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Abstract. We introduce a concept of dissipative measure-valued martingale solution to the stochastic Euler equations describ-
ing the motion of an inviscid incompressible fluid. These solutions are characterized by a parametrized Young measure and
a concentration defect measure in the total energy balance. Moreover, they are weak in the probabilistic sense i.e., the
underlying probability space and the driving Wiener process are intrinsic parts of the solution. We first exhibit the rel-
ative energy inequality for the incompressible Euler equations driven by a multiplicative noise and then demonstrate the
pathwise weak-strong uniqueness principle. Finally, we also provide a sufficient condition, á la Prodi (Ann Mat Pura Appl
48:173–182, 1959) and Serrin (in: Nonlinear problems, University of Wisconsin Press, Madison, Wisconsin, pp 69–98, 1963),
for the uniqueness of weak martingale solutions to the stochastic Navier–Stokes system in the class of finite energy weak
martingale solutions.
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1. Introduction

In this paper, we introduce a notion of dissipative measure-valued solution for the stochastically forced
system of the incompressible Euler system describing the velocity vector field u of a fluid and the scalar
pressure field p. The system of equations read

⎧
⎪⎨

⎪⎩

du(t, x) + [div(u(t, x) ⊗ u(t, x)) + ∇p(t, x)] dt = G(u(t, x)) dW (t), in ΠT ,

divu(t, x) = 0, in ΠT ,

u(0, x) = u0(x), in T
3,

(1.1)

where ΠT := T
3 × (0, T ) with T > 0 fixed, u0 is the given random initial function with sufficient spatial

regularity to be specified later. Let
(
Ω,F,P, (Ft)t≥0

)
be a stochastic basis, where

(
Ω,F,P

)
is a probability

space and (Ft)t≥0 is a complete filtration with the usual assumptions. We assume that W is a cylindrical
Wiener process defined on the probability space (Ω,F,P), and the coefficient G is generally nonlinear and
satisfies suitable growth assumptions (see Sect. 2 for the complete list of assumptions). In particular, the
map u �→ G(u) is a Hilbert space valued function signifying the multiplicative nature of the noise.

The Euler Eq. (1.1) are the classical model for the motion of an inviscid, incompressible fluid. The
presence of stochastic term in the governing equations accounts for numerical, physical, and empirical
uncertainties in various real-life applications. The theory for the deterministic counterpart of (1.1) has
experienced substantial progress in the past decade and has reached some level of maturity thanks to
pioneering work by De Lellis and Szekelyhidi [16,17]. In a nutshell, these results show that for suitable
(a large class of) initial data there are infinitely many weak solutions, even if the solution satisfies an
entropy condition. Indeed, it was Scheffer [34] (see also [36]) who first constructed a nontrivial weak
solution of the two-dimensional incompressible Euler equations with compact support in time. In other
words, recent results by De Lellis and Szekelyhidi, and others [9,10,13] suggest that non-uniqueness of
weak solutions to incompressible Euler equations in several space dimensions is a fact of life. However,
for general initial data, the existence of global-in-time weak solutions is still unknown. In the quest for a
global-in-time solution, we recall the framework of measure-valued solutions, as introduced by DiPerna
and Majda [19] (see also [18]) for the incompressible Euler equations. Despite being a weaker notion of
solution, thanks to the work by Brenier et al. [8], it is well-known that these measure-valued solutions
of incompressible Euler equations enjoy a remarkable weak-strong uniqueness property. Moreover, recent
work by Szekelyhidi and Wiedemann [38] confirms that the notions of weak solutions and measure-valued
solutions coincide for the incompressible Euler equations.

In the stochastic set-up, the existence of pathwise strong solutions (defined up to a stopping time) for
incompressible Euler Eq. (1.1) driven by a multiplicative noise, in a three-dimensional smooth bounded
domain, was established by Glatt-Holtz and Vicol [23]. Moreover, a stochastic variant of deterministic
results, as developed by Buckmaster and Vicol [9,10], for the stochastic incompressible Euler system
have been recently established by Hofmanova et al. [25]. In fact, by making use of the method of convex
integration, they have constructed infinitely many solutions to the incompressible Euler system with a
random forcing. Note that although measure-valued solution for the deterministic counterpart of (1.1)
has a long and intense history (see Lions [30]), their formulation seems rather intricating in the stochastic
setting (specially in the multiplicative noise case). Indeed, there have been several attempts to define
a suitable notion of measure-valued solutions for the stochastic incompressible Euler equations driven
by additive noise, starting from the work of Kim [27], Breit and Moyo [5], and most recently by Hof-
manova et al. [25], where the authors introduced a class of dissipative solutions which allowed them to
demonstrate weak-strong uniqueness property and non-uniqueness of solutions in law. However, none of
the above-mentioned frameworks can be applied directly to (1.1) since the driving noise is multiplicative
in nature.

In this paper, our first objective is to introduce a novel framework of dissipative measure-valued
solution for incompressible Euler Eq. (1.1) driven by a multiplicative stochastic perturbation of Nemyt-
skii type, which will facilitate to demonstrate weak-strong uniqueness principle. In general, weak-strong
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uniqueness property can be used to establish convergence of numerical schemes [11,12,21], and conver-
gence of various singular limits [24,30]. Note that dissipative measure-valued solutions are measure-valued
solutions of (1.1) augmented with an appropriate form of energy inequality (see Definition 2.15 for the
details). Note that a similar type of energy inequality was also considered in [5,25]. However, since we
are working with a general multiplicative noise, our energy inequality differs from that of [5,25]. The
main advantage of this class of solutions is that, for any finite energy initial data, they can be shown
to exist globally in time. The existence of such solutions is addressed through the well-known vanishing
viscosity method with the help of a stochastic compactness argument combining Prohorov theorem, and
Skorokhod–Jakubowski [26] representation theorem. In other words, measure-valued solutions for (1.1)
are obtained through a sequence of solutions of Navier–Stokes system subject to stochastic forcing given
by

duε + [div(uε ⊗ uε) + ∇pε] dt = ε Δuε dt + G(uε) dW,

divuε = 0. (1.2)

There is a vast literature on the mathematical theory for stochastic perturbations of Navier–Stokes
Eq. (1.2), being first initiated by Flandoli and Gatarek [22] (see also [15]), where the global-in-time
existence of a weak martingale solution is shown. From the PDE standpoint, these solutions are weak,
i.e., derivatives only exist in the sense of distributions, and from a probabilistic point of view, these
solutions are also weak in the sense that the driving noise and associated filtration are part of the
solution.

The primary difficulty, in comparison to existing works [5,27], lies in the successful identification (in
the limit) of martingale term involving nonlinear noise coefficient, which in turn plays a pivotal role in
the proof of weak (measure-valued)-strong uniqueness principle. Indeed, since the martingale solutions of
approximate Eq. (1.2) are not unique, associated filtration depends on the approximation parameter ε,
and passing to the limit in martingale term seems delicate. We can only establish that the limit object
is a martingale, without knowing its explicit structure. However, a key observation reveals that the
information on the cross variation of a martingale solution with a strong solution is sufficient to exhibit
the weak-strong uniqueness property. This observation is encoded in the Definition 2.15, by stipulating
the correct cross variation between a martingale measure-valued solution and a given smooth process.
The cross variation term resembles “noise-noise” interaction term appears in “doubling of variables”
argument, à la Kružkov, see [2–4,28,29]. Recently, a concept of dissipative measure-valued solutions to
stochastic compressible Euler equations has been introduced by Hofmanova et al. [24] and it is used to
prove convergence of numerical schemes for stochastic compressible/incompressible Euler equations by
Chaudhary et al. [11,12]. However, the present work differs significantly from [11,24], due to the inherent
challenges posed by the divergence-free condition associated with (1.1).

Our second objective is to display a sufficient condition for the uniqueness of weak martingale solutions
to stochastic Navier–Stokes Eq. (1.2) in a class of finite energy weak martingale solutions. Note that the
uniqueness of (Leray-Hopf) weak solutions for the deterministic counterpart of (1.2) is an outstanding
open problem. Therefore, there has been growing interest in searching for sufficient conditions for the
uniqueness of weak solutions, starting with the celebrated works by Prodi [33] and Serrin [35]. Due to the
limitations of general uniqueness result in the stochastic set-up also, we follow Prodi and Serrin (see also
Wiedemann [39]) to provide a sufficient condition for uniqueness by exploiting the weak-strong uniqueness
property of solutions to stochastic incompressible Navier–Stokes Eq. (1.2).

A brief description of the organization of the rest of this paper is as follows: Sect. 2 outlines all relevant
underlying mathematical/technical frameworks and a list of conditions imposed on noise coefficient. We
then describe solution concepts and display the main results. In Sect. 3, we establish a priori estimates
and demonstrate the convergence of approximate solutions, using stochastic compactness, to show the
existence of dissipative measure-valued martingale solutions to (1.1). In light of a suitable relative energy
inequality for incompressible Euler system (1.1), we establish weak (measure-valued)—strong uniqueness
principle for (1.1) in Sect. 4, while in Sect. 5, we provide a sufficient condition for uniqueness of weak
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martingale solutions to stochastic incompressible Navier–Stokes Eq. (1.2), under additional conditions on
weak martingale solutions.

2. Technical Framework and Main Results

In this section, we recapitulate some of the relevant mathematical tools to be used in the subsequent
analysis and state the main results of this paper. To begin with, we fix an arbitrarily large time horizon T >
0. Throughout this paper, we use the letters C, K, etc. to denote various generic constants independent
of approximation parameters, which may change line to line along the proofs. Explicit tracking of the
constants could be possible but it is cumbersome and avoided for the sake of the reader.

2.1. Analytic Framework

Let us denote the Sobolev space Hs(T3), for s ∈ R, as the set of tempered distributions for which the
norm

‖u‖2Hs(T3) :=
∑

n∈Z3

(
1 + |n|2s

)|û(n)|2,

is finite. Here û denotes the Fourier transform of u. Let C∞
div(T

3) and L2
div(T

3) be the spaces of infinitely
differentiable 3-dimensional vector fields u on T

3 satisfying ∇· u = 0, and closure of C∞
div(T

3) with respect
to L2-norm respectively. In other words,

C∞
div(T

3) :=
{

ϕ ∈ C∞(T3) : ∇ · ϕ = 0
}

,

L2
div(T

3) :=
{

ϕ ∈ L2(T3) : ∇ · ϕ = 0
}

.

In a similar fashion, we denote by Hα
div(T

3) the closure of C∞
div(T

3) in Hα(T3;R3), for α ≥ 0. Identifying
L2
div(T

3) with its dual space (L2
div(T

3))′ and identifying (L2
div(T

3))′ with a subspace of H−α(T3)(the dual
space of Hα(T3)), we have Hα

div(T
3) ⊂ L2

div(T
3) ⊂ H−α

div (T3), and we can denote the dual pairing between
Hα

div and H−α
div by 〈·, ·〉α when no confusion may arise, see [22]. If f and g are two measurable functions

such that f · g ∈ L1(T3), then we denote 〈f ,g〉 =
∫

T3 f · g dx.

Moreover, we set D(A) := H2
div(T

3), and define the linear operator A : D(A) ⊂ L2
div(T

3) → L2
div(T

3)
by Au = −Δu. We then define the bilinear operator B(u, v) : H1

div × H1
div → H−1

div as

〈B(u,v), z〉1 :=
∫

T3
z(x) · (u(x) · ∇)v(x)dx, for all z ∈ H1

div(T
3).

Note that the bilinear operator B can be extended to a continuous operator

B : L2
div(T

3) × L2
div(T

3) → D(A−α) = H−2α
div ,

for certain α > 1, for details consult [22]. A straightforward computation using incompressibility condi-
tion reveals that

〈B(u,v), z〉2α = −〈B(u, z),v〉2α = −〈u ⊗ v,∇z〉2α, (2.1)

for all u,v ∈ H1
div(T

3) and z ∈ C∞
div(T

3).
An important consequence of elliptic theory is the existence of the Helmholtz decomposition. It allows

to decompose any vector-valued function in L2(T3;R3) into a divergence free part and a gradient part.
In other words, we have the following decomposition

L2(T3) = L2
div(T

3) ⊕ (L2
div(T

3))⊥,

where we denote

(L2
div(T

3))⊥ :=
{
u ∈ L2(T3;R3) |u = ∇ψ, ψ ∈ H1(T3;R)

}
.
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The Helmholtz decomposition is defined by

u = PHu + QHu, for any u ∈ L2(T3),

where PH denotes the projection operator from L2(T3) to L2
div(T

3), and QH := Id − PH denotes the
projection operator from L2(T3) to (L2

div(T
3))⊥. Note that this decomposition is orthogonal with respect

to L2(T3)-inner product. By property of projection operator PH , we have for u ∈ L2(T3)

〈PHu,v〉 = 〈u,v〉, for all v ∈ L2
div(T

3), (2.2)

Finally, we recall a compact embedding result from Flandoli and Gatarek [22, Theorem 2.2]. To state the
result, let us first denote K to be a separable Hilbert space. Given q > 1, γ ∈ (0, 1), let W γ,q(0, T ;K)
denotes a K-valued Sobolev space which is characterized by its norm

‖u‖q
W γ,q(0,T ;K) :=

∫ T

0

‖u(t)‖q
K dt +

∫ T

0

∫ T

0

‖u(t) − u(s)‖q
K

|t − s|1+qγ
dt ds.

The following compact embedding result follows from Flandoli and Gatarek [22, Theorem 2.2].

