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1. Introduction, Statement of the Main Result and Some Open Problems

1.1. Setting

We consider a finite vertical cylinder Ω = D1×[0, L] ⊂ R
3 where D1 is the unit open disc in R

2 and L > 0.
Let us denote by Γ = (D1 × {0}) ∪ (D1 × {L}) the union of the bottom and of the top of the cylinder.
This surface Γ has to be thought as the controlled part of the boundary while the complementary part
∂Ω\Γ = (∂D1) × [0, L] of the cylinder’s boundary, that is the lateral part of the cylinder’s boundary,
has to be thought as the uncontrolled part of the boundary. Let us denote by L2

div (Ω) the space of the
axi-symmetric functions u in L2(Ω) such that div u = 0 and u = 0 on ∂Ω\Γ.

1.2. Main Result

Our main result is the following theorem.

Theorem 1.1. Let T > 0 and u0 ∈ L2
div (Ω). For any k ∈ N and for any η > 0, there exists a force f ∈

L1((0, T );Hk(Ω)) satisfying ‖f‖L1((0,T );Hk(Ω)) ≤ η, and a Leray weak solution u ∈ Cw([0, T ];L2
div (Ω)) ∩

L2((0, T );H1(Ω)) of{
∂tu + u · ∇u − Δu + ∇p = f and div u = 0 in Ω,

u = 0 on ∂Ω\Γ,
(1.1)

satisfying u(0, ·) = u0 and u(T, ·) = 0.

1.3. Notion of Controlled Weak Leray Solution

Above, the notion of weak Leray solution corresponds to the following weak formulation:

−
∫ T

0

∫
Ω

u · ∂tϕ +
∫ T

0

∫
Ω

(u · ∇)u · ϕ + 2
∫ T

0

∫
Ω

D(u) : D(ϕ)

=
∫

Ω

u0 · ϕ(0, ·) +
∫ T

0

∫
Ω

u · f,

(1.2)

for any test function ϕ ∈ C∞([0, T ] × Ω̄) which is divergence free, tangent to ∂Ω\Γ, vanishes at t = T
and vanishes on Γ. This last condition encodes that one controls the part Γ of the boundary, so that
no boundary condition is there required. Above the notation D(·) stands for the symmetric part of the
gradient.
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1.4. Comparison with the Literature

Theorem 1.1 establishes the small-time global exact null controllability of the axi-symmetric incompress-
ible Navier–Stokes equation in a 3D finite cylinder with circular section in the case where the no-slip
Dirichlet boundary condition is imposed on the lateral boundary of the cylinder, while we are able to
act on the fluid flow on the top and on the bottom of the cylinder, as well as in the interior of the
cylinder through a distributed force which can be chosen arbitrarily small for any Sobolev regularity in
space. This result improves earlier results in [12,13] where the distributed force is small only in a negative
Sobolev space and the recent work [8] where the case of the 2D incompressible Navier–Stokes equation
in a rectangle was considered. Let us also mention the paper [6], and its corresponding proceeding [7], on
the global null controllability of the Navier–Stokes equation in the case where Navier slip-with-friction
boundary conditions are prescribed on the uncontrolled part of the boundary rather than the no-slip con-
ditions. In these references some controlled weak Leray solutions are constructed. This has been improved
into smooth solutions (in the case where the initial data is smooth) in the recent paper [15]. The main
difference between the case of the Navier conditions and the one of the no-slip conditions, when following
the method of proof considered in these references and in the present paper, is the size of the boundary
layers which are involved. Indeed in both cases one considers a small-viscosity regime where a controlled
auxiliary flow which is built for the inviscid limit of the system has to be corrected by some boundary
layer terms on the uncontrolled part of the boundary.

1.5. Difficulty of the Proof

Indeed the proof of Theorem 1.1 below closely follows the analysis developed in [8] to deal with the
case of the rectangle by making use of Coron’s return method, of the well-prepared dissipation method
and of long-time nonlinear Cauchy–Kovalevskaya estimates. One of the main extra difficulty here is the
curvature of the uncontrolled part of the cylinder boundary which requires a more delicate analysis, in
particular to apply the well-prepared dissipation method, because of lower order boundary layer profiles
whose behavior is forced by the higher order boundary layer profiles. This difficulty already appeared in
[15] where the case of the Navier boundary conditions, rather than the no-slip condition, was treated.

1.6. Open Problems

It will be interesting to investigate whether or not it is possible to extend the result of Theorem 1.1 to
the case of smooth solutions or to the case of non-axisymmetric initial data. We refer to Remark 2.10
below for a few more technical explanations regarding the difficulties of these investigations. An even
more challenging issue, as already mentioned in the rectangle case tackled in [8,9], is to get rid of the
“phantom” force f .

2. Strategy of the Proof of the Main Result: Theorem 1.1

In this section we explain the general strategy of the proof of Theorem 1.1.

2.1. A Rapid Reminder on Coron’s Return Method for the Incompressible Euler Equations

Following Coron’s return method, The starting idea is to follow the strategy used by Coron and Glass,
see [11], to prove the small-time global exact null controllability of the incompressible Euler equations.
In this case, the idea is to introduce an auxiliary flow which is compactly supported in time, and around
which the linearized incompressible Euler equations is controllable. To drive the dynamics despite the
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presence of a non-zero initial data these auxiliary flows have to be chosen with a strong amplitude, which
makes them vary quickly. To encode these features we introduce the rescaling

uε(t, x) := εu(εt, x), pε(t, x) := ε2p(εt, x), (2.1)

where ε is thought as a small positive parameter and we observe that the time interval over which the
control is required is then stretched from (0, T ) to the large time interval (0, T/ε).

Some appropriate auxiliary flows can be built for very general geometries of the fluid domain with
involved gluing technics, but can be taken in a very simple form in the present case of the finite vertical
cylinder Ω as

h0(t)e3, (2.2)

where {ei}3
i=1 are the unit vectors of the canonical basis of R3. Since whatever is the scalar function h0,

the flow given by (2.2) unconditionally satisfies the incompressible Euler equations in Ω, associated with
the pressure −(h0)′(t)x3, while being tangent to the lateral, uncontrolled, part ∂Ω\Γ of the cylinder’s
boundary. This tangency condition is the natural counterpart of the no-slip condition, actually of any
impermeable condition, for the Euler equations (instead of the Navier–Stokes equation).

Moreover the linearization of the incompressible Euler equations around this flow is simply the equa-
tion

∂tv + h0(t)∂3v + ∇q = 0 and div v = 0, (2.3)

where, moreover, the pressure term can be discarded since the divergence free constraint satisfies by the
initial data is propagated by transport along the flow (2.2). Together with the tangency condition on the
lateral boundary, this leads to the even simpler equation than (2.3), that is the pressure-less equation:

∂tv + h0(t)∂3v = 0. (2.4)

A controlled solution, in the rescaled variables given by (2.1), can be then constructed as an asymptotic
expansion with principal part h0(t)e3 + εv. It is then only a matter to choose the function h0 in order
to flush v outside of Ω and to bound the effect of the remainder term of the expansion to conclude the
controllability of the incompressible Euler equations.

2.2. An Almost Returning Solution to the Navier–Stokes Equations Despite the Boundary Layers

Now, the flow (2.2) also satisfies the Navier–Stokes equations inside the cylinder but does not satisfy the
no-slip boundary conditions on the boundary of the cross-section. To adapt to the no-slip condition, some
boundary layers appear near the boundary. Indeed, under the rescaling (2.1) the (unforced) incompressible
Navier–Stokes equations then read as the following small viscosity problem:

∂tu
ε + uε · ∇uε − εΔuε + ∇pε = 0 and div uε = 0.

Thanks to the peculiar form of the flow (2.2), the dynamics of this boundary layer is simply given by
a heat equation, rather than by Prandtl’s equations. Indeed in polar coordinates, for a radial function f ,
the Laplace operator is given by the formula

Δf =
∂2f

∂r2
+

1
r

∂f

∂r
, (2.5)

where r :=
√

x2
1 + x2

2 represents the distance to the origin.
The following key intermediate result proves the existence of axisymmetric solutions to the heat

equations in the unit disk D1 with appropriate Dirichlet data which almost return to zero at the final
time, while the principal part of the Dirichlet data satisfies a flushing condition at an intermediate time.

Proposition 2.1. There are h0, h1 and h2 in C∞
0 (0, T ), satisfying the flushing condition∫ T

3

0

h0(t) dt = 2L, (2.6)
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such that the solutions (vε := vε(t, r))ε to⎧⎪⎨
⎪⎩

∂tv
ε − εΔvε = 0 t ≥ 0, 0 ≤ r ≤ 1,

vε(t, 1) = −∑2
i=0 ε

i
2 hi(t) t ≥ 0, 0 ≤ r ≤ 1,

vε(0, r) = 0 0 ≤ r ≤ 1,

(2.7)

verifies

‖vε

(
T

ε
, ·
)

‖L2(D1) ≤ Cε
7
4 . (2.8)

Moreover the function h0 has to satisfy the zeroth order moment condition:∫ T

0

h0(t) dt = 0. (2.9)

Let us highlight that despite a right hand side o(ε) in (2.8) would be enough for the sequel, we choose
to keep the explicit exponent which comes for free with our method of proof. The zeroth order moment
condition (2.9) comes from the construction of V 0 in Sects. 2.5 and 3. Since the source term of the
Eq. (2.14) for V 0 below is zero, we find that h0 satisfies (2.9) from (3.14) in Sect. 3. Indeed the proof of
Proposition 2.1 is based on the well-prepared dissipation method, which was initiated in [17], and adapted
in [6,8,15]. We give below the core of the proof, postponing to the next sections some intermediate results
which are themselves quite intricate.

2.3. A Multi-scale Asymptotic Expansion of vε

Let χ be a cut-off function χ(r) = 0 when r ≤ 1
3 and χ(r) = 1 when r ≥ 2

3 . Given h0, h1 and h2 in
C∞

0 (0, T ), we seek for a multi-scale asymptotic expansion of the solutions (vε)ε of the form

vε(t, r) : = −χ(r)
2∑

i=0

ε
i
2 V i

(
t,

1 − r√
ε

)
+ εrε(t, x1, x2), (2.10)

where r = (x2
1 + x2

2)
1
2 and V i(t, z) → 0 as z → 0 for 0 ≤ i ≤ 2 and rε is considered as a technical

lower-order corrector. To infer which relevant “profiles” V i(t, z) we should consider, we observe that for
a function g(t, z), denoting by α ∈ C∞([13 , 1];R) the function such that

1
r

= 1 + (1 − r) + (1 − r)2α(r), (2.11)

we have:

εΔ{g}ε(t, x) = {∂2
zg}ε(t, x) − ε

1
2 {∂zg}ε(t, x) − ε{z∂zg}ε(t, x) − ε

3
2 α(r){z2∂zg}ε(t, x), (2.12)

where the notation {·}ε stands for

{g}ε(t, x) := g

(
t,

1 − r√
ε

)
, r = (x2

1 + x2
2)

1
2 . (2.13)

Therefore, by inserting the ansatz (2.10) in the Eq. (2.7), and then using (2.12) and equalling by powers
of ε, we are led to consider the following three problems:⎧⎪⎨

⎪⎩
∂tV

0 − ∂2
zV 0 = 0, t ≥ 0, z ≥ 0,

V 0(t, 1) = h0(t), t ≥ 0,

V 0(0, z) = 0, z ≥ 0,

(2.14)
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where we observe that the only non-zero source is on the boundary data,⎧⎪⎨
⎪⎩

∂tV
1 − ∂2

zV 1 = −∂zV
0, t ≥ 0, z ≥ 0,

V 1(t, 1) = h1(t), t ≥ 0,

V 1(0, z) = 0, z ≥ 0,

(2.15)

and ⎧⎪⎨
⎪⎩

∂tV
2 − ∂2

zV 2 = −∂zV
1 − z∂zV

0, t ≥ 0, z ≥ 0,

V 2(t, 1) = h2(t), t ≥ 0,

V 2(0, z) = 0, z ≥ 0.

