞(t)| = 0. But the limit u∞(t) 
= 0 is not a datum of the
problem. Actually, following [18], one can construct infinite ones. As a consequence a lack of uniqueness
arises.

This critical result is produced considering the two dimensional boundary value problem for steady
Stokes system in exterior domains, which admits the same pathologic solutions. That is, a solution admits
a value at infinity that is not a datum of the problem.

The result given in [18] is not in contradiction with the ones contained in [3,4] (or with the state-
ment of Theorem 1 of the present paper). Actually, the pressure field π does not verify the condition
d(x, ∂Ω)|∇π(t, x)| ≤ c with c independent of x, property exhibits in [3,4] for the solutions (or estimates
(4) of the present paper). Since the solution with limit u∞(t) obtained in [18] is unique,1 as consequence
we get that no solution established in [3,4] admits u∞(t) as limit at infinity (as well as the one of
Theorem 1).

The present paper is devoted to the memory of Professor Carlo Miranda, he was an Eminent Mathe-
matician in Napoli, this year is the 40th anniversary of his death.

1.1. Outline of The Proof

Before outlining the proof of Theorem1, we consider useful to recall what approaches the present author
employed in previous papers studying the question in nD, n ≥ 3, exterior domains and the result of
non-uniqueness in 2D.

In n-dimensional case, n ≥ 3, the results are proved by means of a suitable coupling of the results
proved in [3] and in [16], subsequently the same approach is reconsidered in [6]. As already recalled, the
first paper is concerned with local in time estimates and the second paper is concerned with the extension
of the estimates to large time.

In the two-dimensional case the result of the first paper still works, while the result of the second
paper does not work. The result in [16] is based on a technique of duality which does not work in two-
dimension, roughly speaking, because the solution ϕ(t, x) of the (local) adjoint problem has the behavior
||ϕ(t)||∞ ≤ c||ϕ||1t−1 where the exponent −1 is sharp. Actually, in [16] one translates the original question
into the study of the problem

ωt − Δω +∇πω = −F
(1)
t + G , ∇·ω = 0 , in (0, T )×Ω , ω = 0 on (0, T )×∂Ω , ω = 0 on {0}×Ω ,

where F
(1)
t and G are suitable functions. In this way the difficulty becomes the fact that G, with compact

support in x ∈ Ω and belonging to L∞((0, T ) × Ω), has no behavior for large t. By a duality approach,

1 This sentence could seem in contradiction with the previous result of non-uniqueness. For this reason we explain the
meaning of all. The non-uniqueness is with respect the initial datum u0, in fact we find two solutions corresponding to the
same u0 but one tends to a limit u∞(t) and another tends to a limit u∞(t) �= u∞(t) by letting |x| → ∞, not only this,
the pressure fields are different too. Nevertheless, in corresponding to the same u0 and u∞(t) the field u and the related
pressure π are unique, but, since u∞(t) is not a datum, we arrive at an unsatisfactory result.
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in order to obtain an estimate for ||ω(t)||∞, one has to tackle the estimate related to

t∫

0

(G(τ), ϕ(t − τ))dτ , (6)

for which, due to the sharpness behavior of ||ϕ(s)||∞ ≤ c||ϕ0||1s−1, one at most is able to deduce
O(||ϕ0||1 log(t + e)). Hence, via this approach, no uniform bound in t holds for the L∞-norm of the
solution ω(t, x).

In the paper [18], roughly speaking, the previous problem of ω becomes

ωt − Δω +∇πω = −F
(2)
t , ∇·ω = 0 , in (0, T )×Ω , ω = 0 on (0, T )×∂Ω , ω = 0 on {0}×Ω ,

F (2) plays the same role of F (1) but with different properties. The function F (2) in [18], for all t > 0, is the
extension of −U(t, x)|∂Ω+Û(t) from ∂Ω into Ω, where U is the solution of heat equation corresponding to
vR
0 and Û = |∂Ω|−1

∫
∂Ω

U(t, ξ)dH1, and the Lq-norm of F (2)(t, x) has a “good” space-time decay in (t, x).

For all t > 0, the extension F (2) is just the solution to the boundary value problem in Ω of the steady
Stokes system. Thanks to this construction, for all v0 ∈ L∞ which enjoys (2), we are able to prove the
existence of a solution to problem (1) and estimates (3)-(4)1,2 of Theorem 1 for v. But we are not able to
furnish estimate (4)3 for the pressure field, which is substituted by π := Û(t) · x + π, with ∇π ∈ Lq(Ω).
Here, we have vR

0 := v0 − v0R, with v0R equal to v0 in a neighbourhood of ∂Ω and with compact support
in Ω. The disadvantage is that for all R > 0 we can construct a different solution (Û depends on R).

In this note, the chief aim is to avoid the difficulties arises by the sharpness of the estimates for the
solutions of the two-dimensional adjoint problem.

As it will be clear by the arguments that we develop in the sequel, we realize the task blending the
ideas contained in papers [16] and [18]. It is appropriate to say: in medio stat virtus.

We consider an initial datum v0 ∈ L∞(Ω) that enjoys (2). We make the decomposition

v0 = vc
0 + v0c , with vc

0 := (1 − g)v0 + b0 , and v0c := gv0 − b0 ,

where g is a smooth cutoff function with g = 1 in neighborhood of ∂Ω and g = 0 for large x, and b0

is a Bogovskĭı solution to the problem ∇ · b0 = ∇g · v0. The peculiarity of the decomposition is in v0c

with compact support in Ω and vc
0 with support in Ω but far from the boundary ∂Ω. Of course, this

last property plays an important role in the construction of the solution (see the comments after the
the following items). We consider v = vc + vc and π := πvc + πvc

. The pairs (vc, πvc) and (vc, πvc
) are

solutions to problem (1) with initial datum vc
0 and v0c, respectively.

The solution (vc, πvc
) is already known from [3,4]. In fact, the compact nature of the support of

the initial datum v0c allows us to employ the result of the Lq-setting (cf. [8,9]), thus the estimate
||vc(t)||∞ ≤ ct−

1
q ||v0c||q ≤ ct−

1
q ||v0||∞, achieving an extension, for all t > T0, of the one established in [3,4]

on (0, T0) enjoying (5) together other properties in L∞ (cf. Corollary 4).
The solution (vc, πvc) is instead constructed as it follows. We look for

vc := U − hÛ + F + W + ω and π := πω .

In the previous formula:

• U is the solution to the Cauchy problem with initial datum vc
0 extended to zero on R

2,
• h is a cutoff function with support depending on t, and, for all t > 0, h = 1 in a ball including ∂Ω,
• Û(t) := |∂Ω|−1

∫
∂Ω

U(t, ξ)dH1,

• the trace on ∂Ω of −U + Û has a suitable extension F from ∂Ω into Ω with compact support,
• W is a solution to the Bogovskĭı problem ∇ · W = ∇h · Û with compact support in Ω,
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• finally, ω is the solution to the Stokes problem with homogeneous boundary and initial datum, but
with a right-hand side given by

− ∂

∂t

[ − hÛ + F + W
]
+ Δ

[ − hÛ + F + W
]
.

The chief properties of U are the behaviors in t for the derivatives of U in L∞(ΩL), where ΩL ⊃ ∂Ω
is bounded, which are not singular in t = 0, and U with its derivatives evaluated in L∞(ΩL)-norm go to
0, letting t → 0. All this is a consequence of the special initial datum vc

0, cf. sect. 2.1.
The extension F is obtained by the same technique employed in [16] for F (1). But the new fact is that

the boundary value of F is −U + Û , for which ||Û −U ||L∞(∂Ω) = ||v0||∞O(t−
1
2 ) holds, that let us to obtain

a decay for ΔF = ||v0||∞O(t−
1
2 ) (ΔF has the same meaning of G in (5)) (for the construction of F see

sect. 2.2). This property from one side allows us to find the right estimate to discuss (6), from another side
leads to discuss the additional term −hÛ . The role of this term is to realize the homogeneous boundary
value of the solution on (0, T ) × ∂Ω. We recall that at t = 0 we have Û = 0 pointwise on {0} × Ω, so no
correction is due in order to obtain the initial value on {0} × Ω.

The function h is defined by means of the function h with support in the ball B 7
4

and ∇h has
compact support in the shell {5

4 < |y| < 7
4} (cf. sect. 2.3). The definition of h is given by the scale

factor (R)−1 := (R +
√

t)−1, that is h := h( y

R+
√

t
). Hence, h has compact support in the ball B 7

4 R, and

∇h has compact support in the shell {x ∈ Ω : 5
4 (R +

√
t) < |x| < 7

4 (R +
√

t)}. This property ensures
that ||∇h||q = c(R +

√
t)

2
q −1 and ||Δh||q = c(R +

√
t)

2
q −2, that are decaying in t for q > 2 and q > 1,

respectively. We take advantage this behavior in t in order to discuss the term ΔhÛ . This is a new fact
with respect to the behavior of the term G of the n-dimensional case, that arose the difficulty of the
estimate (6) in the two-dimensional case. Instead, in the estimates the time derivative of hÛ , as a matter
of course, go on without difficulties.

However, the term hÛ is not divergence free. Hence, in order to preserve the divergence free of the
solution vc, we introduce the function W . The function W is a solution of the problem ∇ · W = ∇h · Û
in the shell Ω(R) := {(R +

√
t) < |x| < 2(R +

√
t)} ⊃ {5

4 (R +
√

t) < |x| < 7
4 (R +

√
t)} ≡supp∇h, with

homogenous boundary value. The shell Ω(R) is variable in t, but, for all t > 0, there is the homothety
with the shell S := {1 < |x| < 2}. Considering a solution to ∇ · WS(t) = ∇hS · Û(t) in the shell S,
with homogeneous boundary value on ∂S, then a solution W in Ω(R) is calculated in the following way:
W (t, x) := WS(t, x

R+
√

t
). We find the suitable estimates for W and its derivatives considering the ones

related to WS and employing the homothety property of the domain Ω(R). It is important to stress that
Wt exists, but Wt does not solve the time derivative of the Bogowskĭı problem. Since no interest there
is for this last fact, and since Wt is a “linear” combination of the spatial derivatives of W and of the
time derivative of the solution on the fixed shell S, using the homothety property of the domain, we can
deduce all the estimates related to Wt (cf. sect. 2.4).

The plan of the paper follows the items detected for the construction of the auxiliary function
U, F, h, W . They are discussed and proved in Sect. 2. In Sect. 3 we give the statement of the results
due to K. Abe and Y. Giga, that furnish Theorem1 for initial data with compact support. In sect. 4 we
solve the Stokes problem related to ω. Finally, in Sect. 5 we give the proof of Theorem 1.

Notations.
We assume that the origin 0 ∈ R

2 − Ω.
We set C0(Ω) := {ϕ ∈ C∞

0 (Ω) with ∇ · ϕ = 0}. By the symbol Jp(Ω) we mean the completion of
C0(Ω) in Lp(Ω), p ∈ (1,∞), instead, J1,p(Ω) denotes the completion in W 1,p(Ω), p ∈ (1,∞).