Lemma 2.1. If H1 ⊂ H2 are two Banach spaces with compact embedding, and real numbers γ ∈ (0, 1),
q > 1 satisfy γq > 1, then the embedding

W γ,q(0, T ;H1) ⊂ C([0, T ];H2)

is compact.

2.1.1. Young Measures, Concentration Defect Measures. In this subsection, we briefly recall the notion
of Young measures and related results used in this manuscript. For a detailed overview on this topic, we
refer to the monograph by Attouch et al. [1]. To begin with, let us denote by Mb(F ), the space of regular
signed Borel measures with finite total variation on locally compact Hausdorff space F equipped with
the norm given by the total variation of measures. It is well-known that it is the dual space to the space
of continuous functions vanishing at infinity C0(F ) with respect to the supremum norm. Moreover, let
us denote by P(F ), the space of probability measures on F .

To define Young measure, let us first fix a sigma finite measure space (Y,N , μ). A Young measure
from Y into R

P is a weakly-∗ measurable function V : Y → P(RP ). In other words, the map y → Vy(S)
is N -measurable for every Borel set S in R

P . For our purpose, let us recall the following probabilistic
generalization of the well-known classical result on Young measures. For a proof, we refer to the monograph
by Breit et al. [7, Sect. 2.8].

Lemma 2.2. Let P,Q ∈ N, and D ⊂ R
Q × (0, T ) be a domain. Let (Vm)m∈N, Vm : Ω × D → R

P , be a
sequence of random variables such that

E

[
‖Vm‖p

Lp(D)

]
≤ C, for a certain p ∈ (1,∞).

Then, on the complete probability space
(
[0, 1],B[0, 1], P̃ := LR

)
, there exists a new subsequence (Ṽm)m∈N

(not relabeled) and a family {Ṽω
x }x∈D of parameterized random probability measures on R

P . These random
probability measures can be treated as random variables taking values in

(
L∞

w∗(D;P(RP )), w∗). Moreover,
the random variables Vm has the same law as Ṽm, i.e. Vm ∼d Ṽm, and the following property holds:
given any Carathéodory function H = H(x,Z), x ∈ D, Z ∈ R

P ,1such that

|H(x,Z)| ≤ C(1 + |Z|q), 1 ≤ q < p, uniformly in x,

implies LR almost surely,

H(·, Ṽm) ⇀ H in Lp/q(D), where H(x) = 〈Ṽω
x ;H(x, u)〉, for a.e. x ∈ D,

1i.e. H is measurable with respect to first variable and continuous with respect to second variable.
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where we have used the notation 〈V̄ω
x ;H(x,u)〉 :=

∫

RP H(x,u)dV̄ω
x (u) for almost every x ∈ D. Usually,

Young measure theory plays an important role while extracting limits of bounded continuous functions.
However, in our context, we have to deal with a nonlinear function H which may not be continuous,
enjoying instead the following bound

E

[
‖H(Vm)‖p

L1(D)

]
≤ C, for a certain p ∈ (1,∞), uniformly in m.

In fact, in this situation, it is customary to embed the function space L1(D) into the space Mb(D) to
characterize the limit object. Indeed, we can infer that P̃-a.s.

weak-* limit in Mb(D) of H(Vm) = 〈Ṽω
x ;H(v)〉 dx + H∞,

where H∞ ∈ Mb(D), and H∞ is called concentration defect measure (or concentration Young measure).
It is worth noting that, P̃-a.s. 〈Ṽω

x ;H(v)〉 is finite for a.e. x ∈ D, thanks to a classical truncation error
analysis and Fatou’s lemma which yield ‖〈Ṽω

x ;H(v)〉‖L1(D) ≤ C, P̃ almost surely. For our purpose, we shall
repeatedly use the following crucial lemma concerning the concentration defect measure. A proof of this
lemma can be furnished, modulo cosmetic changes, using the same arguments given by Feireisl et al. [20,
Lemma 2.1].

Lemma 2.3. Let {Vm}m>0, Vm : Ω × D → R
P be a sequence generating a Young measure {Vω

y }y∈D,
where D is a measurable set in R

Q × (0, T ). Let H1 : RP → [0,∞) be a continuous function such that

sup
m>0

E

[
‖H1(Vm)‖p

L1(D)

]
< +∞, for a certain p ∈ (1,∞),

and let H2 be a continuous function such that

H2 : RP → R, |H2(z)| ≤ H1(z), for all z ∈ R
P .

Let us denote P-a.s.

H1
∞ := H̃1 − 〈Ṽω

y ;H1(v)〉 dy, H2
∞ := H̃2 − 〈Ṽω

y ;H2(v)〉 dy.

Here H̃1, H̃2 ∈ Mb(D) are weak-∗ limits of {H1(Vm)}m>0, {H2(Vm)}m>0 respectively in Mb(D). Then
|H2

∞| ≤ H1
∞ almost surely. Here |H2

∞| denotes the total variation measure of H2
∞.

2.2. Basics of Stochastic Framework

Here we briefly recall some aspects of the theory of stochastic analysis which are pertinent to the present
work. We start by fixing a stochastic basis (Ω,F, (Ft)t≥0,P,W ) with a complete, right-continuous fil-
tration. Here (Ω,F,P) is a complete probability space, and the stochastic process W is a cylindrical
(Ft)-Wiener process defined on an auxiliary separable Hilbert space U. It is formally given by the expan-
sion

W (t) =
∑

k≥1

ekWk(t),

where the elements {Wk}k≥1 are a sequence of mutually independent one dimensional standard Brownian
motions relative to (Ft)t≥0 and {ek}k≥1 is a complete orthonormal basis of U. Let H be a Hilbert space.
Recall that L2(U,H) contains all bounded linear operators A ∈ L(U,H) such that

‖A‖2L2(U,H) :=
∞∑

k=1

‖Aek‖2H <∞.

To define the stochastic integral featured in (1.1), for each u ∈ L2(T3;R3), we introduce a mapping
G(u) : U → L2(T3;R3) given by

G(u)ek = Gk(u(·)).
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In particular, we suppose that the coefficients Gk : R3 → R
3 are C1-functions that satisfy the following

conditions: for every ξ, ζ ∈ R
3

∑

k≥1

|Gk(ξ)|2 ≤ D0(1 + |ξ|2), (2.3)

∑

k≥1

|Gk(ξ) − Gk(ζ)|2 ≤ D1|ξ − ζ|2. (2.4)

The assumption (2.3) imposed on G implies that

G : L2(T3;R3) → L2(U;L2(T3;R3)),

where L2(U;L2(T3;R3)) denotes the space of Hilbert–Schmidt operators from U to L2(T3;R3). Thus,
given a predictable process u ∈ L2(Ω;L2(0, T ;L2(T3;R3))), the stochastic integral

∫ t

0

G(u) dW =
∑

k≥1

∫ t

0

Gk(u) dWk

is a well-defined (Ft)-martingale taking values in L2(T3;R3); see [7, Sect. 2.3] for a detailed construction.
Finally, since W (t) =

∑
k≥1 ekWk(t) does not converge in U, we define the auxiliary space U0 ⊃ U via

U0 :=
{

v =
∑

k≥1

βkek;
∑

k≥1

β2
k

k2
< ∞

}

,

according to the norm

‖v‖2U0
=
∑

k≥1

β2
k

k2
, v =

∑

k≥1

βkek.

Observe that the embedding U ↪→ U0 is Hilbert–Schmidt. Moreover, the trajectories of the Brownian
motion W are almost surely in C([0, T ];U0), thanks to a standard martingale argument.

In order to state the existence of pathwise strong solution for stochastic incompressible Euler equations,
we next describe the conditions imposed on the diffusion coefficient G. For details, we refer to the paper
by Glatt-Holtz and Vicol [23]. Although the below-mentioned conditions appear to be rather involved,
they cover many realistic stochastic models. In what follows, let us denote by L2(U;R), the usual space
of Hilbert–Schmidt operators from U to R, and for p ≥ 2,m ≥ 0, define

L
m,p =

{

σ : T3 → L2(U;R)
∣
∣
∣σk(·) = σ(·)ek ∈ Wm,p(T3), and

∑

|β| ≤ m

∫

T3
‖∂βσk‖p

L2(U;R) dx<∞
}

,

which is a Banach space endowed with the norm

‖σ‖p
Lm,p :=

∑

|β|≤ m

∫

T3
‖∂βσ‖p

L2(U;R) dx =
∑

|β|≤ m

∫

T3

(
∑

k≥1

|∂βσk|2
)p/2

dx.

Note that here Wm,p(T3) denotes the well-known Sobolev space, i.e., the space of functions for which the
norm

‖w‖p
W m,p(T3) :=

∑

|α|≤m

‖∂αw‖p
Lp(T3) is finite.

Consider any pair of Banach spaces X,Y such that X ⊂ L∞(T3). In what follows, L∞(T3) norm of any
x ∈ X is denoted by ‖x‖∞. For an increasing, locally bounded function γ(·) ≥ 1, we denote the space of
locally bounded maps

Bndu,loc(X,Y ) :=
{

G ∈ C(X;Y ) : ‖G(x)‖Y ≤ γ(‖x‖∞)(1 + ‖x‖X), ∀x ∈ X

}

.
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In addition, we also define the space of locally Lipschitz functions,

Lipu,loc(X,Y ) =
{

G ∈ Bndu,loc(X,Y ) : ‖G(x) − G(y)‖Y ≤ γ
(
‖x‖∞ + ‖y‖∞

)
‖x − y‖X ,∀x, y ∈ X

}

For the statement of local pathwise existence result (cf. Theorem 2.9), we shall fix p ≥ 2 and an integer
m> 3/p + 1, and suppose that

G ∈ Lipu,loc(L
p(T3),L0,p) ∩ Lipu,loc(W

m+1,p(T3),Lm+1,p) ∩ Lipu,loc(W
m+5,2(T3),Lm+5,2). (2.5)

Relating to the convergence of approximate solutions, strong convergence in ω variable plays a pivotal
role. To that context, we need the Skorokhod embedding theorem, delivering a new probability space and
new random variables, with the same laws as the original ones, converging almost surely. However, for
technical reasons, we have to use a modified version of the classical Skorokhod embedding theorem [32,
Corollary 2] which is stated below.

Theorem 2.4. Let (Ω,F ,P) be a probability space and H1 be a separable complete metric space. Let H2 be
a quasi-Polish (topological) space (i.e., there is a sequence of continuous functions hn : H2 → [−1, 1] that
separates points of H2). Assume that B(H1) ⊗ H2 is a sigma algebra associated with the product space
H1 × H2, where H2 is the sigma algebra generated by the sequence of continuous functions {hn}∞

n=1. Let
Un : Ω → H1 × H2, n ∈ N, be a family of random variables, such that the sequence {Law(Un) : n ∈ N}
is weakly convergent on H1 × H2. For k = 1, 2, let πi : H1 × H2 be the projection onto Hi, i.e.,

U = (U1, U2) ∈ H1 × H2 �→ πi(U) = Ui ∈ Hi.

Finally, let us assume that there exists a random variable X : Ω → H1 such that Law(π1(Un)) =
Law(X), ∀n ∈ N. Then, there is a probability space (Ω̃, F̃ , P̃), a family of H1 × H2-valued random
variables {Ũn : n ∈ N}, on (Ω̃, F̃ , P̃) and a random variable Ũ : Ω̃ → H1 × H2 such that

(a) Law(Ũn) = Law(Un), ∀n ∈ N;
(b) Ũn → Ũ inH1 × H2, P − a.s.
(c) π1(Ũn)(w̃) = π1(Ũ)(w̃), ∀ w̃ ∈ Ω̃.

Finally, we recall the celebrated Kolmogorov continuity thereom related to the existence of continuous
modifications of stochastic processes.

Lemma 2.5. Let Z = {Z(t)}t∈[0,T ] be a real-valued stochastic process defined on a complete filtered prob-
ability space (Ω,F, (Ft)t≥0,P). Suppose that there are constants a > 1, b > 0, and C > 0 such that for all
s, t ∈ [0, T ],

E[|Z(t) − Z(s)|a] ≤ C|t − s|1+b.

Then there exists a continuous modification of the stochastic process Z and the paths of Z are c-Hölder
continuous, for every c ∈ [0, b

a ).

2.3. Stochastic Incompressible Euler Equations

As we mentioned before, we are primarily interested in establishing a weak (measure-valued)—strong
uniqueness principle for dissipative measure-valued solutions to (1.1). Since such an argument requires
the existence of a strong solution, we first recall the notion of a local strong pathwise solution for stochastic
incompressible Euler equations. We remark that such a solution can be constructed on any given stochastic
basis, that is, solutions are probabilistically strong, and it satisfies the underlying Eq. (1.1) pointwise
(not only in the sense of distributions), that is, solutions are also strong from the PDE standpoint. The
existence of such a solution was first established by Glatt-Holtz and Vicol [23].
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Definition 2.6 (Local strong pathwise solution). Let (Ω,F, (Ft)t≥0,P) be a stochastic basis with a com-
plete right-continuous filtration, and W be an (Ft)-cylindrical Wiener process. Suppose that p ≥ 2, and
m> 3/p + 1. Moreover, let u0 be a Wm,p

div (T3)-valued F0-measurable random variable, and let G satisfies
(2.5). Then (u, t) is said to be a local strong pathwise solution to the system (1.1) provided
(a) t is an a.s. strictly positive (Ft)-stopping time;
(b) the velocity u is a Wm,p

div (T3)-valued (Ft)-predictable measurable process satisfying

u(· ∧ t) ∈ C([0, T ];Wm,p
div (T3)) P-a.s.;

(c) for all t ≥ 0,

u(t ∧ t) = u0 −
∫ t∧t

0

PH(u · ∇u)ds +
∫ t∧t

0

PHG(u) dW. (2.6)

Remark 2.7 By the property of Projection operator (2.2), we can recast the item (c) in Definition 2.6 as
follows:
(c′) for all t ∈ [0, T ],

〈u(t ∧ t), ψ〉 = 〈u0, ψ〉 −
∫ t∧t

0

〈u · ∇u, ψ〉ds +
∫ t∧t

0

〈G(u), ψ〉 dW, (2.7)

for all ψ ∈ C∞
div(T

3).