(2.16)

2.4. Boundary Forcing and Enhanced Time-Decay of the Free and Forced Heat Equation in a Disk

In this subsection we establish that there exists an appropriate choice of the boundary data, to impose
a rapid decay in time of the solutions to the forced heat equation, such as (2.14)–(2.16), for which the
choice is respectively the one of the function h0, h1 and h2.

Let us introduce the following weighted Sobolev spaces.

Definition 2.2. For z ∈ R, we denote 〈z〉 :=
√

1 + z2 and for s and q ∈ N, we set

Hs
q (R+) :=

{
f ∈ Hs(R+) :

s∑
j=0

∫
R+

〈z〉2q|∂j
zf(z)|2dz < +∞

}
,

endowed with it natural associated norm. In the same way we define Hs
q (R) and the norm

‖f‖Hs
q (R) :=

⎛
⎝ s∑

j=0

∫
R

〈z〉2q|∂j
zf(z)|2dz

⎞
⎠

1
2

.

Observe that by the Plancherel theorem, we have the following equivalence of norms:

‖f‖Hs
q (R) ∼

q∑
j=0

(∫
R

〈ζ〉2s|∂j
ζ f̂(ζ)|2dζ

) 1
2

, (2.17)

where f̂ denotes the Fourier transform of f .

Definition 2.3. Let k ∈ N, γ > 0 and X a Banach space with norm ‖ · ‖X . We define the space Ck
γ (R+;X)

of the functions f ∈ Ck(R+;X) such that

‖f‖Ck
γ (R+;X) := sup

t≥0,0≤j≤k

(‖∂j
t f(t)‖X〈t〉γ

)
< +∞,

where

Ck(R+;X) :=
{
f : ∂j

t f ∈ C(R+;X), 0 ≤ j ≤ k
}
.

The proof of the next proposition is given in Sect. 3.

Proposition 2.4. Let γ > 0, k, s, q, n ∈ N satisfy

n ≥ q

2
+ γ − 1. (2.18)

and we define

γ̃ := 2n + 3, s̃ := s + 2k + 2n, q̃ := 2n + 3. (2.19)
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Given f ∈ C0
γ̃(R+;H s̃

q̃ (R+)) when k = 0 and f ∈ Ck−1
γ̃ (R+;H s̃

q̃ (R+)) when k ≥ 1, we can find a nonzero
function h ∈ C∞

0 (0, T ), supported in (0, T
3 ] ∪ [2T

3 , T ), such that the following system⎧⎪⎨
⎪⎩

∂tv − ∂2
zv = f, t ≥ 0, z ≥ 0,

v(t, 0) = h(t), t ≥ 0,

v(0, z) = 0, z ≥ 0,

(2.20)

has a unique solution v ∈ Ck
γ (R+;Hs

q (R+). Moreover, if f is supported away from t = 0 as a function of
time t, so does v.

2.5. Proof of Proposition 2.1

Let us now see how to conclude the proof of Proposition 2.1 by applying Proposition 2.4 to the three
problems (2.14)–(2.16). Let k0 = 0, γ0 = 23, s0 = 28, q0 = 23.

• By Proposition 2.4, there exists h0 ∈ C∞
0 (0, T ) supported in (0, T

3 ]∪ [2T
3 , T ) such that system (2.14)

has a unique solution V 0 ∈ C0
23(R+;H28

23 (R+)). Moreover V 0 is supported away from t = 0 as a
function of time t.

• Using Proposition 2.4 again, there exists h1 ∈ C∞
0 (0, T ) such that system (2.15) has a unique

solution V 1 ∈ C0
7 (R+;H7

8 (R+)). Moreover V 1 is supported away from t = 0 as a function of time t.
• By a final use of Proposition 2.4, there exists h2 ∈ C∞

0 (0, T ) and V 2 ∈ C0
2 (R+;H2

2 (R+)) satisfying
(2.16). Moreover V 2 is supported away from t = 0 as a function of time t.

By the definition of {·}ε, for a profile V defined in R
2
+ with V ∈ C(R+;L2(R+)),

‖{V(t, ·)}ε‖L2(D1) ≤ Cε
1
4 ‖V(t, ·)‖L2(R+) (2.21)

for a constant C > 0. Hence, in view of (2.10),

‖vε(
T

ε
, ·)‖L2(D1) ≤ Cε

1
4 (‖V 0(

T

ε
, ·)‖L2(R+) +

√
ε‖V 1(

T

ε
, ·)‖L2(R+) + ε‖V 2(

T

ε
, ·)‖L2(R+))

+ε‖rε‖L2(D1)

≤ Cε
9
4 + ε‖rε‖L2(D1), (2.22)

where we use V i ∈ C0
2 (R+;L2(R+)) by construction. Then the proof of Proposition 2.1 is complete up to

the following result on the remainder which is postponed to Sect. 4.

Lemma 2.5. There exists a constant C such that, for s = 0, 1,

‖rε‖L∞(R+;L2(D1)) ≤ Cε
3
4 , (2.23)

‖rε‖L2(R+;H2s(D1)) ≤ Cε− 1
4 . (2.24)

2.6. An Auxiliary Solution of the Navier–Stokes Equations in the Infinite Cylinder

We then consider as an auxiliary solution of the Navier–Stokes equations:

uaux =

(
2∑

i=0

ε
i
2 hi(t) + vε

)
e3, (2.25)

where r :=
√

x2
1 + x2

2 and h0, h1, h2 and vε is the family of functions defined in the proof of Proposition 2.1.
Let us extend the finite vertical cylinder Ω into a cylinder with infinite height:

C := D1 × R. (2.26)



71 Page 8 of 32 J. Liao et al. JMFM

We also needs an extension ub of the initial data u0. Actually, we will need in the sequel to work
with analytic data, due to the difficulty related to a loss of derivatives due to the boundary layers in the
equation satisfied by the remainder. More precisely one will use analyticity with respect to the vertical
variable x3. Therefore we cannot simply extend the initial data u0 by 0 outside of Ω. The reason why we
use the index b is that we will need a first regularization step to get a large enough radius of analyticity
to completely overrule the effect of the loss of derivative.

Then, by setting

paux = −
2∑

i=0

ε
i
2 (hi)′(t)x3, (2.27)

we obtain that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tu
aux + uaux · ∇uaux − εΔuaux + ∇paux = 0 in (0, T

ε ) × C,

div uaux = 0 in (0, T
ε ) × C,

uaux = 0 on (0, T
ε ) × ∂C,

uaux|t=0 = 0 in C.

(2.28)

and

‖uaux

(
T

ε
, ·
)

‖L2(Ω) ≤ Cε
7
4 . (2.29)

We also define (the index “fl” stands for “flushed”):

ufl(t, x) := μ(t)ub

(
x −

(∫ t

0

h0(s)ds

)
e3

)
, (2.30)

where μ(t) ∈ C∞(R) is a cut-off function which satisfies μ(t) = 1 when t ≤ T
3 and μ(t) = 0 when t ≥ 2T

3 .
We observe that ufl satisfies⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂tu

fl + h0∂3u
fl = ξfl + ffl in (0, T ) × C,

div ufl = 0 in (0, T ) × C,

ufl = 0 on (0, T ) × ∂C,

ufl = ub on {0} × C,

(2.31)

where ∂3 := ∂x3 and by virtue of (2.6),

ξfl(t, x) : = μ̇(t)ub(x − 2Le3)|C\Ω, (2.32)

ffl(t, x) : = μ̇(t)ub(x − 2Le3)|Ω. (2.33)

We also introduce a domain

G := D1 × [−2L,−L], (2.34)

and a space

L2
div (C) := {v ∈ L2(C) : v is axi-symmetric, div v = 0, v = 0 on ∂C}. (2.35)

It is easy to observe that the control profile ξfl is supported in C\Ω, the phantom profile ffl is supported
in Ω, and for any k ∈ N,

‖ffl‖L1(0,T );Hk(C)) ≤ T‖ub‖Hk(G). (2.36)

Now consider any Leray weak solution

uε ∈ Cw([0,
T

ε
];L2

div ,loc(C)) ∩ L2

(
(0,

T

ε
);H1(C)

)
,
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of the rescaled system⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tu
ε + uε · ∇uε − εΔuε + ∇pε = ξε + fε in

(
0, T

ε

) × C,

div uε = 0 in
(
0, T

ε

) × C,

uε = 0 on
(
0, T

ε

) × ∂C,

uε|t=0 = εub in C.

(2.37)

We decompose uε and pε into

uε = uaux + εufl + εRε, (2.38)
pε = paux + επε, (2.39)

then we take

ξε = εξfl and fε = εffl, (2.40)

and we observe that the remainder Rε satisfies⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tR
ε − εΔRε + uε · ∇Rε + Rε · ∇(uaux + εufl) + ∇πε = F ε,

div Rε = 0,

Rε|∂C = 0,

Rε|t=0 = 0,

(2.41)

where

F ε : = −(−χ{V 0}ε +
√

ε(h1 − χ{V 1}ε) + ε(h2 − χ{V 2}ε) + εrε)∂3u
fl

+ufl
rχ′{V 0 +

√
εV 1 + εV 2}εe3 − ufl

r

χ

1 − r
{z∂zV

0 +
√

εz∂zV
1 + εz∂zV

2}εe3

−εufl
r∂rr

εe3 − εufl · ∇ufl + εΔufl. (2.42)

where ufl
r is the er component of ufl given by (2.55). By construction, ufl is supported in [0, T ], so does

F ε.
Indeed, because of the fast variation due to the boundary layer terms in uaux, the term Rε · ∇uaux in

(2.41) is singular with respect to ε. A classical trick here is to treat this singularity in ε against a loss of
derivative, see for example [18,19], and (5.18)–(5.20) below, which leads to consider analytic regularity
in order to bootstrap some estimates.

Proposition 2.6. Let T > 0. There exists ρb > 0 such that, for every ub ∈ L2
div (Ω) for which there exists

Cb such that

∀m ≥ 0, ‖∂m
x3

ub‖H3(C) ≤ m!
ρm

b
Cb, (2.43)

‖ub‖L1
x3

(H2(D1)) ≤ Cb. (2.44)

for every k ∈ N, we have the following estimate for Rε, there exists a constant C such that

sup
t∈[0,T/ε]

‖Rε(t)‖L2(C) +

(∫ T/ε

0

ε‖∇Rε‖2
L2(C)

) 1
2

≤ Cε
1
4 . (2.45)

The proof of Proposition 2.6 is postponed to Sect. 5.
Let us now explain how to deduce Theorem 1.1 by following the strategy of [8]. It is a matter to glue

together three steps, each of which corresponds to a subpart of the time interval which is imparted to
realize the control. To explain this, we go back to the original scaling and first recast the result obtained
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so far, which will be used as a second step (explaining the notation b as an index for the “initial” data
below). Setting, for ε ∈ (0, 1),

uε(t, x) := εu(εt, x), pε(t, x) := ε2p(εt, x), (2.46)
ξε(t, x) := ε2ξ(εt, x) and fε(t, x) := ε2f(εt, x), (2.47)

we deduce from Lemma 2.5, the definition of ufl and Proposition 2.6 the following result about the
possibility to drive a large analytic initial data with a sufficiently large analyticity radius can be driven
approximately into the null equilibrium.