The symbol Bρ(x0) denotes a ball in R
2 with center x0 and radius ρ, in the case of x0 = 0, we simply

write Bρ.
In the following we consider R > 3diam (R2 − Ω).
We set ΩR := Ω ∩ BR .
For a Lebesgue’s measurable set D, the symbol |D| denotes the measure.
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By the symbol L(q, σ)(Ω) we mean the G.G. Lorentz spaces and with || · ||(q,σ) its norm. In particular,
we consider L(q,∞)(Ω) ≡ Lq

w(Ω), q ∈ (1,∞), endowed with the Lorentz norm

||u||(q,∞) := sup
|D|<∞
D⊆Ω

|D| 1−q
q

∫

D

|u|dx . (7)

For a function g(t, x) and t ≥ 0, we denote by supp
x

g(t, x) the support in the variable x.

In the following the symbol c denotes a numerical constant whose value is inessential for our aims.

2. Preliminry Results

2.1. Heat Solution

We denote by H(t, x) the heat fundamental solution and we indicate by H[v0](t, x) the heat solution
(transformation) as convolution of H(t, x) and v0 ∈ L∞(R2). It is well known that, for k, h ∈ N ∪ {0},

||Dk
t ∇hH[v0](t)||∞ ≤ ct−k− h

2 ||v0||∞ , for all t > 0 , (8)

where c is a constant independent of v0.
For μ ≥ 0, q ∈ [1,∞] and δ > 0, we set

M c
q (t, x, L, v0) := t−

1
q ||v0||Lq(BL(x))e

− δ2
8t + ||v0||∞ t

μ
2

(L + t
1
2 )μ

, (9)

(t, x, L, v0) ∈ R
+ × BR × (R + δ,∞) × {

v0 ∈ L∞(R2) with suppv0 ⊂ B
c
R+δ

}
.

Lemma 1. Let v0 ∈ L∞(R2) with suppv0 ⊂ B
c
R+δ and M c

q as given in (9). Then, for all k, h ∈ N ∪ {0},
there exists a constant c(δ, L) such that

|Dk
t ∇hH[v0](t, x)| ≤ c(L2 + t)−k− h

2 M c
q (t, x, L, v0) ,

||Dk
t ∇hU(t)||L∞(BR) ≤ c||v0||∞t

μ
2 . (10)

Proof. By the definition of M c
q , we recall that the left hand side of (10)1 has to be considered for

(t, x) ∈ R
+ × BR(O). For k, h ∈ N ∪ {0} and μ > 0, we have the well known estimate

|Dk
t ∇hH(z, t)| ≤ ct

μ
2 (|z| + t

1
2 )−2−h−2k−μ. (11)

If L ≥ R + δ and x ∈ BR(0), we get that |x − z| ∈ [R + δ, 2L] implies |z| ∈ [δ, 3L], as well as |x − z| > 2L
implies |z| > L. Hence, applying Hölder’s inequality, by virtue of the definition of the support of v0, we
deduce

|Dk
t ∇hH[v0](t, x)| ≤

∫

R+δ<|x−z|<2L

|Dk
t ∇hH(t, z)||v0(x − z)|dz +

∫

|x−z|>2L

|Dk
t ∇hH(t, z)||v0(x − z)|dz

≤ ||Dk
t ∇hH(t)||Lq′ (δ<|z|<3L)||v0||Lq(B2L(x)) + ||v0||∞

∫

|z|>L

t
μ
2

(|z| + t
1
2 )μ+2+h+2k

dz

≤ c(δ, L)(L2 + t)−k− h
2 M c

q (t, x, L, v0) ,

Estimate (10)2 is a consequence of the previous estimate and of definition of M c
q (t, x, L, v0). �

Lemma 2. Let u0 ∈L∞(R2) and let u :=H[u0](t, x). Then, for all q∈ [1,∞) and R0 >0, we get

lim
t→0

||u(t) − u0||Lq(BR0 ) = 0 . (12)



JMFM On The Two-Dimensional Stokes Problem. . . Page 7 of 29 83

Proof. We set

u2R0(t, x) := H[χ2R0u0](t, x) and u2R0(t, x) := H[(1 − χ2R0)u0](t, x) ,

where χ2R0 denotes the characteristic function of the ball B2R0 . Of course, we have u = u2R0 + u2R0 too.
Hence we get

||u(t) − u0||Lq(BR0 ) ≤ ||u2R0(t) − u0||Lq(BR0 ) + ||u2R0(t)||Lq(BR0 )

< ||u2R0(t) − u0||Lq(B2R0 ) + ||u2R0(t)||Lq(BR0 ) .

From the Lq-theory we deduce that limt→0 ||u2R0(t) − u0||Lq(B2R0 ) = 0. Since for all (x, y) ∈ BR0 × (R2 −
B2R0) one has |x − y| ≥ |y| − |x| ≥ |y|

2 ≥ R0, by virtue of (11), for μ > 0, we deduce

||u2R0(t)||Lq(BR0 ) ≤ cR
2
q

0 ||u2R0(t)||L∞(BR0 )t
μ
2 (R0 + t

1
2 )−μ .

Hence, letting t → 0, we achieve (12). �

2.2. The Extension F

We recall some results concerning the boundary value problem in a smooth bounded domain D of the
steady Stokes system:

ΔV = ∇πV , ∇ · V = 0, in D,

V = a on ∂D,

∫

∂D

a · ndσ = 0 . (13)

Lemma 3. Let a ∈ W 2− 1
q ,q(∂D), q > 2. Then, problem (13) has a unique solution (V, πV ) ∈ W 2,q(D) ∩

C∞(D) × W 1,q(D) ∩ C∞(D), such that

||V ||2,q ≤ M ||a||2− 1
q ,q , (14)

with M independent of a. In particular, we deduce (V, πV ) ∈ C1(D) × C(D).

Proof. The proof of lemma can be found in [10] Ch.IV Lemma 6.1. �
The following is an a priori estimate

Lemma 4. Let u ∈ Wm+2,q(Ω) ∩ J1,q(Ω) , for some m ∈ N0. Then there exists a field πu such that

||Dm+2u||q + ||Dm∇π||q ≤ c
[||DmPΔu||q + ||u||Lq(ΩR)

]
, (15)

where c is a constant independent of u.

Proof. This result is contained in [10,22]. Actually, in our hypotheses, for u we can consider the Helmholtz
decomposition of Δu, hence, formally u is a solution to the boundary value problem

Δu − ∇πu = PΔu , ∇ · u = 0 , in Ω , u = 0 on ∂Ω .

Then the estimates and regularity follow from the result in [10,22] for solution to the Stokes problem in
exterior domains. �

We recall some results concerning the Bogovskĭı problem. Let E be a smooth bounded domain and

∇ · v = g , in E, v = 0 on ∂E, (16)

with the compatibility condition
∫

E

gdx = 0.

Lemma 5. If g ∈ C∞
0 (E), then there exists at least a solution v ∈ C∞

0 (E) to problem (16) such that, for
m ∈ N and r ∈ (1,∞),

||v||m,r ≤ c||g||m−1,r . (17)
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For the proof of the Lemma we refer to [10].
�

It is known that one solves problem (16) by considering the domain E as a union of domains Ck, k =
1, . . . , N , star-shaped with respect to the balls B(k) of a fixed radius; moreover, using a smooth partition

of unity, say
N∑

k=1

ψk(x) = 1, with suppψk ⊂ Ck. Then, a vector field satisfying (16) can be written in the

form

v(x) = B[g] =
N∑

k=1

vk(x) , (18)

where

vk(x) = Bk[ψkg] =
∫

Ck

Bk(x − y, y)ψk(y)g(y)dy ,

Bk(z, y) =
z

|z|n

∞∫

|z|

qk(y + ξ
z

|z| )ξ
n−1dξ ,

qk(x) ∈ C∞
0 (B(k)) and

∫

B(k)

qk(y)dy = 1 .

We also recall that, for each k = 1, . . . , N , Bk is an operator with weakly singular kernel. Actually, Bk
j [ · ]

is the integral operator with the kernel

Bk
j (x − y, y) =

x − y

|x − y|n
∞∫

|x−y|

∂

∂yj
qk(y + ξ

x − y

|x − y| )ξ
n−1dξ , (19)

and ∂
∂xj

Bk is an operator with singular kernel of Calderon-Zigmund kind. �

Lemma 6. Let A(x) ∈ W 2− 1
q ,q(∂Ω), q > 2, with

∫

∂Ω

A(x) · ndσ = 0. Then, the function A admits an

extension F into Ω, such that F ∈ W 2,q(Ω)∩C∞(Ω), F (x) has compact support in ΩR and is divergence
free in Ω, with

||F ||2,q ≤ c(R)||A||2− 1
q ,q, (20)

with c(R) independent of A. In particular, we get F (x) ∈ C1(Ω).

Proof. Let us consider the boundary value problem (13) for D ≡ ΩR, with boundary data a = A on ∂Ω
and a = 0 on |x| = R. By virtue of Lemma 3 there exists a unique solution (V, πV ) ∈ W 2,q(ΩR), such
that

||V ||2,q ≤ c(R)||A||2− 1
q ,q. (21)

Moreover, we consider a Bogovskĭı’s solution V to the equation (16) assuming E ≡ {x : R
3 < |x| < 2

3R},
g = −∇hR · V in E and V = 0 on ∂E, where hR is a smooth cut-off function with hR = 1 on ΩR/3 and
hR = 0 on ΩR − Ω2R/3. By virtue of the estimate of Lemma 5, we get

||V ||2,q ≤ c||A||2− 1
q ,q . (22)

Setting F = V hR + V we have proved estimate (20). The regularity in Ω is a consequence of the ones
doable for V and V (see [10]). �
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Corollary 1. Let A(t, x) be a one parameter family of functions with Dk
t A(t, x) ∈ W 2− 1

q ,q(∂Ω) and∫

∂Ω

A(t, x) · ndσ = 0, for all t ≥ 0. Then, for t > 0, denoted by F (t, x) the extension obtained in Lemma 6,

there exist Dk
t F with

||Dk
t F (t)||2,q ≤ c||Dk

t A(t)||2− 1
q ,q , t > 0 , (23)

with c independent of t.

Proof. For all t ≥ 0, we consider the extension F = V hR + V given in Lemma 6. Hence, recalling the
definition of V and V , there exists Dk

t F = Dk
t V hR + Dk

t V . Hence, via estimate (21) for Dk
t V and

via representation formula (18) for V t, in our hypotheses estimate (23) follows by the same arguments
developed for the estimates (20). �

We set

U := H[v0](t, x) , and Û := |∂Ω|−1

∫

∂Ω

U(t, ξ)dH1 , for all t > 0 , (24)

where U is the solution to the heat equation furnished in Sect. 2.1 and corresponding to v0 with supp
v0 ⊂ Ω − BR+δ and enjoying (2).

Lemma 7. Let A = −U + Û in Corollary 1 with U given in (24). For k ∈ N ∪ {0}, we get

||Dk
t F (t)||2,q ≤ c(L2 + t)− 1

2 −k||v0||∞ , for all t > 0 , (25)

with c independent of v0.