It is evident that classical solutions require spatial derivatives of the velocity field u to be continuous
P-a.s. This motivates the following definition.

Definition 2.8 (Maximal strong pathwise solution). Fix an initial datum, and a complete stochastic basis
with a cylindrical Wiener process as in Definition 2.6. Then a triplet

(u, (τL)L∈N, t)

is said to be a maximal strong pathwise solution to system (1.1) provided
(a) t is an a.s. strictly positive (Ft)-stopping time;
(b) (τL)L∈N is an increasing sequence of (Ft)-stopping times such that τL < t on the set [t < T ],

lim
L→∞

τL = t a.s. and

sup
t∈[0,τL]

‖u(t)‖W 1,∞(T3) ≥ L on [t < T ]; (2.8)

(c) each pair (u, τL), L ∈ N, is a local strong pathwise solution in the sense of Definition 2.6.

In view of the above definitions, we are now in a position to state relevant existence theorems. For a
proof, we refer to the work by Glatt-Holtz and Vicol [23].

Theorem 2.9 (Local existence for nonlinear multiplicative noise). Let (Ω,F, (Ft)t≥0,P) be a stochastic
basis with a complete right-continuous filtration. Suppose that p ≥ 2, and m> 3/p + 1. Let W be an
(Ft)-cylindrical Wiener process and u0 be a Wm,p

div (T3)-valued F0-measurable random variable, and let G
satisfies (2.5). Then there exists a unique maximal strong pathwise solution (u, (τL)L∈N, t) of (1.1) in the
sense of Definition 2.8.

2.4. Stochastic Incompressible Navier–Stokes Equations

There is a large and intense literature concerning the incompressible Navier–Stokes equations driven
by noise, starting with the work by Flandoli and Gatarek [22] where the authors proved the existence
of weak martingale solutions to (1.2). As expected, these solutions are weak in both analytical and
probabilistic sense. However, to prove the existence of dissipative measure-valued solutions for stochastic
Euler equations, we first need to introduce the concept of finite energy weak martingale solutions to (1.2).
Note that such solutions exist globally in time, and the time evolution of the energy for such solutions
can be controlled in terms of their initial state.
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Definition 2.10 (Finite energy weak martingale solution). Let Λε be a Borel probability measure on
L2
div(T

3). Then
[(

Ωε,Fε, (Fε,t)t≥0,Pε

)
;uε,Wε

]
is a weak martingale solution of (1.2) if

(a)
(
Ωε,Fε, (Fε,t)t≥0,Pε

)
is a stochastic basis with a complete right-continuous filtration,

(b) Wε is a (Fε,t)-cylindrical Wiener process,
(c) the velocity field uε is L2

div(T
3)-valued progressively measurable process and P−a.s.

u(·, ω) ∈ C([0, T ];H−2α
div (T3)) ∩ L∞(0, T ;L2

div(T
3)) ∩ L2(0, T ;H1

div(T
3))

(d) Λε = Pε ◦ [uε(0)
]−1,

(e) for all ϕ ∈ H2α
div(T

3), we have

〈uε(t),ϕ〉2α = 〈uε(0),ϕ〉2α −
∫ t

0

〈B(uε(s),uε(s)),ϕ〉2α ds + ε

∫ t

0

〈Δuε(s) ,ϕ〉2αds

+
∫ t

0

〈PHG(uε),ϕ〉2α dW

(2.9)

P-a.s. for all t ∈ [0, T ],
(f) the energy inequality

−
∫ T

0

∂tφ

∫

T3

1
2
|uε|2 dxdt + ε

∫ T

0

φ

∫

T3
|∇xuε|2 dxdt

≤ φ(0)
∫

T3

1
2
|uε(0)|2 +

∞∑

k=1

∫ T

0

φ

(∫

T3
PHGk(uε) · uε dx

)

dWk

+
1
2

∞∑

k=1

∫ T

0

φ

∫

T3
|PHGk(uε)|2 dt (2.10)

holds P-a.s., for all φ ∈ C∞
c ([0, T )), φ ≥ 0.

Remark 2.11 Note that in view of Skorohod [37], it is possible to consider,
(
Ωε,Fε,Pε

)
=
(
[0, 1],B([0, 1]),LR

)
,

for every ε. Moreover, we may assume the existence of a common Wiener space W for all ε, thanks to a
classical compactness argument applied to any chosen subsequence {εn}n∈N

at once. However, it is worth
noticing that, it may not be possible to obtain a filtration that is independent of ε, due to the lack of
pathwise uniqueness for the underlying system.

Remark 2.12 By using property (2.1)–(2.2), we can recast the item (e) in Definition 2.10 as
(e′) For all ϕ ∈ C∞

div(T
3),

〈uε(t),ϕ〉 = 〈uε(0),ϕ〉 +
∫ t

0

〈uε ⊗ uε(s),∇xϕ〉ds − ε

∫ t

0

〈∇xuε(s) ,∇xϕ〉ds

+
∫ t

0

〈G(uε),ϕ〉dW

(2.11)

holds P-a.s., for all t ∈ [0, T ].

Regarding the existence of finite energy martingale solutions, one may follow the arguments given by
Flandoli and Gatarek [22] to obtain the following result.

Theorem 2.13 (Existence of martingale solution for Navier–Stokes system). Assume that Λε is a Borel
probability measure on L2

div(T
3) such that the following moment estimate

∫

L2
div(T

3)

‖u‖p
L2

div(T
3)

dΛε(u) < ∞,
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holds for all 1 ≤ p < ∞. Moreover, assume that (2.3) and (2.4) hold. Then there exists a finite energy
weak martingale solution of (1.2) in the sense of Definition 2.10 with initial law Λε.

Proof Existence proof for a weak martingale solution follows from the work of Flandoli and Gatarek [22].
To prove the energy inequality, one may simply apply the Itô formula to obtain the item (f) of Defini-
tion 2.10. Indeed, this is very similar to the recent works on compressible fluids, see Breit et al. [7]. The
details are left to the interested reader. �

Remark 2.14 (A different form of energy inequality). It is well-known that one can establish the weak-
strong uniqueness principle only in the class of dissipative weak solutions, i.e., weak solutions satisfying
an appropriate energy inequality. To that context, we make use of a different form of energy inequality
for the proof of weak-strong uniqueness related to the incompressible Navier–Stokes equations. First
observe that, in view of a standard cut-off argument applied to (2.10), energy inequality holds for a.e.
0 ≤ s< t ∈ (0, T ) :
∫

T3

1
2
|uε(t)|2 dx + ε

∫ t

s

∫

T3
|∇xuε|2 dxds

≤
∫

T3

1
2
|uε(s)|2 dx +

∞∑

k=1

∫ t

s

(∫

T3
PHGk(uε) · uε dx

)

dWk +
1
2

∞∑

k=1

∫ t

s

∫

T3
|PHGk(uε)|2 ds. (2.12)

It follows from (2.12) that the limits

ess lim
τ→s+

∫

T3

1
2
|u(τ)|2 dx, ess lim

τ→t−

∫

T3

1
2
|u(τ)|2 dx

exist P-a.s. for a.a. 0 ≤ s ≤ t ≤ T including s = 0. Finally, in view to the weak lower-semicontinuity of
convex functionals, we have for any t ∈ [0, T ) P-a.s.

lim inf
τ→t−

∫

T3

1
2
|u(τ)|2 dx ≥

∫

T3

1
2
|u(t)|2 dx

By making use of the above informations, relative energy inequality (2.12) can be rewritten as
∫

T3

1
2
|uε(t)|2 dx + ε

∫ t

0

∫

T3
|∇xuε|2 dxds

≤
∫

T3

1
2
|uε(0)|2 dx +

∞∑

k=1

∫ t

0

(∫

T3
PHGk(uε) · uε dx

)

dWk +
1
2

∞∑

k=1

∫ t

0

∫

T3
|PHGk(uε)|2 ds

(2.13)

holds P-a.s., for all t ∈ [0, T ].

2.5. Measure-Valued Martingale Solutions

In general, in view of the energy inequality (2.13), solutions to the incompressible Navier–Stokes equations
have only uniform energy bound, usually in L2(T3). However, such a priori bound does not guarantee
weak convergence of nonlinear terms u ⊗ u,G2(u) ∈ L1(T3), due to the presence of oscillations and
concentration effects. In this scenario, one can only identify weak limits (corresponding to nonlinear
terms) as a combination of Young measure and concentration measure.

Note that the Young measures, which are probability measures on the phase space, capture oscillations
in the solution. On the other hand concentration defect measures, which are measures on physical space–
time, account for blow-up type collapse due to possible concentration points. In what follows, we use two
different forms of concentration defect measures. To illustrate the difference, we consider the following
situation:

• Let vε converges weakly in L2(T3) to a function v, and we assume that
∫

T3 |vε|2 dx ≤ C.
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Inspired by Banach–Alaoglu theorem, one can define a defect measure—which is a non-negative Radon
measure, as

μ1 := Weak -* lim
ε→0

(
|vε|2 − |v|2

)
∈ M+

b (ΠT ).

In a similar fashion, by making use of Young measure theory, one can define another defect measure μ2

as

μ2 := Weak -* lim
ε→0

(
|vε|2 − 〈Vt,x(λ); |λ|2〉

)
∈ M+

b (ΠT ).

It is well-known that μ1 is too large to describe concentration effects in a useful way, while the main
advantage of the concentration defect measure μ2 is that it allows to describe weak limits in terms of the
Young measure. It is easy to see that, thanks to Hölder inequality, μ2 ≤ μ1. We shall make use of both
forms of concentration defect measures below to define a notion of a measure-valued solution.

2.5.1. Dissipative Measure-Valued Martingale Solutions. Keeping in mind the previous discussion, we
are ready to introduce the concept of dissipative measure-valued martingale solution to the stochastic
compressible Euler system. In what follows, let S = R

3 be the phase space associated to the incompressible
Euler system. We also denote by A : B the scalar product

∑
i,j aijbij between two matrices A = (aij)

and B = (bij) of same size.

Definition 2.15 (Dissipative measure-valued martingale solution). Let Λ be a Borel probability measure
on L2

div(T
3). Then

[(
Ω,F, (Ft)t≥0,P

)
;Vω

t,x,W
]

is a dissipative measure-valued martingale solution of (1.1),
with initial condition Vω

0,x, if

(a) Vω is a random variable taking values in the space of Young measures on L∞
w∗
(
[0, T ] × T

3;P(S)
)
.

In other words, P-a.s. Vω
t,x : (t, x) ∈ [0, T ] × T

3 → P(S) is a parametrized family of probability
measures on S,

(b)
(
Ω,F, (Ft)t≥0,P

)
is a stochastic basis with a complete right-continuous filtration,

(c) W is a (Ft)-cylindrical Wiener process in U,
(d) the average velocity 〈Vω

t,x;u〉2 satisfies, for any ϕ ∈ C∞
div(T

3), t �→ 〈〈Vω
t,x;u〉(t, ·),ϕ〉 ∈ C[0, T ], P-a.s.,

the function t �→ 〈〈Vω
t,x;u〉(t, ·),φ〉 is progressively measurable, and for any ϕ ∈ C1(T3),

∫

T3
〈Vω

t,x;u〉 · ∇xϕ dx = 0

for almost t ∈ [0, T ], P−a.s., and

E

[

sup
t∈(0,T )

‖〈Vω
t,x;u〉(t, ·)‖p

L2
div(T

3)

]

< ∞

for all 1 ≤ p < ∞,
(e) Λ = L[〈Vω

0,x;u〉],
(f) there exists a H−1

div(T
3)-valued square integrable continuous martingale M1

E , such that the integral
identity

∫

T3
〈Vω

τ,x;u〉 · ϕ(x) dx −
∫

T3
〈Vω

0,x;u〉 · ϕ(x) dx

=
∫ τ

0

∫

T3
〈Vω

t,x;u ⊗ u〉 : ∇xϕ dxdt +
∫

T3
ϕ

∫ τ

0

dM1
E(t) dx +

∫ τ

0

∫

T3
∇xϕ : dμC ,

(2.14)

holds P-a.s., for all τ ∈ [0, T ), and for all ϕ ∈ C∞
div(T

3;R3), where μC ∈ L∞
w∗([0, T ];Mb(T3)), P-a.s.,

is a tensor-valued measure; μC is called concentration defect measures ;

2 Here 〈Vω
t,x; f(u)〉 :=

∫

R3 f(u)dVω
t,x(u), for any measurable function f .
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(g) there exists a real-valued square integrable continuous martingale M2
E , such that the following

inequality

E(t+) ≤ E(s−) +
1
2

∑

k≥ 1

∫ t

s

∫

T3

〈Vω
τ,x; |Gk(u)|2〉 dxdτ

− 1
2

∑

k≥ 1

∫ t

s

∫

T3

(
QH

〈Vω
τ,x; |Gk(u)|〉

)2
dxdτ +

1
2

∫ t

s

∫

T3
dμD +

∫ t

s

dM2
E ,

(2.15)

holds P-a.s., for all 0 ≤ s < t ∈ (0, T ) with

E(t−) := lim inf
r→0+

1
r

∫ t

t−r

(∫

T3

〈

Vω
s,x;

|u|2
2

〉

dx + D(s)
)

ds

E(t+) := lim inf
r→0+

1
r

∫ t+r

t

(∫

T3

〈

Vω
s,x;

|u|2
2

〉

dx + D(s)
)

ds

Here μD ∈ L∞
w∗([0, T ];Mb(T3)), P-a.s., D ∈ L∞(0, T ), D ≥ 0, P-almost surely, and E

[
ess supt∈(0,T )

D(t)
]

< ∞, with initial energy

E(0−) =
∫

T3

1
2
|u0|2 dx.