Proposition 2.7. Let T > 0. There exists ρb > 0 such that, for every σ > 0 and each ub ∈ L2
div (C)

for which there exists Cb such that (2.43) and (2.44) hold, for every k ∈ N, there exist two forces
ξ ∈ C∞([0, T ] × C\Ω) and f ∈ C∞([0, T ] × Ω) satisfying

‖f‖L1((0,T );Hk(Ω)) ≤ Ck‖ub|G‖Hk(G), (2.48)

supp ξ ⊂ (0, T ) × C\Ω, (2.49)

where the constant Ck depends only on k, and a Leray weak solution u ∈ Cw([0, T ];L2
div (C)) ∩ L2((0, T );

H1(C)) to (2.52) associated with the initial data ub, such that there exists 0 < Tc ≤ T such that uc :=
u(Tc, ·) satisfies

‖uc|Ω‖L2(Ω) ≤ σ. (2.50)

Since this result requires some analytic initial data, we use as a prequel the following result regarding
the regularization of any finite energy initial data into an analytic function with arbitrary analyticity
radius.

Proposition 2.8. Let T > 0, ρb > 0 and u0 ∈ L2
div (Ω) with u0 · n = 0 on Γ. For any k ∈ N and ηb > 0,

there exists an extension ua ∈ L2
div (C) of u0 to the domain C, a control force ξ ∈ C∞([0, T ] × C\Ω), a

phantom force f ∈ C∞([0, T ] × Ω) satisfying

‖f‖L1(0,T );Hk(Ω) ≤ ηb, (2.51)

a Leray weak solution u ∈ Cw([0, T ];L2
div (C)) ∩ L2((0, T );H1(C)) to⎧⎪⎨

⎪⎩
∂tu + u · ∇u − Δu + ∇p = ξ + f in (0, T ) × C,

div u = 0 in (0, T ) × C,

u = 0 on (0, T ) × ∂C,

(2.52)

associated with initial data ua, Cb > 0 and 0 < Tb ≤ T such that ub := u(Tb, ·) ∈ L2
div (C) satisfies

‖ub|G‖Hk(G) ≤ ηb, (2.53)

(2.43) and (2.44).

Let us emphasize that for L2
div (Ω) initial data, we can find T1 ∈ (0, T ) such that u(T1, ·) ∈ H1(Ω).

Now for this new H1 “initial” data, we can find a small time T2 ∈ (T1, T ] and a solution u to (2.52)
with zero force, such that u ∈ C∞((T1, T2) × C), the rest of the proof is almost the same as the proof of
Proposition 1.7 of [8] and is therefore left to the reader.

Last, we use that small enough states can be driven exactly to the rest state.

Proposition 2.9. Let T > 0. There exists σ > 0 such that, for any uc ∈ L2
div (Ω) which satisfies

‖uc‖L2(Ω) ≤ σ, (2.54)

there exists a Leray weak solution u ∈ Cw([0, T ];L2
div (Ω))∩L2((0, T );H1((Ω)) to (1.1) with the associated

initial data uc and f = 0, which satisfies u(T, ·) = 0.



JMFM Global Controllability of the Navier–Stokes Equations Page 11 of 32 71

We refer to Theorem 2 of [10]. Actually, the original theorem of [10] requires the initial date to be small
in L4(Ω)∩L2

div (Ω). While if we only have the smallness of the initial data, by using the energy inequality,
we can find a T1 ∈ (0, T

2 ) such that u(T1) is small in L2(Ω) ∩ H1(Ω) hence small in L4(Ω) ∩ L2
div (Ω).

Therefore we only require the initial data small in L2
div (Ω).

Theorem 1.1 is then implied by combining the three propositions above.

Remark 2.10. We observe that in the strategy above we only make use of analyticity in the vertical
direction. One can wonder if a use of analyticity in the orthoradial direction could be helpful to extend
the the result of Theorem 1.1 to the case of smooth solutions or to the case of non-axisymmetric initial
data. Unfortunately this does not seem to be the case. One difficulty is that, to deal with the nonlinear
feature in the remainder estimates, see Sect. 5, one typically needs to replace the space L2 by the
Sobolev space H

1
2 to bootstrap some estimates. This requires to construct yet more accurate asymptotic

expansion. Then one observes that the lower order boundary layer profiles which would be natural to
consider depend on the vertical variable and satisfy some equations which couples the terms of a heat
equation with respect to the fast variable z, like the ones considered above, and some transport terms
in the x3 direction with a prefactor which corresponds to the principal term of uaux. Unfortunately the
well-prepared dissipation method seems to be delicate to adapt to such problems.

2.7. Organization of the Rest of the Paper

The rest of the paper is devoted to the proof of the intermediate results which were admitted above in the
course of the proof of Theorem 1.1. The two next sections are devoted to the proofs of the intermediate
results used to prove Proposition 2.1, that is Proposition 2.4 in Sect. 3, and Lemma 2.5 in Sect. 4. Next, in
Sect. 5 we give the proof of Proposition 2.6. Once again, the proof is quite technical, and we will use two
technical intermediate results: Proposition 5.4 and Lemma 5.3 whose proofs are postponed respectively
to Sects. 6 and 7.

Notations: For any x ∈ C defined by (2.26), let x1 = r cos θ, x2 = r cos θ, n = 1
r (x1, x2, 0). Let {ei}3

i=1

be the unit vectors of the canonical basis of R
3. Let er = (cos θ, sin θ, 0), eθ = (− sin θ, sin θ, 0). For a

vector a ∈ R
3, we write

a = a1e1 + a2e2 + a3e3 = arer + aθeθ + a3e3. (2.55)

We always denote ∇h := (∂x1 , ∂x2), ∂i := ∂xi
for 1 ≤ i ≤ 3, ∂r := er · ∇ and (a, b) =

∫
C a(x)b(x) dx the

L2(C) inner product of a and b.

3. Proof of Proposition 2.4

This section is devoted to the proof of Proposition 2.4. We will rely on the following result from [15,
Lemma 3.4] where, for n ∈ N and x ∈ R, we set

sn(x) :=
n∑

k=0

xk

k!
. (3.1)

Lemma 3.1. Let γ > 0 and k, s, q, n ∈ N satisfying (2.18) and γ̃, s̃, and q̃ as in (2.19). Let v0 ∈ Hs+2k
q̃ (R)

and f ∈ C0
γ̃(R+;H s̃

q̃ (R)) when k = 0 and f ∈ Ck−1
γ̃ (R+;H s̃

q̃ (R)) when k ≥ 1, such that(
∂j

ζ

(
v̂0(ζ) +

∫ ∞

0

sn(tζ2)f̂(t, ζ)dt
))∣∣∣∣

ζ=0

= 0, for 0 ≤ j ≤ 2n + 1. (3.2)

Then the following Cauchy problem{
∂tv − ∂2

zv = f, t ≥ 0, z ∈ R,

v|t=0 = v0, z ∈ R,
(3.3)
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has a unique solution v ∈ Ck
γ (R+;Hs

q (R)).

We are now ready to start the proof of Proposition 2.4.

Proof of Proposition 2.4. We first observe that it is sufficient to deal with the case where k = 0, since
the general case follows by using that for 0 ≤ i ≤ k, for z in R and t ≥ 0, ∂i

tv = ∂2
z∂i−1

t v + ∂i−1
t f .

Assume that h ∈ C∞
0 (0, T ). Let j0 = [ s̃+1

2 ],

A0(t) := h(t), Aj(t) := ∂tAj−1(t) − ∂2j−2
z f |z=0+ for 1 ≤ j ≤ j0. (3.4)

For z ≥ 0, we denote

A(t, z) :=
j0∑

j=0

Aj(t)
z2j

(2j)!
χ1(z), (3.5)

where χ1(z) ∈ C∞
0 (R+) is a cut-off function which satisfies χ1(z) = 1 for z ∈ [0, 1

2 ] and χ1(z) = 0 for
z ≥ 1. One can check that

A ∈ C0
γ̃(R+;C∞

0 (R+)). (3.6)

Then the function V := v − A satisfies, for t ≥ 0, z ≥ 0,⎧⎪⎨
⎪⎩

∂tV − ∂2
zV = F,

V (t, 0) = 0,
V (0, z) = 0

(3.7)

where

F := f − ∂tA + ∂2
zA. (3.8)

It follows from the construction of Aj(t), that ∂2j
z F |z=0+ = 0 for 0 ≤ j ≤ j0 − 1. Thus, extending F by

F (t, z) = −F (t,−z) to the whole line z ∈ R, we have

F ∈ C0
γ̃(R+;H s̃

q̃ (R)). (3.9)

Moreover, if f is supported away from t = 0 as a function of time t, so does F , and by using the energy
method it is easy to find that V is also supported away from t = 0.

Now, let us observe that, to prove Proposition 2.4, it is sufficient to find a function h ∈ C∞
0 (0, T ),

supported in (0, T
3 ] ∪ [2T

3 , T ), such that the associated function F satisfies the condition:

(
∂j

ζ

( ∫ ∞

0

sn(tζ2)F̂ (t, ζ)dt
))∣∣∣∣

ζ=0

= 0, for 0 ≤ j ≤ 2n + 1, (3.10)

where sn is defined in (3.1) and F̂ denotes the Fourier transform of F with respect to z. Indeed, then
by the result of Lemma 3.1, we obtain that V ∈ C0

γ(R+;Hs
q (R)). Moreover, by (3.6), it follows that

v ∈ C0
γ(R+;Hs

1(R+)). Actually, since F is an odd function with respect to z, it suffices to guarantee
(3.10) for odd integer j with 1 ≤ j ≤ 2n + 1. �

By the definition of Aj(t) in (3.4), for 0 ≤ j ≤ j0,

Aj(t) = ∂j
t h(t) −

j−1∑
i=0

∂j−1−i
t ∂2i

z f |z=0+ . (3.11)
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Then, by combining (3.5), (3.8) and (3.11), we arrive at

F = f −
j0∑

j=0

∂tAj(t)
z2j

(2j)!
χ1(z) +

j0∑
j=0

Aj(t)∂2
z (

z2j

(2j)!
χ1(z))

= f −
j0−1∑
j=0

∂2j
z f |z=0+

z2j

(2j)!
χ1(z) − ∂tAj0(t)

z2j0

(2j0)!
χ1(z) + A0(t)χ′′

1(z)

+
j0∑

j=1

Aj(t)
z2j−1

(2j − 1)!
(2χ′

1(z) +
z

2j
χ′′

1(z))

= f̃ +
j0+1∑
j=0

∂j
t h(t)αj(z),

where

f̃ : = f −
j0−1∑
j=0

∂2j
z f |z=0+

z2j

(2j)!
χ1(z) +

j0−1∑
i=0

∂j0−i
t ∂2i

z f |z=0+
z2j0

(2j0)!
χ1(z)

−
j0∑

j=1

j−1∑
i=0

∂j−1−i
t ∂2i

z f |z=0+
z2j−1

(2j − 1)!
(2χ′

1(z) +
z

2j
χ′′

1(z)),

α0(z) : = χ′′
1(z),

αj(z) : =
z2j−1

(2j − 1)!
(2χ′

1(z) +
z

2j
χ′′

1(z)), for 1 ≤ j ≤ j0,

αj0+1(z) : = − z2j0

(2j0)!
χ1(z).

