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Abstract. We consider the homogenization of the compressible Navier-Stokes-Fourier equations in a randomly perforated
domain in R

3. Assuming that the particle size scales like εα, where ε > 0 is their mutual distance and α > 3, we show
that in the limit ε → 0, the velocity, density, and temperature converge to a solution of the same system. We follow the
methods of Lu and Pokorný [https://doi.org/10.1016/j.jde.2020.10.032] and Pokorný and Skř́ı̌sovský [https://doi.org/10.
1007/s41808-021-00124-x] where they considered the full system in periodically perforated domains.
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1. Introduction

We consider a bounded smooth domain D ⊂ R
3 which for ε > 0 is perforated by random balls Bεαri

(εzi)
with α > 3, and show that solutions to the compressible Navier-Stokes-Fourier equations in this domain
converge as ε → 0 to a solution of the same system of equations in D.

There is a vast of literature concerning the homogenization of fluid flows in perforated domains. We
will just cite a few. For incompressible fluids and a periodic perforation, Allaire found in [1] and [2] that,
concerning the ratios of particle size and distance, there are mainly three regimes of particle sizes εα,
where α ≥ 1 and ε > 0 is their mutual distance. Heuristically, if the particles are large, the velocity will
slow down and finally stop. This phenomenon occurs if (in three dimensions) α ∈ [1, 3) and gives rise to
Darcy’s law. When the particles are too small, i.e., α > 3, they should not affect the fluid, yielding that
in the limit, the fluid motion is still governed by the Stokes or Navier-Stokes equations. The third regime
is the so-called critical case α = 3, where the particles are large enough to put some friction on the fluid,
but not too large to stop the flow. For incompressible fluids, the non-critical cases α ∈ (1, 3) and α > 3
were considered in [2], where [1] dealt with the critical case α = 3. The case α = 1 was treated in [3]. In all
the aforementioned literature, the proofs were given by means of suitable oscillating test functions, first
introduced by Tartar in [4] and later adopted by Cioranescu and Murat in [5] for the Poisson equation.
The results obtained by Cioranescu and Murat and also those of Allaire can further be generalized to
the case of random distributions and random radii riε

α, ri ≥ 0. This was done for the critical case α = 3
by Giunti, Höfer, and Velázquez for the Poisson equation in [6] and by Giunti and Höfer for the Stokes
equations in [7], where they recovered Brinkman’s law as in the periodic situation. The case α ∈ (1, 3)
was recently treated by Giunti in [8], where they recovered Darcy’s law.

Unlike as for incompressible fluids, the homogenization theory for compressible fluids is rather sparse
and focuses mainly on deterministic radii εα and a periodic distribution of holes. Masmoudi considered
in [9] the case α = 1 of large particles, giving rise to Darcy’s law. For large particles with α ∈ (1, 3),
Darcy’s law was just recently treated in [10] for a low Mach number limit. Their methods can also be
used to treat the critical case α = 3 [11]. The case of small particles (α > 3) was treated in [12–14] for
different growing conditions on the pressure. Random perforations in the spirit of [7] for small particles
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were considered by Bella and the author in [15], where in the limit, the equations remain unchanged as
in the periodic case.

To the best of the author’s knowledge, there are only three works dealing with homogenization of the
full compressible Navier-Stokes-Fourier system in perforated domains, all assuming periodic distribution
of the holes and deterministic radii. The article of Feireisl, Novotný, and Takahashi [16] treats the case
where the radii of the obstacles are proportional to their mutual distance. They showed that, after a
proper rescaling of the velocity and suitable extensions of the density an temperature, the solutions to
the compressible Navier-Stokes-Fourier equations converge to the solution of a Darcy-type law in the
limiting domain. The second work is the one of Lu and Pokorný [17], which focuses on the case the radii
scale like εα, α > 3, where ε > 0 is the mutual distance between holes. These results were extended
to the time-dependent case by Pokorný and Skř́ı̌sovský in [18]. Our methods for the case of randomly
distributed holes with random radii riε

α, ri ≥ 0, α > 3, are therefore based on the works of Lu, Pokorný,
and Skř́ı̌sovský.