(h) there exists a constant C > 0 such that
∫ τ

0

∫

T3
d|μC | +

∫ τ

0

∫

T3
d|μD| ≤ C

∫ τ

0

D(t)dt, (2.16)

P-a.s., for every τ ∈ (0, T ).
(i) For any given stochastic process h(t), adapted to (Ft)t≥0, given by

dh = F (h) dt + K(h) dW,

satisfying

h ∈ C([0, T ];W 1,q ∩ C(T3)), E

[

sup
t∈[0,T ]

‖h‖2W 1,q

]q

< ∞, P -a.s. for all 1 ≤ q < ∞,

with

F (h) ∈ Lq(Ω;Lq(0, T ;W 1,q(T3))), K(h) ∈ L2(Ω;L2(0, T ;L2(U;L2
div(T

3)))),
(
∑

k≥1

|K(h)(ek)|q
) 1

q

∈ Lq(Ω;Lq(0, T ;Lq(T3))),

the cross variation between h and the square integrable continuous martingale M1
E is given by

〈〈
h(t),M1

E(t)
〉〉

=
∑

i,j

( ∞∑

k=1

∫ t

0

〈PH

〈Vω
s,x;Gk(u)

〉
, gi〉 〈K(h)(ek), gj〉 ds

)

gi ⊗ gj .

Here functions (gi)i∈N form a orthonormal basis for H−1
div(T

3) and bracket 〈·, ·〉 denotes inner product
in the same space.

Remark 2.16 Notice that, a standard Lebesgue point argument applied to (2.15) reveals that the energy
inequality holds for a.e. 0 ≤ s < t in (0, T ):

∫

T3

〈

Vω
t,x;

|u|2
2

〉

dx + D(t) ≤
∫

T3

〈

Vω
s,x;

|u|2
2

〉

dx + D(s) +
1
2

∑

k≥ 1

∫ t

s

∫

T3

〈Vω
s,x; |Gk(u)|2〉 dxdτ

− 1
2

∑

k≥ 1

∫ t

s

∫

T3

(
QH

〈Vω
s,x; |Gk(u)|〉

)2
dxdτ +

1
2

∫ t

s

∫

T3
dμD +

∫ t

s

dM2
E , P − a.s. (2.17)
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However, as it is evident from Sect. 4, we require energy inequality to hold for all s, t ∈ (0, T ) to
demonstrate weak-strong uniqueness principle.

2.6. Statements of Main Results

We now state main results of this paper. To begin with, regarding the existence of dissipative measure-
valued martingale solutions, we have the following theorem.

Theorem 2.17 (Existence of Measure-Valued Solution). Assume Gk satisfies (2.3), (2.4), and uε be a
family of finite energy weak martingale solutions to the stochastic incompressible Navier–Stokes system
(1.2). Let the corresponding initial data u0, the initial law Λ, given on the space L2

div(T
3), be independent

of ε, satisfying the following moment estimate
∫

L2
div

‖q‖p
L2

div(T
3)

dΛ(q) < ∞, (2.18)

for all 1 ≤ p < ∞. Then there exists a sequence {ũε}ε> 0 of finite energy weak martingale solutions
to stochastic incompressible Navier–Stokes system (1.2) on a probability space (Ω̃, P̃, F̃) such that the
family {ũε}ε>0 generates a dissipative measure-valued martingale solution

[(
Ω̃, F̃, (F̃t)t≥0, P̃

)
; Ṽω

t,x, W̃
]

to the stochastic incompressible Euler system (1.1), in the sense of Definition 2.15, with initial data
Vω
0,x = δu0(x) almost surely.

We then establish the following weak (measure-valued)-strong uniqueness principle:

Theorem 2.18 (Weak-Strong Uniqueness For Nonlinear Noise). Let
[(

Ω,F, (Ft)t≥0,P
)
;Vω

t,x,W
]

be a
dissipative measure-valued martingale solution to the system (1.1). On the same stochastic basis(
Ω,F, (Ft)t≥0,P,W

)
, let the stochastic incompressible Euler Eq. (1.1) possess the unique maximal strong

pathwise solution (ū, (τL)L∈N, t) with the initial data ū(0). If the initial states coincide i.e.,

Vω
0,x = δū(0,x), P − a.s., for a.e. x ∈ T

3,

then for L ∈ N, a.e. t ∈ [0, T ], D(t ∧ τL) = 0, P-a.s., and for a.e. t ∈ [0, T ], P-a.s.

Vω
t∧τL,x = δū(t∧τL,x), for a.e. x ∈ T

3.

Next, we move our attention to the stochastic incompressible Navier–Stokes equations given by (1.2)
(with ε = 1). For the deterministic counterpart of (1.2), Prodi [33] and Serrin [35] established weak-
strong uniqueness principle under additional regularity on the solution U ∈ Lr([0, T ], Ls(T3)), where r
and s satisfies the relation 2/r + 3/s = 1, with s ∈ (3,∞). In the stochastic setup, the uniqueness of
finite energy weak martingale solutions for (1.2) seems to be out of reach. However, one can obtain a
conditional uniqueness result like Prodi and Serrin. In fact, our objective is to give a sufficient condition
under which martingale solutions of Navier–Stokes Eq. (1.2) are unique in the class of finite energy weak
martingale solutions. Note that in comparison to deterministic analysis, we need additional continuity
assumption on stochastic solutions to deal with the stopping time.

Theorem 2.19 (Weak-Strong Uniqueness For Navier–Stokes system). Let u,U be two finite energy weak
martingale solutions to the system (1.2) with same initial data, defined on the same stochastic basis(
Ω,F, (Ft)t≥0,W,P

)
. Let the solution U additionally satisfies

E

[

sup
t∈[0,T ]

‖U‖Ls(T3)

]

< ∞, for some 3< s <∞. (2.19)

Then P-almost surely, for all t ∈ [0, T ]

u(t, x) = U(t, x), for a.e. x ∈ T
3.
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3. Proof of Theorem 2.17

The proof of existence is essentially based on the compactness method. For the compactness argument
in space and time variables, we make use of Young measure theory, while for the compactness argument
in probability variable we rely on the Skorokhod representation theorem. However, as alluded to before,
our path spaces are not Polish spaces (which is required for the classical Skorokhod theorem), therefore
we rely on the Skorokhod–Jakubowski theorem [32, Corollary 2] which is tailor-made to deal with so-
called quasi-Polish spaces. As usual, we obtain the convergence of the approximate sequence on another
probability space and the existence of dissipative measure-valued martingale solution follows, thanks to
Young measure theory. Observe that the existence of a pathwise solution (typically obtained by Gyöngy–
Krylov’s characterization of convergence in probability) seems not possible due to the lack of pathwise
uniqueness for the underlying system.

3.1. A-Priori Bounds

Recall that, the existence of finite energy weak martingale solution of stochastic incompressible Navier–
Stokes system (1.2)

[(
Ω,F, (Fε,t)t≥0,P

)
;uε,W

]

is well established, thanks to the Theorem 2.13. Observe that the filtration (Fε,t)t≥0 depends on ε, and
lack of pathwise uniqueness for (1.2) does not allow us to choose the filtration independent of ε. Having
said this, however, note that the Brownian motion and the probability space can be chosen indepedent
of ε.

To obtain a-priori estimate for the approximate solution, we make use of the energy inequality (2.13)
to obtain for all t ∈ [0, T ], and 1 ≤ p< ∞

E

[
‖uε(t)‖2L2(T3)

]p
≤ E

[
‖u0‖2L2(T3)

]p
+ C

∫ t

0

(

1 + E

[
‖uε(s)‖2L2(T3)

]p
)

ds.

Therefore, a simple application Gronwall lemma yield

E

[
‖uε‖2L2(T3)

]p
≤ C

(

1 + E

[
‖u0‖2L2(T3)

]p
)

Again by energy inequality (2.13), we have for 1 ≤ p< ∞

E

[

sup
t∈[0,T ]

‖uε‖2L2(T3) + ε

∫ T

0

‖∇xuε‖2L2(T3) dt

]p

≤ C

∫

L2
div(T

3)

‖q‖2p
L2

div(T
3)

dΛ(q) + C E

[

sup
t∈[0,T ]

∫

T3

∫ t

0

uε.PHG(uε) dW dx

]p

.

To handle the right most term of the above inequality, we make use of the classical Burkholder–Davis–
Gundy (BDG) inequality to obtain

E

[

sup
t∈[0,T ]

∫

T3

∫ t

0

uε.PHG(uε) dW dx

]p

≤ C E

[ ∫ T

0

∑

k ≥ 1

(∫

T3
PHGk(uε)uε dx

)2]p/2

≤ C E

[ ∫ T

0

‖uε(t)‖2L2(T3)

∑

k ≥ 1

‖Gk(uε(t))‖2L2(T3) dt

]p/2

≤ C E

[ ∫ T

0

‖uε(t)‖2L2(T3) (1 + ‖uε(t)‖2L2(T3)) dt

]p/2
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≤ CE

[ ∫ T

0

‖uε(t)‖2L2(T3) dt

]p

+ E

[ ∫ T

0

(1 + ‖uε(t)‖2L2(T3)) dt

]p

≤ C

(

1 +
∫

L2
div(T

3)

‖q‖2p
L2

div(T
3)

dΛ(q)

)

.

This implies that, for any 1 ≤ p < ∞, we have

E

[

sup
0≤t≤T

∫

T3
|uε|2 dx + ε

∫ T

0

∫

T3
|∇xuε|2dxds

]p

≤ C

(

1 +
∫

L2
div(T

3)

‖q‖2p
L2

div(T
3)

dΛ(q)

)

≤ C(p,Λ, T )

Above relation leads to the following uniform bound

uε ∈ Lp(Ω;L∞(0, T ;L2
div(T

3))). (3.1)

3.2. Tightness and Almost Sure Representations

For our purpose, to secure almost sure convergence in the probability variable (ω-variable) we make
use of the Skorokhod–Jakubowski version [26,32] of the classical Skorokhod representation theorem. It
is well-known that such a result can be obtained by establishing the tightness of probability measures
related to the random variables in quasi-Polish spaces. In what follows, our first aim is to establish the
tightness of the probability measures (laws) generated by the approximate solutions. To do so, we first
introduce the following path space Y for these measures:

Yu = Cw([0, T ];L2
div(T

3)), YW = C([0, T ];U0),

YC =
(
L∞(0, T ;Mb(T3)), w∗), YE =

(
L∞(0, T ;Mb(T3)), w∗),

YD =
(
L∞(0, T ;Mb(T3)), w∗) YV =

(
L∞((0, T ) × T

3;P(R3)), w∗),

YX = C([0, T ];H−1
div(T

3)), YY = C([0, T ];R),

YF =
(
L∞(0, T ;Mb(T3)), w∗),

Let us denote by μuε
, and μWε

respectively, the law of uε, and Wε on the corresponding path space.
Moreover, for the martingale terms, let μXε

, and μYε
denote the law Xε :=

∫ t

0
PHG(uε) dW , and Yε :=

∫ t

0

∫

T3 uε · PHGk(uε) dxdW on the corresponding path spaces respectively. Furthermore, let μCε
, μDε

,
μEε

, and μVε
denote the law of

Cε := uε ⊗ uε, Dε :=
∑

k≥1

|Gk(uε)|2, Eε :=
1
2
|uε|2, Vε := δuε

, Fε :=
1
2

∑

k ≥ 1

|QhGk(uε)|2,

respectively, on the corresponding path spaces. Finally, we denote by με, the joint law of all the variables
on Y. As stated before, our aim is now to establish tightness of {με; ε ∈ (0, 1)}. To this end, first note
that tightness of μWε

is straightforward. Therefore, we focus on proving tightness of other variables.

Proposition 3.1 The set {μuε
; ε ∈ (0, 1)} is tight on Yu.

Proof For convenience, we rewrite the Eq. (2.11) as
∫

T3
uε(t) · ϕ dx =

∫

T3
uε(0) · ϕ dx +

∫ t

0

∫

T3
Iε(s) : ∇ϕ dxds +

∫ t

0

∫

T3
PHG(uε) · ϕ dxdW

for all t ∈ [0, T ], for all ϕ ∈ C∞
div(T

3). where

Iε := −ε∇uε + uε ⊗ uε

From the a priori estimate in (3.1), we obtain

Iε ∈ L1(Ω;L2(0, T ;L1(T3))) ⊂ L1(Ω;L2(0, T ;W−2,2(T3)))

uniformly in ε. Let us consider the functional

〈Iε(t),ϕ〉 :=
∫ t

0

∫

T3
Iε(s) : ∇ϕ dxds,
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which is related to the deterministic part of equation. Then we deduce from above the following estimate

E

[

‖Iε‖W 1,2(0,T ;W −3,2
div (T3))

]

≤ C(T ).