Next we odd extend f̃ , χ1(z) and χ′′
1(z), and even extend χ′

1(z) with respect to z to get a odd extension
of F .

When j = 1, the condition (3.10) becomes

0 = ∂ζ

(∫ ∞

0

sn(tζ2)F̂ (t, ζ) dt

)
|ζ=0

=
∫ ∞

0

∂ζF̂ (t, 0) dt

=
∫ ∞

0

∂ζ
ˆ̃
f(t, 0) dt +

(
j0+1∑
i=0

∫ ∞

0

∂i
th(t) dt

)
∂ζα̂i(0). (3.12)

Since h ∈ C∞
0 ((0, T )), we have that, for i ≥ 1,∫ ∞

0

∂i
th(t)dt = 0.

On the other hand,

∂ζα̂0(0) = −i
∫ ∞

−∞
zα0(z) dz = −2i

∫ ∞

0

zχ′′
1(z) dz = −2i, (3.13)

where we denote i =
√−1. Thus (3.12) is equivalent to∫ ∞

0

h(t) dt = c0 :=
1
2i

∫ ∞

0

∂ζ
ˆ̃
f(t, 0)dt. (3.14)
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When j = 3, the condition (3.10) becomes

0 = ∂3
ζ

(∫ ∞

0

sn(tζ2)F̂ (t, ζ) dt

)
|ζ=0

=
∫ ∞

0

(6t∂ζ
ˆ̃
f(t, 0) + ∂3

ζ
ˆ̃
f(t, 0))dt

+
∫ ∞

0

j0+1∑
i=0

(6t∂i
th(t)∂ζα̂i(0) + ∂i

th(t)∂3
ζ α̂i(0))dt. (3.15)

Observe that ∫ ∞

0

t∂th(t)dt = −
∫ ∞

0

h(t)dt = −c0,

and for i ≥ 2,

∫ ∞

0

t∂i
th(t)dt = −

∫ ∞

0

∂i−1
t h(t)dt = 0.

We find that (3.15) is equivalent to

∫ ∞

0

th(t)dt = c1, (3.16)

where

c1 :=
1

12i

∫ ∞

0

(6t∂ζ
ˆ̃
f(t, 0) + ∂3

ζ
ˆ̃
f(t, 0))dt − 1

2i
c0∂ζα̂1(0) +

1
12i

c0∂
3
ζ α̂0(0). (3.17)

Generally, we can find some constants ci, 0 ≤ i ≤ n, such that when j = 2i + 1, (3.10) is equivalent to

∫ ∞

0

tih(t)dt = ci. (3.18)

We can prove it by induction. We already know it holds for i = 0, 1, assume 2 ≤ i ≤ n and assume that
(3.18) holds for 0 ≤ l < i, then when j = 2i + 1, the condition (3.10) becomes

0 = ∂2i+1
ζ

(∫ ∞

0

sn(tζ2)F̂ (t, ζ) dt

)
|ζ=0

=
i∑

l=0

∫ ∞

0

C2l
2i+1

(2l)!
l!

tl∂2i+1−2l
ζ

ˆ̃
f(t, 0)dt

+
i∑

l=0

∫ ∞

0

C2l
2i+1

(2l)!
l!

tl
j0+1∑
ν=0

∂ν
t h(t)∂2i+1−2l

ζ α̂ν(0)dt. (3.19)

Note that, for l, ν ∈ N,

∫ ∞

0

tl∂ν
t h(t)dt =

{
0, if l < ν,

(−1)ν l!
(l−ν)!

∫∞
0

tl−νh(t)dt, if l ≥ ν.
(3.20)
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Using (3.20) and the induction assumption that (3.18) holds for 0 ≤ l < i, (3.19) is equivalent to (3.18)
with

ci : =
1
2i

· i!
(2i + 1)!

∂2i+1
ζ

(∫ ∞

0

sn(tζ2) ˆ̃
f(t, ζ) dt

)
|ζ=0

+
1
2i

· i!
(2i + 1)!

i−1∑
l=0

l∑
ν=0

(−1)νC2l
2i+1

(2l)!
(l − ν)!

cl−ν∂2i+1−2l
ζ α̂ν(0)

+
1
2i

i∑
ν=1

(−1)ν i!
(i − ν)!

ci−ν∂ζα̂ν(0). (3.21)

Thus the condition (3.10) is equivalent to (3.18) holds for all 0 ≤ i ≤ n. Given function f , we can define
constants ci as above, the rest of our task is therefore to find a nonzero function h ∈ C∞

0 (0, T ), supported
in (0, T

3 ] ∪ [2T
3 , T ), such that (3.18) holds for all 0 ≤ i ≤ n.

We introduce a nonnegative cut-off function χ2 ∈ C∞
0 (0, T ) such that χ2(t) = 0 for t ∈ [T

3 , 2T
3 ] and

χ2(t) = 1 for t ∈ [T
9 , 2T

9 ] ∪ [7T
9 , 8T

9 ], we seek a function h of form

h(t) =
n+1∑
i=0

βit
iχ2(t), (3.22)

where βi, 0 ≤ i ≤ n+1, are constants to be determined. Then (3.18) holds for 0 ≤ i ≤ n is equivalent to

Bβ = c, (3.23)

where β = (β0, . . . , βn+1)Tr, c = (c0, . . . , cn)Tr and

B =

⎛
⎜⎜⎝

∫∞
0

χ2(t)dt
∫∞
0

tχ2(t)dt · · · ∫∞
0

tn+1χ2(t)dt∫∞
0

tχ2(t)dt
∫∞
0

t2χ2(t)dt · · · ∫∞
0

tn+2χ2(t)dt
· · · · · · · · · · · ·∫∞

0
tnχ2(t)dt

∫∞
0

tn+1χ2(t)dt · · · ∫∞
0

t2n+1χ2(t)dt

⎞
⎟⎟⎠ . (3.24)

We denote B′ the sub-matrix of B made of the first n row, b′ the vector of (n + 1) − th row of B. It is
obvious that b′ is a nonzero vector. In order to find a nonzero vector β such that (3.23), we first show
that B′ is a nondegenerate matrix. Otherwise, there exists a vector y = (y0, . . . , yn)Tr �= 0 such that

yTrB′y =
∫ ∞

0

|y0 + y1t + · · · + yntn|2χ2(t)dt = 0. (3.25)

Hence y0+y1t+ · · ·+yntn ≡ 0 for t ∈ [T
9 , 2T

9 ]∪ [7T
9 , 8T

9 ], this contradict to y �= 0. So B′ is a nondegenerate
matrix. If c �= 0, we can take (β0, . . . , βn)Tr = B′−1c, βn+1 = 0. If c = 0, we can take βn+1 = 1,

(β0, . . . , βn)Tr = −B′−1b′. Either way, we have found a nonzero vector β such that (3.23) holds true.
This means we have hound a nonzero function h ∈ C∞

0 (0, T ) supported in (0, T
3 ]∪ [2T

3 , T ) such that (3.18)
holds for 0 ≤ i ≤ n. This concludes our proof.

�

4. Proof of Lemma 2.5

This section is devoted to the proof of Lemma 2.5.

4.1. Equation Satisfied by the Remainder

By using the equation for V i, for 0 ≤ i ≤ 2, see the systems (2.14)–(2.16), the Eq. (2.7) and the
composition rule (2.12), we obtain that the remainder rε := rε(t, x1, x2) satisfies
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∂tr
ε − εΔhrε = qε t ≥ 0, (x1, x2) ∈ D1,

rε(t, x1, x2) = 0 t ≥ 0, (x1, x2) ∈ ∂D1,

rε(0, x1, x2) = 0 (x1, x2) ∈ D1,

(4.1)

where

Δh := ∂2
x1

+ ∂2
x2

, (4.2)

and

qε : = −(χ′′ +
χ′

r
){V 0 +

√
εV 1 + εV 2}ε +

2χ′

1 − r
{z∂zV

0 +
√

εz∂zV
1 + εz∂zV

2}ε

+
√

εχα(r){z2∂zV
0}ε +

√
εχ{z∂zV

1}ε + εχα(r){z2∂zV
1}ε +

εχ

r
{∂zV

2}ε. (4.3)

Moreover, since V i, for 0 ≤ i ≤ 2, are supported way from t = 0 as a function of time t, so is the forcing
term qε.

4.2. Estimate Satisfied by the Forcing Term of the Remainder’s Equation

In this subsection we prove that qε satisfies, for a constant C,

‖qε‖(L1∩L2)(R+×D1) ≤ Cε
3
4 . (4.4)

By definition of the cut-off function χ, see Sect. 2.3, there exists a constant C such that

|(χ′′ +
χ′

r
)

1
1 − r

| ≤ C, | χ′

(1 − r)2
| ≤ C. (4.5)

Thus by virtue of (2.21), we find

‖(χ′′ +
χ′

r
){V 0}ε‖(L1∩L2)(R+;L2(D1)) = ‖(χ′′ +

χ′

r
)

√
ε

1 − r
{zV 0}ε‖(L1∩L2)(R+;L2(D1))

≤ Cε
3
4 ‖zV 0‖(L1∩L2)(R+;L2(R+))

≤ Cε
3
4 ‖V 0‖C0

2 (R+;H0
1 (R+)). (4.6)

Similarly, one has

‖(χ′′ +
χ′

r
){√

εV 1 + εV 2}ε‖(L1∩L2)(R+;L2(D1))

≤ Cε
3
4
(‖V 1‖C0

2 (R+;H0
0 (R+)) +

√
ε‖V 2‖C0

2 (R+;H0
0 (R+))

)
, (4.7)

and

‖ 2χ′

1 − r
{z∂zV

0 +
√

εz∂zV
1 + εz∂zV

2}ε‖(L1∩L2)(R+;L2(D1))

≤ Cε
3
4
(‖V 0‖C0

2 (R+;H1
2 (R+)) + ‖V 1‖C0

2 (R+;H1
1 (R+)) +

√
ε‖V 2‖C0

2 (R+;H1
1 (R+))

)
, (4.8)

and

‖√
εχ{z∂zV

1}ε‖(L1∩L2)(R+;L2(D1)) ≤ Cε
3
4 ‖V 1‖C0

2 (R+;H1
1 (R+)), (4.9)

and

‖εχ

r
{∂zV

2}ε‖(L1∩L2)(R+;L2(D1)) ≤ Cε
5
4 ‖V 2‖C0

2 (R+;H1
0 (R+)). (4.10)

Since α(r) ∈ C∞([13 , 1]), recalling that the definition is in (2.11),

‖√
εχα(r){z2∂zV

0}ε‖(L1∩L2)(R+;L2(D1)) ≤ Cε
3
4 ‖V 0‖C0

2 (R+;H1
2 (R+)), (4.11)

‖εχα(r){z2∂zV
1}ε‖(L1∩L2)(R+;L2(D1)) ≤ Cε

5
4 ‖V 1‖C0

2 (R+;H1
2 (R+)). (4.12)



JMFM Global Controllability of the Navier–Stokes Equations Page 17 of 32 71

By summarizing the above inequalities, we conclude the proof of (4.4).