To obtain uniform bounds with respect to ε for the solution functions, a key ingredient is the notion of
the so-called Bogovskĭı operator Bε in the domain Dε, which can be seen as an inverse of the divergence.
Such an operator was first studied in [19] and is known to exist for any Lipschitz domain and satisfies
the norm bound ‖Bε‖ ≤ C. However, the constant C depends on the Lipschitz character of the domain
Dε, which is unbounded as ε → 0. The key point is to develop uniform bounds for Bε as ε → 0. In the
case of periodically perforated domains with deterministic radii εα, α ≥ 1, this was done in [12–14] and
recently generalized to the case of random distributions, random radii and α > 2 in [15]. We will use this
Bogovskĭı operator for the random case in order to generalize the results of [17].

Notation: Throughout the whole paper, ω ∈ Ω, where (Ω,F ,P) is a suitable probability space for
the marked Poisson point process as introduced in Sect. 2 below. We further denote by |S| the Lebesgue
measure of a measurable set S ⊂ R

3. We write a � b whenever there is a constant C > 0 that does not
depend on ε, a, and b such that a ≤ C b. The constant C might change its value whenever it occurs. The
Frobenius scalar product of two matrices A,B ∈ R

3×3 is denoted by A : B :=
∑

1≤i,j≤3 AijBij . Further,
we use the standard notation for Lebesgue and Sobolev spaces, where we denote this spaces even for
vector- or matrix valued functions as in scalar case, e.g., Lp(D) instead of Lp(D;R3).

Organization of the paper: The paper is organized as follows:
In Sect. 2, we give a precise definition of the perforated domain Dε and state our main results for the
steady Navier-Stokes-Fourier equations. In Sect. 3, we establish uniform bounds for the velocity and
density. Sect. 4 is devoted to extend the temperature in a suitable way to the whole domain D, to give
uniform bounds for it and to establish a trace estimate on the boundary of holes. In Sect. 5, we show
how to pass to the limit ε → 0 and obtain the equations in the limiting domain.

2. Setting and the Main Results

In this section we define the perforated domain, formulate the Navier-Stokes-Fourier equations governing
the fluid motion, and state the main results. We start with the definition of the perforated domain.

2.1. The Perforated Domain

Let D ⊂ R
3 be a bounded domain with a C2 boundary. For rescaling arguments, we assume 0 ∈ D.

We model the perforation of D using the Poisson point process, though the arguments can be easily
generalized to a larger class of point processes. For an intensity parameter λ > 0, the Poisson point
process is defined as a random collection of points Φ = {zj} in R

3 characterized by the following two
properties:

– for any two measurable and disjoint sets S1, S2 ⊂ R
3, the random sets S1 ∩ Φ and S2 ∩ Φ are

independent;
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– for any measurable set S ⊂ R
3 and k ∈ N holds P(N(S) = k) = (λ|S|)k

k! e−λ|S|,
where N(S) = #(S ∩ Φ) counts the number of points zj ∈ S. In addition to the random locations of
the balls, modeled by the above Poisson point process, we also assume the balls have random size. For
that, let R = {ri} ⊂ (0,∞) be another random process of independent identically distributed random
variables with finite moment bound

E(rmr
i ) < ∞ for some mr > 0, (1)

and which are independent of Φ. In other words, to each point zj ∈ Φ (center of a ball) we associate
also a radius of the ball rj ∈ (0,∞). The random process (Φ,R) on R

3 × R+ is called marked Poisson
point process, and can be viewed as a random variable ω ∈ Ω 
→ (Φ(ω),R(ω)), defined on an abstract
probability space (Ω,F ,P).

To define the perforated domain Dε, for α > 3 and ε > 0 we set

Φε(D) :=
{

z ∈ Φ ∩ 1
ε
D : dist(εz, ∂D) > ε

}

, Dε := D \
⋃

zj∈Φε(D)

Bεαrj
(εzj). (2)

To simplify the exposition and to avoid the need to analyze the behavior near the boundary, we only
removed those balls from D which are not too close to the boundary ∂D. This is also a common assumption
in the periodic situation, see, e.g., [13, relation (1.3)].

The exact range for the moment bound mr in (1) will be specified later on; we require at least
mr > 3/(α−2). As shown in [15, Theorem 3.1], we then have the following result, which we state in form
of a lemma:

Lemma 1. Let (Φ,R) = ({zi}, {ri}) be a marked Poisson point process as defined above and Dε be as in
(2). Let α > 2, mr > 3/(α − 2), 0 < δ < α − 1 − 3

mr
, κ ∈ (max(1, δ), α − 1 − 3

mr
), and τ ≥ 1. Then there

exists an almost surely positive random variable ε0(ω) such that for every 0 < ε ≤ ε0 holds

max
zi∈Φε(D)

τεαri ≤ ε1+κ

and for every zi, zj ∈ Φε(D), zi �= zj,

Bτε1+κ(εzi) ∩ Bτε1+κ(εzj) = ∅.