For the stochastic term, we have, for a> 2

E

[∥
∥
∥
∥

∫ s

t

PHG(uε)dW

∥
∥
∥
∥

a

L2(T3)

]

≤ C E

[(∫ s

t

‖PHG(uε)‖2L2(U,L2(T3))dσ

)a/2
]

≤ C E

[(∫ s

t

(1 + ‖uε(σ)‖2L2(T3))dσ

)a/2
]

≤ C

(

|t − s|a/2

(

1 + E

[
sup

t∈[0,T ]

‖uε(t)‖L2(T3)

]a/2
))

≤ C |t − s|a/2
(
1 + E

[
‖uε(0)‖a

L2(T3)

])
.

As consequence of Kolmogorov continuity theorem (cf. Lemma 2.5), we have

E

[∥
∥
∥
∥

∫ ·

0

PHG(uε)dW

∥
∥
∥
∥

a

Cα([0,T ];L2
div(T

3))

]

≤ C

for all α ∈ ( 1
a , 1

2 ), and a> 2. Combining the previous estimates and using the embeddings W 1,2(0, T ) ⊂
C1/2[0, T ], and L2

div(T
3) ⊂ W−3,2

div (T3), we conclude

E

[

‖uε‖Cα([0,T ];W −3,2
div (T3))

]

≤ C(T ),

for some α < 1
2 . Next, we recall the following compact embedding [6, Chapter 1]

Cα([0, T ];W−3,2
div ) ∩ L∞(0, T ;L2

div(T
3)) ⊂⊂ Cw([0, T ];L2

div(T
3)),

to conclude that μuε
is tight. �

Proposition 3.2 The set {μCε
, μDε

, μEε
, μFε

; ε ∈ (0, 1), k ≥ 1} is tight on YC × YD × YE × YF .

Proof By making use of the a priori bound (3.1), and the fact that all bounded sets in L∞
w∗(0, T ;Mb(T3))

are relatively compact with respect to the weak-∗ topology, we obtain the desired result. �

Proposition 3.3 The set {μVε
; ε ∈ (0, 1)} is tight on YV .

Proof This follows from the compactness criterion in
(
L∞

w∗((0, T ) × T
3;P(R3)), w∗). To see that, define

the set

BM :=
{

V ∈ (L∞((0, T ) × T
3;P(R3)), w∗);

∫ T

0

∫

T3

∫

R3
|ξ1|2 dVt,x(ξ) dxdt ≤ M

}
,

which is relatively compact in
(
L∞((0, T ) × T

3;P(R3)), w∗). Notice that

L[Vε](Bc
M ) = P

(∫ T

0

∫

T3

∫

R3

(
|ξ1|2 dVt,x(ξ) dxdt > M

)

= P

(∫ T

0

∫

T3
|uε|2 dxdt > M

)

≤ 1
M

E

[
‖uε‖2L2(T3)

]
≤ C

M
.

The finishes the proof. �

Proposition 3.4 The set {μXε
; ε ∈ (0, 1)} is tight on YX .

Proof To prove the result, it is enough to observe that the random variable Xε =
∫ t

0
PHG(uε) dW (s) ∈

Lp
(
Ω;Wα,q(0, T ;L2

div(T
3))
)
, for q ≥ 2 (see [22]). Therefore, a simple application of the compact embed-

ding result given in Lemma 2.1 yields required tightness. �



62 Page 18 of 33 A. Chaudhary and U. Koley JMFM

Proposition 3.5 The set {μYε
; ε ∈ (0, 1)} is tight on YY .

Proof It is easy to see that, Yε(t) =
∑

k≥1

∫ t

0

∫

T3 uε · PHGk(uε) dxdW is a square integrable martingale,
for every ε ∈ (0, 1). Notice that for a > 2

E

[∣
∣
∣
∑

k≥1

∫ t

s

∫

T3
uε · PHGk(uε)

∣
∣
∣
a]

≤ E

[ ∫ t

s

∞∑

k=1

∣
∣
∣

∫

T3
uε · Gk(uε)

∣
∣
∣
2]a/2

≤ |t − s|a/2
(
1 + E

[
sup

0≤t≤T
‖uε‖a

L2(T3)

])
≤ C|t − s|a/2.

Therefore, we can apply the classical Kolmogorov continuity theorem (cf. Lemma 2.5) to conclude that,
for some β > 0

∑

k≥1

∫ t

0

∫

T3
uε · PHGk(uε) dxdW ∈ La(Ω;Cβ(0, T ;R)).

Therefore, using the well-known compact embedding of Cβ into C0, tightness of law follows. �

Making use of results obtained from Propositions 3.1, 3.2, 3.3, 3.4 and 3.5, we conclude that

Corollary 3.6 The set {με; ε ∈ (0, 1)} is tight on Y.

Having secured all necessary tightness results, we can now apply Jakubowski–Skorokhod representation
theorem (see also Motyl [32]) to extract almost sure convergence on a new probability space. In that
context, we infer the following result:

Proposition 3.7 There exists a subsequence με (not relabeled), a probability space (Ω̃, F̃, P̃) with Y-valued
Borel measurable random variables (ũε, W̃ε, C̃ε, D̃ε, Ẽε, X̃ε, Ỹε, F̃ε, ν̃ε), ε ∈ (0, 1), and
(ũ, W̃ , C̃, D̃, Ẽ, X̃, Ỹ , F̃ , ν̃) such that

(1) the law of (ũε, W̃ε, C̃ε, D̃ε, Ẽε, X̃ε, Ỹε, F̃ε, ν̃ε) is given by με, ε ∈ (0, 1),
(2) the law of (ũ, W̃ , C̃, D̃, Ẽ, X̃, Ỹ , F̃ , ν̃), denoted by μ, is a Radon measure,
(3) (ũε, W̃ε, C̃ε, D̃ε, Ẽε, X̃ε, Ỹε, F̃ε, ν̃ε) converges P̃-almost surely to

(ũ, W̃ , C̃, D̃, Ẽ, X̃, Ỹ , F̃ , ν̃) in the topology of Y, i.e.,

ũε → ũ in Cw([0, T ];L2
div(T

3)), W̃ε → W̃ in C([0, T ];U0)),
C̃ε → C̃ weak-∗ in L∞

w∗(0, T ;Mb(T3)), D̃ε → D̃ weak-∗ in L∞
w∗(0, T ;Mb(T3)),

Ỹε → Ỹ in C([0, T ];R), Ẽε → Ẽ weak-∗ in L∞
w∗(0, T ;Mb(T3)),

ν̃ε → ν̃ weak-∗ in L∞
w∗((0, T ) × T

3;P(R3)), X̃ε → X̃ in C([0, T ];W−1,2
div (T3)),

F̃ε → F̃ weak-∗ in L∞
w∗(0, T ;Mb(T3)),

(4) For any ε, W̃ε = W̃ , P̃-a.s.
(5) For any Carathéodory function J = J(t, x,u), where (t, x) ∈ (0, T ) × T

3 and u ∈ R
3, satisfying for

some p the growth condition |J(t, x,u)| ≤ 1 + |u|p, uniformly in (t, x). Then we have P̃-a.s.

J(ũε) → J(ũ) in Lr((0, T ) × T
3), for all 1 < r ≤ 2

p
.

Proof Proof of the items (1), (2) and (3) directly follow from Jakubowski–Skorokhod representation
theorem. For the proof of the item (4), we refer to Theorem 2.4, and [32]. For the proof of the item (5),
we refer to the Lemma 2.2. �
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3.2.1. Passing to the Limit. Note that in view of the equality of joint laws, the energy inequality (2.10)
and the a priori estimate (3.1) for the new random variables hold on the new probability space. Making
use of convergence results given by Proposition 3.7, we can now pass to the limit in approximate Eq. (1.2),
and the energy inequality (2.10). First we show that the approximations ũε solve the equation given by
(1.2) on the new probability space (Ω̃, F̃, P̃). For that purpose, let us denote by (F̃ε

t ) and (F̃t), P̃-augmented
canonical filtrations of the process (ũε, W̃ε) and (〈Ṽω

t,x; ũ〉, W̃ , X̃, Ỹ ), respectively. This means

F̃
ε
t = σ

(
σ
(
stũε, stW̃ε

) ∪ {N ∈ F̃; P̃(N) = 0
})

, t ∈ [0, T ],

F̃t = σ
(
σ
(
st〈Ṽω

t,x; ũ〉, stW̃ , stX̃, stỸ
) ∪ {N ∈ F̃; P̃(N) = 0

})
, t ∈ [0, T ],

where st is the restriction operator to the interval [0, t] acting on various path spaces.

Proposition 3.8 For every ε ∈ (0, 1),
(
(Ω̃, F̃, (F̃ε,t)t≥0, P̃), ũε, W̃

)
is a finite energy weak martingale solu-

tion to (1.2) with the initial law Λε.

Proof Proof of the above proposition is standard, and one can furnish the proof following the same line
of argument, as in the monograph by Breit et al. [7, Theorem 2.9.1]. For brevity, we skip all the details.

�

We remark that, in light of the above proposition, the new random variables satisfy the following equations
and the energy inequality on the new probability space

• for all ϕ ∈ C∞
div(T

3) we have

〈ũε(t),ϕ〉 = 〈ũε(0),ϕ〉 −
∫ t

0

〈ũε ⊗ ũε,∇xϕ〉ds + ε

∫ t

0

〈∇xũε ,∇xϕ〉ds +
∫ t

0

〈G(ũε),ϕ〉dW (3.2)

P-a.s. for all t ∈ [0, T ],
• the energy inequality

−
∫ T

0

∂tφ

∫

T3

1
2
|ũε|2 dxdt + ε

∫ T

0

φ

∫

T3
|∇xũε|2 dxdt

≤ φ(0)
∫

T3

1
2
|uε(0)|2 dx +

∞∑

k=1

∫ T

0

φ

(∫

T3
Gk(ũε) · ũε dx

)

dWk

+
1
2

∞∑

k=1

∫ T

0

φ

∫

T3
|PHGk(ũε)|2 dt (3.3)

holds P-a.s., for all φ ∈ C∞
c ([0, T )), φ ≥ 0.

Now we are in a position to pass to the limit in ε in (3.2) and (3.3). To see this, note that we have a-priori
estimate (3.1) for the new random variable. Therefore, an application of Lemma 2.2 helps us to conclude
that P̃-a.s.,

ũε ⇀ ũ = 〈Ṽω
t,x; ũ〉, weakly in L2((0, T );L2

div(T
3)).

Moreover, making use of item (5) of Lemma 3.7, we conclude that P-a.s.

Gk(ũε) ⇀
〈Ṽω

t,x;Gk(ũ)
〉

weakly in L2((0, T );L2(T3)).

This, in particular, implies that P-a.s.

QHGk(ũε) ⇀ QH

〈Ṽω
t,x;Gk(ũ)

〉
weakly in L2((0, T ); (L2(T3))⊥).

Indeed, Let v ∈ L2((0, T ); (L2(T3))⊥) then orthogonal property of projection QH implies that

lim
ε→0

〈QHGk(ũε),v〉 = lim
ε→0

〈Gk(ũε),v〉 = 〈〈Ṽω
t,x;Gk(ũ)

〉
,v〉 = 〈QH〈Ṽω

t,x;Gk(ũ)
〉
,v〉

As usual, to identify the weak limits related to the nonlinear terms present in the equations, we first
need to introduce corresponding concentration defect measures
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μ̃C = C̃ −
〈
Ṽω
(·,·); ũ ⊗ ũ

〉
dxdt, μ̃E = Ẽ −

〈

Ṽω
(·,·);

1
2
|ũ|2

〉

dxdt,

μ̃D = D̃ −
〈

Ṽω
(·,·);

∑

k≥1

|Gk(ũ)|2
〉

dxdt, μ̃F = F̃ −
∣
∣
∣QH

〈

Ṽω
(·,·);

∑

k≥1

|Gk(ũ)|2
〉
∣
∣
∣
2

dxdt.

In view of the discussion in Sect. 2.1.1, and making use of above concentration defect measures, we can
conclude that P̃ almost surely

C̃ε ⇀
〈
Ṽω
(·,·); ũ ⊗ ũ

〉
dxdt + μ̃C , weak-∗ in L∞

w∗(0, T ;Mb(T3)),

D̃ε ⇀

〈

Ṽω
(·,·);

∑

k≥1

|Gk(ũ)|2
〉

dxdt + μ̃D, weak-∗ in L∞
w∗(0, T ;Mb(T3)),

Ẽε ⇀

〈

Ṽω
(·,·);

1
2
|ũ|2

〉

dxdt + μ̃E , weak-∗ in L∞
w∗(0, T ;M+

b (T3)),

F̃ε ⇀
∣
∣
∣QH

〈

Ṽω
(·,·);

∑

k≥1

|Gk(ũ)|2
〉
∣
∣
∣
2

dxdt + μ̃F , weak-∗ in L∞
w∗(0, T ;M+

b (T3)).

Note that both defect measures μ̃E , and μ̃F are positive, thanks to the lower semi-continuity property
of norms. Next, we move on to the martingale terms X̃ε, appearing in the momentum equation, and
Ỹε, appearing in the energy inequality. Regarding convergence of these terms, we state the following
propositions.

Proposition 3.9 For every time t ∈ [0, T ], P-almost surely Ỹε(t) → Ỹ (t) in R, where Ỹ (t) is a real valued
square-integrable martingale with respect to the filtration (F̃t).

