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Abstract. We consider here the simplified Ericksen–Leslie system on the whole space R
3. This system deals with the incom-

pressible Navier–Stokes equations strongly coupled with a harmonic map flow which models the dynamical behavior for
nematic liquid crystals. For both, the stationary (time independent) case and the non-stationary (time dependent) case,
using the fairly general framework of a kind of local Morrey spaces, we obtain some a priori conditions on the unknowns
of this coupled system to prove that they vanish identically. This results are known as Liouville-type theorems. As a bi-
product, our theorems also improve some well-known results on Liouville-type theorems for the particular case of classical
Navier–Stokes equations.
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1. Introduction

In this paper, we consider a coupled system of the incompressible Navier–Stokes equations with a harmonic
map flow, which is posed on the whole space R3. This system, also known as the simplified Ericksen–Leslie
system, was proposed by Lin in [26] as a simplification of the general Ericksen–Leslie system which models
the hydrodynamic flow of nematic liquid crystal material [11,25]. The simplified Ericksen–Leslie system,
has been successful to model various dynamical behavior for nematic liquid crystals. More precisely,
it provides a well macroscopic description of the evolution of the material under the influence of fluid
velocity field, and moreover, it provides the macroscopic description of the microscopic orientation of
fluid velocity of rod-like liquid crystals. See the book [10] for more details.

From the mathematical point of view, the simplified Ericksen–Leslie system has recently attired a
lot of interest in the research community, see, e.g., the articles [19,27–29,35] and the references therein,
where the major challenge is due to the strong coupled structure of this system and the presence of a
super-critical non-linear term.

In the stationary setting, the simplified Ericksen–Leslie system is given as follows:
⎧
⎨

⎩

−Δu + (u · ∇)u + div(∇ ⊗ v � ∇ ⊗ v) + ∇p = 0,
−Δv + (u · ∇) v − |∇ ⊗ v|2 v = 0,
div(u) = 0.

(1)

Here, the fluid velocity u : R
3 → R

3, and the pressure p : R
3 → R are the classical unknowns of

the fluid mechanics. This system also considers a third unknown v : R
3 → S

2 (where S
2 denotes the

unitary sphere in R
3) which is a unit vector field representing the macroscopic orientation of the nematic

liquid crystal molecules. For the vector field v = (vi)1≤i≤3, we denote ∇ ⊗ v = (∂ivj)1≤i,j≤3. In the first
equation of this system, the super-critical non-linear term: div(∇ ⊗ v � ∇ ⊗ v), is given as the divergence
of a symmetric tensor ∇ ⊗ v � ∇ ⊗ v, where, for 1 ≤ i, j ≤ 3, its components are defined by the expression
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(∇ ⊗ v � ∇ ⊗ v)i,j =
∑3

k=1
∂ivk∂jvk, and then, each component of the vector field div(∇ ⊗ v � ∇ ⊗ v)

is explicitly given by the following expression: [div(∇ ⊗ v � ∇ ⊗ v)]i =
∑3

j=1

∑3

k=1
∂j(∂ivk ∂jvk). We

may observe that due to the double derivatives in this expression, this super-critical non-linear term is
actually more delicate to treat than the classical non-linear transport term: (u · ∇)u, and this fact makes
challenging the mathematical study of (1). See, e.g., the works [27] and [29].

Let us introduce the Liouville-type problem for the simplified Ericksen–Leslie system. First, we define
a weak solution of the coupled system (1) as the triplet (u, p, v) where: u ∈ L2

loc(R
3), p ∈ D′

(R3) and
v ∈ L∞(R3) (since by the physical model we assume |v| = 1) and ∇⊗v ∈ L2

loc(R
3). Under these hypothesis

all the terms in (1) are well-defined in the distributional sense. Once we have defined the weak solutions,
we may remark that the triplet u = 0, p = 0 and ∇ ⊗ v = 0 (hence v is a constant unitary vector)
is a trivial weak solution of the system (1) and it is natural to ask if this solution is unique (modulo
constants). However, it is interesting to observe that the answer to this question is in general negative
and we are able to exhibit an explicit counterexample. See Appendix A for the computations.

Due to the non-uniqueness of the trivial solution, we are interesting in finding some additional a priori
conditions in order to ensure its uniqueness . This problem is commonly known as the Liouville-type
problem. To the best of our knowledge, the first Liouville-type result for the coupled system (1) was
recently obtained by Y. Hao, X. Liu & X. Zhang in [19]. In this work, the authors consider a solution
(u, p, v) which verifies ∇⊗u ∈ L2(R3) and ∇⊗v ∈ L2(R3) and moreover, under the important assumption:
u ∈ L9/2(R3) and ∇ ⊗ v ∈ L9/2(R3), they obtained the identities u = 0, p = 0 and ∇ ⊗ v = 0. These a
priori conditions are decaying properties on u and ∇⊗v given by the L9/2− norm; and they are interesting
if we compare this result with a well-known result on the Liouville problem for the the classical stationary
and incompressible Navier–Stokes equations:

− Δu + (u · ∇)u + ∇ p = 0, div(u) = 0. (2)

For these equations, a celebrated result obtained in [16] by G. Galdi shows that if u ∈ L9/2(R3) then we
have u = 0 and p = 0, and then, the recent result obtained in [19] can be seen as a generalization of
Galdi’s result to the more complicated setting of the coupled system (1).

Let us recall that the Liouville problem for the stationary Navier–Stokes equations (2) was extensive
studied in different functional settings. Galdi’s result [16] was extended to setting of the Lorentz spaces
by H. Kozono et. al. in [22]. Thereafter, this work was improved to a kind of local Lorentz-type spaces
by G. Seregin & W. Wang in [33]. Moreover, the Liouville problem for the equations (2) has also largely
studied in the more general setting of the Morrey spaces by D. Chamorro et. al. in [9] and G. Seregin
in [31] and [32]. For more interesting works on the Liouville problem for the stationary Navier–Stokes
equations (2) see the articles [5–7,21] and the references therein.

It is natural to improve the Galdi’s-type result for the system (1) obtained in [19] to different functional
settings. Thus, the first aim of this paper is to study the Liouville problem for the coupled system (1) in
a fairly general functional setting.

A kind of local Morrey spaces (see the expression (7) below for a definition) which, roughly speaking,
characterize the averaged decaying properties of functions, have recently attired the attention in the
study of the existence of global in time weak solutions for the classical the Navier–Stokes [3,14], and also
for the coupled system of the Magneto-hydrodynamics equations [12,13]. In this paper we show that the
local Morrey spaces also give us an interesting and general setting to solve the Liouville problem for the
coupled system (1). As a bi-product, since the equations (2) are a particular case of the system (1) (when
we set v an unitary constant vector) we also improve some well-known and recent results on the Liouville
problem for (2).

Our methods essentially rely on some Lp− local estimates on the functions u and ∇ ⊗ v, and this
approach also allows us to study the Liouville problem for non-stationary case of the coupled system (1).
Thus, in the second part of this paper, we will focus on the following Cauchy problem for the simplified
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Ericksen–Leslie system:
⎧
⎪⎪⎨

⎪⎪⎩

∂tu − Δu + (u · ∇)u + div(∇ ⊗ v � ∇ ⊗ v) + ∇p = 0,
∂tv − Δv + (u · ∇) v − |∇ ⊗ v|2 v = 0, (|v(t, x)| = 1)
div(u) = 0,
u(0, ·) = u0, v(0, ·) = v0 div(u0) = 0.

(3)

For the non-stationary case the Liouville-type problem reads as follows: if we consider the initial data
u0 = 0 and ∇⊗v0 = 0, i.e., v0 is a constant vector, then we ask if the trivial solution u = 0 and ∇⊗v = 0
(hence is v a constant vector) is the unique one; and thus, we are interested in studying some a priori
conditions on u and ∇ ⊗ v to ensure the uniqueness of the trivial solutions arising from the data u0 = 0
and ∇ ⊗ v0 = 0.

Our general strategy to study this problem is the following: first we look for some a priori conditions
on the data u0 and ∇⊗ v0, and moreover, some a priori conditions on the solutions u and ∇⊗ v to prove
that they verify a global energy inequality (see (17) for the details). Thereafter, with this global energy
inequality at hand, the Liouville-type problem explained above can be easily solved when u0 = 0 and
∇ ⊗ v0 = 0.

Before to explain this strategy more in details, we need first to overview some previous results obtained
in the particular case for the Cauchy problem of the incompressible Navier–Stokes equations:

{
∂tu − Δu + (u · ∇)u + ∇p = 0, div(u) = 0.
u(0, ·) = u0, div(u0) = 0.

(4)

For this system, J. Serrin proved in [34] that if u0 ∈ L2(R3) and if a Leray weak solution u satisfies
the condition u ∈ Lp(0, T, Lr(R3)), for p > 2 and r > 3 such that 2/p + 3/r ≤ 1, then u verifies the global
energy equality. Thereafter, this result was generalized by H. Kozono et. al. in [22] as follows. Recall
first that the notion of weak suitable solutions for the equations (4) were introduced in the celebrated
Cafarelli, Konh and Niremberg theory [4]. Then, in [22], it is introduced the notion of generalized weak
suitable solution (see Definition 3.1, page 5 of [22]). This notion of generalized weak suitable solution is a
generalization of the well-known weak suitable solutions and the main difference is that it assumes neither

finite energy: sup
0≤t≤T

‖u(t, ·)‖2
L2 < +∞, nor finite dissipation

∫ T

0

‖u(t, ·)‖2
Ḣ1dt < +∞. In the setting of the

generalized weak suitable solution, H. Kozono et. al. gave a new a priori condition which ensures that the
well-know global energy inequality holds. More precisely, assuming that u0 ∈ L2(R3) and moreover, within
the general framework of the Lorentz spaces and for the parameters 3 ≤ p1, r1, p2, r2 ≤ +∞ satisfying
some technical conditions related to the well-known scaling properties of the equations (4), the condition
u ∈ L3(0, T, Lp1,r1(R3)) ∩ L2(0, T, Lp2,r2(R3)) ensures that u ∈ L∞

t L2
x ∩ L2

t Ḣ
1
x(]0, T [×R

3) and moreover
it verifies the global energy inequality, i.e., u becomes a Leray weak solution.

Following these ideas, in Definition 2.1 below, we will introduce first a notion of generalized weak
suitable solutions (u, p, v) for the coupled system (3). Thereafter, assuming that u0 ∈ L2(R3), v0 ∈
Ḣ1(R3), and moreover, using a time-space version of the local Morrey spaces (see the expression (14)
below for a definition), we will give some a priori conditions on u and ∇ ⊗ v to ensure that, for a time
0 < T < +∞ arbitrary large, the generalized weak suitable solutions of (3) verify a global energy inequality
(17). As an interesting application, we obtain some Liouville-type results for the non-stationary system
(3). More precisely, using the global energy inequality we are able to prove the uniqueness of the trivial
solution u = 0, p = 0 and ∇ ⊗ v = 0 for the initial data u0 = 0 and ∇ ⊗ v0 = 0.

This paper is organized as follows. In Sect. 2 below we expose all the results obtained. Then, in Sect.
3 we summarize some previous results on the local Morrey spaces we shall use here. Section 4 is devoted
to a characterization of the pressure term in the coupled systems (1) and (3) which will be useful for the
next sections. Finally, in Sect. 5 we study the Liouville problem for the stationary system (1) and in Sect.
6 we study the Liouville problem for the non-stationary system (3).
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2. Framework and Statement of the Results

2.1. The Stationary Case

Recall first that in [19], in order to solve the Liouville problem for (1), the authors need the additional
hypothesis on the function v: ∇ ⊗ v ∈ L2(R3). In our results we will relax this hypothesis as follows: for
R ≥ 1 we denote C(R/2, R) = {x ∈ R

3 : R/2 < |x| < R}; and from now on we will assume

sup
R≥1

∫

C(R/2,R)

|∇ ⊗ v|2dx < +∞. (5)

Before to state our results, we recall the definition of the Morrey spaces and local Morrey spaces. For
more references about this spaces see, e.g., the Chapter 8 of the book [24] and the Section 7 of the paper
[15] respectively. Let 1 < p < r < +∞, the homogeneous Morrey space Ṁp,r(R3) is the set of functions
f ∈ Lp

loc(R
3) such that

‖f‖Ṁp,r = sup
R>0, x0∈R3

R
3
r

(
1

R3

∫

B(x0,R)

|f(x)|pdx

) 1
p

< +∞, (6)

where B(x0, R) denotes the ball centered at x0 and with radio R. This is a homogeneous space of degree
− 3

r and moreover we have the following chain of continuous embedding Lr(R3) ⊂ Lr,q(R3) ⊂ Ṁp,r(R3),
where, for r ≤ q ≤ +∞ the space Lr,q(R3) is a Lorentz space [8].