4.3. Parabolic Estimates

Now we are ready to prove (2.23) and (2.24). By using energy method, we find that
1
2
∂t‖rε‖2

L2(D1)
+ ε‖∇hrε‖2

L2(D1)
≤ ‖qε‖L2(D1)‖rε‖L2(D1), (4.13)

where ∇h = (∂x1 , ∂x2). Thanks to (4.4),

‖rε‖L∞(R+;L2(D1)) ≤ ‖qε‖L1(R+;L2(D1)) ≤ Cε
3
4 . (4.14)

While by taking L2(D1) inner product of (4.1) with ∂tr
ε, we obtain

‖∂tr
ε(t)‖2

L2(D1)
+

ε

2
d

dt
‖∇hrε(t)‖2

L2(D1)
≤‖qε‖L2(D1)‖∂tr

ε‖L2(D1)

≤1
2
‖qε‖2

L2(D1)
+

1
2
‖∂tr

ε‖2
L2(D1)

,

from which and (4.4), we infer

ε‖∇hrε‖2
L∞(R+;L2(D1))

+ ‖∂tr
ε‖2

L2(R+×D1)
≤ ‖qε‖2

L2(R+×D1)
≤ Cε

3
2 . (4.15)

Thanks to (4.15), we deduce from the rε equation of (4.1) that

ε‖Δhrε‖L2(R+×D1) ≤ ‖∂tr
ε‖L2(R+×D1) + ‖qε‖L2(R+×D1) ≤ Cε

3
4 ,

which together with the homogeneous boundary condition of rε on ∂D1 ensures that

‖∇2
hrε‖L2(R+×D1) ≤ Cε− 1

4 (4.16)

Since rε vanishes on the boundary ∂D1 and thanks to Poincaré inequality and interpolation inequality,

‖rε‖L2(R+×D1) ≤ C‖∇hrε‖L2(R+×D1) ≤ C‖rε‖ 1
2
L2(R+×D1)

‖∇2
hrε‖ 1

2
L2(R+×D1)

. (4.17)

Therefore,

‖rε‖L2(R+×D1) ≤ C‖∇2
hrε‖L2(R+×D1) ≤ Cε− 1

4 . (4.18)

By summarizing the estimates (4.14), (4.16), and (4.17) and (4.18), we finish the proof of Lemma 2.5.

5. Proof of Proposition 2.6

The section is devoted to the proof of Proposition 2.6. As already explained, despite we only desire to
obtain a L2 estimate of the remainder term Rε, the singular feature of the problem satisfied by Rε, due to
the large variations in the boundary layer, combined with the nonlinearity of the Navier–Stokes system,
leads us to consider analytic estimates in the spirit of Cauchy–Kowaleskaya estimates. As we need a
nonlinear long-time version of such Cauchy–Kowaleskaya estimates, we follow the method initiated by
Chemin in [3], see also [4,19], which makes use of Fourier theory and Besov spaces. We introduce, for
s = 0 and s = 1

2 , the Besov spaces Ḃs respectively endowed with the norm

‖a‖Ḃs :=
∑
k∈Z

2ks‖Δ̇ka‖L2(C) (5.1)

where the dyadic operator Δ̇k is defined by

Δ̇ka
def= F−1

ξ→x3
(ϕ(2−k|ξ|)â(x1, x2, ξ))with

Suppϕ ⊂
{

τ ∈ R /
3
4

≤ |τ | ≤ 8
3

}
and ∀τ > 0 ,

∑
j∈Z

ϕ(2−jτ) = 1,
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where F−1
ξ→x3

a denotes the inverse Fourier transform of the distribution a with respect to the third
variable, and â(x1, x2, ξ) = Fx3→ξ(a)(x1, x2, ξ). One may check more details on Littlewood-Paley theory
from [1].

For any locally bounded function Φ on R
+ × R, we define

vΦ := F−1
ξ→x3

(eΦ(t,ξ)v̂(t, x1, x2, ξ)). (5.2)

Then it follows from (2.41) that, for any function Φ of the form:

Φ(t, ξ) := ρ(t)|ξ| − β(t), (5.3)

the vector field Rε
Φ satisfies the Navier–Stokes type system:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂tR
ε
Φ − ρ̇|∂3|Rε

Φ + β̇Rε
Φ + (uε · ∇Rε + Rε · ∇(uaux + εufl))Φ

−εΔRε
Φ + ∇πε

Φ = F ε
Φ,

div Rε
Φ = 0,

Rε
Φ|∂C = 0,

Rε
Φ|t=0 = 0.

(5.4)

We recall that the source term F ε is defined in (2.42). Such a form of the exponential Fourier multiplier
make appear two possible gains through the second and third terms in the first equation above. The
purpose of these gains is to help to deal with the singular part of the convective term, that is the fourth
term of the same equation. The choices of β(t) and ρ(t) are therefore crucial. We first define β(t), by⎧⎪⎨

⎪⎩
β̇(t) = C∗χ[0,T ](t) + C∗(ε‖∇heρ0|∂3|ufl‖2

Ḃ
1
2

+ ‖h1 − χ{V 1}ε‖2
L∞(D1)

+ε‖h2 − χ{V 2}ε‖2
L∞(D1)

+ ‖V 0‖L∞
z

+ ‖z∂zV
0‖L∞

z
+ ε‖rε‖L∞(D1)),

β(0) = 0,

(5.5)

where C∗ is a constant which will be determined later.

Proposition 5.1. If ub satisfies (2.43) for a constant C0 > 0 and ρb > ρ0, there exists β∗ > 0 such that

sup
t∈[0,T/ε]

β(t) = β(T/ε) ≤ β∗. (5.6)

Proof. Since h1 is compactly supported in (0, T ), χ is a cut-off function which satisfies 0 ≤ χ ≤ 1,

∫ T
ε

0

‖h1 − χ{V 1}ε‖2
L∞(D1)

dt ≤ 2T‖h1‖2
L∞ + 2

∫ T
ε

0

‖V 1‖2
L∞

z
dt.

By construction, V 1 ∈ C0
7 (R+;H7

8 (R+)), and recall Definition 2.3, we find that

∫ T
ε

0

‖h1 − χ{V 1}ε‖2
L∞(D1)

dt ≤ 2T‖h1‖2
L∞ + C‖V 1‖2

C0
1 (R+;H1(R+)),

for a constant C. Similarly∫ T
ε

0

‖h2 − χ{V 2}ε‖2
L∞(D1)

dt ≤ 2T‖h2‖2
L∞ + C‖V 2‖2

C0
1 (R+;H1(R+)).

and ∫ T
ε

0

(‖V 0‖L∞
z

+ ‖z∂zV
0‖L∞

z
) dt ≤ C‖V 0‖C0

2 (R+;H2
1 (R+)).
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By Proposition 2.5 and Sobolev imbedding inequality,

ε

∫ T
ε

0

‖rε‖L∞(D1) dt ≤ Cε

∫ T
ε

0

‖rε‖H2(D1) dt

≤ Cε‖rε‖ 1
2
L2(R+;H2(D1))

ε− 1
2 T

1
2

≤ Cε
3
8 .

It remains to estimate
∫ T

ε

0
ε‖∇heρ0|∂3|ufl‖2

Ḃ
1
2

dt. Since ufl is supported in [0, T ] as a function of t we have
that

∫ T
ε

0

ε‖∇heρ0|∂3|ufl‖2

Ḃ
1
2

dt ≤ T‖∇heρ0|∂3|ub‖2

Ḃ
1
2

≤ T

(∑
k∈Z

2
k
2 ‖Δ̇k∇heρ0|∂3|ub‖L2(C)

)2

≤ CT
(‖∇heρ0|∂3|ub‖L2(C) + ‖∂3∇heρ0|∂3|ub‖L2(C)

)2
≤ CT‖eρ0|∂3|ub‖2

H2(C).

Since ub satisfies (2.43) for ρb > ρ,

∫ T
ε

0

ε‖∇heρ0|∂3|ufl‖2

Ḃ
1
2

dt ≤ CTC2
b

(
ρb

ρb − ρ0

)2

.

Eventually, gathering the above inequality concludes the proof of Proposition 5.1. �

Remark 5.2. From now on, for simplification, we shall denote the norm ‖ · ‖L2(C) by ‖ · ‖ if there is no
ambiguity.

Now we are in a position to complete the proof of Proposition 2.6.

Proof of Proposition 2.6. We define ρ(t) as the solution of the nonlinear ODE:{
ρ̇(t) = −C∗(ε‖∇hRε

Φ‖2
Ḃ0 + ‖z∂zV

0‖L∞
z

), t > 0,

ρ(0) = ρ0,
(5.7)

where

ρ0 := 2 + C∗
∫ ∞

0

‖z∂zV
0(t)‖L∞

z
dt. (5.8)

and C∗ is a constant which will be determined later. We set

T ∗ := sup{t ∈ [0,
T

ε
] : ρ(t) ≥ 1}. (5.9)

We apply the operator Δ̇k to (5.4) and we use energy estimates to find that

1
2

d
dt‖Δ̇kRε

Φ‖2 + |ρ̇|(|∂3|Δ̇kRε
Φ, Δ̇kRε

Φ) + β̇‖Δ̇kRε
Φ‖2 + ε‖∇Δ̇kRε

Φ‖2

+(Δ̇k(uε · ∇Rε + Rε · ∇(uaux + εufl))Φ, Δ̇kRε
Φ) = (Δ̇kF ε

Φ, Δ̇kRε
Φ), (5.10)
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which implies
∑
k∈Z

‖Δ̇kRε
Φ(t)‖ +

∑
k∈Z

(∫ t

0

2k|ρ̇|‖Δ̇kRε
Φ‖2 ds

) 1
2

+
∑
k∈Z

(∫ t

0

β̇‖Δ̇kRε
Φ‖2 ds

) 1
2

+
∑
k∈Z

(∫ t

0

ε‖∇Δ̇kRε
Φ‖2 ds

) 1
2

≤ C
∑
k∈Z

(∫ t

0

|(Δ̇kF ε
Φ, Δ̇kRε

Φ)| ds
) 1

2

+C
∑
k∈Z

(∫ t

0

|(Δ̇k(uε · ∇Rε + Rε · ∇(uaux + εufl))Φ, Δ̇kRε
Φ)| ds

) 1
2
. (5.11)

Since F ε is supported in [0, T ], the first term on the right hand side can be bounded by

∑
k∈Z

(∫ t

0

χ[0,T ](s)‖Δ̇kRε
Φ(s)‖2ds

) 1
2

+
∑
k∈Z

(∫ T

0

‖Δ̇kF ε
Φ(s)‖2ds

) 1
2

. (5.12)

It remains to estimate the last term in (5.11). It is easy to observe from (2.10) and (2.25) that uaux is
independent of x3 variable. By using integration by parts and div uaux = 0, we find that

(Δ̇k(uaux · ∇Rε)Φ, Δ̇kRε
Φ) = (uaux · ∇Δ̇kRε

Φ, Δ̇kRε
Φ) = 0. (5.13)

While due to div ufl = div Rε = 0, one has

(Δ̇k((εufl + εRε) · ∇Rε)Φ, Δ̇kRε
Φ) = −(Δ̇k((εufl + εRε) ⊗ Rε)Φ,∇Δ̇kRε

Φ). (5.14)

Next we use the following lemma: �

Lemma 5.3. For any axi-symmetric functions a, b and c in C, assume that function a vanishes on the
boundary ∂C, then for any constant c0 > 0, there exists C > 0, such that

∑
k∈Z

(∫ t

0

|(Δ̇k(ab)Φ, Δ̇kcΦ))| ds

) 1
2

≤ c0

∑
k∈Z

(∫ t

0

‖Δ̇kcΦ‖2 ds

) 1
2

+ C
∑
k∈Z

(∫ t

0

‖∇haΦ‖2

Ḃ
1
2
‖Δ̇kbΦ‖2 ds

) 1
2

.