Proof. By virtue of Corollary 1, estimate (25) easily follows achieving the estimate ||Dk
t A(t)||2− 1

q ,q ≤
c(L2 + t)− 1

2 −k||v0||∞ , for all t > 0. Then, estimating ||Dk
t A(t)||2− 1

q ,q , the task is to justify the exponent

− 1
2 on the right hand side of estimate (25). The assumption Ω smooth exterior domain leads to assert

∂Ω ≡ p∪
m=1

∂Ωm. For any continuous function g, the mean value2 is

|∂Ω|−1

p∑
h=1

∫

∂Ωh

g(ξ)dH1 =
[ p∑

m=1

|∂Ωm|
]−1

p∑
h=1

∫

∂Ωh

g(ξ)dH1 =
p∑

h=1

|∂Ωh|
|∂Ω| g(ξh) . (26)

In order to estimate ||Dk
t Ai(t)||Lq(∂Ω) = ||Dk

t (−Ui(t, ξ) + Ûi(t))||Lq(∂Ω), i = 1, 2, we initially remark that,
by virtue of (26), for i = 1, 2 and for all k ∈ N ∪ {0} there exist ξh, h = 1, . . . , p, such that

− Dk
t Ui(t, ξ) + Dk

t Ûi(t) = |∂Ω|−1

p∑
h=1

[
− Dk

t Ui(t, ξ) + Dk
t Ui(t, ξh)

]
|∂Ωh| , (27)

where Dk
t Ui(t, ξh) is mean value of the integral on ∂Ωh. Hence, by virtue of Lagrange’s theorem and

assumptions on U , from (27) we get

|Dk
t Ui(t, ξ) − Dk

t Ûi(t)| = |∂Ω|−1
∣∣∣

p∑
h=1

∇Dk
t Ui(t, θh) · (ξh − ξ)

∣∣∣
≤ c||∇Dk

t U(t)||∞ ≤ c(L2 + t)− 1
2 −k||v0||∞ , for all ξ ∈ ∂Ω , and t > 0 ,

where in the last step we take (10) into account. This justify the estimate for the Lq(∂Ω) norm of Dk
t A.

Instead, for the seminorm we have < ∇Dk
t A >1− 1

q ,q=< ∇(Dk
t U − Dk

t Û) >1− 1
q ,q=< ∇Dk

t U >1− 1
q ,q.

Hence, considering again estimate (10), a fortiori there is for the exponent the increment − 1
2 . �

2 We recall that in our notations we denoted by |D| the measure of any Lebesgue’s measurable set.
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2.3. The Function h

Let h(σ) be a smooth cut off function such that h(σ) = 1 for σ ∈ [0, 5
4 ], h(σ) = 0 for σ ∈ [74 , 2] and

h(σ) ∈ [0, 1] for σ ∈ [54 , 7
4 ]. For all τ > 0 and ρ > 0, we define h(τ, ρ) := h( ρ

R+
√

τ
). One easily verifies the

following properties:

h(τ, ρ)

⎧⎪⎨
⎪⎩

= 1 , for ρ ≤ 5
4 (R +

√
τ) ,

∈ [0, 1] , for ρ ∈ [
5
4 (R +

√
τ), 7

4 (R +
√

τ)
]
,

= 0 , for ρ ≥ 7
4 (R +

√
τ) .

We set hτ := ∂
∂τ h(τ, ρ) and hρ(τ, ρ) := ∂

∂ρh(τ, ρ) . A computation gives

hτ (τ, ρ) = −1
2

ρ

(R +
√

τ)2
1√
τ

h
′
(σ), for τ > 0 and ρ ∈ [R +

√
τ

2
,
2(R +

√
τ)

3
]
,

hτ (τ, ρ) = 0 , for τ > 0 and ρ ∈ R+ − [R +
√

τ

2
,
2(R +

√
τ)

3
]
,

hρ(τ, ρ) =
1

R +
√

τ
h

′
(σ) , for τ > 0 and ρ ∈ [R +

√
τ

2
,
2(R +

√
τ)

3
]
,

hρ(τ, ρ) = 0 , for τ > 0 and ρ ∈ R+ − [R +
√

τ

2
,
2(R +

√
τ)

3
]
.

(28)

For ρ := |x|, we set
h(t, x) := h(t, ρ) . (29)

Recalling that R > 3diamΩc, by our position we have h(t, x) = 1 in BR
2

∩ Ω for all t > 0. We have

|∇h(t, x)| ≤ c(R +
√

t)−1 . (30)

and via (28)1
|ht(t, x)| ≤ ct−

1
2 (R +

√
t)−1 . (31)

Finally, via (28) we get

|∇ht(t, x)| ≤ |D2
t,ρh(t, ρ)| ≤ c

1√
t

1
(R +

√
t)2

,

|htt(t, x)| ≤ c
∣∣ d

dt

[ ρ

(R +
√

t)2
1√
t

]∣∣ + c
[ ρ

(R +
√

t)2
1√
t

]2∣∣h ′′
(σ)

∣∣,
|Δh(t, x)| =

∣∣h ′′
+

1
ρ
h

′∣∣ ≤ c(R +
√

t)−2.

(32)

2.4. A Special Bogovskĭı Problem

For all t > 0, we consider the Bogovskĭı problem

∇ · W = ∇h · Û(t) , in Ω(R) , W = 0 on ∂Ω(R) ≡ {|x| = R} ∪ {|x| = 2R} , (33)

where we set R := R +
√

t and Ω(R) := Ω ∩ {R +
√

t < |x| < 2(R +
√

t)}. Of course, for all R > 0
the domain Ω(R) is homothetic to the shell S := 1 < |z| < 2. For problem (33), since the compatibility
condition holds, Lemma 5 holds too. However, here we are interested to state the result employing the
following approach, that is more suitable for the special domain Ω(R).

Lemma 8. There exist a constant c and a smooth solution W (t, x) to problem (33) with compact support
in Ω(R) and such that, for all t > 0,

q ∈ (1,∞), ||∇W (t)||q ≤ c||∇h · Û(t)||q ,

||∇2W (t)||q ≤ c||∇2h · Û(t)||q ,
(34)
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and with

(R +
√

t)||Wt(t)||q + ||∇Wt(t)||q ≤ c
[ ||∇h · Û(t)||q√

t(R +
√

t)
+

||∇∇h · Û(t)||q√
t

+ ||∇h · Ût(t)||q
]
,

||Wtt(t)||(2,∞) ≤ c

t

[
||∇h· Û(t)||2

( 1√
t

+
1

R +
√

t

)
+ ||∇∇h · Û(t)||2

+
√

t||∇h · Ût(t)||2
]

+ c||∇h · Ûtt(t)||1.

(35)

Proof. For all z ∈ S, we set hS(z) := h(|z|). We consider the following problem

∇ · WS(t, z) = ∇hS(z) · Û(t) , in S , WS = 0 on {|z| = 1} ∪ {|z| = 2} . (36)

Taking into account that hS(z) = 1 on |z| = 1 and h
S(z) = 0 on |z| = 2, since Û is independent of

z, for the Bogovskĭı problem (36) the compatibility condition holds, and so, by virtue of Lemma5, we
establish the existence of a solution WS(t, z) with compact support in the shell S. Easily one verifies
that W (t, x) := WS(t, x

R+
√

t
) is a solution to problem (33) with compact support in Ω(R). Being Ω(R)

homothetic with the shell S, via estimate (17) for m = 1 and via the following trivial chain, we deduce
(34)1: ∫

Ω(R)

|∇W (t, x)|qdx = R
2−q

∫

S

|∇zW
S(t, z)|qdz

≤ cR
2−q

∫

S

|∇zh
S(z)·Û(t)|qdz = c

∫

Ω(R)

|∇h(
x

R +
√

t
)·Û(t)|qdx.

(37)

Analogously, via (17) for m = 2, we get

||∇2W (t)||q = R
2
q −2||∇2

zW
S(t)||Lq(S) ≤ cR

2
q −2||∇2

zh
S · Û(t)||Lq(S) = c||∇2h · Û(t)||q .

Deriving W with respect to t, we get

Wt(t, x) = − 1
2
√

t

x

(R +
√

t)2
· ∇ξW

S(t, ξ) +
∂

∂t
WS(t, ξ)

= − 1
2
√

t

1
R +

√
t

ξ · ∇ξW
S(t, ξ) + WS

t (t, ξ) ,

(38)

we point out that the last term has to be considered as the “Eulerian derivative” which arises via formula
(18) written for solution WS(t, z) where, thanks to the static position, we transport the time derivative
on Û(t). Now, let us consider ∇Wt. From (38) it follows that

∇Wt(t, x) = − 1
2
√

t

1
(R +

√
t)2

∇WS
ξ (t, ξ) − 1

2
√

t

x

(R +
√

t)3
· ∇ξ∇ξW

S(t, ξ) +
1

R +
√

t
∇ξW

S
t (t, ξ) .

Since W and ∇W have compact support in Ω(R) and
∣∣ x
R+

√
t

∣∣ = |ξ| ≤ 2, via (17), we get

||∇Wt(t)||q = ||∇Wt(t)||Lq(Ω(R)) ≤ c
[ ||∇ξW

S(t)||Lq(S)√
t(R +

√
t)2(1− 1

q )
+

||∇ξ∇ξW
S(t)||Lq(S)

2
√

t(R +
√

t)2(1− 1
q )

+
||∇ξW

S
t (t)||Lq(S)

(R +
√

t)1− 2
q

]

≤ c
[ ||∇ξh

S · Û(t)||Lq(S)√
t(R +

√
t)2(1− 1

q )
+

||∇ξ∇ξh
S · Û(t)||Lq(S)√

t(R +
√

t)2(1− 1
q )

+
||∇ξh

S · Ût(t)||Lq(S)

(R +
√

t)1− 2
q

]

= c
[ ||∇h · Û(t)||q√

t(R +
√

t)
+

||∇∇h · Û(t)||q√
t

+ ||∇h · Ût(t)||q
]
,

where, taking the homothety between the sets Ω(R) and S into account, we argued as made in estimate
(37). Hence, we arrive at (35)1 for ∇W , and thanks to the Poincaré inequality we complete the proof of
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(35)2. Finally, from (38) it follows that

Wtt(t, x) =
( 1
4t

3
2 (R +

√
t)2

+
1

4t(R +
√

t)3
)
x · ∇ξW

S(t, ξ) +
1

4t(R +
√

t)4
x ⊗ x · ∇ξ∇ξW

S(t, ξ)

− 1√
t(R +

√
t)2

x · ∇ξW
S
t (t, ξ) + WS

tt(t, ξ) ,

where again we stress that the last term is meant as the “Eulerian derivative”. We set

A(t, ξ) :=
( 1
4t

3
2 (R +

√
t)2

+
1

4t(R +
√

t)3
)
x · ∇ξW

S(t, ξ) +
1

4t(R +
√

t)4
x ⊗ x · ∇ξ∇ξW

S(t, ξ)

− 1√
t(R +

√
t)2

x · ∇ξW
S
t (t, ξ) ,

and

K(t, ξ) := WS
tt(t, ξ) .