We observe that in expression (6) we consider the average in terms of the Lp− norm of the function f

on the ball B(x0, R); and the term R
3
q describes the decaying of this averaged quantity when R is large.

The local Morrey spaces we shall consider here describes the averaged decaying of functions in a more
general setting. For γ ≥ 0 and 1 < p < +∞, we define the local Morrey space Mp

γ (R3) as the Banach
space of functions f ∈ Lp

loc(R
3) such that

‖f‖Mp
γ

= sup
R≥1

(
1

Rγ

∫

B(0,R)

|f(x)|pdx

)1/p

< +∞. (7)

Here the parameter γ ≥ 0 characterizes the behavior of the quantity

(∫

B(0,R)

|f(x)|pdx

)1/p

when R is

large. Moreover, for γ1 ≤ γ2 we have the continuous embedding Mp
γ1

(R3) ⊂ Mp
γ2

(R3). Remark also that
for 1 < p < r < +∞, setting the parameter γ such that 3(1 − p/r) < γ, then we have Ṁp,r(R3) =
Mp

3(1−p/r)(R
3) ⊂ Mp

γ (R3), and in this sense the local Morrey space Mp
γ (R3) is as a generalization of the

homogeneous Morrey space Ṁp,r(R3).
Finally, we define the space Mp

γ,0(R
3) as the set of functions f ∈ Mp

γ (R3) such that

lim
R→+∞

(
1

Rγ

∫

C(R/2,R)

|f(x)|pdx

)1/p

= 0. (8)

In the setting of the local Morrey spaces Mp
γ,0(R

3) and Mp
γ (R3) defined above we set, from now on,

the parameters 0 < γ < 3 ≤ p < +∞. The condition 0 < γ < 3 is required to use some useful properties
of the spaces Mp

γ (R3) which we summarize in Sect. 3. On the other hand, since all our results are based
on a Cacciopoly type estimate on the term �∇ ⊗ u (for more details see the Proposition 5.1) we also need
the condition 3 ≤ p < +∞.

With the parameters 0 < γ < 3 ≤ p < +∞ above, we introduce now the following quantity:

η = η(γ, p) =
γ

p
− 3

p
+

2
3
, (9)
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which relates the decaying parameter γ with the local integrability parameter p in the definition of the
spaces Mp

γ (R3) given in (7). Our results deeply depends on the sign of the function η(γ, p). More precisely,
within the rectangular region (γ, p) ∈]0, 3[×[3,+∞[, we will consider first the region of parameters (γ, p)
where η(γ, p) ≤ 0, and then, the region of parameters (γ, p) where η(γ, p) > 0.

In Fig. 1, we draw these regions. In the horizontal (red) axis we have the parameter γ, while in the
vertical (green) axis we have the parameter p. Thus, we have η(γ, p) > 0 in the blue sky region, we have
η(γ, p) ≤ 0 in the dark gray region, while η(γ, p) is not defined in the light gray region
queryPlease check and confirm the inserted citation for Fig. 1 is correct..

Theorem 1. Let (u, p, v) be a smooth solution of stationary coupled system (1) such that v verifies (5).
For 0 < γ < 3 ≤ p < +∞, we assume u ∈ Mp

γ,0(R
3) and ∇ ⊗ v ∈ Mp

γ (R3).

1) If (γ, p) are such that η(γ, p) ≤ 0, then we have u = 0, ∇ ⊗ v = 0 and p = 0.
2) If (γ, p) are such that η(γ, p) > 0, and if the velocity u also verifies the following additional decaying

condition:

lim
R→+∞

R3η(γ,p)

(
1

Rγ

∫

C(R/2,R)

|u(x)|pdx

)1/p

= 0, (10)

then we have u = 0, p = 0 and ∇ ⊗ v = 0.

We observe first that among the two unknowns of the coupled system (1), the velocity u must have a
faster decaying than the derivatives of the vector field v, since we have u ∈ Mp

γ,0(R
3) and ∇⊗v ∈ Mp

γ (R3).
In point 1), for (γ, p) such that η(γ, p) ≤ 0, we solve the Liouville problem for the equations (1) in the

local Morrey spaces Mp
γ,0(R

3) and Mp
γ (R3). The main interest of this result bases on the fact that we use

a fairly general framework to solve this problem. Indeed, we have the following remarks.
• First, if η(γ, p) ≤ 0, then for 3 < r < 9/2 and 3 ≤ p < r we have the large chain of strict embedding

Lr(R3) ⊂ Lr,∞(R3) ⊂ Ṁp,r(R3) ⊂ Mp
δ (R3) ⊂ Mp

γ,0(R
3),

involving the Lebesgue, Lorentz, Morrey and local Morrey spaces. Here, the last embedding is due
to point 1 of Lemma 3.1 below, where we the parameter δ verifies 3(1 − p/r) < δ < γ.

• Moreover, for the particular values γ = 1 and p = 3, hence we have η(1, 3) = 0, and for r = 9/2 and
9/2 < q < +∞, we also have the embedding

L9/2(R3) ⊂ L9/2,q(R3) ⊂ M3
1,0(R

3). (11)

Indeed, if f ∈ L9/2,q(R3) then we have f ∈ Ṁ3,9/2(R3), but due to the identity Ṁ3,9/2(R3) =
M3

1 (R3), we get f ∈ M3
1 (R3). Moreover, by the following estimate:

∫

C(R/2,R)

|f |3dx =
∫

B(0,R)

∣
∣1C(R/2,R)f

∣
∣3 dx ≤ c R

∥
∥1C(R/2,R)f

∥
∥3

L9/2,∞ ≤ c R
∥
∥1C(R/2,R)f

∥
∥3

L9/2,q ,

and using the dominated convergence theorem (which is valid in the space L9/2,q(R3) for the values

9/2 ≤ q < +∞, see [8]) we obtain: lim
R→+∞

1
R

∫

C(R/2,R)

|f |3 dx = 0, hence we have f ∈ M3
1,0(R

3). Due

to the embedding given in (11), we may see that the recent result obtained in [19] for the coupled
system (1) follows from point 1) in Theorem 1.

• Finally, for the values in the threshold η(γ, p) = 0, by the expression (9) we have the identity
γ = 3 − 2p/3, and then, for 0 < γ < 3 we get 3 ≤ p < 9/2. Thus, for these values of the parameter
p, by the first point in Lemma 3.1 below we have the embedding

Lp
wγ

(R3) ⊂ Mp
γ,0(R

3), (12)

where, for wγ(x) =
1

(1 + |x|)γ
, the weighted Lebesgue space Lp

wγ
(R3) is defined as Lp

wδ
(R3) =

Lp(wδ dx).
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Fig. 1. Signs of η(γ, p)
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In point 2) above, we may observe now that for the values (γ, p) where η(γ, p) > 0, the decaying
properties given by the space Mp

γ,0(R
3) seems not to be sufficient to solve the Liouville problem. More

precisely, if we only consider the information u ∈ Mp
γ,0(R

3), then the velocity u seems not to decay at
infinity fast enough and we need to improve its decaying properties with the expression R3 η(γ,p) in (10).
Moreover, we remark that this improvement on the decay properties (when η(γ, p) > 0) are only needed
for the velocity u and not for the function ∇ ⊗ v.

2.1.1. Some New Results for the Stationary Navier–Stokes Equations. We observe that the stationary
coupled Ericksen–Leslies system (1) contains as a particular case the stationary Navier–Stokes equations
(2) when setting the unitary vector field v as a constant vector. Thus, a direct consequence of Theorem
1 is the following new result for the equations (2).

Corollary 1. Let (u, p) be a smooth solution of the stationary Navier–Stoke equations (2). For 0 < γ <
3 ≤ p < +∞, we assume u ∈ Mp

γ,0(R
3). If (γ, p) are such that η(γ, p) ≤ 0, then we have u = 0 and p = 0.

It is worth mention how this corollary improves some previous results obtained for the Liouville
problem for the stationary Navier–Stoke equations. We observe first that by the embedding (11) our
result improves the classical Galdi’s result [16] given in the framework of the Lebesgue space L9/2(R3) and
some recent results [20] obtained in the framework of the Lorentz spaces L9/2,q(R3), with 9/2 < q < +∞.
Moreover, due to the embedding Mp,r(R3) ⊂ Mp

γ,0(R
3), with 3 < r < 9/2, our result improves some

previous results obtained in the setting of the Morrey spaces in [9] and [20]. Finally, due to the embedding
(12), our result also improves some results proven in [30] (see Remark 4.9, page 10) in the setting of
weighted spaces.

On the other hand, we are also interested in studying the effects of removing the condition (8) on
the velocity u ∈ Mp

γ,0(R
3); and we consider now u ∈ Mp

γ (R3). Within the framework of the larger space
Mp

γ (R3), we have the following result.

Proposition 1. Let (u, p) be a smooth solution of the stationary Navier–Stoke equations (2). For 0 < γ <
3 ≤ p < +∞, we assume u ∈ Mp

γ (R3), and moreover, we assume that (γ, p) are such that η(γ, p) ≤ 0.
1) In the case when η(γ, p) < 0, we have u = 0 and p = 0.
2) In the case when η(γ, p) = 0, if there holds u ∈ Ḃ−1

∞,∞(R3), then we have u = 0 and p = 0.

We observe here that, on the one hand, when η(γ, p) < 0 the condition (8) actually is not required to
solve the Liouville problem. On the other hand, when η(γ, p) = 0 we need a supplementary hypothesis
on this vector field to ensure its vanishing; and this fact suggests the acuteness of (8).

The supplementary condition is given in the framework of the homogeneous Besov space Ḃ−1
∞,∞(R3),

defined as the set of distributions f ∈ S ′
(R3) such that ‖f‖Ḃ−1∞,∞ = supt>0 t1/2‖ht ∗ f‖L∞ < +∞, where

ht denotes the heat kernel. This space plays a very important role in the analysis on the Navier–Stokes
equations (stationary and non stationary) since this is the largest space which is invariant under scaling
properties of these equations. See, for instance, the article [2] and the books [23] and [24].

2.2. The Non-stationary Case

From now on, let us fix a time 0 < T < +∞. We start by introducing the notion of generalized weak
suitable solution for the non-stationary Ericksen–Leslie system (3).

Definition 2.1. Let u0 ∈ L2(R3) such that div(u0) = 0 and let v0 ∈ Ḣ1(R3). We say that the triplet
(u, p, v) is a generalized weak suitable solution of the coupled system (3) if:

1) u ∈ L3
loc([0, T [×R

3), ∇ ⊗ u ∈ L3
loc([0, T [×R

3) and p ∈ L
3/2
loc ([0, T [×R

3).
2) v ∈ L∞

loc([0, T [, L∞(R3)), ∇ ⊗ v ∈ L3
loc([0, T [×R

3) and Δv ∈ L3
loc([0, T [×R

3).
3) The triplet (u, p, v) verifies the first three equations of (3) in D′

(]0, T [×R
3).
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4) For every compact set K ⊂ R
3, the function u(t, ·) is continuous for t ∈]0, T [ in the weak topology

of L2(K) and strongly continuous at t = 0. Moreover, the function v(t, ·) is continuous for t ∈]0, T [
in the weak topology of Ḣ1(K) and strongly continuous at t = 0.