Proof First of all, in view of the Proposition 3.7, we conclude that Ỹε → Ỹ P-a.s. in C([0, T ];R). To claim
that Ỹ (t) is a martingale, as usual, it is sufficient to show that

Ẽ[Ỹ (t)|F̃s] = Ỹ (s),

for all t, s ∈ [0, T ] with s ≤ t. In other words, it is enough to prove that

Ẽ

[
Ls(Φ̃)

(
Ỹ (t) − Ỹ (s)

)]
= 0,

where we denote Φ̃ := (〈Ṽω
t,x; ũ〉, W̃ , X̃, Ỹ ), and on the path space Y := Yu × YW × YX × YY , we denote

Ls by any bounded continuous functional which depends on on the values of Φ̃ restricted to [0, s]. The
idea is to use the fact that Ỹε(t) is a martingale, i.e.,

Ẽ

[
Ls(Φ̃ε)

(
Ỹε(t) − Ỹε(s)

)]
= 0,

for all bounded continuous functional Ls on the same path space, and Φ̃ε = (ũε, W̃ , X̃ε, Ỹε). At this point,
we recall Proposition 3.7 to conclude that Φ̃ε → Φ̃, P-a.s. in the (weak) topology of Y. This, in particular,
implies that Ls(Φ̃ε) → Ls(Φ̃) P-a.s. Now given this property, along with the fact that Ỹε(t) ∈ L2(Ω̃),
we may apply classical Vitali’s convergence theorem to pass to the limit in ε to conclude that Ỹ (t) is a
martingale. �

Proposition 3.10 For each time t ∈ [0, T ], X̃ε(t) → X̃(t), P-almost surely in the topology of H−1
div(T

3).
Moreover, X̃(t) is also a H−1

div(T
3)-valued square integrable martingale with respect to the filtration (F̃t).
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Proof Note that as before, we would not be able to identify the structure of the martingale X̃(t), instead
we just prove that X̃(t) is a martingale. In what follows, with the help of the Proposition 3.7, we can
conclude that for each t ∈ [0, T ], X̃ε(t) → X̃(t), P-a.s. in the topology of H−1

div(T
3). Finally to show that

X̃(t) is a martingale, it is enough to demonstrate that for all i ≥ 1

Ẽ

[
Ls(Φ̃)

〈
X̃(t) − X̃(s), gi

〉]
= 0,

where gi’s are given orthonormal basis for the space H−1
div(T

3). We follow the usual argument to establish
the result. To that context, we first use the information that

Ẽ

[
Ls(Φ̃ε)

〈
X̃ε(t) − X̃ε(s), gi

〉]
= 0,

for all i ≥ 1. Then, like before, we can pass to the limit in the parameter ε to show that M̃(t) is a
martingale. Indeed, this argument requires uniform integrability in ω variable, and can be achieved using
BDG inequality:

Ẽ

[∣
∣
〈
X̃ε(t), gi

〉∣
∣p
]

= Ẽ

[∣
∣
∣
∣

〈 ∫ t

0

PHG(ũε) dW̃ , gi

〉∣∣
∣
∣

p]

≤ C Ẽ

[

sup
0≤t≤T

∥
∥
∥
∥

∫ t

0

PHG(ũε) dW̃

∥
∥
∥
∥

p

H−1
div(T

3)

]

≤ C Ẽ

[(∫ T

0

‖G(ũε)‖2L2(U,L2(T3)) ds

)p/2
]

≤ C.

This finishes the proof. �

In view of the above discussions, we can pass to the limit in (3.2) to conclude that
∫

T3
〈Ṽω

τ,x; ũ〉 · ϕ(τ, ·) dx −
∫

T3
〈Ṽω

0,x; ũ〉 · ϕ(0, ·) dx

=
∫ τ

0

∫

T3
〈Ṽω

t,x; ũ ⊗ ũ〉 : ∇xϕ dxdt +
∫

T3
ϕ

∫ τ

0

dX̃(t) dx +
∫ τ

0

∫

T3
∇xϕ : dμ̃C ,

holds P̃-a.s., for all τ ∈ [0, T ), and for all ϕ ∈ C∞
div(T

3;R3). This implies that (2.14) holds. Next, we focus
on proving the energy inequality (2.15). In that context, making use of identifications of weak limits of
various terms involved in the energy inequality, we can pass to the limit in ε in (3.3). This yield

−
∫ T

0

∂tφ

(∫

T3

〈

Ṽω
τ,x;

|ũ|2
2

〉

dx + D̃(τ)
)

dτ ≤ φ(0)
∫

T3

〈

Ṽω
0,x;

|ũ|2
2

〉

dx

+
1
2

∑

k≥ 1

∫ T

0

φ(τ)
∫

T3

〈Vω
τ,x; |Gk(ũ)|2〉 dxdτ − 1

2

∑

k≥ 1

∫ t

s

φ(τ)
∫

T3

(
QH

〈
Ṽω

τ,x; |Gk(ũ)|
〉)2

dxdτ

+
1
2

∫ T

0

φ(τ)
∫

T3
dμ̃D dτ − 1

2

∫ T

0

φ(τ)
∫

T3
dμ̃F dτ +

∫ T

0

φ(τ) dỸ (τ) (3.4)

holds P̃-a.s., for all φ ∈ C∞
c ([0, T )), φ ≥ 0. Note that here D̃(τ) := μ̃E(τ)(T3). To proceed, we first fix

any s and t such that 0< s < t < T . For any r > 0 with 0< s−r< t+r < T , let us denote by φr, a Lipschitz
function which is linear on [s − r, s] and [t, t + r] such that

φr(τ) =

{
0, if τ ∈ [0, s − r] or τ ∈ [t + r, T ]
1, if τ ∈ [s, t].

Then, a standard regularization argument reveals that φr can be used as an admissible test function in
(3.3). Therefore, replacing the test function φ by φr in (3.4), we get P-a.s., for all 0< s < t < T
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1
r

∫ t+r

t

(∫

T3

〈

Ṽω
τ,x;

|ũ|2
2

〉

dx + D̃(τ)
)

dτ ≤ 1
r

∫ s

s−r

(∫

T3

〈

Ṽω
τ,x;

|ũ|2
2

〉

dx + D̃(τ)
)

dτ

+
1
2

∑

k≥ 1

∫ t+r

s−r

φr(τ)
∫

T3

〈Vω
τ,x; |Gk(ũ)|2〉 dxdτ − 1

2

∑

k≥ 1

∫ t+r

s−r

φr(τ)
∫

T3

(
QH

〈
Ṽω

τ,x; |Gk(ũ)|
〉)2

dxdτ

+
1
2

∫ t+r

s−r

φr(τ)
∫

T3
dμ̃D dτ − 1

2

∫ t+r

s−r

φr(τ)
∫

T3
dμ̃F dτ +

∫ t+r

s−r

φr(τ) dỸ (τ). (3.5)

Now using the non-negativity of the defect measure μ̃F , and letting liminf r → 0+ in (3.5), we obtain
P-a.s., for all 0< s < t < T

lim inf
r→0+

1
r

∫ t+r

t

(∫

T3

〈

Ṽω
τ,x;

|ũ|2
2

〉

dx + D̃(τ)
)

dτ

≤ lim inf
r→0+

1
r

∫ s

s−r

(∫

T3

〈

Ṽω
τ,x;

|ũ|2
2

〉

dx + D̃(τ)
)

dτ +
1
2

∑

k≥ 1

∫ t

s

∫

T3

〈Vω
τ,x; |Gk(ũ)|2〉 dxdτ

− 1
2

∑

k≥ 1

∫ t

s

∫

T3

(
QH

〈
Ṽω

τ,x; |Gk(ũ)|
〉)2

dxdτ +
1
2

∫ t

s

∫

T3
dμ̃D dτ +

∫ t

s

dỸ (τ) (3.6)

We remark that for s = 0 we need to use a slightly different test function to conclude the result. In
this case we take

φr(τ) =

⎧
⎪⎨

⎪⎩

1, if τ ∈ [0, t]
linear, if τ ∈ [t, t + r]
0, otherwise.

and apply the same argument as before to establish that the energy inequality (2.15) holds.
Now we are only left with the verifications of (2.16), and item (i) of Definition 2.15. To proceed, we

start with the following lemma.

Lemma 3.11 Given a stochastic process h, as in item (i) of Definition 2.15

dh = F (h) dt + K(h) dW̃ ,

the cross variation with X̃ is given by

〈〈
h(t), X̃(t)

〉〉
=
∑

i,j

( ∞∑

k=1

∫ t

0

〈PH

〈
Ṽω

s,x;Gk(ũ)
〉

, gi〉 〈K(h)(ek), gj〉 ds

)

gi ⊗ gj .

where gi’s are orthonormal basis for H−1
div(T

3) and bracket 〈·, ·〉 denotes inner product in the same space.

Proof Following the definition of cross variation between two Hilbert space valued martingales, given by
Da Prato and Zabczyk [14, Sect. 3.4], we have

〈〈
h(t), X̃ε(t)

〉〉
=
∑

i,j

〈〈〈
h(t), gi

〉
,
〈
X̃ε(t), gj

〉〉〉
gi ⊗ gj ,

where using the properties of the processes h(t) and X̃ε(t), we have
〈〈〈

h(t), gi

〉
,
〈
X̃ε(t), gj

〉〉〉
=
〈〈∑

k≥1

∫ t

0

〈
K(h)(ek), gi

〉
dW̃k,

∑

k≥1

∫ t

0

〈PHGk(ũε), gj

〉
dW̃k

〉〉

=
∑

k≥ 1

∫ t

0

〈
K(h)(ek), gi

〉 〈PHGk(ũε), gj

〉
ds
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Therefore we get

〈〈
h(t), X̃ε(t)

〉〉
=
∑

i,j

( ∞∑

k=1

∫ t

0

〈
K(h)(ek), hi

〉 〈PHGk(ũε), hj

〉
ds

)

hi ⊗ hj .

This equivalently implies that

Ẽ

[
Ls(Φ̃ε)

(〈
h(t), gi

〉〈
X̃ε(t), gj

〉−
∞∑

k=1

∫ t

0

〈
K(h)(ek), gi

〉 〈PHGk(ũε), gj

〉
ds
)]

= 0.

Since we have P-a.s.

Gk(ũε) ⇀
〈Ṽω

t,x;Gk(ũ)
〉
, weakly in L2((0, T );L2(T3)),

This gives P-a.s

PHGk(ũε) ⇀ PH

〈Ṽω
t,x;Gk(ũ)

〉
, weakly in L2((0, T );L2

div(T
3)).

Moreover, making use of the a priori estimate (3.1), we have

Ẽ

[ ∫ T

0

‖PHG(ũε)‖2L2(U ;H−1
div(T

3))
dt
]

≤ Ẽ

[ ∫ T

0

∫

T3
(1̃ + |ũε|2) dx dt

]
≤ C.

This implies that P-a.s.

PHGk(ũ) ⇀ PH

〈Ṽω
t,x,;Gk(ũ)

〉
, weakly in L2((0, T );H−1

div(T
3)).

Therefore we can pass to the limit in ε → 0, thanks to uniform integrability, to conclude

Ẽ

[
Ls(Φ̃)

(〈
h(t), gi

〉〈
X̃(t), gj

〉−
∞∑

k=1

∫ t

0

〈
K(h)(ek), gi

〉 〈PH

〈
Ṽω

s,x;Gk(ũ)
〉

, gj

〉
ds
)]

= 0.

This finishes the proof the lemma. �

Finally, regarding the proof of (2.16), we have the following lemma:

Lemma 3.12 Concentration defect measures μ̃C , and μ̃D are dominated by the nonnegative concentration
defect measures D̃(τ) := μ̃E(τ)(T3), in the sense of Lemma 2.3. More precisely, there exists a constant
K > 0 such that

∫ τ

0

∫

T3
d|μ̃C | +

∫ τ

0

∫

T3
d|μ̃D| ≤ K

∫ τ

0

D̃(τ) dt,

P-a.s., for all τ ∈ (0, T ).

Proof Clearly, by Lemma 2.3, we can conclude that μ̃E dominates the defect measure μ̃C . On the other
hand, making use of hypotheses (2.3), (2.4), we can show the required dominance of μ̃E over μ̃D. Indeed,
note that the function

u �→
∑

k≥1

|Gk(u)|2 is continuous,

and clearly dominated by the total energy
∑

k≥1

|Gk(u)|2 ≤ C
(
1 + |u|2)

This finishes the proof of the lemma. �
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4. Weak-Strong Uniqueness Principle for Euler System

In this section, we prove Theorem 2.18 through auxiliary results. Essentially the proof relies upon success-
ful identification of the cross variation between two processes, given by a measure-valued Euler solution
and a local strong Euler solution. In what follows, we begin with the following lemma.

Lemma 4.1 (Weak Itô Product Formula). Let q be a stochastic process on
(
Ω,F, (Ft)t≥0,P

)
such that

q ∈ Cw([0, T ];L2
div(T

3)) ∩ L∞((0, T );L2
div(T

3)), P − a.s.

E

[
sup

t∈[0,T ]

‖q‖2L2
div(T

3)

]
< + ∞.