Hence, recalling that |ξ| = | x
R+

√
t
| ≤ 2, employing the homothetic transformation for the coordinates, via

(17), we get

||A(t)||2 ≤ c
[ ||∇ξW

S(t)||L2(S)

t
(

1√
t

+
1

R +
√

t

)
+

||∇ξ∇ξW
S(t)||L2(S)

t(R +
√

t)
+

||∇ξW
S
t (t)||L2(S)√

t

]
,

then, first via (17), and subsequently applying the homothetic change of variables, we arrive at

||A(t)||2 ≤ c
[ ||∇ξh

S · Û(t)||L2(S)

t
(

1√
t

+
1

R +
√

t

)
+

||∇ξ∇ξh
S · Û(t)||L2(S)

t(R +
√

t)
+

||∇ξh
S · Ût(t)||L2(S)√

t

]

= c
[ ||∇h · Û(t)||2

t
(

1√
t

+
1

R +
√

t

)
+

||∇∇h · Û(t)||2
t

+
||∇h · Ût(t)||2√

t

]
.

Since Wtt has compact support and the sets Ω(R) and S are homothetic, we get

||K(t)||(2,∞) = ||K(t)||L2
w(Ω(R)) = (R +

√
t)||WS

tt ||L2
w(S) ≤ c(R +

√
t)||∇ξh

S · Ûtt(t)||L1(S)

= c||∇h · Ûtt(t)||1,
where again we consider the “Eulerian derivative”, that is, via formula (18) written for solution WS(t, z),
we transported the time derivative on Û(t), and then, for the estimate of the Bogovskĭı solution, we toke
into account that the kernel in (18) is weakly singular with exponent α = 1. This completes the proof of
(35). �

Lemma 9. Let W be a solution to the Bogovskĭı problem (33) stated in Lemma 8 and U ≡ H[v0] as in
Lemma 1. Then we get

(R +
√

t)2− 2
q ||∇2W (t)||q + (R +

√
t)1− 2

q ||∇W (t)||q + ||W (t)||∞ ≤ c||v0||∞ , (39)

and
||Wt(t)||q ≤ (R +

√
t)k1(t)||v0||∞ ,

||∇Wt(t)||q ≤ k1(t)||v0||∞ ,

||Wtt(t)||L2
w

≤ k3(t)||v0||∞ ,

(40)

for all t > 0, where we set

k1(t) := c
[
t−

1
2 (R +

√
t)

2
q −2 + (L2 + t)−1(R +

√
t)

2
q −1

]
,

k3(t) := c
[
t−1

(
t−

1
2 + (R +

√
t)−1 +

√
t(L2 + t)−1

)
+ (R +

√
t)(L2 + t)−2

]
,

and where c is a constant independent of v0 and t.
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Proof. We have

|Û(t)| ≤ ||v0||∞ , |Ût(t)| ≤ c(L2 + t)−1||v0||∞ , |Ûtt(t)| ≤ c(L2 + t)−2||v0||∞ , for all t > 0 , (41)

where all the estimates are consequence of (10). Moreover, as a consequence of (10)2, for all μ > 0, we
have

|Û(t)| + |Ût(t)| ≤ ct
μ
2 ||v0||∞ . (42)

For q ≥ 1, we get

||∇h||Lq(Ω(R)) = c(R +
√

t)
2
q −1 , ||∇∇h||Lq(Ω(R)) = c(R +

√
t)

2
q −2 , for all t > 0 . (43)

Hence, as a matter of course, the right hand side of (34)1 is bounded by c(R +
√

t)
2
q −1||v0||∞ and the one

of (34)2 is bounded by c(R +
√

t)
2
q −2||v0||∞. Hence we get (39) for ∇W and ∇∇W .

Employing Gagliardo-Nirenberg inequality, for q > 2, we get ||W (t)||∞ ≤ c||∇W (t)||bq||W (t)||1−b
q , with

exponent b := 2
q . Since estimate (39) is achieved for ||∇W (t)||q, via the Poincaré inequality, we obtain

||W (t)||∞ ≤ (R +
√

t)1−b||∇W (t)||q ≤ c||v0||∞.
Moreover, by means of the estimates (43) for ∇h and ∇∇h, via (41), the right hand side of (35)1 is

bounded by c
[
t−

1
2 (R +

√
t)

2
q −2 + (L2 + t)−1(R +

√
t)

2
q −1

]
||v0||∞, which furnishes (40)2, and then, again

via (35)1 we arrive at (40)1.
Estimate given in (43) of ∇h in L2-norm is a constant c, instead the one for ∇∇h in L2-norm

is c(R +
√

t)−1. Hence, for the terms involving the L2-norm on the right hand side of (35)2 we get
ct−1(t−

1
2 + (R +

√
t)−1 +

√
t(L2 + t)−1)||v0||∞. For the estimate of the term involving the L2

w-norm on
the right hand side of (35)2, being ||∇h||1 = (R +

√
t), we get the estimate c(L2 + t)−2(R +

√
t)||v0||∞.

The sum furnishes (40)3. �

Lemma 10. Let U be the solution of Lemma 1. Then, for μ > 0, for all q ∈ (1,∞) and k = 0, 1, 2, the
following holds

||Dk
t F (t)||W 2,q(Ω) + ||Dk

t (hÛ(t))||∞ + ||W (t)||∞ + ||DtW (t)||q + ||D2
t W (t)||(2,∞) ≤ c||v0||∞t

μ
2 − 3

2 , (44)

and

||ΔF (t)||q + ||Δ(hÛ(t))||∞ + ||ΔW (t)||q ≤ c||v0||∞t
μ
2 , (45)

both the estimates evaluated for all t ∈ (0, 1) .

Proof. Since U verifies (10)2 and Û is defined by (24), then, for all μ > 0, we have

||Dk
t Û(t)||∞ + ||Dk

t (U − Û(t))||
W

2− 1
q

,q
(∂Ω)

≤ c||v0||∞t
μ
2 , t ∈ (0, 1) . (46)

Function F is the extension furnished by Corollary 1 with A := −U + Û . As a consequence of (23)
and (46) we have (44) and (45) for F .

Function h is the cutoff function defined in (29), hence estimates (31) and (32)2,3 hold. Then, by
virtue of (46) and R > 0, we deduce (44) for Dk

t (hÛ) and (45) for ΔhÛ .
Being W a solution to problem (33), for W we consider (34) and for Dk

t W we consider estimates
(35)1,2. Since we estimate in neighborhood of t = 0, the right hand sides of (34) and (35)1,2 admit a
bound of the kind t−

3
2 ||Û(t)||∞, for t ∈ (0, 1). So that, applying (46) to the right hand side, we arrive at

(44). Analogously, estimates (34)2 and (46) lead (45) for ΔW . The lemma is proved. �

Of course, since (44)-(45) are stated in a neighborhood of t = 0 and since μ > 0 can be chosen as we
want, estimates (44) and (45) are not given in sharpness way, but they are given functional to our aims.
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2.5. Some Integral Estimates

The symbols F,h, and W have the same meaning given in previous section. We recall that we assumed
R > 3diam(R2 − Ω) and L > R, as well in Lemma 1 we assumed suppv0 ⊂ B

c
R+δ, δ > 0 .

In this section, for all η > 0, the function ϕ ∈ C(η, T ;J1,q(Ω), q ∈ (1, 2], is such that

r∈(1, 2], r≥q∈(1, 2] , k = 0, 1, ||∇Dk
t ϕ(t)||r ≤c

{
t−k+ 1

r − 1
2 − 1

q ||ϕ0||q,
t−k+ 1

r − 3
2 ||ϕ0||1,

r >q, s∈ [1,∞], or r≥q, and s∈ [q,∞] , k = 0, 1, ||Dk
t ϕ(t)||r,s ≤ c

{
t−k+ 1

r − 1
q ||ϕ0||q,

t−k+ 1
r −1||ϕ0||1,

(47)

for all t > 0, for r = ∞ we just consider L∞, and c is a constant independent of ϕ.
We set

I1(t) := −
t∫

0

(Fτ (τ), ϕ(t − τ))dτ +

t∫

0

(hτ (τ)Û(τ) −
t∫

0

(Wτ , ϕ(t − τ))dτ, ϕ(t − τ))dτ ,

I2(t) :=

t∫

0

(ΔF (τ), ϕ(t − τ))dτ −
t∫

0

(Δh(τ)Û(τ), ϕ(t − τ))dτ +

t∫

0

(ΔW (τ), ϕ(t − τ))dτ .

Lemma 11. For all q ∈ [1, 2), there exists a constant C := C(R) such that

|I1(t)| ≤ Ct1− 1
q ||v0||∞||ϕ0||q , for all t > 0 . (48)

Proof. We separately look for the estimate of each integral term, called Ii(t), i = 1, 2, 3, of the sum.
Applying Hölder’s inequality, we get

|I1(t)| ≤
t∫

0

||Fτ (τ)||2||ϕ(t − τ)||2dτ ≤ c||v0||∞||ϕ0||q
t∫

0

(L2 + τ)− 3
2 (t − τ)

1
2 − 1

q dτ

≤ cR−2t1− 1
q ||v0||∞||ϕ0||q ,

where increasing we employed (25) for F , R < L and (47)2 for ϕ. Applying Hölder’s inequality and
employing (31), we get

|I2(t)| ≤ c

t∫

0

||Û(τ)||∞|supp
x

h(τ, x)| 1
2 τ− 1

2 (R +
√

τ)−1||ϕ(t − τ)||2dτ .

Since |supp
x

h| = c(R +
√

τ)2, via (47)2, we get

|I2(t)| ≤ c||v0||∞||ϕ0||q
t∫

0

τ− 1
2 (t − τ)− 1

q + 1
2 dτ .

Applying Holder’s inequality, we get

|I3(t)| ≤
t∫

0

||Wτ (τ)||2||ϕ(t − τ)||2dτ .
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By virtue of estimate (40)2 for Wt and estimate (47)2 for ϕ, we obtain

|I3(t)| ≤ c||v0||∞||ϕ0||q
t∫

0

τ− 1
2 (t − τ)− 1

q + 1
2 dτ ≤ ct1− 1

q ||v0||∞||ϕ0||q .

The above estimates furnish (48). �

Lemma 12. For all q ∈ [1, 2) there exists a constant c such that

|I2(t)| ≤ ct1− 1
q ||v0||∞||ϕ0||q , for all t > 0 , (49)

where constant c is independent of v0 and ϕ0.

Proof. We look for separately the estimate of each integral, called Ii(t), i = 1, 2, 3, of the sum. Via
Hölder’s inequality, we get

|I1(t)| ≤
t∫

0

|(ΔF (τ), ϕ(t − τ))|dτ ≤
t∫

0

||ΔF (τ)||2||ϕ(t − τ)||2dτ

≤ c||v0||∞||ϕ0||q
t∫

0

(L2 + τ)− 1
2 (t − τ)

1
2 − 1

q dτ ≤ ct1− 1
q ||v0||∞||ϕ0||q ,

where increasing we employed (25) for F and (47)1 for ϕ. Via Hölder’s inequality, and employing (43) for
Δh and (47)1 for ϕ, we obtain

|I2(t)| ≤
t∫

0

|Û(τ)|||Δh(τ)||2||ϕ(t − τ)||2 ≤ c||v0||∞||ϕ0||q
t∫

0

(R +
√

t)−1(t − τ)
1
2 − 1

q dτ ≤ ct1− 1
q ||v0||∞||ϕ0||q.