5) The triplet (u, p, v) verifies the following local energy inequality : there exist a non-negative, locally
finite measure μ on ]0, T [×R

3 such that:

∂t

( |u|2 + |∇ ⊗ v|2
2

)

+ |∇ ⊗ u|2 = −|Δv|2 + Δ
( |u|2 + |∇ ⊗ v|2

2

)

−div
([ |u|2 + |∇ ⊗ v|2

2
+ p

]

u

)

−
3∑

k=1

∂k([u · ∇) v] · ∂kv) − |∇ ⊗ v|2v · Δv − μ. (13)

Observe that in point 2) we assume v ∈ L∞
loc([0, T [, L∞(R3)) due to the fact that by the physical model

we have |v(t, x)| = 1. Observe moreover that by the hypothesis given in points 1) and 2) we have that
μ is well-defined in the distributional sense. However, the most important fact in this definition is the
positivity assumed on μ which is the whole point in the notion of suitable solutions.

This notion of generalized weak suitable solution is close to the definition of a weak suitable solution for
the coupled system (3) given in [28] (for the case of a bounded and smooth domain Ω ⊂ R

3). In comparison
with [28], it is worth to remark that here we suppose neither u ∈ L∞

t L2
x ∩ L2

t Ḣ
1
x, nor v ∈ L∞

t Ḣ1
x, and we

consider here only locally integrable properties. Moreover, we assume on the pressure term a local L3/2−
integrability, while the authors in [28] assume a L5/3− integrability.

We introduce now a time-space version of the local Morrey spaces, for more references on these spaces
see always the Section 7 of [15]. For γ > 0 and 1 < p < +∞, we define the space Mp

γ Lp(0, T ) as the
Banach space of functions f ∈ Lp

loc([0, T ] × R
3) such that

‖f‖Mp
γ Lp(0,T ) = sup

R≥1

(
1

Rγ

∫ T

0

∫

B(0,R)

|f(t, x)|pdx dt

)1/p

< +∞. (14)

Moreover, we define the space Mp
γ,0L

p(0, T ) as the set of functions f ∈ Mp
γ Lp(0, T ) which verifies

lim
R→+∞

(
1

Rγ

∫ T

0

∫

C(R/2,R)

|f(t, x)|pdx dt

)1/p

= 0. (15)

In Definition 2.1 we observe that we need to handle the pressure p and for this, before to state our
next result, it is useful to give first the following characterization of the pressure term.

Proposition 2.1. Let (u, p, v) be a solution of the coupled system (3) such that, for 0 < γ < 3, 2 < p < +∞,
it verifies u ∈ Mp

γ Lp(0, T ), p ∈ D′
([0, T ] ×R

3) and ∇ ⊗ v ∈ Mp
γ Lp(0, T ). Then, the term ∇p is necessary

related to u and ∇ ⊗ v through the Riesz transforms Ri = ∂i√−Δ
by the formula

∇p = ∇
⎛

⎝
3∑

i,j=1

RiRj(ui uj) +
3∑

i,j,k=1

RiRj (∂ivk ∂jvk)

⎞

⎠ . (16)

Here, in the general setting of the time-space local Morrey spaces, we show that the pressure p is always
related to the velocity u and the derivatives of the vector field v. This results has also an independent
interest when seeking for very general frameworks in which the pressure is related to the other unknowns
in the equations (3). See, for instance, [1] and [15], for related works in the case of the Navier–Stokes
equations (4).

As mentioned in the introduction, in our next result we give some a priori conditions on the generalized
weak suitable solutions defined above to ensure that these solutions verify a global energy inequality.

Theorem 2. Let u0 ∈ L2(R3), with div(u0) = 0, and let v0 ∈ Ḣ1(R3) be the initial data. Let 0 < T < +∞,
and let (u, p, v) be a generalized weak suitable solution of the non-stationary coupled system (3) given in
Definition 2.1.
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For 0 < γ < 3 ≤ p < +∞, we assume u ∈ Mp
γ,0L

p(0, T ) and ∇ ⊗ v ∈ Mp
γ Lp(0, T ). If (γ, p) are

such that the quantity η(γ, p) in (9) verifies η(γ, p) ≤ 0, then we have u ∈ L∞
t L2

x ∩ L2
t Ḣ

1
x([0, T ] × R

3),
v ∈ L∞

t Ḣ1
x([0, T ] × R

3), and moreover, for all t ∈ [0, T ] the global energy inequality is verified:

‖u(t, ·)‖2
L2 + 2

∫ t

0

‖u(s, ·)‖2
Ḣ1ds + ‖v(t, ·)‖2

Ḣ1 ≤ ‖u0‖2
L2 + ‖v0‖2

Ḣ1 . (17)

As a direct application of the global energy inequality above we have the following Liouville-type
result.

Corollary 2. Within the framework of Theorem 2, let (u, p, v) be a generalized weak suitable solution of
the non-stationary coupled system (3) given by Definition 2.1. Moreover, let u0 and v0 be the initial data.
If u0 = 0 and v0 is a constant vector field, then we have u = 0, p = 0 and ∇ ⊗ v = 0 on [0, T ] × R

3.

To close this section, let us make the following comments. As for the stationary case, we may observe
that if we set v0 and v two constant unitary vectors, then Theorem 2 and Corollary 2 hold true for the
classical Navier–Stokes equations (4) provided that (u, p) is a generalized weak suitable solution in the
sense of Definition 2.1 (with ∇ ⊗ v = 0) and u ∈ Mp

γ,0L
p(0, T ), with (γ, p) such that η(γ, p) ≤ 0. In this

setting, it is interesting to observe that the space Mp
γ,0L

p(0, T ) generalizes some spaces in which these
kind of results have been obtained in previous works [34]. More precisely, for 3 < p, r ≤ 9/2 such that
2/p + 3/r ≤ 1, we have the following chain of embedding

Lp
(
0, T, Lr(R3)

)
⊂ Lp

(
0, T, Lr,q(R3)

)
⊂ Mp

γ,0L
p(0, T ), (18)

with r < q < +∞, which is proven in the Appendix B.

3. The Local Morrey Spaces

In this section, for the completeness of the paper, we summarize some previous results on the local Morrey
spaces Mp

γ (R3) and Mp
γ,0(R

3) given in (7) and (8) respectively, and its time-space version Mp
γ Lp(0, T )

and Mp
γ,0L

p(0, T ) defined in (14) and (15) respectively.
These kind of local Morrey spaces are strongly lied with the weighted Lebesgue spaces Lp

wγ
(R3) which

are defined as follows: for γ ≥ 0 we consider the weight

wγ(x) =
1

(1 + |x|)γ
(19)

and then for 1 < p < +∞ we define the space Lp
wγ

(R3) = Lp(wγ dx). Thus, we have the following useful
result.

Lemma 3.1. [Lemma 2.1 of [13]] Let 0 ≤ γ < δ and 1 < p < +∞.
1) We have the continuous embedding: Lp

wγ
(R3) ⊂ Mp

γ,0(R
3) ⊂ Mp

γ (R3) ⊂ Lp
wδ

(R3).
2) Moreover, for 0 < T < +∞ we also have the continuous embedding:

Lp
(
[0, T ], Lp

wγ
(R3)

)
⊂ Mp

γ,0L
p(0, T ) ⊂ Mp

γ Lp(0, T ) ⊂ Lp
(
[0, T ], Lp

wδ
(R3)

)
.

Thereafter, a second useful result is the following one.

Lemma 3.2. [Lemma 2.1 of [12] and Corollary 2.1 of [13]] Let 0 < γ < 3 and 1 < p < +∞.

1) The Riesz transform Ri =
∂i√−Δ

is bounded on Lp
wγ

(R3) and we have ‖Rif‖Lp
wγ

≤ cp,γ‖f‖Lp
wγ

.

2) The Hardy-Littlewood maximal function operator M is also bounded on the space Lp
wγ

(R3) and we
have ‖Mf‖Lp

wγ
≤ cp,γ‖f‖Lp

wγ
.

3) The points 1) and 2) also hold for the local Morrey space Mp
γ (R3).
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Proof. We start by proving the points 1 and 2 above. The main idea to prove these points is to verify
that the weight wγ(x), defined in (19), belongs to the Muckenhoupt class Ap(R3). For this, we recall that
wγ(x) belongs to Ap(R3) if and only if it satisfies the following reserve Hölder inequality:

sup
x0∈R3, R>0

(
1

|B(x0, R)|
∫

B(x0,R)

wγ(x)dx

) 1
p

⎛

⎝
1

|B(x0, R)|
∫

B(x0,R)

1

w
1

p−1
γ (x)

dx

⎞

⎠

1− 1
p

< +∞. (20)

For more details on the Muckenhoupt class Ap(R3) see the Section 9.2.1, page 293 of the book [18].
In order to verify (20) we write

sup
x0∈R3, R>0

(
1

|B(x0, R)|
∫

B(x0,R)

wγ(x)dx

) 1
p

⎛

⎝
1

|B(x0, R)|
∫

B(x0,R)

1

w
1

p−1
γ (x)

dx

⎞

⎠

1− 1
p

≤ sup
x0∈R3, 0<R≤1

(
1

|B(x0, R)|
∫

B(x0,R)

wγ(x)dx

) 1
p

⎛

⎝
1

|B(x0, R)|
∫

B(x0,R)

1

w
1

p−1
γ (x)

dx

⎞

⎠

1− 1
p

+ sup
x0∈R3, R>1

(
1

|B(x0, R)|
∫

B(x0,R)

wγ(x)dx

) 1
p

⎛

⎝
1

|B(x0, R)|
∫

B(x0,R)

1

w
1

p−1
γ (x)

dx

⎞

⎠

1− 1
p

= I1 + I2,

where, we must find un upper bound for the term I1 and I2. For the term I1, as we have 0 < R ≤ 1

then, for |x−x0| < R, we can write
1
2
(1 + |x0|) ≤ 1 + |x| ≤ 2(1 + |x0|). Hence, by definition of the weight

wγ(x), we get the upper bound I1 ≤ 4
γ
p . For the term I2 we write

I2 ≤ sup
|x0|≤10R, R>1

(
1

|B(x0, R)|
∫

B(x0,R)

wγ(x)dx

) 1
p

⎛

⎝
1

|B(x0, R)|
∫

B(x0,R)

1

w
1

p−1
γ (x)

dx

⎞

⎠

1− 1
p

+ sup
|x0|>10R, R>1

(
1

|B(x0, R)|
∫

B(x0,R)

wγ(x)dx

) 1
p

⎛

⎝
1

|B(x0, R)|
∫

B(x0,R)

1

w
1

p−1
γ (x)

dx

⎞

⎠

1− 1
p

= I2,1 + I2,2,

where we study now the terms I2,1 and I2,2. To treat the term I2,1, using the polar coordinates (ρ = |x|)
and the definition of the function wγ(x), where 0 < γ < 3, we write:

I2,1 ≤ sup
R>1

(
1

|B(0, 11R)|
∫

B(0,11R)

wγ(x)dx

) 1
p

⎛

⎝
1

|B(0, 11R)|
∫

B(0,11R)

1

w
1

p−1
γ (x)

dx

⎞

⎠

1− 1
p

≤ sup
R>1

(
1

R3

∫ 11R

0

ρ2 dρ

(1 + ρ)γ

) (
1

R3

∫ 11R

0

ρ2(1 + ρ)
γ

p−1 dρ

)1− 1
p

≤ cγ,p sup
R>1

(
1

R3

∫ 11R

0

ρ2−γ dρ

) ⎡

⎣

(
1

R3

∫ 11R

0

ρ2 dρ

)1− 1
p

+

(
1

R3

∫ 11R

0

ρ2+ γ
p−1 dρ

)1− 1
p

⎤

⎦

≤ Cγ,p < +∞.

Finally, to treat the term I2,2, we remark that for all R > 1 and |x0|10R we have
9
10

(1 + |x0|) ≤ 1 + |x| ≤ 11
10

(1 + |x0|),
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and then, always by definition of the weight wγ(x) we get I2,2 ≤ (
11
9

) γ
p .