When a = b and both vanish on the boundary, we also have

∑
k∈Z

(∫ t

0

|(Δ̇k(a2)Φ, Δ̇kcΦ))| ds

) 1
2

≤ c0

∑
k∈Z

(∫ t

0

‖Δ̇kcΦ‖2 ds

) 1
2

+ C
∑
k∈Z

(∫ t

0

2k‖∇haΦ‖2
Ḃ0‖Δ̇kaΦ‖2 ds

) 1
2

.

The proof of Lemma 5.3 is postponed to Sect. 7. Then by Lemma 5.3, for any c0 > 0, there exists a
constant C > 0, such that

∑
k∈Z

(∫ t

0

|(Δ̇k((εufl + εRε) · ∇Rε)Φ, Δ̇kRε
Φ)| ds

) 1
2

≤ c0

∑
k∈Z

(∫ t

0

ε‖∇Δ̇kRε
Φ‖2 ds

) 1
2

+C
∑
k∈Z

(∫ t

0

ε(‖∇hufl
Φ‖2

Ḃ
1
2

+ 2k‖∇hRε
Φ‖2

Ḃ0)‖Δ̇kRε
Φ‖2 ds

) 1
2

(5.15)
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Again, by integration by parts, we find

(Δ̇k(Rε · ∇(uaux + εufl))Φ, Δ̇kRε
Φ) = −(Δ̇k(Rε ⊗ (uaux + εufl))Φ,∇Δ̇kRε

Φ).

By Lemma 5.3, for any c0 > 0, there exists a constant C > 0, such that

∑
k∈Z

(∫ t

0

ε|(Δ̇k(Rε ⊗ ufl)Φ,∇Δ̇kRε)| ds

) 1
2

≤ c0

∑
k∈Z

(∫ t

0

ε‖∇Δ̇kRε
Φ‖2 ds

) 1
2

+ C
∑
k∈Z

(∫ t

0

ε‖∇hufl
Φ‖2

Ḃ
1
2
‖Δ̇kRε

Φ‖2 ds

) 1
2

. (5.16)

and

∑
k∈Z

(∫ t

0

|(Δ̇k(Rε ⊗ (uaux − (h0 − χ{V 0}ε)e3))Φ,∇Δ̇kRε
Φ)| ds

) 1
2

≤ c0

∑
k∈Z

(∫ t

0

ε‖∇Δ̇kRε
Φ‖2 ds

) 1
2

+C
∑
k∈Z

(∫ t

0

‖Δ̇kRε
Φ‖2(‖h1 − χ{V 1}ε‖2

L∞(D1)
+ ε‖h2 − χ{V 2}ε‖2

L∞(D1)
+ ε‖rε‖2

L∞) ds

) 1
2

,

(5.17)

where in the last step, we used (2.10) and (2.25).
It remains to estimate (Δ̇k(Rε · ∇(h0 − χ{V 0}ε))Φ, Δ̇kRε

3,Φ). Observing that

(Δ̇k(Rε · ∇(h0 − χ{V 0}ε))Φ, Δ̇kRε
3,Φ)

= −(Δ̇kRε
r,Φ(χ′{V 0}ε +

χ

1 − r
{z∂zV

0}ε), Δ̇kRε
3,Φ),

which implies ∣∣(Δ̇k(Rε · ∇(h0 − χ{V 0}ε))Φ, Δ̇kRε
3,Φ)

∣∣
≤ ‖V 0‖L∞

z
‖Δ̇kRε

Φ‖2 − (Δ̇kRε
r,Φ

χ

1 − r
{z∂zV

0}ε, Δ̇kRε
3,Φ) (5.18)

Since Rε vanishes on the boundary of C, we have

Δ̇kRε
r,Φ

1 − r
= −

∫ 1

0

(∂rΔ̇kRε
r,Φ)(t, 1 − (1 − r)s, x3)ds. (5.19)

By the divergence free condition div Rε = 0,

∂rΔ̇kRε
r,Φ = −Δ̇kRε

r,Φ

r
− ∂3Δ̇kRε

3,Φ. (5.20)

Note that χ(r) = 0 when r ≤ 1
3 , we find

|(Δ̇kRε
r,Φ

χ

1 − r
{z∂zV

0}ε, Δ̇kRε
3,Φ)|

=
∣∣∣∣
∫

C

∫ 1

0

(∂rΔ̇kRε
r,Φ)(t, 1 − (1 − r)s, x3)χ(r){z∂zV

0}ε(t, r)Δ̇kRε
3,Φ(t, x)dsdx

∣∣∣∣
≤ (3‖Δ̇kRε

r,Φ‖ + ‖∂3Δ̇kRε
3,Φ‖)‖z∂zV

0‖L∞
z

‖Δ̇kRε
3,Φ‖

≤ C(1 + 2k)‖z∂zV
0‖L∞

z
‖Δ̇kRε

Φ‖2,
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which implies

∑
k∈Z

(∫ t

0

|(Δ̇k(Rε · ∇(h0 − χ{V 0}ε))Φ, Δ̇kRε
3,Φ)| ds

) 1
2

≤ C
∑
k∈Z

(∫ t

0

(‖V 0‖L∞
z

+ (1 + 2k)‖z∂zV
0‖L∞

z
)‖Δ̇kRε

Φ‖2 ds

) 1
2

. (5.21)

Finally, by summing up the estimates (5.13), (5.15)–(5.17) and (5.21), for any c0 > 0, there exists a
constant C > 0 such that

∑
k∈Z

(∫ t

0

|(Δ̇k(uε · ∇Rε + Rε · ∇(uaux + εufl))Φ, Δ̇kRε
Φ)| ds

) 1
2

≤ c0

∑
k∈Z

(∫ t

0

ε‖∇Δ̇kRε
Φ‖2 ds

) 1
2

+C
∑
k∈Z

(∫ t

0

(
ε2k‖∇hRε

Φ‖2
Ḃ0 + 2k‖z∂zV

0‖L∞
z

+ Kε

) ‖Δ̇kRε
Φ‖2 ds

) 1
2

, (5.22)

where

Kε : = ε‖∇hufl
Φ‖2

Ḃ
1
2

+ ‖h1 − χ{V 1}ε‖2
L∞(D1)

+ ε‖h2 − χ{V 2}ε‖2
L∞(D1)

+‖V 0‖L∞
z

+ ‖z∂zV
0‖L∞

z
+ ε‖rε‖2

L∞(D1)
. (5.23)

In view of (5.11) and (5.14), there exists a constant C∗ > 0 such that, for any t ∈ [0, T ∗],

∑
k∈Z

‖Δ̇kRε
Φ(t)‖ +

∑
k∈Z

(∫ t

0

2k|ρ̇|‖Δ̇kRε
Φ‖2 ds

) 1
2

+
∑
k∈Z

(∫ t

0

β̇‖Δ̇kRε
Φ ds

) 1
2

+
∑
k∈Z

(∫ t

0

ε‖∇Δ̇kRε
Φ‖2 ds

) 1
2

≤ C∗
∑
k∈Z

(∫ T

0

‖Δ̇kF ε
Φ‖2 ds

) 1
2

+
∑
k∈Z

(∫ t

0

C∗(χ[0,T ] + Kε)‖Δ̇kRε
Φ‖2 ds

) 1
2

+
∑
k∈Z

(∫ t

0

C∗2k(ε‖∇hRε
Φ‖2

Ḃ0 + ‖z∂zV
0‖L∞

z
)‖Δ̇kRε

Φ‖2 ds

) 1
2

. (5.24)

Recall the definition of β(t) in (5.5) and ρ(t) in (5.7), we find that, for t ≤ T ∗,

∑
k∈Z

‖Δ̇kRε
Φ(t)‖ +

∑
k∈Z

(∫ t

0

ε‖∇Δ̇kRε
Φ‖2 ds

) 1
2

≤ C∗
∑
k∈Z

(∫ T

0

‖Δ̇kF ε
Φ‖2 ds

) 1
2

. (5.25)

Let us admit the following proposition for the time being.

Proposition 5.4. If ub satisfies (2.43) and (2.44) for a constant Cb > 0, there is a constant CF such that
for any ε ∈ (0, 1),

∑
k∈Z

(∫ T

0

‖Δ̇kF ε
Φ‖2 dt

) 1
2

≤ CF ε
1
4 . (5.26)
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The proof of Proposition 5.4 is postponed to Sect. 6.
We then deduce that for t ≤ T ∗,

∑
k∈Z

‖Δ̇kRε
Φ(t)‖ +

∑
k∈Z

(∫ t

0

ε‖∇Δ̇kRε
Φ‖2 ds

) 1
2

≤ C∗CF ε
1
4 . (5.27)

For t ≤ T ∗, by the Minkowski inequality,

∫ t

0

ε‖∇Rε
Φ‖2

Ḃ0 ds =
∫ t

0

ε

(∑
k∈Z

‖Δ̇k∇Rε
Φ‖

)2

ds

≤
(∑

k∈Z

(∫ t

0

ε‖Δ̇k∇Rε
Φ‖2 ds

) 1
2
)2

≤ C2
∗C2

F ε
1
2 . (5.28)

So that

ρ(T ∗) ≥ 2 − C3
∗C2

F ε
1
2 . (5.29)

Thus, for ε small enough, ρ(T ∗) > 1 and thus T ∗ = T
ε and we have, for t ∈ [0, T

ε ],

‖Rε
Φ(t)‖ +

(∫ t

0

ε‖∇Rε
Φ‖2

) 1
2

≤ Cε
1
4 , (5.30)

which implies (2.45) since β(t) ≤ β∗ by Proposition 5.1 and ρ(t) ≥ 1 for t ∈ [0, T
ε ]. This completes the

proof of Proposition 2.6. �

6. Proof of Proposition 5.4

This section is devoted to the proof of Proposition 5.4. We start with the following observation.

Lemma 6.1. For any axi-symmetric function f in D1, if f vanishes on the boundary ∂D1 and ∇hf ∈
L2(D1), where ∇h = (∂x1 , ∂x2), then there exists a constant C such that

‖f‖L∞(D1) ≤ C‖∇hf‖L2(D1). (6.1)

Proof. For r ∈ [0, 1], since f vanishes on ∂D1,

|f(r)|2 = −
∫ 1

r

2f(τ)∂τf(τ) dτ ≤ 2
(∫ 1

r

|∂τf(τ)|2τ dτ

) 1
2
(∫ 1

r

|f(τ)|2
τ

dτ

) 1
2

.