After applying Hölder’s inequality, we get

|I3(t)| ≤
t∫

0

||ΔW (τ)||2||ϕ(t − τ)||2dτ

≤ c||v0||∞||ϕ0||q
t∫

0

(R +
√

t)−1(t − τ)
1
2 − 1

q dτ = ct1− 1
q ||v0||∞||ϕ0||q ,

where in the last step of the estimate we taken into account (47)2 for ϕ and (39) for ΔW . Collecting the
estimates for Ii(t), we arrive at the wanted one for I2(t). �

Lemma 13. The following estimate holds:

μ > 1 , |I1(t)| + |I2(t)| ≤ c||v0||∞||ϕ0||1t
μ
2 −1 , for t ∈ (0, 1) . (50)

Proof. Applying Hölder’s inequality, for all t ∈ (0, 1), we get

|I1(t)| ≤
t∫

0

[||Fτ (τ)||2 + ||Dτ (hÛ(τ))||2 + ||Wτ (τ)||2
]||ϕ(t − τ)||2dτ

≤ c||v0||∞||ϕ0||1
t∫

0

τ
μ
2 − 3

2 (t − τ)− 1
2 dτ = c||v0||∞||ϕ0||1t

μ
2 −1 ,
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where increasing we applied (44) for the terms in || · ||2-norm and (47) for ϕ. Analogously, for all μ > 0,
we obtain the estimate

|I2(t)| ≤
t∫

0

[||ΔF (τ)||2 + ||Δ(hÛ(τ))||2 + ||ΔW (τ)||2
]||ϕ(t − τ)||2dτ

≤ c||v0||2||ϕ0||1
t∫

0

τ
μ
2 (t − τ)− 1

2 dτ = c||v0||∞||ϕ0||1t
μ
2 + 1

2 ,

where increasing we employed (45) for the terms in || · ||2-norm and (47)2 for ϕ. �

We set

I3(t) := −
t∫

0

(D2
τ (F (τ) − h(τ)Û(τ) + W (τ)), ϕ(t − τ)dτ ,

I4(t) :=

t∫

0

(ΔDτ (F (τ) − h(τ)Û(τ) + W (τ)), ϕ(t − τ))dτ .

Lemma 14. For all q ∈ [1, 2], there exists a constant C := C(R) such that

|I3(t)| ≤ Ct−
1
q ||v0||∞||ϕ0||q , for all t > 0 . (51)

Proof. We initially point out that μ > 0 can be chosen in Lemma 10 in such a way that the integral is
well posed. Moreover, we recall that L > R. In order to deduce (51) we look for separately the estimate
of each integral, called Ji(t), i = 1, 2, 3, of the sum. Integrating by parts we get

J1(t) = −(Ft(
t

2
), ϕ(

t

2
)) +

t
2∫

0

(Fτ (τ), ϕτ (t − τ))dτ −
t∫

t
2

(Fττ (τ), ϕ(t − τ))dτ ,

where in t = 0 we used the bound (44) for μ > 3. Applying Hölder’s inequality, we get

|J1(t)| ≤ ||Ft(
t

2
)||2||ϕ(

t

2
)||2 +

t
2∫

0

||Fτ (τ)||1||ϕτ (t − τ)||∞dτ

+

t∫
t
2

||Fττ (τ)||2||ϕ(t − τ)||2dτ

≤ c||v0||∞||ϕ0||q
[
(L2 + t)− 3

2 t
1
2 − 1

q +

t
2∫

0

(L2 + τ)− 3
2 (t − τ)− 1

q dτ

+

t∫
t
2

(L +
√

t)− 5
2 τ

1
2 − 1

q dτ
]
,

where for F we toke estimate (25) into account, as well estimates (47)2 for ϕ. Since R < L we arrive at
(51) for J1.
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After integrating by parts, applying Hölder’s inequality, we obtain

|J2(t)| ≤ ||Dt(h(
t

2
)Û(

t

2
))||2||ϕ(

t

2
)||2+

t
2∫

0

||Dτ (h(τ)Û(τ))||2||ϕτ (t − τ)||2dτ

+

t∫
t
2

||D2
τ (h(τ)Û(τ))||2||ϕ(t − τ)||2dτ = J1

2 + J2
2 + J3

2 ,

where in t = 0, we toke the bound (44)2 for μ > 3 into account. Recalling that ≤ 1, employing (31) for
h, (10)1 for U and Ut, and (47)2 for ϕ, since |supp

x
h| = c(R +

√
τ)2, being R < L, we have

J1
2 ≤ ct−

1
q ||v0||∞||ϕ0||q .

Recalling that |supp
x

h| = c(R +
√

τ)2, since, ≤ 1 the estimate (31) for h and (47)3 for ϕτ furnish

J2
2 ≤ c||ϕ0||q

t
2∫

0

[
(R +

√
τ)||Ûτ (τ)||∞ + ||Û(τ)||∞τ− 1

2
]
(t − τ)− 1

2 − 1
q dτ .

Now, applying (10)1 for the term ||Ût(t)||∞ and for the term ||Û ||∞, being R < L, we realize

J2
2 (t) ≤ c||v0||∞||ϕ0||q

t
2∫

0

τ− 1
2 (t − τ)− 1

2 − 1
q dτ ≤ ct−

1
q ||v0||∞||ϕ0||q .

For the last term we have D2
t (hÛ) = hττ Û + 2hτ Ûτ + hÛττ . Recalling that |supp

x
h| = c(R +

√
τ)2, via

estimates (10) for Û and developing (32)2 for hττ , we get

J3
2 ≤ c||ϕ0||q

t∫
t
2

(t − τ)
1
2 − 1

q τ− 3
2 ||Û(

τ

2
)||∞dτ ≤ ct−

1
q ||ϕ0||q||v0||∞ ,

where increasing we used the semigroup property of U . Collecting the estimates related to J i
2, we arrive

at
|J2(t)| ≤ ct−

1
q ||v0||∞||ϕ0||q, for all t > 0 . (52)

Integrating by parts, applying Hölder’s inequality, we get

|J3(t)| ≤ ||Wt(
t

2
)||2||ϕ(

t

2
)||2 +

t
2∫

0

||Wτ (τ)||2||ϕτ (t − τ)||2dτ

+

t∫
t
2

||Wττ (τ)||(2,∞)||ϕ(t − τ)||(2,1)dτ ,

where in t = 0 we toke the bound (44). Employing (40)1,3 for W , we get

|J3(t)| ≤ c||v0||∞||ϕ0||q
[
t−

1
q +

t
2∫

0

τ− 1
2 (t − τ)− 1

2 − 1
q dτ +

t∫
t
2

τ− 3
2 (t − τ)

1
2 − 1

q dτ
]
,

where we considered (47)2 for ϕ. �
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Lemma 15. For q ∈ [1, 2], there exists a constant C := C(R) such that

|I4(t)| ≤ Ct−
1
q ||v0||∞||ϕ0||q for all t > 0 . (53)

Proof. Integrating by parts, we get

I4(t) = −
t∫

0

(∇Fτ (τ) − ∇hτ (τ) ⊗ Û(τ) − ∇h⊗ Ûτ (τ) + ∇Wτ (τ),∇ϕ(t − τ))dτ .

We separately look for the estimate of each integral, called Ji(t), i = 1, 2, 3, 4, of the sum. Applying
Hölder’s inequality, we get

|J1(t)| ≤
t∫

0

||∇Fτ (τ)||2||∇ϕ(t − τ)||2dτ ≤ c||v0||∞||ϕ0||q
t∫

0

(L2 + τ)− 3
2 (t − τ)− 1

q dτ

≤ ct−
1
q ||v0||∞||ϕ0||q ,

where we toke estimate (25) for F , and (47)1 for ϕ into account. Being R < L, we arrive at (53) for J1.
An integration by parts on (0, t

2 ) × Ω and Hölder’s inequality furnish

|J2(t) + J3(t)| ≤ ||Δh(
t

2
)Û(

t

2
)||2||ϕ(t − τ)||2 +

t
2∫

0

||Δh(τ)||2||Û(τ)||2||ϕτ (t − τ)||2dτ

+

t∫
t
2

[||∇hτ (τ)Û(τ)||2 + ||∇hÛτ (τ)||2
]||∇ϕ(t − τ)||2dτ ,

where we employed (10)2 in t = 0. From (10)1 |Û(t)|+(L2 + t)|Ût(t)| ≤ c||v0||∞, via (43) for ∇h, Δh and
(32)1 for ∇ht, employing (47) for ϕ, we get

|J2(t) + J3(t)| ≤ c||v0||∞||ϕ0||q
[
t−

1
q +

t
2∫

0

[
τ− 1

2 (t − τ)− 1
2 − 1

q dτ +

t∫
t
2

(τ−1+ (L2+ τ)−1)(t − τ)− 1
q dτ

]

≤ ct−
1
q ||v0||∞||ϕ0||q .

Inequality (34) for ∇W and (10)2 for U ensure that limt→0 ||∇W (t)||2 = 0. Integrating by parts on (0, t
2 )

and applying Hölder’s inequality, we obtain

|J4(t)| ≤ ||∇W (
t

2
)||2||∇ϕ(

t

2
)||2 +

t
2∫

0

||∇W (τ)||2||∇ϕτ (τ)||2dτ

+

t∫
t
2

||∇Wτ (τ)||2||∇ϕ(t − τ)||2dτ .

Recalling estimate (39) for ∇W and (40)2 for ∇Wt, employing estimate (47)1 for ϕ, we get

|J4(t)| ≤ c||v0||∞||ϕ0||q
[
t−

1
q +

t
2∫

0

(t − τ)−1− 1
q dτ +

t∫
t
2

[
τ− 1

2 (R +
√

τ)−1 + (L2 + τ)−1
]
(t − τ)− 1

q dτ
]

≤ ct−
1
q ||v0||∞||ϕ0||q.

Collecting the above estimates Ji, i = 1, 2, 3, 4, we arrive at (51). �
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2.6. Some Results of The Lp -Theory for The IBVP

Now, we recall some results concerning the Stokes initial boundary value problem:

ϑt − Δϑ = −∇πϑ + f, ∇ · ϑ = 0, in (0, T ) × Ω,

ϑ(t, x) = 0 on (0, T ) × ∂Ω,

(ϑ(0), ϕ) = (w0, ϕ) for any ϕ ∈ C0(Ω).
(54)

In problem (54) the initial condition is given in the weak form (ϑ(0), ϕ) = (w0, ϕ), ϕ ∈ C0(Ω), in order to
state the initial boundary value problem with an initial data w0 belonging to the weaker Lebesgue space
Lp(Ω), p ≥ 1. With the weak formulation in Lp, p ∈ (1,∞), the continuity of the equation of divergence
(also in weak form) at t = 0 is lost, as well as the zero value of the normal component of the solution
at the initial instant t = 0. Of course, if the datum is an element of Jp(Ω) ⊂ Lp(Ω), p > 1, then, the
problem is just the classical one.