Gathering all these estimates we finally verify (20). Then, for 1 < γ < 3 the weight wγ(x) belongs to
Ap(R3) with 1 < p < +∞.

Thus, the boundness of the Riesz transforms and the Hardy-Littlewood maximal function operator
directly follow by the basic properties of the Muckenhoupt class Ap. See the Theorem 9.1.9, page 287 of
the book [18]. The points 1 and 2 are now verified.

We prove now the point 3. For this, we will use the real interpolation theory. More precisely, for
γ < δ < +∞, by the Proposition 7.1 of [15] we have that the local Morrey space Mp

γ (R3) can be obtained
by interpolation between the Lebesgue space Lp(R3) and the weighted Lebesgue space Lp

wδ
(R3):

Mp
γ (R3) = [Lp(R3), Lp

wδ
(R3)] γ

δ ,∞.

Moreover, the norms ‖ · ‖Mp
γ

and ‖ · ‖[Lp,Lp
wδ

] γ
δ

,∞
are equivalents. Here, we recall that the interpolation

space [Lp(R3), Lp
wδ

(R3)] γ
δ ,∞ is defined as the space of measurable functions f that can be written as

f =
∑

j∈Z

fi, where this series converges in Lp(R3)+Lp
γ(R3). In addition, we have fi ∈ Lp(R3)∩Lp

wδ
(R3)

and
(
2−j γ

δ max
(
‖fj‖Lp , 2j‖fj‖Lp

wγ

))

j∈Z

∈ �∞(Z). Moreover, the interpolation norm ‖ · ‖[Lp,Lp
wδ

] γ
δ

,∞
is

defined by the expression:

‖f‖[Lp,Lp
wδ

] γ
δ

,∞
= min

(fj)j∈Z∈Lp+Lp
wδ

(

sup
j∈Z

2−j γ
δ ‖fj‖Lp + sup

j∈Z

2j(1− γ
δ )‖fj‖Lp

wδ

)

.

Thus, the point 3 follows directly from this fact and the points 1 and 2 verified above.

4. Characterization of the Pressure Term

4.1. Proof of Proposition 2.1

First, we define q given by the expression

q =
3∑

i,j=1

RiRj(ui uj) +
3∑

i,j,k=1

RiRj (∂ivk ∂jvk) , (21)

where, for 9/4 < δ < 3 we have q ∈ Lp/2([0, T ], Lp/2
wδ

(R3)). Indeed, since we have assumed u ∈ Mp
γ Lp(0, T )

and ∇⊗v ∈ Mp
γ Lp(0, T ), with 0 < γ < 3/2, then by point 2) of Lemma 3.1 we get u ∈ Lp([0, T ], Lp

wδ
(R3))

and ∇ ⊗ v ∈ Lp([0, T ], Lp
wδ

(R3)). With this information we are able to write u ⊗ u ∈ Lp/2([0, T ], Lp/2
wδ

(R3))
and ∇ ⊗ v � ∇ ⊗ v ∈ Lp/2([0, T ], Lp/2

wδ
(R3)), and moreover, as by point 1) of Lemma 3.2 the operator RiRi

is bounded in Lp/2([0, T ], Lp/2
wδ

(R3)), then we obtain q ∈ Lp/2([0, T ], Lp/2
wδ

(R3)).
Now, we will prove the identity ∇p = ∇q. For this, let ε > 0 (small enough) and let α ∈ C∞

0 (R)
be a function such that α(t) = 0 for |t| > ε. Moreover, let ϕ ∈ C∞

0 (R3). We may observe that we
have (αϕ) ∗ ∇p ∈ D′

(]ε, T − ε[×R
3) and (αϕ) ∗ ∇q ∈ D′

(]ε, T − ε[×R
3) and then, for t ∈]ε, T − ε[ fix,

we define the expression Aε(t) = (αϕ) ∗ ∇p(t, ·) − (αϕ) ∗ ∇q(t, ·) ∈ D′
(R3), where we must verify that we

have Aε(t) ∈ S ′
(R3). We write Aε(t) = (αϕ) ∗ ∇p(t, ·) − (α∇ϕ) ∗ q(t, ·). Moreover, since (u, p, v) verify

the coupled system (3) then we have

∇p = −∂tu + Δu − div(u ⊗ u) − div(∇ ⊗ v � ∇ ⊗ v),
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and thus we obtain

Aε(t) = [(−(∂tα)ϕ + αΔϕ) ∗ u] (t, ·) − [(α ∗ ∇ϕ) ∗ (u ⊗ u)] (t, ·)
− [(α ∗ ∇ϕ) ∗ (∇ ⊗ v � ∇ ⊗ v)] (t, ·) − [(α∇ϕ) ∗ q] (t, ·). (22)

In this identity, we will prove that each term in the right side belong to the space Lp/2
wδ

(R3) (where
9/4 < δ < 3). For the first term to the right in (22), recall that we have u ∈ Lp([0, T ], Lp

wδ
(R3)).

Moreover, since for ϕ ∈ C∞
0 (R3) and a function f we have the pointwise estimate |(ϕ∗f)(x)| ≤ cϕ Mf (x)

(where M always denote the Hardy-Littlewood maximal function operator) then by point 2) of Lemma
3.2 we obtain that convolution with test functions is a bounded operator on Lp

wδ
(R3). Thus, we have

[(−(∂tα)ϕ + αΔϕ) ∗ u] (t, ·) ∈ Lp
wδ

(R3). On the other hand, for 9/4 < δ < 3 we have the continuous
embedding Lp

wδ
(R3) ⊂ Lp/2

wδ
(R3). Indeed, by definition of the weight wδ(x) given by (19) and using the

Cauchy-Schwarz inequalities we write
∫

R3
|f |p/2wδdx =

∫

R3
|f |p/2w3/4wδ−3/4 ≤

(∫

R3
|f |pw3/2dx

)1/2 (∫

R3
w2δ−3/2dx

)1/2

,

where, as we have 9/4 < δ < 3 then the last integral in the right side convergences. Thus we obtain
[(−(∂tα)ϕ + αΔϕ) ∗ u] (t, ·) ∈ Lp/2

wδ
(R3).

For the second and third terms to the right in (22), recall that we have u ⊗ u ∈ Lp/2([0, T ], Lp/2
wδ

(R3))
and ∇ ⊗ v � ∇ ⊗ v ∈ Lp/2([0, T ], Lp/2

wδ
(R3)), hence, always by the fact that convolution with test func-

tions is a bounded operator on the space L
p/2
wδ (R3), we obtain [(α ∗ ∇ϕ) ∗ (u ⊗ u)] (t, ·) ∈ Lp/2

wδ
(R3) and

[(α ∗ ∇ϕ) ∗ (∇ ⊗ v � ∇ ⊗ v)] (t, ·) ∈ Lp/2
wδ

(R3) respectively.
Finally, for the fourth term to the right in identity (22), as we have q ∈ Lp/2([0, T ], Lp/2

wδ
(R3)) then we

obtain [(α∇ϕ) ∗ q] (t, ·) ∈ Lp/2
wδ

(R3).
Getting back to the identity (22) we get Aε(t) ∈ Lp/2

wδ
(R3) and then we have Aε(t) ∈ S ′

(R3). On the
other hand, since we have div(u) = 0, taking the divergence operator in the first equation of (3) we obtain
Δ(p− q) = 0. Then we have ΔAε(t) = 0 and since Aε(t) ∈ S ′

(R3) we get that Aε(t) is a polynomial. But,
recalling that Aε(t) ∈ Lp/2

wδ
(R3), we necessary have Aε(t) = 0. Finally, we use the approximation of the

identity
1
ε4

α

(
t

ε

)

ϕ
(x

ε

)
to write ∇(p − q)(t, ·) = lim

ε→0
Aε(t) = 0.

5. The Stationary Case

5.1. Proof of Theorem 1

Let (u, p, v) be a smooth solutions of the coupled system (1). We assume now that for 0 < γ < 3 ≤ p < +∞
we have u ∈ Mp

γ,0(R
3) and ∇ ⊗ v ∈ Mp

γ (R3).
Our starting point is to use the Proposition 2.1 to characterize the term ∇p in the first equation of

(1). For this, we observe first that as u, p and v are time-independent functions then they are also a
smooth solution of the coupled system (3), since all the terms concerning the time derivatives are equal
to zero. Moreover, as we have u ∈ Mp

γ,0(R
3) and ∇ ⊗ v ∈ Mp

γ (R3) then, for a time 0 < T < +∞ fix,
we have u ∈ Mp

γ Lp(0, T ) and ∇ ⊗ v ∈ Mp
γ Lp(0, T ). Thus, by the Proposition 2.1 we have the identity

∇p = ∇q, where q is given in formula (21). From now on we will consider the equation (1) with the term
∇q instead of the term ∇p.

We study now the following local estimate, also know as a Cacciopoli-type estimate.

Proposition 5.1. Within the framework of Theorem 1, there exists a constant c > 0 such that for all R ≥ 1
we have:
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∫

BR/2

|∇ ⊗ u|2dx ≤ c

⎡

⎣

(∫

C(R/2,R)

|u|pdx

)2/p

+

(∫

C(R/2,R)

|∇ ⊗ v|pdx

)2/p

+

(∫

C(R/2,R)

|q|p/2dx

)2/p
⎤

⎦ × R2−9/p

(∫

C(R/2,R)

|u|pdx

)1/p

+
c

R2

∫

C(R/2,R)

|u|2dx. (23)

Proof. We start by introducing the following cut-off function. Let θ ∈ C∞
0 (R3) be a positive and radial

function such that θ(x) = 1 for |x| < 1/2 and θ(x) = 0 for |x| ≥ 1. Then, for R ≥ 1 we define the function

θR(x) = θ(x/R). (24)

Remark that this function verifies the following properties: we have θR(x) = 1 for |x| < R/2, θR(x) = 0
for |x| > R, and moreover we have ‖∇θR‖L∞ ≤ c

R
and ‖ΔθR‖L∞ ≤ c

R2
.

For R ≥ 1, we multiply the first equation of the system (1) by θRu and integrating on the ball BR

(since we have supp(θR) ⊂ BR) we obtain:

−
∫

BR

Δu · θRudx +
∫

BR

div(u ⊗ u) · θRudx +
∫

BR

div(∇ ⊗ v � ∇ ⊗ v) · θRudx

+
∫

BR

∇q · θRudx = 0. (25)

Moreover, we multiply the second equation of the system (1) by −θRΔv, then we integrate on the ball
BR to get:

∫

BR

Δv · θRΔvdx −
∫

BR

div(v ⊗ u) · θRΔvdx +
∫

BR

|∇ ⊗ v|2v · θRΔvdx = 0. (26)

At this point remark that as u, q and v are smooth and locally integrable functions then all the terms in
equations (25) and (26) are well-defined.

Now, we need to study each term in these equations. We start by equation (25). For the first term in
the left-hand side, by integration by parts we have

−
∫

BR

Δu · θRudx = −
3∑

i,j=1

∫

BR

(∂2
j ui)(θRui)d =

3∑

i,j=1

∫

BR

∂jui∂j(θRui)dx

=
3∑

i,j=1

∫

BR

(∂jui)(∂jθR)uidx +
3∑

i,j=1

∫

BR

(∂jui)θR(∂jui)dx

=
1
2

3∑

i,j=1

∫

BR

(∂jθR)∂j(u2
i )dx +

∫

BR

|∇ ⊗ u|2θRdx

= −1
2

∫

BR

|u|2ΔθRdx +
∫

BR

|∇ ⊗ u|2θRdx.
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For the second term in the left-hand side of (25), by integration by parts and moreover, as we have
div(u) = 0, we can write

∫

BR

div(u ⊗ u) · θRudx =
3∑

i,j=1

∫

BR

∂j(uiuj)θRuidx

= −
3∑

i,j=1

∫

BR

uiuj(∂jθR)uidx −
3∑

i,j=1

∫

BR

uiujθR(∂jui)dx

= −
∫

BR

|u|2(u · ∇θR)dx − 1
2

3∑

i,j=1

∫

BR

ujθR∂j(u2
i )dx

= −
∫

BR

|u|2(u · ∇θR)dx +
1
2

3∑

i,j=1

∫

BR

∂j(ujθR)u2
i dx

= −
∫

BR

|u|2(u · ∇θR)dx +
1
2

∫

BR

(u · ∇θR)|u|2dx

= −1
2

∫

BR

|u|2(u · ∇θR)dx.