2.2. The Navier-Stokes-Fourier System

We consider the stationary compressible Navier-Stokes-Fourier equations in perforated domains Dε, which
describe the steady motion of a compressible and heat conducting Newtonian fluid. For ε > 0, the
unknown density �ε : Dε → [0,∞), velocity uε : Dε → R

3, and temperature ϑε : Dε → (0,∞) of a viscous
compressible fluid are described by

div(�εuε) = 0 in Dε, (3)

div(�εuε ⊗ uε) + ∇p(�ε, ϑε) = div S(ϑε,∇uε) + �εf + g in Dε, (4)

div(�εEuε + p(ϑε, �ε)uε − S(ϑε,uε)uε + qε) = (�εf + g) · uε in Dε, (5)

div
(

�su +
q

ϑ

)

= σ in Dε, (6)

where S denotes the Newtonian viscous stress tensor of the form

S(ϑ,∇u) = μ(ϑ)
(

∇u + ∇Tu − 2
3

div(u)I
)

+ η(ϑ) div(u)I, (7)

and the entropy production rate σ ∈ M+(Dε) is a non-negative Radon-measure satisfying

σ ≥ S(ϑ,∇u) : ∇u

ϑ
− q · ∇ϑ

ϑ2
. (8)
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Further we assume the viscosity coefficients μ(·), η(·) being continuous functions on (0,∞), μ(·) is more-
over Lipschitz continuous, and

C1(1 + ϑ) ≤ μ(ϑ) ≤ C2(1 + ϑ), 0 ≤ η(ϑ) ≤ C2(1 + ϑ). (9)

We impose boundary conditions on ∂Dε as

uε = 0,

qε · n = L(ϑε − ϑ0),
(10)

where ϑ0 ≥ T0 > 0 is a prescribed temperature distribution in D and L > 0 a given constant, and fix the
total mass by

∫

Dε

�ε = M > 0, (11)

where M > 0 is independent of ε.
For the constitutive law of the pressure, we assume

p(ϑ, �) = a�γ + cv(γ − 1)�ϑ, (12)

where a > 0, γ > 2 is the adiabatic exponent and cv > 0 is the specific heat capacity. Note that the
thermodynamic part of the pressure is just the ideal gas law pV = Rϑ with V = 1/� and universal gas
constant R = cp − cv = cv(γ − 1) > 0. The heat flux is governed by Fourier’s law

q(ϑ,∇ϑ) = −κ(ϑ)∇ϑ, (13)

where we assume the heat conductivity κ to satisfy

C3(1 + ϑmϑ) ≤ κ(ϑ) ≤ C4(1 + ϑmϑ) (14)

for some mϑ > 2. The total energy is given by

E = e +
1
2
|u|2, (15)

where the specific energy e satisfies Gibb’s relation

1
ϑ

(

De + p(ϑ, �)D
(

1
�

))

= Ds(�, ϑ). (16)

Assuming the entropy for an ideal fluid as s(�, ϑ) = cv log
(

ϑ

γ−1

)
, this leads to

e(�, ϑ) = cvϑ +
�γ−1

γ − 1
. (17)

Further, the entropy s fulfils formally the balance of entropy

div
(

�su +
q

ϑ

)

= σ =
S : ∇u

ϑ
− q · ∇ϑ

ϑ2
.

Since weak solutions are expected to dissipate more kinetic energy than indicated from the momentum
balance (4), we should for the entropy production rate σ expect inequality rather than equality, which
is precisely the notion of (8); see [20, Chapter 2] for details. Finally, we assume the external forces
f, g ∈ L∞(R3).

Since the existence of classical solutions to (3, 4, 5) is known only if the data are in a certain sense
“small” (see, e.g., [21,22] and the references therein), we will work with weak solutions, which are known
to exist under even weaker assumptions of mϑ and γ as made above.
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2.3. Weak Formulation and weak Solutions

Here we state the weak formulation of the problem in Dε. To simplify notation, we will identify a function
with Dε as its domain of definition with its zero extension to the whole of R3.