On the other hand, one has

‖∇hf‖2
L2(D1)

= 2π

∫ 1

0

(
|∂rf(r)|2 +

|f(r)|2
r2

)
r dr,

so that

‖f‖L∞(D1) ≤ 1√
π

‖∇hf‖L2(D1),

which leads to (6.1). �
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First, for any profile V ∈ L2((0, T )×D1), any axi-symmetric function v defined in (0, T )×C, vanishes
on the boundary C, and function g ∈ L2((0, T );L∞(D1)), we deduce from (2.21) and Lemma 6.1 that

∑
k∈Z

(∫ T

0

‖Δ̇k(v{V}ε)Φ‖2 dt

) 1
2

≤
∑
k∈Z

sup
t∈[0,T ]

‖Δ̇kvΦ‖L∞
xh

L2
x3

(∫ T

0

‖{V}ε‖2
L2

xh
dt

) 1
2

≤ Cε
1
4 ‖V‖L2((0,T )×R+)

∑
k∈Z

‖∇hΔ̇kvΦ‖L∞((0,T );L2(C)), (6.2)

and

∑
k∈Z

(∫ T

0

‖Δ̇k(vg)Φ‖2 dt

) 1
2

≤ C
∑
k∈Z

‖Δ̇kvΦ‖L∞((0,T );L2(C))‖g‖L2((0,T );L∞(D1)). (6.3)

We recall from (2.42) that

F ε : = χ({V 0}ε +
√

ε{V 1}ε + ε{V 2}ε)∂3u
fl − (

√
εh1 + εh2 + εrε)∂3u

fl

+ufl
rχ′{V 0 +

√
εV 1 + εV 2}εe3 − ufl

r

χ

1 − r
{z∂zV

0 +
√

εz∂zV
1 + εz∂zV

2}εe3

−εufl
r∂rr

εe3 − εufl · ∇ufl + εΔufl. (6.4)

Now we estimate
∑

k∈Z

( ∫ T

0
‖Δ̇kF ε

Φ‖2 dt
) 1

2 term by term.
We first get, by applying (6.2) to V := V0 and v := χ∂3u

fl, that

∑
k∈Z

(∫ T

0

‖Δ̇k(χ∂3u
fl{V 0}ε)Φ‖2 dt

) 1
2

≤ Cε
1
4 ‖V 0‖L2((0,T )×R+)

∑
k∈Z

‖∇hΔ̇k(χ∂3u
fl
Φ)‖L∞((0,T );L2(C)). (6.5)

Note that

ufl(t, x) = μ(t)ub(x −
∫ t

0

h0(s)dse3).

So that ∑
k∈Z

‖∇hΔ̇k(χ∂3u
fl
Φ)‖L∞((0,T );L2(C) ≤ C

∑
k∈Z

‖Δ̇keρ0|∂3|∂3ub‖H1(C). (6.6)

Thanks to Cauchy inequality and the properties of operator Δ̇k,∑
k∈Z

‖Δ̇keρ0|∂3|∂3ub‖H1(C)

≤ C
∑
k∈Z

2k‖Δ̇keρ0|∂3|ub‖H1(C)

≤ C(
∑
k≤0

‖Δ̇keρ0|∂3|ub‖2
H1(C))

1
2 + C(

∑
k>0

24k‖Δ̇keρ0|∂3|ub‖2
H1(C))

1
2

≤ C‖eρ0|∂3|ub‖H3(C)

≤ CCb, (6.7)

where we used (2.43) by taking ρb = 2ρ0.
By inserting the above estimates into (6.5), we obtain

∑
k∈Z

(∫ T

0

‖Δ̇k(χ∂3u
fl{V 0}ε)Φ‖2 dt

) 1
2

≤ Cε
1
4 . (6.8)
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Similarly, one has

∑
k∈Z

(∫ T

0

‖Δ̇k(χ∂3u
fl(

√
ε{V 1}ε + ε{V 2}ε))Φ‖2 dt

) 1
2

≤ Cε
3
4 . (6.9)

We apply (6.3) to v = ∂3u
fl and g =

√
εh1 + εh2 + εrε,

∑
k∈Z

(∫ T

0

‖Δ̇k((
√

εh1 + εh2 + εrε)∂3u
fl)Φ‖2 dt

) 1
2

≤ C
∑
k∈Z

‖Δ̇k∂3u
fl
Φ‖L∞((0,T );L2(C))‖

√
εh1 + εh2 + εrε‖L2((0,T );L∞(D1)). (6.10)

In the same way as (6.6) and (6.7), we obtain that∑
k∈Z

‖Δ̇k∂3u
fl
Φ‖L∞((0,T );L2(C)) ≤ CCb. (6.11)

While it follows from Sobolev imbedding inequality and Lemma 2.5 that

‖rε‖L2((0,T );L∞(D1)) ≤ C‖rε‖L2((0,T );H2(D1)) ≤ Cε− 1
4 . (6.12)

We deduce that

∑
k∈Z

(∫ T

0

‖Δ̇k((
√

εh1 + εh2 + εrε)∂3u
fl)Φ‖2 dt

) 1
2

≤ Cε
1
2 . (6.13)

We apply (6.2) to v = ufl
rχ′ and V = V 0 to obtain that

∑
k∈Z

(∫ T

0

‖Δ̇k(ufl
rχ′{V 0}ε)Φ‖2 dt

) 1
2

≤ Cε
1
4 ‖V 0‖L2((0,T )×R+)

∑
k∈Z

‖∇hΔ̇k(ufl
rχ′)Φ‖L∞((0,T );L2(C))

≤ Cε
1
4 ‖V 0‖L2((0,T )×R+)

∑
k∈Z

‖Δ̇keρ0|∂3|ub‖L2
x3

(H1(D1)). (6.14)

Thanks to Cauchy inequality and the properties of operator Δ̇k,

∑
k∈Z

‖∇hΔ̇keρ0|∂3|ub‖L2(C) ≤
(∑

k∈Z

2− |k|
2

) 1
2
(∑

k∈Z

2
|k|
2 ‖eρ0|∂3|Δ̇kub‖2

L2
x3

(H1(D1))

) 1
2

≤ C

(∫
R

(|ξ| 1
2 + |ξ|− 1

2 )e2ρ0|ξ|‖Fub(ξ)‖2
H1(D1)

dξ

) 1
2

, (6.15)

where Fub(ξ) is the Fourier transform of ub in the direction of x3.

• For low frequencies, by (2.44),∫
|ξ|≤1

(|ξ| 1
2 + |ξ|− 1

2 )e2ρ0|ξ|‖Fub(ξ)‖2
H1(D1)

dξ

≤ e2ρ0‖Fub‖2
L∞

ξ (H1(D1))

∫
|ξ|≤1

(|ξ| 1
2 + |ξ|− 1

2 ) dξ ≤ C‖ub‖2
L1

x3
(H1(D1))

≤ CC2
b . (6.16)
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• For high frequencies, by (2.43),∫
|ξ|≥1

(|ξ| 1
2 + |ξ|− 1

2 )e2ρ0|ξ|‖Fub(ξ)‖2
H1(D1)

dξ

≤
∫

|ξ|≥1

(|ξ| + 1)2e2ρ0|ξ|‖Fub(ξ)‖2
H1(D1)

dξ

≤ C‖eρ0|∂3|ub‖2
H2(C) ≤ CC2

b . (6.17)

Gathering the estimates (6.14)–(6.17), we get

∑
k∈Z

(∫ T

0

‖Δ̇k(ufl
rχ′{V 0}ε)Φ‖2 dt

) 1
2

≤ Cε
1
4 . (6.18)

Similarly, one has

∑
k∈Z

(∫ T

0

‖Δ̇k(ufl
rχ′(

√
ε{V 1}ε + ε{V 2}ε))Φ‖2 dt

) 1
2

≤ Cε
3
4 . (6.19)

We apply (6.2) to v = z∂zV
0 and v = ufl

r
χ

1−r and use (2.30):

∑
k∈Z

(∫ T

0

‖Δ̇k(ufl
r

χ

1 − r
{z∂zV

0}ε)Φ‖2 dt

) 1
2

≤ Cε
1
4 ‖z∂zV

0‖L2((0,T )×R+)

∑
k∈Z

‖∇hΔ̇k(ufl
r

χ

1 − r
)Φ‖L∞((0,T );L2(C))

≤ Cε
1
4 ‖V 0‖C0

0 (R+;H1
1 (R+))

∑
k∈Z

‖Δ̇keρ0|∂3| ub

1 − r
‖L2

x3
(H1(D1)).

Since ub vanishes on the boundary of C,

ub

1 − r
= −

∫ 1

0

(∂rub)(1 − (1 − r)s)ds.

Proceeding in the same way as for the treatment of (6.15)–(6.17), and by using (2.43) and (2.44), we find
that ∑

k∈Z

∥∥Δ̇keρ0|∂3| ub

1 − r

∥∥
L2

x3
(H1(D1))

≤ C

(∫
R

(|ξ| 1
2 + |ξ|− 1

2 )e2ρ0|ξ|
(∫ 1

0

‖F(∂rub)(1 − (1 − r)s)‖H1(D1) ds

)2

dξ

) 1
2

≤ C

(∫
R

(|ξ| 1
2 + |ξ|− 1

2 )e2ρ0|ξ|‖F∂rub‖2
H1(D1)

dξ

) 1
2

≤ C‖ub‖L1
x3

(H2(D1)) + C‖eρ0|∂3|ub‖H3(C)

≤ CCb.

Thus, we obtain

∑
k∈Z

(∫ T

0

‖Δ̇k(ufl
r

χ

1 − r
{z∂zV

0}ε)Φ‖2 dt

) 1
2

≤ Cε
1
4 . (6.20)
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Similarly, one has

∑
k∈Z

(∫ T

0

‖Δ̇k(ufl
r

χ

1 − r
(
√

ε{z∂zV
1}ε + ε{z∂zV

2}ε))Φ‖2 dt

) 1
2

≤ Cε
3
4 . (6.21)

We apply (6.3) to v = εufl
r and g = ∂rr

ε,

∑
k∈Z

(∫ T

0

‖Δ̇k(εufl
r∂rr

ε)Φ‖2 dt
) 1

2

≤ Cε
∑
k∈Z

‖Δ̇kufl
r,Φ‖L∞((0,T );L2(C))‖∂rr

ε‖L2((0,T );L∞(D1)).

Notice that ∑
k∈Z

‖Δ̇kufl
r,Φ‖L∞((0,T );L2(C)) ≤

∑
k∈Z

‖Δ̇keρ0|∂3|ub‖L2(C).

In the same way as (6.15)–(6.17), we can get∑
k∈Z

‖Δ̇keρ0|∂3|ub‖L2(C) ≤ CCb.

By using Lemmas 6.1 and 2.5, we obtain that

‖∂rr
ε‖L2((0,T );L∞(D1)) ≤ C‖∇h∂rr

ε‖L2((0,T )×D1) ≤ Cε− 1
4 .

Therefore, we achieve

∑
k∈Z

(∫ T

0

‖Δ̇k(εufl
r∂rr

ε)Φ‖2 dt

) 1
2

≤ Cε
3
4 . (6.22)

In view of (2.30), one has

∑
k∈Z

(∫ t

0

‖Δ̇kΔufl
Φ‖2 dt

) 1
2

≤ C
∑
k∈Z

‖Δ̇keρ0|∂3|ufl‖H2(C).

In the same way as (6.15)–(6.17), we can get∑
k∈Z

‖Δ̇keρ0|∂3|ub‖H2(C) ≤ C‖ub‖L1
x3

(H2(D1)) + C‖ 〈∂3〉 eρ0|∂3|ub‖H2(C) ≤ CCb.