In order to study the third term in the left-hand side of (25), we need the following technical identity:

div(∇ ⊗ v � ∇ ⊗ v) = ∇
(

1
2
|∇ ⊗ v|2

)

+ Δv(∇ ⊗ v).

Indeed, recall that for i = 1, 2, 3 each component of the vector field div(∇ ⊗ v � ∇ ⊗ v) is given by

(div(∇ ⊗ v � ∇ ⊗ v))i =
3∑

j,k=1

∂j(∂ivk ∂jvk) =
3∑

j,k=1

∂j(∂ivk)∂jvk +
3∑

j,k=1

∂ivk∂2
j vk

=
3∑

j,k=1

∂i(∂jvk)∂jvk +
3∑

k=1

∂ivk Δvk = ∂i

⎛

⎝
1
2

3∑

j,k=1

(∂jvk)2

⎞

⎠ +
3∑

k=1

Δvk ∂ivk

= ∂i

(
1
2
|∇ ⊗ v|2

)

+ (Δv(∇ ⊗ v))i.

With this identity at hand, we get back to the third term in the left-hand side in (25) and, by
integration by parts and the fact that div(u) = 0, we write

∫

BR

div(∇ ⊗ v � ∇ ⊗ v) · θRudx =
3∑

i=1

∫

BR

∂i

(
1
2
|∇ ⊗ v|2

)

θRUidx

+
3∑

i,j=1

∫

BR

ΔVj(∂iVj)θRuidx = −1
2

∫

BR

|∇ ⊗ v|2(u · ∇θR)dx

+
3∑

i,j=1

∫

BR

Δvj(∂ivj)θRuidx.

Finally, for the fourth term in the left-hand side in (25), always by integration by parts and since div(u) =
0 we have

∫

BR

∇q · θRudx =
3∑

i=1

∫

BR

(∂iq)θRuidx = −
∫

BR

q(u · ∇θR)dx.
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Once we dispose these identities, we get back to equation (25) and then we obtain
∫

BR

|∇ ⊗ u|2θRdx =
∫

BR

( |u|2
2

+
|∇ ⊗ v|2

2
+ q

)

(u · ∇θR)dx

+
1
2

∫

BR

|u|2ΔθRdx −
3∑

i,j=1

∫

BR

Δvj(∂ivj)θRuidx. (27)

We study now the terms in the left-hand side in equation (26). For the first term we write directly
∫

BR

Δv · θRΔvdx =
∫

BR

|Δv|2θRdx.

For the second term, integrating by parts and as div(u) = 0 then we get

−
∫

BR

div(v ⊗ u) · θRΔvdx = −
3∑

i,j=1

∫

BR

∂j(viuj)θRΔvi

= −
3∑

i,j=1

∫

BR

(∂jvi)ujθRΔvi = −
3∑

i,j=1

∫

BR

Δvi(∂jvi)θRujdx.

For the third term we write
∫

BR

|∇ ⊗ v|2v · θRΔvdx =
3∑

i=1

∫

BR

|∇ ⊗ v|2viθRΔvidx =
∫

BR

|∇ ⊗ v|2(v · Δv)θRdx.

Thus, with these identities at hand, from equation (26) we obtain:

∫

BR

|Δv|2θRdx =
3∑

i,j=1

∫

BR

Δvi(∂jvi)θRujdx −
∫

BR

|∇ ⊗ v|2(v · Δv)θRdx. (28)

Now, adding the equations (27) and (28) we get
∫

BR

|∇ ⊗ u|2θRdx +
∫

BR

|Δv|2θRdx =
∫

BR

( |u|2
2

+
|∇ ⊗ v|2

2
+ q

)

(u · ∇θR)dx

+
∫

BR

|u|2
2

ΔθRdx −
3∑

i,j=1

∫

BR

Δvj(∂ivj)θRuidx +
3∑

i,j=1

∫

BR

Δvi(∂jvi)θRujdx

︸ ︷︷ ︸
(a)

−
∫

BR

|∇ ⊗ v|2(v · Δv)θRdx,

but, we may observe that we have (a) = 0 and then we write
∫

BR

|∇ ⊗ u|2θRdx +
∫

BR

|Δv|2θRdx =
∫

BR

( |u|2
2

+
|∇ ⊗ v|2

2
+ q

)

(u · ∇θR)dx

+
∫

BR

|u|2
2

ΔθRdx −
∫

BR

|∇ ⊗ v|2(v · Δv)θRdx.

Moreover, the last term is estimated as follows:

−
∫

BR

|∇ ⊗ v|2(v · Δv)θRdx ≤
∫

BR

|Δv|2θRdx.
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Indeed, recall that by hypothesis we have |v|2 = 1 and then we get 1
2Δ|v|2 = 0. Thus, we can write

−|∇ ⊗ v|2 = −
3∑

i,j=1

(∂ivj)2 = −
3∑

i,j=1

(∂ivi)2 = −
3∑

i,j=1

(∂ivj)2 +
1
2
Δ|v|2

= −
3∑

i,j=1

(∂ivj)2 +
1
2

2∑

i,j=1

∂2
i (v2

i ) −
3∑

i,j=1

(∂ivj)2 +
3∑

i,j=1

∂j

(
1
2
∂iv

2
i

)

= −
3∑

i,j=1

(∂ivj)2 +
3∑

i,j=1

∂j(vi∂jvi) −
3∑

i,j=1

(∂ivj)2 +
3∑

i,j=1

(∂jvi)2 +
3∑

i,j=1

vi∂
2
j vi

=
3∑

i,j=1

vi∂
2
j vi = v · Δv. (29)

With the identity −|∇ ⊗ v|2 = v · Δv at hand, and moreover, as we have θR ≥ 0 and as we have |v|2 = 1,
we obtain

−
∫

BR

|∇ ⊗ v|2(v · Δv)θRdx =
∫

BR

|v · Δv|2θRdx ≤
∫

BR

|v|2|Δv|2θRdx ≤
∫

BR

|Δv|2θRdx.

Once we have this estimate then we can write
∫

BR

|∇ ⊗ u|2θRdx +
∫

BR

|Δv|2θRdx ≤
∫

BR

( |u|2
2

+
|∇ ⊗ v|2

2
+ q

)

(u · ∇θR)dx

+
∫

BR

|u|2
2

ΔθRdx +
∫

BR

|Δv|2θRdx,

hence we get
∫

BR

|∇ ⊗ u|2θRdx ≤
∫

BR

( |u|2
2

+
|∇ ⊗ v|2

2
+ q

)

(u · ∇θR)dx +
∫

BR

|u|2
2

ΔθRdx.

Recalling that we have θR(x) = 1 for |x| < R/2, then we obtain
∫

BR/2

|∇ ⊗ u|2dx ≤
∫

BR

|∇ ⊗ u|2θRdx,

and from the previous inequality we are able to write
∫

BR/2

|∇ ⊗ u|2dx ≤
∫

BR

( |u|2
2

+
|∇ ⊗ v|2

2
+ q

)

(u · ∇θR)dx +
∫

BR

|u|2
2

ΔθRdx.

Moreover, recalling that we have supp(∇θR) ⊂ C(R/2, R) and supp(ΔθR) ⊂ C(R/2, R), then we obtain
the following estimate

∫

BR/2

|∇ ⊗ u|2dx ≤
∫

C(R/2,R)

( |u|2
2

+
|∇ ⊗ v|2

2
+ q

)

(u · ∇θR)dx +
∫

C(R/2,R)

|u|2
2

ΔθRdx

≤
∫

C(R/2,R)

|u|2
2

(u · ∇θR)dx +
∫

C(R/2,R)

|∇ ⊗ v|2
2

(u · ∇θR)dx

+
∫

C(R/2,R)

q(u · ∇θR)dx +
∫

C(R/2,R)

|u|2
2

ΔθRdx = I1 + I2 + I3 + I4. (30)

From this estimate we will derive the desired inequality (23) and for this we will study each term Ii

for i = 1, · · · 4. For the term I1, by the Hölder inequalities (with 1 = 2/p + 1/q ) and moreover, as we
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have ‖∇θR‖L∞ ≤ c/R, we get

I1 ≤
∫

C(R/2,R)

|u|2|u · ∇θR|dx ≤
(∫

C(R/2,R)

|u|pdx

)2/p (∫

C(R/2,R)

|u · ∇θR|qdx

)1/q

≤
(∫

C(R/2,R)

|u|pdx

)2/p
c

R

(∫

C(R/2,R)

|u|qdx

)1/q

.

But, since we have 3 ≤ p < +∞ and 1 = 2/p + 1/q then the parameter q verifies q ≤ 3 ≤ p and thus, for
the last expression we can write

c

R

(∫

C(R/2,R)

|u|qdx

)1/q

≤ c

R
R3(1/q−1/p)

(∫

C(R/2,R)

|u|pdx

)1/p

≤ c R2−9/p

(∫

C(R/2,R)

|u|pdx

)1/p

,

hence we have

I1 ≤ c

(∫

C(R/2,R)

|u|pdx

)2/p

R2−9/p

(∫

C(R/2,R)

|u|pdx

)1/p

. (31)

Following the same computations, the terms I2 and I3 are estimated as follows:

I2 ≤ c

(∫

C(R/2,R)

|∇ ⊗ v|pdx

)2/p

R2−9/p

(∫

C(R/2,R)

|u|pdx

)1/p

, (32)

and

I3 ≤ c

(∫

C(R/2,R)

|q|p/2dx

)2/p

R2−9/p

(∫

C(R/2,R)

|u|pdx

)1/p

. (33)

Finally, for the term I4, always by the Hölder inequalities, with 1 = 2/p+1/q, by the fact that ‖ΔθR‖L∞ ≤
c/R2 we obtain

I4 ≤ c

∫

C(R/2,R)

|u|2|ΔθR|dx ≤ c

R2

∫

C(R/2,R)

|u|2dx.

With the estimates, we get back to the inequality (30) to obtain the desired estimate (23). Proposition
5.1 is verified.
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Once the Caccioppoli type estimate (23) is verified, for 0 < γ we write:

∫

BR/2

|∇ ⊗ u|2dx ≤ c

R2

∫

C(R/2,R)

|u|2dx +
c

R
2
p γ

⎡

⎣

(∫

C(R/2,R)

|u|pdx

)2/p

+

(∫

C(R/2,R)

|∇ ⊗ v|pdx

)2/p

+

(∫

C(R/2,R)

|q|p/2dx

)2/p
⎤

⎦ × R
2
p γ+2− 9

p

(∫

C(R/2,R)

|u|pdx

)1/p

=
c

R2

∫

C(R/2,R)

|u|2dx + c

⎡

⎣

(
1

Rγ

∫

C(R/2,R)

|u|pdx

)2/p

+

(
1

Rγ

∫

C(R/2,R)

|∇ ⊗ v|pdx

)2/p

+

(
1

Rγ

∫

C(R/2,R)

|q|p/2dx

)2/p
⎤

⎦ × R
2
p γ+2− 9

p

(∫

C(R/2,R)

|u|pdx

)1/p

.

=
c

R2

∫

C(R/2,R)

|u|2dx + c

⎡

⎣

(
1

Rγ

∫

C(R/2,R)

|u|pdx

)2/p

+

(
1

Rγ

∫

C(R/2,R)

|∇ ⊗ v|pdx

)2/p

+

(
1

Rγ

∫

C(R/2,R)

|q|p/2dx

)2/p
⎤

⎦ × R
3
p γ+2− 9

p

(
1

Rγ

∫

C(R/2,R)

|u|pdx

)1/p

.