Moreover, it satisfies P-a.s.
∫

T3
q(t) · ϕ dx =

∫

T3
q(0) · ϕ dx +

∫ t

0

∫

T3
q1 : ∇ϕdxds +

∫ t

0

∫

T3
∇ϕ : dμ(x, s) ds

+
∫

T3
ϕ ·
∫ t

0

dMdx (4.1)

for all t ∈ [0, T ], and test function ϕ ∈ C∞
div(T

3). Here M is a continuous square integrable H−1
div(T

3)-valued
martingale and q1, μ are progressively measurable with

q1 ∈ L2(Ω;L1(0, T ;L2
div(T

3))), μ ∈ L1(Ω;L∞
w∗(0, T ;Mb(T3))).

Let Q be a stochastic process on
(
Ω,F, (Ft)t≥0,P

)
satisfying

Q ∈ C([0, T ];C1(T3)), P − a.s. and E
[

sup
t∈[0,T ]

‖Q‖2L2
div(T

3)∩C(T3)

]
< ∞,

be such that

dQ = Q1dt + Q2 dW.

Here Q1,Q2 are progressively measurable with

Q1 ∈ L2(Ω;L1((0, T );L2
div(T

3))), Q2 ∈ L2(Ω;L2((0, T );L2(U;L2
div(T

3)))),
∞∑

k=1

∫ T

0

‖Q2(ek)‖2L2(T3) ∈ L1(Ω).

Then P-a.s., for all t ∈ [0, T ],
∫

T3
q(t) · Q(t) dx =

∫

T3
q(0) · Q(0) dx +

∫ t

0

∫

T3
q1 : ∇Qdxds +

∫ t

0

∫

T3
∇Q : dμds

+
∫

T3

∫ t

0

Q · dM dx +
∫ t

0

∫

T3
Q1 · qdxds +

∫

T3

∫ t

0

q · Q2 dW dx

+
∫

T3

〈〈
M(t) , Q(t)

〉〉
dx. (4.2)

Proof The proof of this lemma is straightforward. For the sake of completeness, we briefly outline the
proof. Note that in order to prove the claim, we need to compute d

∫

T3 q·Qdx. Due to lack of regularity, it is
customary to use regularization by convolutions. To that context, let us denote by (ρα), an approximation
to the identity on T

3. Let ϕ ∈ L2
div(T

3), then ϕα = ϕ ∗ ρα ∈ C∞
div(T

3). Then using ϕα as a test function
in (4.1), we obtain P-almost surely, for all t ∈ [0, T ]

∫

T3
qα(t) · ϕ dx =

∫

T3
qα(0) · ϕ dx +

∫ t

0

∫

T3
(q1)α : ∇ϕ dxds +

∫ t

0

∫

T3
∇ϕ : dμα(x, s) ds

+
∫

T3
ϕ ·
∫ t

0

dMα dx.
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It implies that P-a.s., for all t ∈ [0, T ]

qα(t) = qα(0) −
∫ t

0

PH

(
div(q1)α

)
ds −

∫ t

0

PH

(
divμα

)
dxds +

∫ t

0

dMα dx.

Now, we can apply Itô’s formula to the process t → ∫

T3 qr ·Qdx, then we obtain for all t ∈ [0, T ], P-a.s.
∫

T3
qα(t) · Q(t) dx =

∫

T3
qα(0) · Q(0) dx +

∫ t

0

∫

T3
(q1)α : ∇Qdxds +

∫ t

0

∫

T3
∇Q : dμα ds

+
∫ t

0

∫

T3
Q · dMα dx +

∫ t

0

∫

T3
Q1 · qα dxds +

∫ t

0

∫

T3
qα · Q2 dW dx

+
∫

T3

〈〈
Mα(t) , Q(t)

〉〉
dx .

By using the given hypotheses, we can perform the limit α → 0 in above relation to conclude the proof.
�

4.1. Relative Energy Inequality (Euler System)

It is well-known that the relative energy inequality is very useful for the comparison of a measure-valued
solution and a smooth given function. To see this, let us first introduce the relative energy (entropy)
functional in the context of measure-valued solutions to the stochastic incompressible Euler system as

F1
mv

(
u
∣
∣
∣U
)

(t) :=
∫

T3
〈Vω

t,x;
1
2
|u|2〉dx + D(t) −

∫

T3

〈Vω
t,x;u

〉 · Udx +
1
2

∫

T3
|U|2 dx.

In view of the energy inequality (2.17), it is clear that the above relative energy functional is defined for
all t ∈ [0, T ] \ N , where the null (i.e., Lebesgue measure zero) set N may depends on ω ∈ Ω. We also
define relative energy functional for all t ∈ N as follows:

F2
mv

(
u
∣
∣
∣U
)

(t) := lim inf
r→0+

1
r

∫ t+r

t

[ ∫

T3
〈Vω

s,x;
1
2
|u|2〉dx + D(s)

]

ds −
∫

T3

〈Vω
t,x;u

〉 · Udx +
1
2

∫

T3
|U|2 dx.

Using above, we define relative energy functional, which is well-defined defined for all t ∈ [0, T ], as follows:

Fmv

(
u
∣
∣
∣U
)

(t) :=

{
F1
mv(u

∣
∣U)(t), if t ∈ [0, T ] \ N ;

F2
mv(u

∣
∣U)(t), if t ∈ N .

(4.3)

To proceed further, we make use of the relative energy (4.3) to derive the relative energy inequality given
by (4.6).

Proposition 4.2 (Relative Energy). Let
[(

Ω,F, (Ft)t≥0,P
)
;Vω

t,x,W
]

be a dissipative measure-valued mar-
tingale solution to the system (1.1). Suppose U be stochastic processes which is adapted to the filtration
(Ft)t≥0 and satisfies

dU = U1 dt + PHU2 dW,

with

U ∈ C([0, T ];C1
div(T

3)), P-a.s., E

[

sup
t∈[0,T ]

‖U‖2L2
div(T

3)

]

<∞, (4.4)

Moreover, U satisfies

U1 ∈ L2(Ω;L2(0, T ;L2
div(T

3))), U2 ∈ L2(Ω;L2(0, T ;L2(U;L2(T3)))),
∫ T

0

∑

k≥1

‖PHU2(ek)‖2L2(T3) ∈ L1(Ω). (4.5)
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Then the following relative energy inequality holds:

Fmv

(
u
∣
∣
∣U
)

(t) ≤ Fmv

(
u
∣
∣
∣U
)

(0) + MRE(t) +
∫ t

0

Rmv

(
u | U)(s) ds (4.6)

P-almost surely, for all t ∈ [0, T ] with

Rmv

(
u | U) =

∫

T3

〈Vω
t,x;u ⊗ u

〉
: ∇xu dx +

∫

T3

〈Vω
t,x;u

〉 · U1 dxdt −
∫

T3
∇xU : dμC +

1
2

∫

T3
dμD

+
1
2

∑

k∈N

∫

T3

〈Vω
t,x;
∣
∣Gk(u) − U2(ek)

∣
∣2
〉
dx. (4.7)

Here MRE(t) is a R-valued square integrable martingale, whose norm depends on the norms of smooth
function U in the aforementioned spaces.

Proof We follow the usual strategy and express all the integrals on the right-hand side of (4.3) by making
use of the energy inequality (2.15) and the field Eq. (2.14). Therefore, we shall make use of Itô’s formula
and the energy inequality (2.15) to compute the right-hand side of (4.3).
Step 1: In order to compute d

∫

T3

〈Vω
t,x;u

〉 ·Udx, we first recall that q = 〈Vω
t,x;u

〉
satisfies hypothesis of

Lemma 4.1. Therefore we can apply the Lemma 4.1 to conclude that P-almost surely

d
(∫

T3

〈Vω
t,x;u

〉 · Udx

)

=
∫

T3

[〈Vω
t,x;u

〉 · U1 +
〈Vω

t,x;u ⊗ u
〉

: ∇xu
]

dxdt

+
∑

k≥1

∫

T3
PHU2(ek) · PH

〈Vω
t,x;Gk(u)

〉
dxdt

+
∫

T3
∇xU : dμC dt + dM1,

(4.8)

where the square integrable martingale M1(t) is given by

M1(t) =
∫

T3

∫ t

0

U dM1
E dx +

∫ t

0

∫

T3

〈Vω
t,x;u

〉 · PHU2 dxdW

We remark that the item (i) of the Definition 2.15 is used to identify the cross variation in (4.8). Indeed,
notice that

∫

T3

〈〈
f(t),M1

E(t)
〉〉

dx =
∫

T3

∑

i,j

( ∞∑

k=1

∫ t

0

〈PH

〈Vω
s,x;Gk(u)

〉
, hi〉 〈Dsf(ek), hj〉 ds

)

hi ⊗ hjdx.

=
∑

k≥ 1

∫

T3

∫ t

0

PHU2(ek) · PH

〈Vω
t,x;Gk(u)

〉
dxdt

Step 2: Next, we see that

d
(∫

T3

1
2
|U|2 dx

)

=
1
2

∑

k≥1

∫

T3
|PHU2(ek)|2 dx dt + dM2, (4.9)

where

M2(t) =
∫ t

0

∫

T3
U · PHU2 dxdW.

Step 3: We have from energy inequality

E(t+) ≤ E(s−) +
1
2

∑

k≥ 1

∫ t

s

∫

T3

〈Vω
s,x; |Gk(u)|2〉 dxdτ − 1

2

∑

k≥ 1

∫ t

s

∫

T3

(
QH

〈Vω
s,x; |Gk(u)|〉

)2
dxdτ

+
1
2

∫ t

s

∫

T3
dμD +

∫ τ

s

dM2
E . (4.10)
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We now manipulate the product term in the equality (4.8) using properties of projections PH and QH .
Indeed, note that

∫

T3
PHU2(ek) · PH

〈Vω
t,x;Gk(u)

〉
dx

=
∫

T3
U2(ek) · 〈Vω

t,x;Gk(u)
〉
dx −

∫

T3
QHU2(ek) · QH

〈Vω
t,x;Gk(u)

〉
dx,

and
∫

T3
|PHU2(ek)|2 dx =

∫

T3
|U2(ek)|2 dx −

∫

T3
|QHU2(ek)|2 dx.

These properties of projections imply that
1
2

∑

k≥1

∫

T3
|PHU2(ek)|2 dx −

∑

k≥1

∫

T3
PHU2(ek) · PH

〈Vω
t,x;Gk(u)

〉
dx

+
1
2

∑

k≥ 1

∫ t

s

∫

T3

〈Vω
s,x; |Gk(u)|2〉 dxdτ − 1

2

∑

k≥ 1

∫ t

s

∫

T3

(
QH

〈Vω
s,x; |Gk(u)|〉

)2
dxdτ

=
1
2

∑

k≥ 1

∫

T3

〈
Vω

t,x;
∣
∣Gk(u) − U2(ek)

∣
∣2
〉

dx − 1
2

∑

k≥ 1

∫

T3

∣
∣
∣QHU2(ek) − QH

〈Vω
t,x;Gk(u)

〉∣∣
∣
2

dx

≤ 1
2

∑

k≥ 1

∫

T3

〈
Vω

t,x;
∣
∣Gk(u) − U2(ek)

∣
∣2
〉

dx.

(4.11)

Finally, in view of the above observations given by (4.8)–(4.11), we can now add the resulting expressions
to establish (4.6). Note that the square integrable martingale MRE(t) is given by MRE(t) := M1(t) +
M2(t) + M2

E(t). �

4.2. Proof of Theorem 2.18

In this subsection, we aim at establishing the desired weak (measure-valued)—strong uniqueness principle
given by Theorem 2.18. To do so, we need to apply the relative energy inequality (2.15) with a specific
choice of the smooth given function U = ū(· ∧ τL), where (ū, (τL)L∈N, τ) is the unique maximal strong
pathwise solution to (1.1). For technical reason, note that the stopping time τL announces the blow-up
and satisfies

sup
t∈[0,τL]

‖ū(t)‖1,∞ ≥ L on [t < T ];

Furthermore, it is evident that ū satisfies the equation (4.2), with

U1 = PH(ū · ∇xū), U2 = G(ū).

Clearly, in view of Theorem 2.9 and (2.3)–(2.4), the conditions (4.4) and (4.5) are satisfied for t ≤ tL.
Therefore, the inequality (4.6) holds, and we can also deduce from (4.7) that

Fmv

(
u
∣
∣
∣ū
)

(t ∧ τL) ≤ Fmv

(
u
∣
∣
∣ū
)

(0) + MRE(t ∧ τL) +
∫ t∧τL

0

Rmv

(
u | ū)(s) ds, (4.12)

holds for each L ∈ N, for all t ∈ [0, T ], P-almost surely. Here after manipulating terms in (4.7), as in [39],
we obtain

Rmv

(
u
∣
∣
∣ū
)

=
∫

T3

〈Vω
t,x; |(u − ū) ⊗ (ū − u)|〉 |∇xū| dx +

1
2

∑

k∈N

∫

T3

〈Vω
t,x;
∣
∣Gk(u) − Gk(ū)

∣
∣2
〉
dx

+
∫

T3
|∇xū| · d|μC | +

∫

T3
d|μD|.
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Since ‖ū‖W 1,∞(T3) ≤ c(L) for t ≤ τL, we can control the terms |∇xū| by some constant. It is also clear
that

|(u − ū) ⊗ (ū − u)| ≤ |u − ū|2,
and

∑

k≥1

∣
∣Gk(u) − Gk(ū)

∣
∣2 ≤ D1|u − ū|2.

Finally, we also see that
1
2

∑

k∈N

∫

T3

〈Vω
t,x;
∣
∣Gk(u) − Gk(ū)

∣
∣2
〉
dx ≤ c(L) F1

mv

(
u | ū).

Collecting all the above estimates and using the item (h) of Definition 2.15, we conclude that for all
t ∈ [0, T ], P-a.s.