For our aims the case w0 ∈ C1
0 (Ω) ⊂ L1(Ω) has a special interest. Actually, we look for an estimate

in L∞(Ω) by means of the variational formulation ||a||∞ = sup
θ∈C1

0 (Ω)

(a, θ)
||θ||1 . In Lemma 22, by means of a

duality argument, the quoted weak formulation of the θ solution allows us to give the estimate ||ω(t)||∞ =

sup
θ∈C1

0 (Ω)

(ω(t), θ)
||θ||1 of the auxiliary solution ω(t, x) to problem (67).

In Theorem 2 the initial boundary value problem (54) can be considered for Ω bounded or exterior,
indifferently.

Theorem 2. Let be f = 0 in (54). Let w0 ∈ C1
0 (Ω). Then, to the data w0 it corresponds a unique solution

(ψ, πψ) of problem (54) such that ψ ∈ ∩
q>1

C([0, T );Jq(Ω)), for η > 0, ψ ∈ ∩
q>1

Lq(η, T ;W 2,q(Ω) ∩ J1,q(Ω))

and ∇πψ, ψt ∈ ∩
q>1

Lq(η, T ;Lq(Ω)). Moreover, for q ∈ (1,∞] and r ∈ [1, q],

||ψ(t)||q ≤ c||w0||rt−μ, μ = 1
r − 1

q , t > 0;

||∇ψ(t)||q ≤ c||w0||rt−μ1 , μ1 =

⎧⎨
⎩

1
2 + μ if t ∈ (0, 1],
1
2 + μ if t > 0 and q ∈ (1, n],
n
2r if t > 1 and q > n;

||ψt(t)||q ≤ c||w0||rt−μ2 , μ2 = 1 + μ, t > 0;

(55)

where the constant c is independent of w0. Finally, lim
t→0

(ψ(t), ϕ) = (w0, ϕ) for any ϕ ∈ C0(Ω).

Proof. For the proof of the above theorem see [17] Theorem 2.1. Actually, the quoted reference is the
two-dimensional version of Theorem 3.2 given in [14] . �

Remark 1. We stress that the property ψ ∈ C([0, T );Jq(Ω)) is meant in the sense that limt→0 ||ψ(t) −
Pq(w0)||q = 0. In the case of w0 ∈ C1

0 (Ω) in t = 0 at most the weak limit property holds, the one stated
in the theorem. Of course, if we assume w0 ∈ Jq(Ω), q ∈ (1,∞), the result becomes the classical one, in
particular the continuity in norm holds.

Corollary 2. In the same hypothesis of Theorem2, for q ∈ (r,∞), σ ∈ [1,∞] we also get

for all σ ∈ [1,∞] , t||ψt(t)||(q,σ) + ||ψ(t)||(q,σ) ≤ c||w0||rt−μ, μ =
1
r

− 1
q
, t > 0; (56)

Proof. We recall that problem (1) can be considered in L(q, σ)-setting (e.g. cf. [29] or [15]). In particular
for all q > p > 1 one obtains the estimate

t||ψ(t)||(q,σ) + ||ψ(t)||(q,σ) ≤ c(t − s)−( 1
p − 1

q )||ψ(s)||(p,∞) ≤ c(t − s)−( 1
p − 1

q )||ψ(s)||p , for all t > s ≥ 0 .

Thus, setting s = t
2 and employing (55)1,3, for r ≤ p, one arrives at (56). �
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Lemma 16. In problem (54), assume f ∈ Lq(0, T ;Lq(Ω)), and w0 = 0. Then, there exists a unique
solution (ϑ, πϑ) to problem (54) with ϑ ∈ C([0, T );Jq(Ω)),

T∫

0

[|ϑ(t)|q2,q + |ϑt(t)|qq + |∇πϑ(t)|qq
]
dt ≤ c(T )

T∫

0

|f(t)|qqdt . (57)

Proof. For a proof of the above theorem see [12,22,23]. �

Let us consider the equation for the pressure:

ΔΠ = 0 in Ω ,
d

dν
Π = ∇ × ∇ × N · ν on ∂Ω , Π → c for |x| → ∞ . (58)

We set

< u >λ
q :=

[ ∫

∂Ω

∫

∂Ω

|u(x) − u(y)|q
|x − y|1+λq

dH1dH1
] 1

q

.

For λ = 1 − 1
q we get the seminorm of trace space W 1− 1

q ,q(∂Ω) .
We set a := ∇ × N . The following result holds:

Lemma 17. Assume that Ω ′ ⊂ Ω bounded with ∂(Ω − Ω ′) ∩ ∂Ω = ∅ . Assume that a ∈ W 1− 1
q ,q(∂Ω). Then

a solution of problem (58) is such that

λ ∈ (0, 1) , ||Π||Lq(Ω ′) ≤ c < a >λ
q and ||∇Π||q ≤ c < a >

1− 1
q

q , (59)

where c is constant independent of a.

Proof. Estimate (59) is due to Solonnikov in [25], recently, it is also reproduced in [19]. �

In the following Lemma 18 and Lemma 19 we assume that Ω ′ ⊂ Ω is a bounded domain with ∂(Ω −
Ω ′) ∩ ∂Ω = ∅ .

By virtue of trace theorems, for any element of a ∈ W 1− 1
q ,q(∂Ω) admits an extension from ∂Ω into Ω′

which is an element of W 1,q(Ω′). We denote by the same symbol a the element of space trace W 1− 1
q ,q(∂Ω)

and its extension as element of W 1,q(Ω′).

Lemma 18. Assume that a ∈ W 1− 1
q ,q(∂Ω). For a solution of problem (58) the following estimate holds:

||Π||C(Ω ′) ≤ c
[
||a||(1− 1

d )(1−α)

Lq(Ω ′) ||∇a|| 1
d (1−α)+α

Lq(Ω ′) + ||a||(1− 1
q )(1− 1

d )(1−α)

Lq(Ω ′) ||∇a||
(

1
q (1− 1

d )+ 1
d

)
(1−α)+α

Lq(Ω ′)

]

+ c
(||a||Lq(Ω ′) + ||∇a||

1
q

Lq(Ω ′)||a||1− 1
q

Lq(Ω ′)

)1− 1
d ||∇a|| 1

d

Lq(Ω ′) ,

(60)

where q > 2, α := 2
q , d := q

1+λq , λ ∈ (0, 1 − 1
q ), and c is a constant independent of a .

Proof. For q > 2, by virtue of Lemma 17, we obtain

||Π||C(Ω ′) ≤ c(||∇Π||αLq(Ω ′)||Π||1−α
Lq(Ω ′) + ||Π||Lq(Ω ′)) ≤ c

[(
< a >

1− 1
q

q

)α(
< a >λ

q

)1−α+ < a >λ
q

]

≤ c
[
||∇a||αLq(Ω ′)

(
< a >λ

q

)1−α+ < a >λ
q

]
, with α :=

2
q

.

We have

< a >λ
q ≤ c||a||1− 1

d

Lq(∂Ω)

(
< a >

1− 1
q

q

) 1
d ≤ c||a||1− 1

d

Lq(∂Ω)||∇a|| 1
d

Lq(Ω ′)

≤ c
(||a||Lq(Ω ′) + ||∇a||

1
q

Lq(Ω ′)||a||1− 1
q

Lq(Ω ′)

)1− 1
d ||∇a|| 1

d

Lq(Ω ′) , with d =
q

1 + λq
.
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Hence, we get

||Π||C(Ω ′) ≤ c
[
||a||(1− 1

d )(1−α)

Lq(Ω ′) ||∇a|| 1
d (1−α)+α

Lq(Ω ′) + ||a||(1− 1
q )(1− 1

d )(1−α)

Lq(Ω ′) ||∇a||
(

1
q (1− 1

d )+ 1
d

)
(1−α)+α

Lq(Ω ′)

]

+ c
(||a||Lq(Ω ′) + ||∇a||

1
q

Lq(Ω ′)||a||1− 1
q

Lq(Ω ′)

)1− 1
d ||∇a|| 1

d

Lq(Ω ′) .

�

Lemma 19. Assume that a(t, ξ) in Lemma 17 is a smooth one-parameter family of function in W 1− 1
q ,q(∂Ω) ,

the time t > 0 is the parameter. Assume that t
γ
2 ||a(t)||q + tγ ||∇a(t)||q ≤ A , for some γ > 0 and for

t ∈ (0, 1), and ||a(t)||q + ||∇a(t)||q ≤ A for t ≥ 1. Then, we get

||Π(t)||C(Ω
′
) ≤ cA

{
t−( 1

2+μ)γ , for t ∈ (0, 1) ,
1 , for t ≥ 1 ,

(61)

where c is constant independent of a , exponent μ ∈ (0, 1
2 ), and Ω ′ ⊂ Ω bounded with ∂(Ω−Ω ′)∩∂Ω = ∅ .

Proof. We have to estimate the right hand side of (60). Estimate (61)1 is the behavior of ||Π(t)||C(Ω
′
) in

a right neighborhood of t = 0. Hence, we limit ourselves to consider the terms with the major singularity
in t = 0. This is conditioned by the greater exponent for t−1. Recalling that in estimate (60) we have
a = ∇ × N(t, x) and the domain Ω′ is bounded, employing the assumptions ||a(t)||q ≤ cAt−

γ
2 and

||∇a(t)||q ≤ cAt−γ , then we get

||Π(t)||C(Ω ′) ≤ cAt−γβ ,

with exponent β := − 1
2 (1 − 1

q )(1 − 1
d )(1 − α) − (

1
q (1 − 1

d ) + 1
d

)
(1 − α) − α. By a computation we obtain

β =
1
2

+
α

2
+ (1 − α)[

1
2q

(1 − 1
d
) +

1
2d

] =:
1
2

+ μ

where we recall that α = 2
q , q > 2, d = q

1+λq and λ ∈ (0, 1 − 1
q ). For large q and small λ, we arrive at

μ ∈ (0, 1
2 ). Estimate (61)2 is immediate from (60) and assumptions. �

2.7. A Nonlinear Generalization of The Gronwall Inequality

Lemma 20. Let y(t) be a nonnegative function that satisfies the integral inequality

y(t) ≤ A0 +

t∫

t0

(a(s)y(s) + b(s)yσ(s)ds , A0 ≥ 0, σ ∈ [0, 1) , (62)

where a(t) and b(t) are continuous nonnegative functions for t ≥ t0. Then, the following inequality holds

y(t) ≤
[
A1−σ

0 exp
[
(1 − σ)

t∫

t0

a(s)ds
]
+ (1 − σ)

t∫

t0

b(s) exp
[
(1 − σ)

t∫

s

a(τ)dτ
]
ds

] 1
1−σ

, t > t0. (63)

Proof. This result is a particular case of a more general result due to A.I. Perov. A proof of the result
can be found in [24], Theorem 1, p. 360. �

Corollary 3. Assume that y(s) and a(s) are continuous functions on [0, T ), b(s) = As− 1
2 −μ, A a nonneg-

ative constant and μ ∈ (0, 1
2 ). Also, assume that the inequality (62) holds for t > t0 ≥ 0, A0 = A(t0), with

A(t0) continuous function. Then, inequality (63), initially achieved for t > t0 > 0, holds for t ∈ (0, T )
and t0 = 0.