At this point, recalling that by (9) we define η(γ, p) =
γ

p
− 3

p
+

2
3
, then we have

3
p
γ + 2 − 9

p
= 3η(γ, p),

and we obtain

∫

BR/2

|∇ ⊗ u|2dx ≤ c

R2

∫

C(R/2,R)

|u|2dx + c

⎡

⎣

(
1

Rγ

∫

C(R/2,R)

|u|pdx

)2/p

+

(
1

Rγ

∫

C(R/2,R)

|∇ ⊗ v|pdx

)2/p

+

(
1

Rγ

∫

C(R/2,R)

|q|p/2dx

)2/p
⎤

⎦ × R3η(γ,p)

(
1

Rγ

∫

C(R/2,R)

|u|pdx

)1/p

. (34)

Here, as we have u ∈ Mp
γ,0(R

3) and ∇ ⊗ v ∈ Mp
γ (R3), for all R ≥ 1 we have the uniformly bound

(
1

Rγ

∫

C(R/2,R)

|u|pdx

)2/p

+

(
1

Rγ

∫

C(R/2,R)

|∇ ⊗ v|pdx

)2/p

≤ c
(
‖u‖2

Mp
γ

+ ‖∇ ⊗ v‖2
Mp

γ

)
.

Moreover, in order to estimate the expression

(
1

Rγ

∫

C(R/2,R)

|q|p/2dx

)2/p

, we recall that the term q is

defined through u and ∇ ⊗ v in (21), and then, setting the parameter 0 < γ as 0 < γ < 3, by the point
3) of Lemma 3.2 we also can write

(
1

Rγ

∫

C(R/2,R)

|q|p/2dx

)2/p

≤ ‖q‖
M

p/2
γ

≤ c
(
‖u‖2

Mp
γ

+ ‖∇ ⊗ v‖2
Mp

γ

)
. (35)

Getting back to (34), we have the estimate

∫

BR/2

|∇ ⊗ u|2dx ≤ c

R2

∫

C(R/2,R)

|u|2dx + c
(
‖u‖2

Mp
γ

+ ‖∇ ⊗ v‖2
Mp

γ

)
R3η(γ,p)

(
1

Rγ

∫

C(R/2,R)

|u|pdx

)1/p

,
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where, we still must study the first term in the right. Precisely, as R ≥ 1 we have

c

R2

∫

C(R/2,R)

|u|2dx ≤ c R2η(γ,p)

(
1

Rγ

∫

C(R/2,R)

|u|p
)2/p

. (36)

Indeed, we write

c

R2

∫

C(R/2,R)

|u|2dx ≤ cR6(1/2−1/p)−2

(∫

C(R/2,R)

|u|p
)2/p

≤ cR 6(1/2−1/p)−2+2γ/p

(
1

Rγ

∫

C(R/2,R)

|u|p
)2/p

,

where, always by (9) we can write 6(1/2 − 1/p) − 2 + 2γ/p ≤ 2(γ/p − 3/p + 1/2) ≤ 2η(γ, p), hence the
estimate (36) follows.

Thus, we obtain the following estimate

∫

BR/2

|∇ ⊗ u|2dx ≤ c R2η(γ,p)

(
1

Rγ

∫

C(R/2,R)

|u|p
)2/p

+c
(
‖u‖2

Mp
γ

+ ‖∇ ⊗ v‖2
Mp

γ

)
R3η(γ,p)

(
1

Rγ

∫

C(R/2,R)

|u|pdx

)1/p

, (37)

and now, we will consider the cases when η(γ, p) ≤ 0 and η(γ, p) > 0 separately.

1) The case when η(γ, p) ≤ 0. Here, as R ≥ 1 then we have R2η(γ,p) ≤ 1 and R3η(γ,p) ≤ 1. Thus, by
the estimate (37) we can write

∫

BR/2

|∇ ⊗ u|2dx ≤ c

(
1

Rγ

∫

C(R/2,R)

|u|p
)2/p

+ c
(
‖u‖2

Mp
γ

+ ‖∇ ⊗ v‖2
Mp

γ

)
(

1
Rγ

∫

C(R/2,R)

|u|pdx

)1/p

.

Moreover, as u ∈ Mp
γ,0(R

3), taking the limit when R → +∞ in each side of the estimate above

we obtain
∫

R3
|∇ ⊗ u|2dx = 0 and thus u is a constant vector. But, always by the information

u ∈ Mp
γ,0(R

3) we necessary have the identity u = 0.

2) The case when η(γ, p) > 0. Here, always as R ≥ 1 then we have R2η(γ,p) ≤ R6η(γ,p); and thus, by
the estimate (37) we write now

∫

BR/2

|∇ ⊗ u|2dx ≤ c R6η(γ,p)

(
1

Rγ

∫

C(R/2,R)

|u|p
)2/p

+c
(
‖u‖2

Mp
γ

+ ‖∇ ⊗ v‖2
Mp

γ

)
R3η(γ,p)

(
1

Rγ

∫

C(R/2,R)

|u|pdx

)1/p

≤ c

⎡

⎣R3η(γ,p)

(
1

Rγ

∫

C(R/2,R)

|u|p
)1/p

⎤

⎦

2

+c
(
‖u‖2

Mp
γ

+ ‖∇ ⊗ v‖2
Mp

γ

)
⎡

⎣R3η(γ,p)

(
1

Rγ

∫

C(R/2,R)

|u|pdx

)1/p
⎤

⎦ .

Hence, as u ∈ u ∈ Mp
γ,0(R

3), and moreover, assuming the supplementary decaying condition (10),
have the identity u = 0.



50 Page 20 of 29 O. Jarŕın JMFM

Until now we have proven that u = 0 and then it remains to prove the identities ∇⊗ v = 0 and q = 0.
We start by proving that ∇ ⊗ v = 0. As u = 0 then by (1) we have that v solves the following elliptic
equation

−Δv − |∇ ⊗ v|2v = 0.

In this equation, we multiply by θR((x · ∇)v), where for R ≥ 1 the cut-off function θR(x) was defined in
(24), and integrating on the ball BR by [19], page 6, we have the following local estimate:

∫

BR/2

|∇ ⊗ v|2dx ≤ c

∫

C(R/2,R)

|∇ ⊗ v|2dx. (38)

Now, recall that v verifies (5) and then we have
∫

BR/2

|∇ ⊗ v|2dx ≤ c sup
R≥1

∫

C(R/2,R)

|∇ ⊗ v|2dx < +∞,

hence we obtain
∫

R3
|∇ ⊗ v|2dx < +∞. With this information, we get back to (38) and taking the limit

when R → +∞ we get
∫

R3
|∇ ⊗ v|2dx = 0. Hence we have ∇ ⊗ v = 0. Once we have the identities u = 0

and ∇ ⊗ v = 0, the identity q = 0 follows directly from the estimate (35). Finally, always by the identity
∇p = ∇q given by Proposition 2.1, we conclude that p is a constant vector.

To finish the proof of Theorem 1, we will verify now that we necessarily have the identity p = 0.
Indeed, in the equation

−Δu + (u · ∇)u + div(∇ ⊗ v � ∇ ⊗ v) + ∇p = 0,

we apply the divergence operator, and moreover, as we have div(u) = 0 then we get

div ((u · ∇)u) + div (div(∇ ⊗ v � ∇ ⊗ v)) + Δp = 0.

Thereafter, using the fact that the vector fields (u · ∇)u and div(∇ ⊗ v � ∇ ⊗ v) are defined compo-
nent by component as

[(u · ∇)u]i =
3∑

j=1

∂j(ujui), [div(∇ ⊗ v � ∇ ⊗ v)]i =
3∑

j=1

3∑

k=1

∂j(∂ivk ∂jvk), i = 1, 2, 3,

in the last identity we have
3∑

i=1

3∑

i=j

∂i∂j(ujui) +
3∑

i=1

3∑

j=1

3∑

k=1

∂i∂j(∂ivk ∂jvk) + Δp = 0.

Hence, the pressure p can we written as

p =
3∑

i=1

3∑

i=j

1
−Δ

(∂i∂j(ujui)) +
3∑

i=1

3∑

j=1

3∑

k=1

1
−Δ

(∂i∂j(∂ivk ∂jvk))

=
3∑

i=1

3∑

i=j

(
∂i√−Δ

∂j√−Δ
(ujui)

)

+
3∑

i=1

3∑

j=1

3∑

k=1

(
∂i√−Δ

∂j√−Δ
(∂ivk ∂jvk)

)

,

where the operators
1

−Δ
and

1√−Δ
can be defined in the Fourier variable by the symbols |ξ|−2 and |ξ|−1

respectively. Moreover, recalling the definition of the Riesz transforms Ri = ∂i√−Δ
, we have

p =
3∑

i=1

3∑

i=j

(RiRj(ujui)) +
3∑

i=1

3∑

j=1

3∑

k=1

(RiRj(∂ivk ∂jvk)) = q. (39)

At this point we remark that all the terms in the second expression above are well defined by the third
point of the Lemma 3.2. Finally, as q = 0 we have p = 0. Theorem 1 is proven.
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5.2. Proof of Corollary 1

We observe first that if (u, p) is a smooth solution of the equations (2), then, for a constant vector field
v ∈ S

n−1 the triplet (u, p, v) is also a smooth solution of the coupled system (1). Thus, assuming the
velocity u verifies u ∈ Mp

γ,0(R
3), where 0 < γ < 3 ≤ p < +∞ are such that η(γ, p) ≤ 0, and moreover, as

we have ∇ ⊗ v = 0 and consequently �∇ ⊗ v ∈ Mp
γ (R3), the result stated in this corollary directly follows

from Theorem 1.

5.3. Proof of Proposition 1

As mentioned above, the stationary Navier–Stokes equations (2) can be observed as a particular of
the coupled Ericksen–Leslie system (1) when the unitary vector field v is a constant vector. Then, the
Proposition 2.1 holds true for the equations (2), and we write the term ∇q instead of the term ∇p, where,

∇ ⊗ v = 0, the term q is given by the identity q =
3∑

i,j=1

RiRj(ui uj).

We also observe that Proposition 5.1 holds true for the equations (2), and, always as we have ∇⊗v = 0,
then we are able to write the following estimate:

∫

BR/2

|∇ ⊗ u|2dx ≤ c

⎡

⎣

(∫

C(R/2,R)

|u|pdx

)2/p

+

(∫

C(R/2,R)

|q|p/2dx

)2/p
⎤

⎦

×R2−9/p

(∫

C(R/2,R)

|u|pdx

)1/p

+
c

R2

∫

C(R/2,R)

|u|2dx.

Hence, following the same computations performed in the estimate (37) we obtain

∫

BR/2

|∇ ⊗ u|2dx ≤ c R2η(γ,p)

(
1

Rγ

∫

C(R/2,R)

|u|p dx

)2/p

+c
(
‖u‖2

Mp
γ

)
R3η(γ,p)

(
1

Rγ

∫

C(R/2,R)

|u|pdx

)1/p

,

and moreover, recalling the definition of the quantity ‖u‖Mp
γ

given in (7) we finally have the following
estimate: ∫

BR/2

|∇ ⊗ u|2dx ≤ c R2η(γ,p)‖u‖2
Mp

γ
+ c R3η(γ,p)‖u‖3

Mp
γ
. (40)

In this estimate, we will distinguish two cases when η(γ, p) < 0 and when η(γ, p) = 0.