First, the weak formulation of the continuity equation reads
∫

R3
�εuε · ∇ψ = 0 (18)

for all ψ ∈ C1
c (R3). We will moreover work with a renormalized version of this, that is,

∫

R3
b(�ε)uε · ∇ψ + (b(�ε) − �εb

′(�ε)) div(uε)ψ = 0 (19)

for any ψ ∈ C1
c (R3) and any b ∈ C1([0,∞)) such that b′ ∈ C0([0,∞)). We remark that the assumptions

on b can be relaxed, see Remark 3 below.
The weak formulation of the momentum equation reads

∫

Dε

p(�ε, ϑε) div ϕ + (�εuε ⊗ uε) : ∇ϕ − S(ϑε,∇uε) : ∇ϕ + (�εf + g) · ϕ = 0 (20)

for any ϕ ∈ C1
c (Dε;R3).

The weak formulation of the energy balance reads

−
∫

Dε

(
�εEuε + p(ϑε, �ε)uε − S(ϑε,∇uε)uε + qε

) · ∇ψ +
∫

∂Dε

L(ϑε − ϑ0)ψ =
∫

Dε

(�εf + g) · uεψ (21)

for all ψ ∈ C1(Dε). Farther, we also have the balance of entropy

〈σε, ψ〉M+ +
∫

∂Dε

Lϑ0

ϑε
ψ = −

∫

Dε

(

�εs(ϑε, �ε)uε +
qε

ϑε

)

· ∇ψ + L

∫

∂Dε

ψ (22)

for all ψ ∈ C1(Dε) with ψ ≥ 0.

Definition 1. The triple (�,u, ϑ) is said to be a renormalized weak entropy solution to problem (3)–(17)
if � ≥ 0, ϑ > 0 a.e. in Dε, � ∈ Lγ(Dε), u ∈ H1

0 (Dε;R3), ϑmϑ/2 and log ϑ ∈ H1(Dε) such that �|u|3,
|S(ϑ,∇u)u| and p(ϑ, �)|u| ∈ L1(Dε), and the relations (18)–(22) are fulfiled.

For ε > 0 fixed, the existence of weak solutions is guaranteed by the following result, see [23] for
details:

Theorem 1. Let f, g ∈ L∞(R3), ϑ0 ∈ L1(∂Dε), ϑ0 ≥ T0 > 0 a.e. on ∂Dε, L > 0 and M > 0. Let γ > 5
3

and mϑ > 1. Then there exists a renormalized weak entropy solution (�,u, ϑ) to problem (3)–(17) in the
sense of Definition 1.

2.4. Main Result

Before giving our main theorem concerning the Navier-Stokes-Fourier system (3, 4, 5), we want to state
a result on the existence and boundedness of an inverse to the divergence operator, which is proven in
[15, Theorem 2.1].

Lemma 2. Let (Φ,R) be a marked Poisson point process as defined in Sect. 2.1 and Dε be as in (2). Let
α > 2 and mr > 3/(α − 2). Then, for all 1 < q < 3 satisfying

α − 3
mr

>
3

3 − q
, (23)

there exists an almost surely positive random variable ε0(ω) such that for all 0 < ε ≤ ε0 there exists a
bounded linear operator

Bε : Lq(Dε)/R → W 1,q
0 (Dε;R3)
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such that for all f ∈ Lq(Dε) with
∫

Dε
f = 0

div(Bε(f)) = f in Dε, ‖Bε(f)‖W 1,q
0 (Dε)

≤ C ‖f‖Lq(Dε),

where the constant C > 0 is independent of ω and ε.

We are now in the position to state our main result, which generalizes [17, Theorem 2.2]:

Theorem 2. Let (Φ,R) = ({zi}, {ri}) and Dε be defined as in Sect. 2.1. Let f, g ∈ L∞(R3), M > 0, L > 0
and ϑ0 ≥ T0 > 0 in D be defined such that it has finite Lq-norm over all smooth two-dimensional surfaces
with finite surface area contained in D for some q > 1. Let (�ε,uε, ϑε) be a sequence of renormalized weak
entropy solutions to problem (3)–(17), extended in a suitable way to the whole domain D as shown in
Sect. 4 below. Let α > 3, γ > 2, mϑ > 2 and mr > max{3/(α − 3), 3} satisfy the relation

α − 3
mr

> max
{

2γ − 3
γ − 2

,
3mϑ − 2
mϑ − 2

}

. (24)

Then, there exists an almost surely positive random variable ε0(ω) such that for all 0 < ε ≤ ε0 there
hold the uniform bounds

‖�ε‖Lγ+Θ(D) + ‖uε‖H1
0 (D) + ‖ϑε‖H1(D)∩L3mϑ (D) ≤ C,

where Θ := min{2γ−3, γ 3mϑ−2
3mϑ+2}. Moreover, the corresponding weak limit as ε → 0 is a renormalized weak

solution to problem (3)–(17) in the limit domain D, i.e., � ≥ 0 and ϑ > 0 a.e. in D and the equations
(18)–(22) are fulfiled.