Proof. By assumptions, the right hand-side of (63) is convergent for t0 → 0. Hence, letting t0 → 0 we
achieve the result. �
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3. A Result by K.Abe and Y.Giga

In this section we recall the following fundamental result due to Abe and Giga in [3] and related to the
Stokes IBVP in exterior domains.

Theorem 3. Let us consider the initial boundary value problem (1). Then there exists a T0 > 0 such that,
for all v0 ∈ L∞(Ω) enjoying (2), there exists a solution (u, πu) ∈ C2((0, T0 × Ω) × C1((0, T0 × Ω) to the
Stokes problem (1), with u(t, x) ∗-weakly continuous in t = 0. Also the following estimates hold

|u(t, x)| ≤ c||v0||∞, for all (t, x) ∈ C([0, T0) × Ω) ,

2∑
|α|=1

t
|α|
2 ||Dαu(t)||∞ + t||ut(t)||∞ + t||∇πu(t)||∞ ≤ c||v0||∞ , for all t ∈ [0, T0]

(64)

where c is independent of v0 and |x||∇πu(t, x)| ≤ c for all x ∈ Ω.

Lemma 21. Let v0 ∈ L∞(Ω)∩Jp(Ω), p ∈ (1,∞). Denoted by (u, πu) and (v, πv) the solutions correspond-
ing to v0 by virtue of Theorem 3 and Theorem 2, respectively. Then the solutions coincide up to function
of t for the pressure fields.

Proof. This result is an immediate consequence of the approach employed in [3,4]. �

Corollary 4. Let v0 ∈ L∞(Ω) enjoying (2) and with compact support. Then, for all T > 0,
u ∈ C([0, T );Jp(Ω)),

||u(t)||∞ + t||ut(t)||∞ ≤ c||v0||∞, for all t > 0 ,

2∑
|α|=1

t
|α|
2

1 + t
|α|
2

||Dαu(t)||p + t||ut(t)||p +
t

1 + t
||∇πu(t)||p ≤ c||v0||∞ , for all t > 0 ,

(65)

where p ∈ (1,∞) and the constant c depends on the support of v0. Moreover, for μ ∈ (0, 1
2 ), we get

|πu(t, x)| ≤ c||v0||∞t−
1
2 −μ , for all (t, x) ∈ (0, 1) × Ω ,

|πu(t, x)| ≤ c||v0||∞ , for all (t, x) ∈ [1,∞) × Ω .
(66)

Proof. The result related to estimate (65)1 is an immediate consequence of Lemma 21. Actually, due to
the compact support of the initial datum of the solution, in order to estimate ||u(t)||∞ we take advantage
of estimate (64) in (0, T0) and, for t ≥ T0, of the ones related to the Lp-setting, see [8,9]. Instead, estimate
(65)2 is deduced from the results in Lp-setting.

In order to prove estimates (66), we start remarking that the pressure field πu is a solution to equation
(58) with N = −u. Moreover, for the nature of compact support of the initial datum, such a solution is
such that (u,∇πu) belongs to Lq(Ω), q ∈ (1, 2), in the sense specified by Theorem 2. This fact ensures
that

∫
∂Ω

ν · ∇ × ∇ × udH1 = 0. Hence, for all t > 0, letting |x| → ∞, we get that πu → 0. Thus, by virtue

of maximum principium for harmonic solutions, we get

|πu(t, x)| ≤ max
Ω′

|πu(t, x)| , for all (t, x) ∈ (0,∞) × R
2 − Ω′ .

On the other hand, via (65), we satisfy the assumptions of Lemma 19 with A := ||v0||∞ and γ = 1. Hence,
in a neighborhood Ω′ of ∂Ω the max value of πu satisfies estimate (61). In this way we arrive at (66)1 in
a neighborhood of t = 0, and (66)2 for large t. �



JMFM On The Two-Dimensional Stokes Problem. . . Page 23 of 29 83

4. An Auxiliary Stokes Problem

In this section we consider the following problem

ωt − Δω + ∇πω = − ∂

∂t
(F − hÛ + W ) + Δ(F − hÛ + W ) , in (0, T ) × Ω ,

∇ · ω = 0 , in (0, T ) × Ω ,

ω = 0 on (0, T ) × ∂Ω , ω = 0 on {0} × Ω ,

(67)

where the functions F, hÛ , W are defined in the previous Sects. 2.2, 2.3 and 2.4. In particular, we recall
that, for all t > 0, they have compact support.

We are interested to the following

Lemma 22. There exists a unique solution (ω, πω) to problem (67) such that, for p ∈ (1,∞), ω ∈
C([0, T ;Jp(Ω))∩Lp(0, T ;W 2,p(Ω)∩J1,p(Ω)) and ωt,∇πω ∈ Lp(0, T ;Lp(Ω)). Moreover, for p > 2, we get

(1 + t−
1
p )||ω(t)||p + ||ω(t)||∞ ≤ c||v0||∞ , for all t > 0 ,

t1− 1
p ||ωt(t)||p + t||ωt(t)||∞ ≤ c||v0||∞ , for all t > 0 ,

||D2ω(t)||p + ||∇πω(t)||p ≤ c(t
1
p −1 + 1)||v0||∞ , for all t > 0 ,

lim
t→0

||ω(t)||p = lim
t→0

||ω(t)||∞ = 0 .

(68)

Proof. By virtue of Lemma 7 and Lemmas 9-10, and definition of h, for all T > 0 and p ∈ (1,∞), we get
that the right hand side of (67) belongs to C([0, T ;Lp(Ω)). Hence, the existence and the uniqueness are
a consequence of Lemma 16. We prove that estimates (68) hold. We denote by ϕ(s, x) the solution to the
Stokes problem ensured by Theorem 2 with initial datum w0 ∈ C1

0 (Ω), and, for all t > 0, ϕ(t − τ, x) is
the solution ϕ(s, x) written backward in time on interval (0, t). Multiplying equation (67) by ϕ(t − τ, x),
and integrating by parts on (0, t) × Ω, we get3

(ω(t), w0) = I1(t) + I2(t)) . (69)

Taking into account that we consider p ∈ (2,∞], employing Lemmas 11, 12 and 13 with q = p′, we arrive
at

|(ω(t), w0)| ≤ c(1 + t
1
p )||v0||∞||w0||p′ .

This last, for p ∈ (2,∞], furnishes

(1 + t−
1
p )||ω(t)||p + ||ω(t)||∞ ≤ c||v0||∞ , for all t > 0 . (70)

3 Just for the completeness, we justify the limit in end point t for the subsequent formula (69). First of all, in order to

achieve (69), we can restrict our considerations to p ∈ (2, ∞). By Lemma 16 function ϕ ∈ Jp′
(Ω) for all t > 0 and reaches

the initial datum in weak form with test function in C0(Ω). Hence, we argue in the following way:

lim
s→0

(ω(t − s), ϕ(s))

= lim
s→0

[
(ω(t − s) − ω(t), ϕ(s)) + (ω(t) − ωm, ϕ(s)) + (ωm, ϕ(s))

]

=: lim
s→0

[
I1(s) + I2(s) + I3(s)

]
,

where {ωm} ⊂ C0(Ω) is convergent to ω(t, x) in Jp(Ω). Applying Hölder’s inequality, we get

lim
s→0

|I1(s)| ≤ lim
s→0

||ω(t − s) − ω(t)||p||ϕ(s)||p′ ≤ lim
s→0

||ω(t − s) − ω(t)||p||w0||p′ ,

lim
s→0

|I2(s)| ≤ lim
s→0

||ω(t) − ωm||p||ϕ(s)||p′ ≤ ||ω(t) − ωm||p||w0||p′

lim
s→0

(ωm, ϕ(s)) = (ωm, w0) ,

where we employed the properties of ϕ stated in Theorem 2. Hence, letting before s → 0 and then m → ∞, we arrive at
(69).
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Analogously, deriving with respect to t equation (67) and then multiplying by ϕ(t−τ, x), after integrating
by parts on (0, t) × Ω, we get

(ωt(t), w0) = I3(t) + I4(t) , (71)

where for the limit in t we argue as in the case of (69) (actually, for all η > 0, ωt ∈ C((η, T );Jp(Ω))
holds, hence we can argue as made in footnote 3). We justify the last formula in s = 0. Actually, via the
equation of ω, we obtain

lim
s→0

(ωs(s), ϕ(t − s)) =: lim
s→0

[
I1(s) + I2(s) + I3(s)

]
= 0 ,

with

I1(s) := lim
s→0

(Δω(s), ϕ(t − s)) = (ω(s),Δϕ(t − s)) ,

I2(s) := lim
s→0

(Fs(s) + Ds(h(s)Û(s)) − Ws(s), ϕ(t − s)) ,

I3(s) := lim
s→0

(Δ(F (s) + h(s)Û(s) − W (s)), ϕ(t − s)) .

Applying Hölder’s inequality, the first limit is zero thanks (70). For the second limit, applying Hölder’s
inequality, by virtue of (44), we get

| lim
s→0

I2(s)| ≤ lim
s→0

[||Fs(s)||2 + ||Ds(h(s)Û(s)||2 + ||Ws(s)||2
]||ϕ(t − s)||2 = 0 .

Analogously to the limit of the term I1(s), integrating by parts, we obtain

(F (s) + h(s)Û(s) − W (s),Δϕ(t − s)) ,

that, by virtue of (44), leads to zero limit. Now, from (71), taking into account that for I3(t) and I4(t)
estimates (51) and (53) hold, for q = p′, for all p > 2, we obtain

|(ωt(t), w0)| ≤ ct−1+ 1
p ||v0||∞||w0||q , for all t > 0 , (72)

which furnishes (68)2. In order to complete the proof of (68), we set G := Dt(F−hÛ+W )−Δ(F−hÛ+W ).
By virtue of Lemma 4 we deduce

||D2ω(t)||p + ||∇πω(t)||p ≤ c
[||ωt(t)||p + ||G(t)||p + ||ω(t)||Lp(ΩR)

]
≤ c

[
t−1+ 1

p ||v0||∞ + ||G(t)||p + c(R)||ω(t)||∞
]

≤ c
[
(t−1+ 1

p + 1)||v0||∞ + ||G(t)||p
]
, for all t > 0 .

We estimate ||G(t)||p by means of the results of Sect. 2. We get ||G(t)||p ≤ c||v0||∞, for all t > 0. Thus,
via the above estimate of ω in L∞(Ω) and of ωt in Lp-norm, we arrive at (68)3. We conclude considering
the limit property. The one in Lp-norm follows from (68)1. In order to deduce the limit in L∞-norm is
enough to consider for I1(t) and I2(t) estimates given in Lemma 13. Actually, from (69) we get

|(ω(t), w0)| ≤ c||v0||∞||w0||1t
μ
2 −1 , for all t ∈ (0, 1) .

Hence, it follows that ||ω(t)||∞ ≤ ct
μ
2 −1, which achieves the zero limit for t → 0, provided that μ > 2.

�

Corollary 5. Let (ω, πω) be the solution of Lemma 22. For μ ∈ (0, 1
2 ), we get

p ∈ (2,∞), |πω(t, x)| ≤ c||v0||∞t(
1
p −1)( 1

2+μ) , for all (t, x) ∈ (0, 1) × Ω ,
|πω(t, x)| ≤ c||v0||∞ , for all (t, x) ∈ [1,∞) × Ω .