1) The case η(γ, p) < 0. Here, in each side of the estimate (40) we take the limit when R → +∞
to obtain the identity u = 0. Moreover, by the identities q =

3∑

i,j=1

RiRj(ui uj) and ∇q = ∇p, we

conclude that p is a constant.
2) The case η(γ, p) = 0. In this case, by the estimate (40) we have

∫

BR/2

|∇ ⊗ u|2dx ≤ c ‖u‖2
Mp

γ
+ c ‖u‖3

Mp
γ
,

and taking the limit when R → +∞ we obtain
∫

R3
|∇ ⊗ u|2dx ≤ c ‖u‖2

Mp
γ

+ c ‖u‖3
Mp

γ
, hence we can write

u ∈ Ḣ1(R3). We will use now the additional hypothesis u ∈ Ḃ−1
∞,∞(R3) to conclude the identity u = 0.
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Indeed, with the information u ∈ Ḃ−1
∞,∞(R3) we can apply the improved Sobolev inequalities (see the

article [17] for a proof of these inequalities) and we write ‖u‖L4 ≤ c‖u‖ 1
2

Ḣ1‖u‖ 1
2

Ḃ−1∞,∞
. Once we dispose of

the information u ∈ L4(R3) we can derive now the identity u = 0 as follows: multiplying equation (2) by
u and integrating on the whole space R

3 we have
∫

R3
(−Δu) · udx =

∫

R3
((u · ∇)u) · udx +

∫

R3
∇p · udx,

where due to the fact u ∈ Ḣ1 ∩ L4(R3) each term in this identity is well-defined. Indeed, for the term in
the left-hand side remark that as u ∈ Ḣ1(R3) then we have −Δu ∈ Ḣ−1(R3). Then, for the first term in
the right-hand side, as div(u) = 0 we write (u · �∇)u = div(u ⊗ u) where, as u ∈ L4(R3) by the Hölder
inequalities we have u⊗u ∈ L2(R3) and then div(u⊗u) ∈ Ḣ−1(R3). Finally, in order to study the second
term in the right-hand side, we write the pressure p as p = 1

−Δdiv(div(u ⊗ u)) hence we get p ∈ L2(R3)
(since we have u ⊗ u ∈ L2(R3)) and then ∇p ∈ Ḣ−1(R3).

Now, integrating by parts each term in the identity above we have that
∫

R3(−Δu)·udx =
∫

R3 |∇⊗u|2dx,
and moreover

∫

R3((u ·∇)u) ·udx = 0 and
∫

R3 ∇p ·udx = 0. With these identities we get
∫

R3 |∇⊗u|2dx = 0
and thus we have u = 0. Moreover, following the same ideas used to prove the identity (39) we have
p = q = 0. Proposition 1 is now proven.

6. The Non-stationary Case

6.1. Proof of Theorem 2

Recall first that by hypothesis of Theorem 2 we have u ∈ Mp
γ,0L

p(0, T ) and ∇ ⊗ v ∈ Mp
γ Lp(0, T ), where

the parameters 0 < γ < 3 ≤ p < +∞ are such that η(γ, p) ≤ 0. Then, by Proposition 2.1 we have the
identity ∇p = ∇q, where the quantity q in defined in expression (21); and from now on we will consider
the equations (3) with the term ∇q instead of the term ∇p.

We will apply the local energy balance (13) to a suitable test function and for this we will follow
some of the ideas of [14]. Let 0 < t0 < t1 < T . For a parameter ε > 0, we will consider a function

αε,t0,t1(t) which converges a.e. to 1[t0,t1](t) and such that
d

dt
αε,t0,t1(t) is the difference between two

identity approximations: the first one in t0 and the second one in t1. For this, let α ∈ C∞(R) be a function
such that α(t) = 0 for −∞ < t < 1/2 and α(t) = 1 for 1 < t < +∞. Then, for ε < min(t0/2, T − t1) we

set the function αε,t0,t1(t) = α

(
t − t0

ε

)

− α

(
t − t1

ε

)

.

On the other hand, for R ≥ 1 let θR(x) be function test given in (24).Then, we consider the function
test αε,t0,t1(t)θR(x) and by (13) we can write

−
∫

R

∫

R3

|u|2 + |∇ ⊗ v|2
2

∂sαε,t0,t1θR dx ds +
∫

R

∫

R3
|∇ ⊗ u|2αε,t0,t1θRdx ds +

∫

R

∫

R3
|Δv|2αε,t0,t1θRdx ds

≤
∫

R

∫

R3

( |u|2 + |∇ ⊗ v|2
2

)

αε,t0,t1ΔθRdx ds +
∫

R

∫

R3

([ |u|2 + |∇ ⊗ v|2
2

+ q

]

u

)

· αε,t0,t1∇θRdx ds

∫

R

∫

R3

3∑

k=1

([u · ∇) v] · ∂kv)αε,t0,t1∂kθRdx ds −
∫

R

∫

R3
|∇ ⊗ v|2v · Δvαε,t0,t1θRdx ds.

Now, taking the limit when ε → 0, by the dominated convergence theorem we obtain (when the limit in
the left side is well-defined)
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− lim
ε→0

∫

R

∫

R3

|u|2 + |∇ ⊗ v|2
2

∂sαε,t0,t1θR dx ds +
∫ t1

t0

∫

R3
|∇ ⊗ u|2θRdx ds +

∫ t1

t0

∫

R3
|Δv|2θRdx ds

≤
∫ t1

t0

∫

R3

( |u|2 + |∇ ⊗ v|2
2

)

ΔθRdx ds +
∫ t1

t0

∫

R3

([ |u|2 + |∇ ⊗ v|2
2

+ q

]

u

)

· ∇θRdx ds

∫ t1

t0

∫

R3

3∑

k=1

([u · ∇) v] · ∂kv)∂kθRdx ds −
∫ t1

t0

∫

R3
|∇ ⊗ v|2v · Δv θRdx ds.

At this point, we must study the expression − lim
ε→0

∫

R

∫

R3

|u|2 + |∇ ⊗ v|2
2

∂sαε,t0,t1θR dx ds. To make the

writing more simple, let us define the function AR(s) =
∫

R3

|u(s, x)|2 + |∇ ⊗ v(s, x)|2
2

θR dx. Then, as-

suming that t0 and t1 are Lebesgue points of the function AR(s), and moreover, since

∫

R

∫

R3

|u|2 + |∇ ⊗ v|2
2

∂sαε,t0,t1θR dx ds = −1
2

∫

R

AR(s)∂sαε,t0,t1ds,

then we have

− lim
ε→0

∫

R

∫

R3

|u|2 + |∇ ⊗ v|2
2

∂sαε,t0,t1θR dx ds =
1
2
(AR(t1) − AR(t0)).

On the other hand, recall that by point 4) in Definition 2.1 we have that the functions u(t, ·) and ∇⊗v(t, ·)
are strong continuous at t = 0 and then we can replace t0 by 0. Moreover, for 0 < t < T , always by point
4) in Definition 2.1 we have that the functions u(t, ·) and ∇ ⊗ v(t, ·) are weak continuous at t and then
we obtain AR(t) ≤ lim inf

t1→t
AR(t1). Thus, we can also replace t1 for t.

With this information, for every 0 ≤ t ≤ T we can write

∫

R3

|u(t, ·)|2 + |∇ ⊗ v(t, ·)|2
2

θR dx +
∫ t

0

∫

R3
|∇ ⊗ u|2θRdx ds +

∫ t

0

∫

R3
|Δv|2θRdx ds

≤
∫

R3

|u0|2 + |∇ ⊗ v0|2
2

θR dx +
∫ t

0

∫

R3

( |u|2 + |∇ ⊗ v|2
2

)

ΔθRdx ds

+
∫ t

0

∫

R3

([ |u|2 + |∇ ⊗ v|2
2

+ q

]

u

)

· ∇θRdx ds +
∫ t

0

∫

R3

3∑

k=1

([u · ∇) v] · ∂kv)∂kθRdx ds

−
∫ t

0

∫

R3
|∇ ⊗ v|2v · Δv θRdx ds.

In this inequality we must study now the term −
∫ t

0

∫

R3
|∇ ⊗ v|2v · ΔvθRdx ds. Recall that by (29)

we have the identity (in the distributional sense) |∇ ⊗ v|2 = −v · Δv, moreover, as we have |v| = 1, then
we can write

−
∫ t

0

∫

R3
|∇ ⊗ v|2v · ΔvθRdx ds

=
∫ t

0

∫

R3
|v · Δv|2θRdx ds ≤

∫ t

0

∫

R3
|v|2|Δv|2θRdx ds ≤

∫ t

0

∫

R3
|Δv|2θRdx ds.
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By this estimate and the previous inequality we get
∫

R3

|u|2 + |∇ ⊗ v|2
2

θR dx +
∫ t

0

∫

R3
|∇ ⊗ u|2θRdx ds ≤

∫

R3

|u0|2 + |∇ ⊗ v0|2
2

θR dx

+
∫ t

0

∫

R3

( |u|2 + |∇ ⊗ v|2
2

)

ΔθRdx ds +
∫ t

0

∫

R3

([ |u|2 + |∇ ⊗ v|2
2

+ q

]

u

)

· ∇θRdx ds

−
∫ s

0

∫

R3

3∑

k=1

∂k([u · ∇) v] · ∂kv)θRdx ds.

Now, as we have u0 ∈ L2(R3) and v0 ∈ Ḣ1(R3), and moreover, recalling that supp(θR) ⊂ BR, supp(∇θR)
⊂ C(R/2, R) and supp(ΔθR) ⊂ C(R/2, R), then we write

∫

BR

|u|2 + |∇ ⊗ v|2
2

θR dx +
∫ t

0

∫

BR

|∇ ⊗ u|2θRdx ds ≤ ‖u0‖2
L2 + ‖v0‖2

Ḣ1

+
∫ t

0

∫

C(R/2,R)

( |u|2 + |∇ ⊗ v|2
2

)

ΔθRdx ds +
∫ t

0

∫

C(R/2,R)

([ |u|2 + |∇ ⊗ v|2
2

+ q

]

u

)

∇θRdx ds

+
∫ t

0

∫

C(R/2,R)

3∑

k=1

([u · ∇) v] · ∂kv)∂kθRdx ds

= ‖u0‖2
L2 + ‖v0‖2

Ḣ1 + I1 + I2 + I3, (41)

where we will show that we have lim
R→+∞

Ii = 0 for i = 1, 2, 3. Indeed, for the term I1 recall that we have

‖ΔθR‖L∞ ≤ c

R2
, and the we get

I1 ≤ c

R2

∫ t

0

∫

C(R/2,R)

(|u|2 + |∇ ⊗ v|2)dx ds ≤ c R1−6/p

∫ t

0

(∫

C(R/2,R)

(|u|p + |∇ ⊗ v|p)dx

)2/p

ds,

thereafter, by the Hölder inequalities in the temporal variable (with 1 = 2/p + (p − 2)/p), and moreover,
recalling that we define η(γ, p) = γ/p − 3/p + 2/3, we have

c R1−6/p

∫ t

0

(∫

C(R/2,R)

(|u|p + |∇ ⊗ v|p)dx

)2/p

ds

≤ c R1−6/p

(∫ t

0

∫

C(R/2,R)

(|u|p + |∇ ⊗ v|p)dx ds

)2/p

t(p−2)/p

≤ c R1−6/p+2γ/p

(
1

Rγ

∫ t

0

∫

C(R/2,R)

(|u|p + |∇ ⊗ v|p)dx ds

)2/p

t(p−2)/p

≤ c R2(1/2−3/p+γ/p)

(
1

Rγ

∫ t

0

∫

C(R/2,R)

(|u|p + |∇ ⊗ v|p)dx ds

)2/p

t(p−2)/p

≤ c R2(2/3−3/p+γ/p−1/6)

(
1

Rγ

∫ t

0

∫

C(R/2,R)

(|u|p + |∇ ⊗ v|p)dx ds

)2/p

t(p−2)/p

≤ c R2η(γ,p)−1/3

(
1

Rγ

∫ t

0

∫

C(R/2,R)

(|u|p + |∇ ⊗ v|p)dx ds

)2/p

T (p−2)/p.
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Hence, as η(γ, p) ≤ 0 and R ≥ 1, we finally write

I1 ≤ c
T (p−2)/p

R1/3
‖u‖2

Mp
γ Lp(0,T ) + c

T (p−2)/p

R1/3
‖∇ ⊗ v‖2

M3
1 L3(0,T ).