Remark 3. Due to the DiPerna-Lions transport theory (see [24]), for any smooth domain D ⊂ R
3, any

r ∈ Lβ(D) with β ≥ 2 and any v ∈ H1
0 (D) such that

div(rv) = 0 in D′(D),

the couple (r, v), extended by zero outside D, satisfies the renormalized equation

div((b(r)v) + (rb′(r) − b(r)) div v = 0 in D′(R3),

where b ∈ C([0,∞)) ∩ C1((0,∞)) satisfies

b′(s) ≤ Cs−λ0 for s ∈ (0, 1], b′(s) ≤ Csλ1 for s ∈ [1,∞)

with constants

C > 0, λ0 < 1, −1 < λ1 ≤ β

2
− 1.

Thus, the renormalized continuity equation (19) is satisfied for any function b satisfying the weaker
assumptions b ∈ C1([0,∞)) and b′ ∈ C0([0,∞)).

3. Uniform Bounds

In this section, we give uniform bounds on the velocity and the density. We will always assume that the
requirements on α,mr,mϑ, and γ as made above hold and that the moment bound mr in (1) satisfies
the additional assumption mr ≥ 3 in order to control the measure of the boundary ∂Dε and the measure
of Dε itself.

The entropy balance (22) together with (8) enables us to get several bounds on the sequence (�ε,uε, ϑε)
in Dε. Before stating these bounds, we need the following form of the Strong Law of Large Numbers (see
[7, Lemma C.1]):
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Lemma 3. Let d ≥ 1 and (Φ,R) = ({zj}, {rj}) be a marked Poisson point process on R
d × R+ with

intensity λ > 0. Assume that the marks {rj} are non-negative i.i.d. random variables independent of Φ
such that E(rmr

j ) < ∞ for some mr > 0. Then, for every bounded set S ⊂ R
d which is star-shaped with

respect to the origin, we have almost surely

lim
ε→0

εdN(ε−1S) = λ|S|, lim
ε→0

εd
∑

zj∈ε−1S

rmr
j = λE(rmr )|S|.

Remark 4. Assuming the boundary of the set S from the previous lemma is not too large, the same
argument also shows

lim
ε→0

εdN(ε−1S) = λ|S|, lim
ε→0

εd
∑

zj∈Φε(S)

rmr
j = λE(rmr )|S|. (25)

In particular, it is enough that S has as D a C2-boundary.

Together with Lemma 3, we obtain for ε > 0 small enough

|∂Dε| = |∂D| +
∣
∣
∣
∣

⋃

zi∈Φε(D)

∂Bεαri
(εzi)

∣
∣
∣
∣ ≤ C + Cε2α−3ε3

∑

zi∈Φε(D)

r2i ≤ C,

|D \ Dε| =
∣
∣
∣
∣

⋃

zi∈Φε(D)

Bεαri
(εzi)

∣
∣
∣
∣ ≤ Cε3(α−1)ε3

∑

zi∈Φε(D)

r3i ≤ Cε3(α−1),

(26)

which implies |Dε| → |D| as ε → 0 and thus |Dε| ≤ 2 |D| for ε > 0 possibly even smaller. This yields for
the entropy balance (22) with ψ ≡ 1

σε(Dε) +
∫

∂Dε

Lϑ0

ϑε
≤ L|∂Dε| ≤ C.

and in view of (8), (13) and (14) also
∫

Dε

S(ϑε,∇uε) : uε

ϑε
+

(1 + ϑmϑ
ε )|∇ϑε|2
ϑ2

ε

≤ Cσε(Dε) ≤ C.

If we take also ψ ≡ 1 in the weak formulation of the energy balance (21), we obtain

L

∫

∂Dε

ϑε ≤ C

(

1 +
∫

Dε

(�ε + 1)|uε|
)

≤ C
(
1 + (‖�ε‖

L
6
5 (Dε)

+ 1)‖uε‖L6(Dε)

)
.