∫ t∧τL

0

Rmv

(
u | ū) ds ≤ c(L)

∫ t∧τL

0

(
Fmv

(
u | ū)(s)

)
ds. (4.13)

We now combine (4.13) and (4.12), and apply classical Gronwall’s lemma, to obtain for all t ∈ [0, T ]

E

[
Fmv

(
u | ū)(t ∧ τL)

]
≤ c(L)E

[
Fmv

(
u | ū)(0)

]
.

We recall that

Fmv

(
�,m | �̄, ū

)
(0) =

∫

T3

〈
Vω
0,x;

1
2
�0
∣
∣u0 − ū0

∣
∣2
〉

dx,

which, by assumption, vanishes in expectation. Therefore, we conclude that

E

[
Fmv

(
u | ū)(t ∧ τL)

]
= 0, for all t ∈ [0, T ].

This also implies that

lim
r→0+

1
r

∫ t+r

t

E

[
Fmv

(
u | ū)(s ∧ τL)

]
ds = 0.

Keeping in mind a priori estimates, a standard Lebesgue point argument in combination with classical
Fubini’s theorem reveals that for a.e. t ∈ [0, T ],

E

[
F1
mv

(
u | ū)(t ∧ τL)

]
= 0.

But since the defect measure D ≥ 0, above equality implies for a.e. t ∈ [0, T ], P-almost surely

D(t ∧ τL) = 0, and δū(x,t∧τL) = Vω
t∧τL,x for a.e. x ∈ T

3.

5. Weak-Strong Uniqueness for Navier–Stokes System

Let u and U be two finite energy weak martingale solutions to (1.2), with same initial data u0, defined
on the same stochastic basis. The commonly used form of the relative energy functional in the context
of weak solutions to the incompressible Navier–Stokes system reads

FNS
mv

(
u
∣
∣
∣U
)

:=
∫

T3

1
2
|u|2 dx −

∫

T3
u · Udx +

1
2

∫

T3
|U|2 dx. (5.1)

The proof of (weak-strong) uniqueness for finite energy weak martingale solutions to (1.2) essentially uses
similar arguments, as depicted in Sect. 4. However, the main difficulty lies in the successful identification
of cross variation of two martingale solutions. Indeed, the regularity of finite energy weak martingale
solutions is not enough to identify the cross variation between them and requires one solution to be more
regular. In what follows, we start with the following lemma, whose proof is a simple consequence of the
Hölder and Sobolev inequalities, see [31, Lemma 2.4].
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Lemma 5.1 Let r, s satisfy
3
s

+
2
r

= 1, s ∈ (3,∞)

and let u,w ∈ L2((0, T );H1
div(T

3)), and u ∈ Lr(0, T ;Ls(T3)). Then
∣
∣
∣
∣

∫ T

0

〈v · ∇w,u〉
∣
∣
∣
∣ ≤ C

(∫ T

0

‖∇w‖2L2(T3)dt

) 1
2
(∫ T

0

‖∇v‖2L2(T3)

) 3
2s
(∫ T

0

‖u‖r
Ls(T3)‖v‖2L2(T3)dt

) 1
r

.

To make use of the above inequality, let us assume that two finite energy weak martingale solutions
u,U ∈ L∞((0, T );L2(T3)) ∩ L2((0, T );H1(T3)) be diveregence free. Assume, in addition, that U ∈
Lr((0, T );Ls(T3)). Then, in view of the above Lemma 5.1, for every τ ∈ (0, T )

∣
∣
∣
∣

∫ τ

0

∫

T3
∇(u − U) : ((u − U) ⊗ U) dxdt

∣
∣
∣
∣

≤ C

(∫ τ

0

∫

T3
|∇(u − U)|2 dx

)1−1/r(∫ τ

0

‖U‖r
Ls(T3))

∫

T3
|u − U|2 dxdt

)1/r

. (5.2)

In order to calculate the evolution equation satisfies by the second term of the relative energy (5.1), we
need to apply Itô product rule. To do so, we first regularize (2.11) (with ε = 1), for both solutions u and
U, by taking a spatial convolution with a suitable family of regularizing kernels. We denote by vr, the
regularization of v. For a test function ϕ ∈ L2

div(T
3), we have ϕr ∈ C∞

div(T
3). For both weak solutions u

and U, we may write equations

〈u(t),ϕr〉 = 〈u(0),ϕr 〉 +
∫ t

0

〈u ⊗ u(s),∇xϕr 〉ds −
∫ t

0

〈∇xu(s)∇xϕr 〉ds +
∫ t

0

〈G(u),ϕr 〉dW,

〈U(t),ϕr〉 = 〈U(0),ϕr 〉 +
∫ t

0

〈U ⊗ U(s),∇xϕr 〉ds −
∫ t

0

〈∇xU(s) ,∇xϕr 〉ds +
∫ t

0

〈G(U),ϕr 〉dW.

After shifting regularizing kernel from test to solutions term, we obtain

ur(t) = ur(0) −
∫ t

0

PH(div(u ⊗ u)r)ds +
∫ t

0

Δur(s)ds +
∫ t

0

PH(G(u)r)dW,

Ur(t) = Ur(0) −
∫ t

0

PH(div(U ⊗ U)r)ds +
∫ t

0

ΔUr(s)ds +
∫ t

0

PH(G(U)r)dW,

in (L2
div(T

3))′. We can now apply classical Itô’s formula to the process t → ∫

T3 ur · Ur dx, to obtain
P-almost surely

d
(∫

T3
ur · Ur dx

)

=
∫

T3

[
− ur · div(U ⊗ U)r + (u ⊗ u)r : ∇xur

]
dxdt

+
∑

k≥1

∫

T3
PH(Gk(U)r) · PH(Gk(u)r) dxdt − 2

∫

T3
∇xUr : ∇xur dxdt

+
∫

T3
(ur · G(U)r + Ur · G(ur)) dxdW,

(5.3)

We now wish to let r → 0 in the above relation (5.3). The main difficulty in passing to the limits in
the parameter r stems from the nonlinear terms, the treatments of other terms are classical. Indeed, we
may apply the classical BDG inequality, with the help of a priori estimate and given conditions for noise
coefficients, to handle stochastic terms that appeared in (5.3). In what follows, we show, with the help
of Lemma (5.1) and extra regularity of U, we can pass to the limit in the nonlinear terms. Observe that
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∫ t

0

∫

T3
ur · div(U ⊗ U)r dsdx −

∫ t

0

∫

T3
u · div(U ⊗ U) dsdx

=
(∫ t

0

∫

T3
(ur)r · div(U ⊗ U) dsdx −

∫ t

0

∫

T3
ur · div(U ⊗ U) dsdx

)

+
(∫ t

0

∫

T3
ur · div(U ⊗ U) dsdx −

∫ t

0

∫

T3
u · div(U ⊗ U) dsdx

)

=: Ir
1 + Ir

2 ,

For the second nonlinear term,
∫ t

0

∫

T3
Ur · div(u ⊗ u)r dsdx −

∫ t

0

∫

T3
U · div(u ⊗ u) dsdx

=
(∫ t

0

∫

T3
(Ur)r · div(u ⊗ u) dsdx −

∫ t

0

∫

T3
Ur · div(u ⊗ u) dsdx

)

+
(∫ t

0

∫

T3
Ur · div(u ⊗ u) dsdx −

∫ t

0

∫

T3
U · div(u ⊗ u) dsdx

)

=: Jr
1 + Jr

2 ,

Moreover, thanks to Lemma 5.1, we conclude

|Ir
1 |, |Ir

2 | ≤ C

(∫ t

0

‖∇(ur − u)‖2L2(T3)dτ

)1/2

, |Jr
1 |, |Jr

2 | ≤ C‖Ur − U‖Lr([0,T ];Ls(T3)),

where the constant C depends on U and u only. Therefore, a simple property of convolution reveals that

lim
r→ 0

Ir
1 = lim

r→ 0
Ir
2 = lim

r→ 0
Jr
1 = lim

r→ 0
Jr
2 = 0. (5.4)

Finally, letting r → 0 in (5.3), and using (5.4), we obtain

d
(∫

T3
u · Udx

)

=
∫

T3
[−u · div(U ⊗ U) + u ⊗ u : ∇xu] dxdt

+
∑

k≥1

∫

T3
Gk(U) · Gk(u) dxdt −

∫

T3
∇xU : ∇xudxdt + dQ1,

(5.5)

where Q1(t) is a square integrable martingale given by

Q1(t) :=
∫ t

0

∫

T3
(u · G(U) + U · G(u) dxdW.

5.1. Proof of Theorem 2.19

We closely follow the strategy depicted in Sect. 4.2. To proceed, we first introduce a stopping time

κL := inf
{

t ∈ (0, T )
∣
∣
∣ ‖U(t)‖Ls(T3) ≥ L

}

Since E

[
supt∈[0,T ] ‖U‖Ls(T3)

]
<∞ by assumption, we have

P[κL <T ] ≤ P

[
sup

t∈[0,T ]

‖U‖Ls(T3) ≥ L
]

≤ 1
L
E

[
sup

t∈[0,T ]

‖U‖Ls(T3)

]
→ 0,

P

[

lim
L→∞

κL = T

]

= 1.

Therefore, it is enough to show the result for a fixed L. We now make use of the relative energy (5.1),
the energy inequality (2.13), and (5.5), for both solutions, to conclude that for all t ∈ [0, T ], P-a.s.
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FNS
mv

(
u
∣
∣
∣U
)

(t ∧ κL) +
∫ t∧κL

0

∫

T3
|∇x(u − U)|2 dx

=
1
2

∫

T3
|u(t ∧ κL)|2 dx +

1
2

∫

T3
|U(t ∧ κL)|2 dx +

∫ t∧κL

0

∫

T3
|∇xu|2 dxdt

+
∫ t∧κL

0

∫

T3
|∇xU|2 dxdt −

∫

T3
u(t ∧ κL) · U(t ∧ κL) dx − 2

∫ t∧κL

0

∫

T3
∇xu : ∇xUdxdt

≤ FNS
mv

(
u(0)

∣
∣
∣U(0)

)
+
∫ t∧κL

0

∫

T3
∇xu : ((u − U) ⊗ U) dxdt + QRE(t ∧ κL)

+
1
2

∫ t∧κL

0

∫

T3
|PH(G(u) − G(U))|2 dxdt

= FNS
mv

(
u(0)

∣
∣
∣U(0)

)
+
∫ t∧κL

0

∫

T3
∇x(u − U) : ((u − U) ⊗ U) dx + QRE(t ∧ κL)

+
1
2

∫ t∧κL

0

∫

T3
|PH(G(u) − G(U))|2 dxdt

≤ FNS
mv

(
u(0)

∣
∣
∣U(0)

)
+ C

(∫ t∧κL

0

∫

T3
|∇(u − U)|2

)1−1/r(∫ t∧κL

0

‖U‖r
Ls

∫

T3
|u − U|2 dxdt

)1/r

+ QRE(t ∧ κL) +
1
2

∫ t∧κL

0

∫

T3
|G(u) − G(U)|2 dxdt

≤ FNS
mv

(
u(0)

∣
∣
∣U(0)

)
+
∫ t∧κL

0

∫

T3
|∇x(u − U)|2 dx + C

(∫ t∧κL

0

‖U‖r
Ls

∫

T3
|u − U|2 dxdt

)

+ QRE(t ∧ κL) +
D1

2

∫ t∧κL

0

∫

T3
|u − U|2 dxdt

≤ FNS
mv

(
u(0)

∣
∣
∣U(0)

)
+
∫ t∧κL

0

∫

T3
|∇x(u − U)|2 dx + C(L)

(∫ t∧κL

0

∫

T3
|u − U|2 dxdt

)

+ QRE(t ∧ κL) +
D1

2

∫ t∧κL

0

∫

T3
|u − U|2 dxdt,

where

QRE(t) = Q1(t) +
∫ t

0

∫

T3

(
uPHG(u) + UPHG(U)

)
dxdW.

Note that in the above calculations, we have used the estimate (5.2), and classical Young’s inequality

xy ≤ γxa

a
+

yb

bγb/a

for any γ >0, 1
a + 1

b = 1, and x, y >0. Therefore, we obtain for all t ∈ [0, T ], P-a.s.

FNS
mv

(
u
∣
∣
∣U
)

(t ∧ κL) ≤ FNS
mv

(
u(0)

∣
∣
∣U(0)

)
+ C(L)

∫ t∧κL

0

FNS
mv

(
u
∣
∣
∣U
)

(s)ds + QRE(t ∧ κL).

After taking expectation both side, we have

E

[

FNS
mv

(
u
∣
∣
∣U
)

(t ∧ κL)
]

≤ E

[

FNS
mv

(
u(0)

∣
∣
∣U(0)

)
+ C(L)

∫ t∧κL

0

FNS
mv

(
u
∣
∣
∣U
)

(s)ds

]

.

Since E

[

FNS
mv

(
u(0)

∣
∣
∣U(0)

)]

= 0, we may use Gronwall’s inequality to conclude that

E

[

FNS
mv

(
u
∣
∣
∣U
)

(t ∧ κL)
]

= 0.
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We can now pass to the limit as L → ∞ to conclude that

E

[

FNS
mv

(
u
∣
∣
∣U
)

(t)
]

= 0, for all t ∈ [0, T ].

This implies that P-almost surely, for all t ∈ [0, T ],

u(x, t) = U(x, t), for a.e. x ∈ T
3.

This finishes the proof of the theorem.
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