Thus we obtain

∑
k∈Z

(∫ t

0

‖Δ̇k(εΔufl)Φ‖2 dt

) 1
2

≤ Cε. (6.23)

It remains to estimate the last term εufl · ∇ufl of F ε. By using (2.30), we find

∑
k∈Z

(∫ T

0

‖Δ̇k(ufl · ∇ufl)Φ‖2 dt

) 1
2

≤ C
∑
k∈Z

‖Δ̇k(ub · ∇ub)Φ‖L2(C). (6.24)

In the same way as (6.15)–(6.17), one has∑
k∈Z

‖Δ̇k(ub · ∇ub)Φ‖L2(C)

≤ C‖ub · ∇ub‖L1
x3

(L2(D1)) + C‖ 〈∂3〉 eρ0|∂3|(ub · ∇ub)‖L2(C). (6.25)
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It follows from Lemma 6.1 that

‖ub · ∇ub‖L1
x3

(L2(C)) ≤ ‖ub‖L2
x3

(L∞(D1))‖∇ub‖L2(C)

≤ C‖∇hub‖L2(C)‖∇ub‖L2(C)

≤ CC2
b . (6.26)

By the Plancherel theorem and the inequalities

|ξ| ≤ |η| + |ξ − η| and (1 + |ξ|2) ≤ 2(1 + |η|2)(1 + |ξ − η|2) ∀ ξ, η ∈ R,

we get

‖ 〈∂3〉 eρ0|∂3|(ub · ∇ub)‖2
L2(C) =

∫
R

〈ξ〉2 e2ρ0|ξ|‖F(ub · ∇ub)‖2
L2(D1)

dξ

=
∫
R

〈ξ〉2 e2ρ0|ξ|‖
∫
R

Fub(η) · F(∇ub)(ξ − η)dη‖2
L2(D1)

dξ

≤ C

∫
R

∥∥∫
R

〈η〉 eρ0|η||F(ub)(η)| 〈ξ − η〉 eρ0|ξ−η||F(∇ub)(ξ − η)|dη
∥∥2

L2(D1)
dξ

≤ C

∫
R

(∫
R

∥∥ 〈η〉 eρ0|η||F(ub)(η)|∥∥
L∞(D1)

∥∥ 〈ξ − η〉 eρ0|ξ−η||F(∇ub)(ξ − η)|∥∥
L2(D1)

dη

)2

dξ

≤ C
∥∥ 〈ξ〉 eρ0|ξ||F(ub)(ξ)|

∥∥2

L1
ξ(L∞(D1))

∥∥ 〈ξ〉 eρ0|ξ||F(∇ub)(ξ)|
∥∥2

L2
ξ(L2(D1))

.

By using again the Plancherel theorem and Lemma 6.1, one has

∥∥ 〈ξ〉 eρ0|ξ||F(ub)(ξ)|
∥∥

L1
ξ(L∞(D1))

≤C

∫
R

∥∥ 〈ξ〉 eρ0|ξ||F(∇hub)(ξ)|
∥∥

L2(D1)
dξ

≤C

(∫
R

∥∥ 〈ξ〉2 eρ0|ξ||F(∇hub)(ξ)|
∥∥2

L2(D1)
dξ

) 1
2

≤C‖eρ0|∂3|ub‖H3(C),

so that we deduce from (2.43) that

‖ 〈∂3〉 eρ0|∂3|(ub · ∇ub)‖L2(C)

≤ C‖eρ0|∂3|ub‖H3(C)‖ 〈∂3〉 eρ0|∂3|∇ub‖L2(C)

≤ C‖eρ0|∂3|ub‖2
H3(C) ≤ CC2

b . (6.27)

By combining the estimates (6.24)–(6.27), we arrive at

∑
k∈Z

(∫ T

0

‖Δ̇k(εufl · ∇ufl)Φ‖2 dt

) 1
2

≤ Cε. (6.28)

Finally, by gathering (6.4) and inequalities (6.8), (6.9), (6.13), (6.18)–(6.22) and (6.28), we obtain that
there exist a constant CF such that

∑
k∈Z

(∫ T

0

‖Δ̇kF ε
Φ‖2 dt

) 1
2

≤ CF ε
1
4 , (6.29)

which finishes the proof of Proposition 5.4.
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7. Proof of Lemma 5.3

This section is devoted to the proof of Lemma 5.3. As in Remark 5.2, we always denote the norm ‖·‖L2(C)

by ‖ · ‖ in this section.

Proof of Lemma 5.3. We first get, by using Bony’s decomposition from [2] in the x3 variable, that

ab = T v
a b + Rv(a, b) + T v

b a,

where

T v
a b

def=
∑
k∈Z

Ṡk−1aΔ̇kb, and Rv(a, b) def=
∑
k∈Z

Δ̇ka ˜̇Δkb, with ˜̇Δkb
def=

∑
|k−k′|≤1

Δ̇k′b.

For a function a ∈ L2(C), we introduce the notation as in [8],

a+ := F−1
ξ→x3

|â|. (7.1)

It is easy to observe from Lemma 6.1 and Bernstein’s inequality that

‖Ṡk−1a
+
Φ‖L∞(C) ≤ C

∑
k′≤k−2

‖Δ̇k′a+
Φ‖L∞(C)

≤ C
∑

k′≤k−2

2
k′
2 ‖∇hΔ̇k′aΦ‖ ≤ C‖∇haΦ‖

Ḃ
1
2
, (7.2)

so that we get, by a similar proof of Lemma 5.7 of [8] and Proposition 5.1 that

|(Δ̇k(T v
a b)Φ, Δ̇kcΦ)| ≤ C

∑
|k′−k|≤1

‖Ṡk′−1a
+
Φ‖L∞(C)‖Δ̇k′bΦ‖‖Δ̇kcΦ‖

≤ C‖∇haΦ‖
Ḃ

1
2

∑
|k′−k|≤1

‖Δ̇k′bΦ‖‖Δ̇kcΦ‖. (7.3)

Hence for any c0 > 0, there exists C > 0 such that

∑
k∈Z

(∫ t

0

|(Δ̇k(T v
a b)Φ, Δ̇kcΦ)| ds

) 1
2

≤ c0

∑
k∈Z

(∫ t

0

‖Δ̇kcΦ‖2 ds

) 1
2

+C
∑
k∈Z

(∫ t

0

‖∇haΦ‖2

Ḃ
1
2
‖Δ̇kbΦ‖2 ds

) 1
2

. (7.4)

Similarly, by applying Bernstein’s inequality and Lemma 6.1, we find

|(Δ̇k(Rv(a, b))Φ, Δ̇kcΦ)| ≤ C2
k
2

∑
k′≥k−3

‖ ˜̇Δk′a+
Φ‖L2

x3
(L∞(D1))‖Δ̇k′bΦ‖‖Δ̇kcΦ‖

≤ C2
k
2

∑
k′≥k−3

‖∇h
˜̇Δk′aΦ‖‖Δ̇k′bΦ‖‖Δ̇kcΦ‖

≤ C
∑

k′≥k−3

2
k−k′

2 ‖∇haΦ‖
Ḃ

1
2
‖Δ̇k′bΦ‖‖Δ̇kcΦ‖. (7.5)
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Then we use the Minkowski inequality and the Hölder inequality to get

∑
k∈Z

(∫ t

0

|(Δ̇k(Rv(a, b))Φ, Δ̇kcΦ)| ds

) 1
2

≤ c0

∑
k∈Z

(∫ t

0

‖Δ̇kcΦ‖2 ds

) 1
2

+ C
∑
k∈Z

⎛
⎜⎝∫ t

0

⎛
⎝ ∑

k′≥k−3

2
k−k′

2 ‖∇haΦ‖
Ḃ

1
2
‖Δ̇k′bΦ‖

⎞
⎠

2
⎞
⎟⎠

1
2

≤ c0

∑
k∈Z

(∫ t

0

‖Δ̇kcΦ‖2 ds

) 1
2

+ C
∑
k∈Z

(∫ t

0

‖∇haΦ‖2

Ḃ
1
2
‖Δ̇kbΦ‖2 ds

) 1
2

. (7.6)

For the last term, we observe that

|(Δ̇k(T v
b a)Φ, Δ̇kcΦ)| ≤ C

∑
|k′−k|≤1

‖Ṡk′−1bΦ‖L2
xh

(L∞
x3

)‖Δ̇k′a+
Φ‖L∞

xh
(L2

x3
)‖Δ̇kcΦ‖

≤ C
∑

|k′−k|≤1

∑

≤k′−2

2
�
2 ‖Δ̇
bΦ‖‖∇hΔ̇k′aΦ‖Δ̇kcΦ‖

≤ C
∑


≤k−1

2
�−k
2 ‖Δ̇
bΦ‖‖∇haΦ‖

Ḃ
1
2
‖Δ̇kcΦ‖.

Thus we get

∑
k∈Z

(∫ t

0

|(Δ̇k(T v
b a)Φ, Δ̇kcΦ)| ds

) 1
2

≤ c0

∑
k∈Z

(∫ t

0

‖Δ̇kcΦ‖2 ds

) 1
2

+ C
∑
k∈Z

⎛
⎜⎝∫ t

0

⎛
⎝ ∑


≤k−1

2
�−k
2 ‖∇haΦ‖

Ḃ
1
2
‖Δ̇lbΦ‖

⎞
⎠

2

ds

⎞
⎟⎠

1
2

≤ c0

∑
k∈Z

(∫ t

0

‖Δ̇kcΦ‖2 ds

) 1
2

+ C
∑
k∈Z

(∫ t

0

‖∇haΦ‖2

Ḃ
1
2
‖Δ̇kbΦ‖2 ds

) 1
2

. (7.7)

By combining the estimates (7.4),(7.6) and (7.7), we conclude the proof of the first part of
Lemma 5.3. �

Let us now turn to the case where a = b. First, observing from (7.2) that

‖Sk−1a
+
Φ‖L∞(C) ≤ C2

k
2 ‖∇haΦ‖Ḃ0 ,

we get, by a similar derivation of (7.3), that

|(Δ̇k(T v
a a)Φ, Δ̇kcΦ)| ≤ C2

k
2 ‖∇haΦ‖Ḃ0‖Δ̇kcΦ‖

∑
|k′−k|≤1

‖Δ̇k′aΦ‖,

which inplies

∑
k∈Z

(∫ t

0

|(Δ̇k(T v
a a)Φ, Δ̇kcΦ)| ds

) 1
2

≤ c0

∑
k∈Z

(∫ t

0

‖Δ̇kcΦ‖ ds

) 1
2

+ C
∑
k∈Z

(∫ t

0

2k‖∇haΦ‖2
Ḃ0‖Δ̇kaΦ‖2 ds

) 1
2

. (7.8)
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We deduce from the third inequality of (7.5) that

|(Δ̇k(Rv(a, a))Φ, Δ̇kcΦ)| ≤ C
∑

k′≥k−3

2
k
2 ‖∇haΦ‖Ḃ0‖Δ̇k′aΦ‖‖Δ̇kcΦ‖.

Then we can use the Minkowski inequality, again, to find that

∑
k∈Z

(∫ t

0

|(Δ̇k(Rv(a, a))Φ, Δ̇kcΦ)| ds

) 1
2

≤ c0

∑
k∈Z

(∫ t

0

‖Δ̇kcΦ‖ ds

) 1
2

+ C
∑
k∈Z

(∫ t

0

2k‖∇haΦ‖2
Ḃ0‖Δ̇kaΦ‖2 ds

) 1
2

, (7.9)

which finishes the proof of the second part of Lemma 5.3. �
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