But, as we have the information u ∈ Mp
γ,0L

p(0, T ) and ∇ ⊗ v ∈ Mp
γ Lp(0, T ), taking the limit when

R → +∞ we obtain lim
R→+∞

I1 = 0.

For the term I2, by the estimates (31), (32) and (33), we have

I2 ≤
∫ t

0

(∫

C(R/2,R)

|u|pdx

)2/p

R2−9/p

(∫

C(R/2,R)

|u|pdx

)1/p

ds

+
∫ t

0

(∫

C(R/2,R)

|∇ ⊗ v|pdx

)2/p

R2−9/p

(∫

C(R/2,R)

|u|pdx

)1/p

ds

+
∫ t

0

(∫

C(R/2,R)

|q|p/2dx

)2/p

R2−9/p

(∫

C(R/2,R)

|u|3dx

)1/p

ds,

hence, since η(γ, p) = γ/p − 3/p + 2/3 then we write

I2 ≤
∫ t

0

(
1

Rγ

∫

C(R/2,R)

|u|pdx

)2/p

R2−9/p+3γ/p

(
1

Rγ

∫

C(R/2,R)

|u|pdx

)1/p

ds

+
∫ t

0

(
1

Rγ

∫

C(R/2,R)

|∇ ⊗ v|pdx

)2/p

R2−9/p+3γ/p

(
1

Rγ

∫

C(R/2,R)

|u|pdx

)1/p

ds

+
∫ t

0

(
1

Rγ

∫

C(R/2,R)

|q|p/2dx

)2/p

R2−9/p+3γ/p

(
1

Rγ

∫

C(R/2,R)

|u|3dx

)1/p

ds

≤ R3η(γ,p)

⎡

⎣

∫ t

0

(
1

Rγ

∫

C(R/2,R)

|u|pdx

)2/p (
1

Rγ

∫

C(R/2,R)

|u|pdx

)1/p

ds

+
∫ t

0

(
1

Rγ

∫

C(R/2,R)

|∇ ⊗ v|pdx

)2/p (
1

Rγ

∫

C(R/2,R)

|u|pdx

)1/p

ds

∫ t

0

(
1

Rγ

∫

C(R/2,R)

|q|p/2dx

)2/p (
1

Rγ

∫

C(R/2,R)

|u|3dx

)1/p

ds

⎤

⎦ .

Using first the fact that η(γ, p) ≤ 0, and moreover, applying the Hölder inequalities in the temporal
variable (with 1 = 2/p + 1/p + (p − 3)/p), we obtain

I2 ≤
(

1
Rγ

∫ t

0

∫

C(R/2,R)

|u|pdx ds

)2/p (
1

Rγ

∫ t

0

∫

C(R/2,R)

|u|pdx ds

)1/p

t(p−3)/p

+

(
1

Rγ

∫ t

0

∫

C(R/2,R)

|∇ ⊗ v|pdx ds

)2/p (
1

Rγ

∫ t

0

∫

C(R/2,R)

|u|pdx ds

)1/p

t(p−3)/p

+

(
1

Rγ

∫ t

0

∫

C(R/2,R)

|q|p/2dx ds

)2/p (
1

Rγ

∫ t

0

∫

C(R/2,R)

|u|pdx ds

)1/p

t(p−3)/p
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≤
(
‖u‖2

Mp
γ Lp(0,T ) + ‖∇ ⊗ v‖2

Mp
γ Lp(0,T ) + ‖q‖

M
p/2
γ Lp/2(0,T )

)
(

1
Rγ

∫ T

0

∫

C(R/2,R)

|u|pdx ds

)1/p

T (p−3)/p.

At this point, as we have u ∈ Mp
γ,0L

p(0, T ) and ∇ ⊗ v ∈ Mp
γ Lp(0, T ), the by the point 3) of Lemma 3.2

we get

‖q‖
M

p/2
γ Lp/2(0,T )

≤ c
(
‖u‖2

Mp
γ Lp(0,T ) + ‖∇ ⊗ v‖2

Mp
γ Lp(0,T )

)
.

Thus, getting back to the previous estimate we can write

I2 ≤ c
(
‖u‖2

Mp
γ Lp(0,T ) + ‖∇ ⊗ v‖2

Mp
γ Lp(0,T )

)
(

1
Rγ

∫ T

0

∫

C(R/2,R)

|u|pdx ds

)1/p

T (p−3)/p,

and then, taking the limit when R → +∞ we have lim
R→+∞

I2 = 0.

Finally, for the term I3, applying the Hölder inequalities in the spatial variable (with 1 = 1/p + 2/p +
(p − 3)/p), we have

I3 =
3∑

i,j,k=1

∫ t

0

∫

C(R/2,R)

(uj∂jvi)(∂kvi)∂kθRdx ds ≤ c

∫ t

0

∫

C(R/2,R)

|u||∇ ⊗ v|2|∇θR|dx ds

≤ c

∫ t

0

(∫

C(R/2,R)

|u|pdx

)1/p (∫

C(R/2,R)

|∇ ⊗ v|pdx

)2/p (∫

C(R/2,R)

|∇θR|p/(p−3)dx

)(p−3)/p

ds.

Moreover, in the last term, as ‖∇θR‖L∞ ≤ c
R then we can write

I3 ≤ c

⎡

⎣

∫ t

0

(∫

C(R/2,R)

|u|pdx

)1/p (∫

C(R/2,R)

|∇ ⊗ v|pdx

)2/p

ds

⎤

⎦ R2−9/p

≤ c

⎡

⎣

∫ t

0

(
1

Rγ

∫

C(R/2,R)

|u|pdx

)1/p (
1

Rγ

∫

C(R/2,R)

|∇ ⊗ v|pdx

)2/p

ds

⎤

⎦ R2−9/p+3γ/p.

Then, recalling that η(γ, p) = 2/3 − 3/p + γ/p, and moreover, as we assume η(γ, p) ≤ 0, we obtain

I3 ≤ c

⎡

⎣

∫ t

0

(
1

Rγ

∫

C(R/2,R)

|u|pdx

)1/p (
1

Rγ

∫

C(R/2,R)

|∇ ⊗ v|pdx

)2/p

ds

⎤

⎦ R3η(γ,p)

≤ c

∫ t

0

(
1

Rγ

∫

C(R/2,R)

|u|pdx

)1/p (
1

Rγ

∫

C(R/2,R)

|∇ ⊗ v|pdx

)2/p

ds.

We apply now the Hölder inequalities in the temporal variable (with 1 = 1/p + 2/p + (p − 3)/p) to write

I3 ≤ c

(
1

Rγ

∫ t

0

∫

C(R/2,R)

|u|pdx ds

)1/p (
1

Rγ

∫ t

0

∫

C(R/2,R)

|∇ ⊗ v|pdx ds

)2/p

t(p−3)/p

≤ c

(
1

Rγ

∫ t

0

∫

C(R/2,R)

|u|pdx ds

)1/p

‖∇ ⊗ v‖2
Mp

γ Lp(0,T ) T (p−3)/p.

Hence, as u ∈ Mp
γ,0L

p(0, T ), taking the limit when R → +∞ we obtain lim
R→+∞

I3 = 0.

Once we have proven that lim
R→+∞

Ii = 0 for i = 1, 2, 3, we get back to (41) where we take the limit

when R → +∞, and thus for 0 ≤ t ≤ T we get the global energy inequality (17). Theorem 2 is proven.
�
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6.2. Proof of Corollary 2

This proof is straightforward. We just observe that by the global energy inequality (17) if the initial datum
verify u0 = 0 and ∇ ⊗ v0 = 0 then for all time 0 < t ≤ T we have ‖u(t, ·)‖2

L2 = 0 and ‖v(t, ·)‖2
Ḣ1 = 0,

hence u = 0 and ∇ ⊗ v = 0 on [0, T ] × R
3. Moreover, always following the computations done to obtain

the identity (39) we have p = q = 0.
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A Appendix

Consider the velocity field u, the pressure term p and the vector field v defined as follows:

u(x1, x2, x3) = (2x1, 2x2,−4x3), p(x1, x2, x3) = −(2x2
1 + 2x2

2 + 8x3
2),

and v(x1, x2, x3) =

{
(x1, x2, 0), if x2

1 + x2
2 = 1,(

1√
3
, 1√

3
, 1√

3

)
, if x2

1 + x2
2 �= 1.

(42)

We have |v| = 1, and using some basic rules of the vector calculus we easily get that the triplet (u, p, v)
defined as above is also a solution of the system (1). Indeed, for the first equation in the system (1), by
definition of the vector field v(x1, x2, x2) above we observe first that we have div(∇ ⊗ v � ∇ ⊗ v) = 0.
Thereafter, if we set the scalar field ψ(x1, x2, x3) = x2

1 + x2
2 − 2x2

3 we may observe that we have u = ∇ψ
and moreover we have Δψ = 0. With these identities we can write the following computations. First,

we have Δu = Δ(∇ψ) = ∇(Δψ) = 0. On the other hand we have (u · ∇)u =
1
2
|u| + (∇ ∧ u) ∧ u, and as

u = ∇ψ then we get (u · ∇)u =
1
2
|u|. With this identity and the definition of the pressure term p given

above we find that (u, p, v) verify the first equation of (1). Moreover we have div(u) = 0.
For the second equation in (1), we observe first that for the case x2

1+x2
2 �= 1 the vector field v(x1, x2, x3)

defined above is a constant vector and then the second equation in (1) trivially holds. For the other case,
when x2

1 + x2
2 = 1, we have v(x1, x2, x3) = (x1, x2, 0) and then we get Δv = 0. Moreover, by definition

of the vector field u(x1, x2, x3) is easy to see that we have the identity (u · ∇)v = |∇ ⊗ v|2v. Then, the
second equation in (1) also holds true.

B Appendix

Here we give a proof of the embedding (18). It is enough to prove the last inclusion in this embedding,
and for this, for all R ≥ 1 and t ≥ 0 fixed, we have the estimate

∫

BR

|f(t, x)|pdx ≤ cR3(1−p/r)‖f(t, ·)‖p
Lr,∞ ≤ cR3(1−p/r)‖f(t, ·)‖p

Lr,q ,

with r < q < +∞. For a proof of this estimate the Proposition 1.1.10, page 21 of the book [8]. Then, for
0 < γ < 3 we write

1
Rγ

∫

BR

|f(t, x)|pdx ≤ cR3(1−p/r)−γ‖f(t, ·)‖p
Lr,q .
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In the right side of this estimate we impose now the condition 3(1 − p/r) − γ ≤ 0, which is equivalent
to the inequality 2/3 − 3/r ≤ γ/p − 3/p + 2/3 = η(γ, p). Moreover, as we assume η(γ, p) ≤ 0 we get
2/3 − 3/r ≤ 0 which give us the restriction on the parameter r: r ≤ 9/2.

Thus, when 3(1 − p/r) − γ ≤ 0 holds, we can write

1
Rγ

∫

BR

|f(t, x)|pdx ≤ cR3(1−p/r)−γ‖f(t, ·)‖p
Lr,∞ ≤ c‖f(t, ·)‖p

Lr,q ,

hence, integrating in the interval of time [0, T ], and moreover, following the same to prove (11), we finally
obtain the last inclusion in (18).
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[15] Fernández-Dalgo, P.G., Lemarié-Rieusset, P.G.: Characterisation of the pressure term in the incompressible Navier-

Stokes equations on the whole space. Disc. Contin. Dyn. Syst. 14(8), 2917–2931 (2021)
[16] Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-state problems.

Second edition. Springer Monographs in Mathematics. Springer, New York (2011)
[17] Gérard, P., Meyer, Y., Oru, F.: Improved Sobolev inequalities. Seminary Part. Differ. Equ. 1–8 (1996–1997)
[18] Grafakos, L.: Modern Harmonic Analysis, 2nd edn. Springer (2009)
[19] Hao, Y., Liu, X., Zhang, X.: Liouville theorem for steady-state solutions of simplified Ericksen-Leslie system.

arXiv:1906.06318v1 (2019)
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