(73)

Proof. The pressure field solves the equation (58) with boundary condition

dπω

dν
= −[∇ × ∇ × ω − ∇ × ∇ × U + ∇ × ∇ × F +

] · ν , on ∂Ω. (74)
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We justify (74). The normal component deduced from (67) is the following:
[
Δω − ∂

∂t
(F − hÛ + W ) + Δ(F − hÛ + W )

] · ν .

Since, on (0, T ) × ∂Ω, we have F = −U + Û and h = 1, we deduce

Ft − hÛt = −Ut = −ΔU , on (0, T ) × ∂Ω ,

where we toke the equation of U into account. For all t > 0, the field W = 0 on ∂Ω, hence Wt = 0 holds.
Since h = 1 and W = 0 hold in a neighborhood of ∂Ω, we get Δ(−hÛ + W ) = 0. Hence, being the fields
ω, F and U divergence free, we arrive at (74).

Since, for p ∈ (1, 2) and t > 0, ∇πω ∈ Lp(Ω), letting |x| → ∞, we get πω(t, x) → π(t) (cf. [10] § II.5) .
On the other hand, the right hand side of (74) has integral zero on ∂Ω. Hence we determine a solution
π̃ω on Ω that, letting |x| → ∞, tends to zero. Since the difference between πω and π̃ω on Ω is at most
π(t), we consider as solution to equation (1) and, as matter of fact to the Neumann problem (74), the one
which tends to zero. Since in the sequel there is no confusion, we denote π̃ω by the symbol πω. Hence, by
virtue of maximum principium for harmonic solutions, we get

|πω(t, x)| ≤ max
Ω′

|πω(t, x)| , for all (t, x) ∈ (0,∞) × R
2 − Ω′ .

By virtue estimate of Lemma 17, Lemma 18 and then (61), assuming Ω′ ⊃ Ω ∩ BR, for some μ ∈ (0, 1
2 ),

we get

||πω(t)||C(Ω′) ≤ c||v0||∞(tγ1 + tγ2 + tγ3)
1
2+μ , for all t ∈ (0, 1) .

In the last estimate, we consider γ1 := −1 + 1
p for Δω, thanks to (68)3; γ2 = μ

2 for U , deduced from
(10)2; γ3 = − 1

2 for F , deduced from (25) setting k = 0 and L = 0. Since the estimate with γ1 holds for
p > 2, we arrive at (73)1. Estimate (73)2 is a consequence of the same previous estimates evaluated for
t > 1, so that, for the sake of brevity, we omit the details. �

5. Proof of Theorem1

5.1. A First Result

We premise a result. We consider the initial boundary value problem (1) with initial datum v0 ∈ L∞(Ω)
enjoying (2) and with suppv0 ⊂ Ω − BR+δ(0). We are going to prove Theorem1 for this kind of initial
data.

Theorem 4. For all v0 ∈ L∞(Ω) enjoying (2) and with suppv0 ⊂ Ω − BR+δ(0), we get the existence of a
solution (v, π) to problem (1) such that, for all q ∈ (2,∞),

||v(t)||∞ + t||vt(t)||∞ ≤ c||v0||∞ , for all t > 0 ,

t
1
2

1 + t
1
2
||∇v(t)||Lq

�oc(Ω) +
t

1 + t
||∇∇v(t)||Lq

�oc(Ω) ≤ c||v0||∞ , for all t > 0 ,

for all R0 > 0 , lim
t→0

||v(t) − v0||Lq(Ω∩BR0 ) = 0 .

(75)

Finally, for the pressure field we have, for all q ∈ (2,∞),

t

t + 1
||∇π(t)||q ≤ ct

1
q ||v0||∞ , for all t > 0 ,

t(1− 1
q )( 1

2+μ)

1 + t(1− 1
q )( 1

2+μ)
||π(t)||∞ ≤ c||v0||∞ , for all t > 0 .

(76)



83 Page 26 of 29 P. Maremonti JMFM

Proof. We consider the initial datum v0 extended to 0 in R
2. We define the pair (v, π) as

v := U − hÛ + F + W + ω and π := πω , (77)

where we set

• the field U := H[v0] is the solution to the Cauchy problem enjoying the properties stated in (8) and
(10),

• the field Û , defined in (24), is the mean integral on ∂Ω of U ,
• for all t > 0, the field F is the extension from ∂Ω into Ω with compact support in Ω and with value

−U + Û on ∂Ω, whose existence is ensured by Lemma 7,
• the field hÛ is the product of h defined by (29) and Û ,
• the field W is a solution to the Bogovskĭı problem (33) given by Lemma 8 and, for t > 0, it enjoys

the estimates of Lemma 9,
• the pair (ω, πω) is the solution to problem (67) furnished by Lemma 22.

By construction the pair (v, π) solves equation (1)1. Moreover, the following estimate holds:

||v(t)||∞ ≤ c||v0||∞ for all t > 0, (78)

which proves (75)1 for v. For estimate (78) we check the L∞-norm of each term which appears in (77)
for the definition of v. From estimate of Lemma 1 we get ||U(t) − hÛ(t)||∞ ≤ c||v0||∞, t > 0. From
estimate (25), recalling that in our hypothesis we have R < L, via the embedding Sobolev theorem, we
get ||F (t)||∞ ≤ c||v0||∞, t > 0. For the last terms W and ω we recall estimate (39) and estimate (68)1,
respectively. Analogously, for ||vt(t)||∞ we employ the estimates related to the time derivative of each
term. Hence, we consider (8) to estimate Ut, (31) and (8) to estimate Dt(hÛ), (25) to estimate Ft and,
via the Gagliardo-Nirenberg inequality ||Wt||∞ ≤ c||∇Wt||aq ||Wt||1−a

q , a = 2
q , employing (39)2,3 we achieve

completely the estimate (75)1.
The initial value is assumed in the following sense:

for all q ∈ (2,∞) and R0 > 0 lim
t→0

||v(t) − v0||Lq(BR0 ) = 0 .

Actually, by virtue of the bounds in L∞-norm stated in (44), choosing μ > 3, we have zero value limit of
F, hÛ and W , and then of ω as in (68)4. Instead, the limit property of U to v0 is ensured by (12).

Finally, we point out that, for all q ∈ (1,∞) and t > 0,

v ∈ W 2,q
�oc (Ω) , vt ∈ Lq

�oc(Ω) and ∇π ∈ Lq(Ω) . (79)

The property (79) is a consequence of the special construction.
To prove the behavior in t claimed in (75)2, we employ the estimates given in Sect. 2, and we take into

account that at t = 0 the behavior of U is predominant over that of the other terms of (77). In contrast,
for large t the behavior of ω becomes predominant over that of the remaining terms in (77).

The integrability on Ω of ∇π is a consequence of the fact that π ≡ πω and of Lemma 22. Instead, the
estimate of π in L∞-norm is a consequence of (73).

The theorem is completely proved. �

5.2. Proof of Theorem1.

For the initial datum v0 ∈ L∞(Ω) that enjoys (2), consider the following decomposition:

v0 = vc
0 + v0c , where vc

0 := (1 − g)v0 + b0 and v0c := gv0 − b0 ,

where, for R > 3diam(R2 −Ω), g is a non-negative smooth cutoff function such that g = 1 for |x| ≤ R+δ
and g = 0 for |x| ≥ 2(R + δ), δ > 0, also b0 is a solution to the Bogovskĭı problem

∇ · b0 = v0 · ∇g in Ω , g = 0 on {|x| = R + δ} ∪ {|x| = 2(R + δ)} .
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We tacitly consider vc
0 extended to zero on R

2−suppvc
0, as well as v0c extended to zero on R

2−suppv0c.
Being in particular v0c ∈ L∞(Ω) ∩ Jq(Ω), by virtue of Corollary 4, there exists a solution (vc, πvc

) to
problem (1) with initial datum v0c enjoying estimates (65).

Since vc
0 ∈ L∞(Ω) verifies the hypotheses of Theorem 4, there exists a solution (vc, πvc) to problem

(1) with initial datum vc
0 enjoying estimates (75).

Thanks to the linearity of the Stokes system, considering v := vc + vc and π := πvc +πvc
, by (v, π) we

solve the value boundary (1), and (v, π) enjoys estimates (3)-(4)1 as a consequence of (65) and (75). The
initial datum is achieved by means of (4)2, which is a consequence of the fact that solution vc enjoys the
limit property from the Lq-theory, and solution vc enjoys the limit property (75).

The limit property at t = 0 allows us to claim that the equation of the divergence is satisfied in weak
form up t = 0.

We conclude the existence result claming that the pointwise estimate (4)3 for the pressure field π is a
consequence of the estimates (73)-(76), for πvc

and πvc , respectively.
For the uniqueness of the solution we consider a pair (u, πu) solution to the homogeneous initial

boundary value problem (1), and enjoying properties (3)-(4)1,3 and (4)2 substituted by, for all R0 > 0,
limt→0 ||u(t)||Lq(Ω∩BR0 ) = 0. The goal is to prove that u = 0. Firstly, we prove that u ∈ L2(Ω) for all
t > 0. Subsequently, we realize the uniqueness. For the first goal we are employing the so called weighted
energy method (in this regard cf. [11]), that goes back to the first results of stability and uniqueness of
solutions in L∞-setting for the IBVP in unbounded domains. We multiply the Stokes equation of (u, πu)
by exp[−α|x|]u(t, x), where α > 0, integrating on (s, t) × Ω, we get a weighted energy inequality:

||u(t) exp[−α

2
|x|]||22 ≤ ||u(s) exp[−α

2
|x|]||22 + α2

t∫

s

||u exp[−α

2
|x|]||22dτ

+ α

t∫

s

||πu exp[−α

2
|x|]||2||u exp[−α

2
|x|]||2dτ.

(80)

Since for all R0 > 0 we have lims→0 ||u(s)||L2(Ω∩BR0 ) = 0, with no difficulty one deduces that the limit for
s → 0 of the first term on the right hand side is null. Instead, thanks to estimate (3) for u and (4) for
the pressure field, which furnishes ||πu exp[−α

2 |x|]||2 ≤ cα−1||v0||∞t−
1
2 −μ , both the integral terms admit

limit in s = 0. Hence, we arrive at

||u(t) exp[−α

2
|x|]||22 ≤ α2

t∫

0

||u exp[−α

2
|x|]||22dτ + α

t∫

0

||πu exp[−α

2
|x|]||2||u exp[−α

2
|x|]||2dτ. (81)

The validity of (80)-(81) allows us to apply Corollary 3 related to the Gronwall inequality that furnishes

||u(t) exp[−α

2
|x|]||2 ≤ exp

[
α2t

]
α

t∫

0

||πu exp[−α

2
|x|]||2dτ .

Recalling the above estimate for the pressure field, applying the Beppo-Levi theorem, we deduce

||u(t)||2 ≤ c||v0||∞t
1
2 −μ , for all t > 0 .

This last easily leads to discuss the uniqueness in L2-setting. The theorem is completely proved. �
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