Hence, due to the form of the stress tensor in (7) and Korn’s inequality, we have

σε(Dε) + ‖uε‖H1
0 (Dε) + ‖∇ log ϑε‖L2(Dε) + ‖∇|ϑε|

mϑ
2 ‖L2(Dε) + ‖ϑ−1

ε ‖L1(∂Dε) ≤ C,

‖ϑε‖L1(∂Dε) ≤ C(1 + ‖�ε‖
L

6
5 (Dε)

).
(27)

Note that the bounds in (27) imply, by Sobolev inequality, that the norm ‖ϑε‖L3mϑ (Dε) is controlled
by ‖�ε‖

L
6
5 (Dε)

. However, we do not know whether ϑε is uniformly bounded. To prove this, we need some
additional tools. We will do this in the next section independent of the following results. For now, we will
assume that ϑε is uniformly bounded in L3mϑ(Dε) and prove this fact later on in Sect. 4.

To get uniform bounds on the density, we will use Lemma 2 and proceed similar to [12,15,17].

Lemma 4. (see [17], Lemma 3.3) Under the assumptions of Lemma 2, assume additionally that ‖ϑε

‖L3mϑ (Dε) is uniformly bounded. Then, for ε > 0 small enough, we have

‖�ε‖Lγ+Θ(Dε) ≤ C,

where C > 0 is independent of ε and

Θ := min
{

2γ − 3, γ
3mϑ − 2
3mϑ + 2

}

. (28)
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Proof. In the weak formulation of the momentum balance (20), we will use the test function

ϕ := Bε

(
�Θ

ε − 〈�Θ
ε 〉), 〈�Θ

ε 〉 :=
1

|Dε|
∫

Dε

�Θ
ε ,

where Bε is the operator from Lemma 2, and Θ to be determined. We then have for any 1 < q < 3
satisfying (23)

‖∇ϕ‖Lq(Dε) ≤ C(q) ‖�Θ
ε ‖Lq(Dε).

Using ϕ as test function in (20) and recalling the pressure as p(ϑ, �) = a�γ + cv(γ − 1)�ϑ, we get
∫

Dε

a�γ+Θ
ε =

∫

Dε

p(ϑε, �ε)〈�Θ
ε 〉 − cv(γ − 1)�Θ+1

ε ϑε + S(ϑε,∇uε) : ∇ϕ

−
∫

Dε

(�εuε ⊗ uε) : ∇ϕ − (�εf + g) · ϕ.

(29)

We will estimate the right hand-side term by term and start with the most restrictive terms, which will
give bounds on Θ. First, we take the convective term to estimate

∫

Dε

∣
∣(�εuε ⊗ uε) : ∇ϕ

∣
∣ ≤ ‖uε‖2L6(Dε)

‖�ε‖Lγ+Θ(Dε)‖∇ϕ‖Lq1 (Dε)

≤ C(q1) ‖uε‖2L6(Dε)
‖�ε‖Lγ+Θ(Dε)‖�Θ

ε ‖Lq1 (Dε)

= C(q1) ‖uε‖2L6(Dε)
‖�ε‖Lγ+Θ(Dε)‖�ε‖Θ

Lq1Θ(Dε)
,

where q1 is determined by

1
q1

= 1 − 2
6

− 1
γ + Θ

.

In order to get as high integrability of �ε as possible, we choose Θ such that q1Θ = γ + Θ. This together
with γ > 2 leads to

Θ = Θ1 := 2γ − 3 > 1, q1 =
3(γ − 1)
2γ − 3

∈ (
3
2
, 3),

3
3 − q1

=
2γ − 3
γ − 2

.

Using Sobolev embedding and the uniform bound on uε from (27) to obtain ‖uε‖L6(Dε) ≤ C ‖uε‖H1
0 (Dε) ≤

C, we deduce
∫

Dε

∣
∣(�εuε ⊗ uε) : ∇ϕ

∣
∣ ≤ C ‖�ε‖1+Θ1

Lγ+Θ1 (Dε)
,

where C > 0 is independent of ε and 1 + Θ1 < γ + Θ1.
Second, we consider the diffusive term to obtain

∫

Dε

∣
∣S(ϑε,∇uε) : ∇ϕ

∣
∣ ≤ C (1 + ‖ϑε‖L3mϑ (Dε))‖∇uε‖L2(Dε)‖∇ϕ‖Lq2 (Dε)

≤ C(q2) ‖∇uε‖L2(Dε)‖�Θ
ε ‖Lq2 (Dε)

= C(q2) ‖∇uε‖L2(Dε)‖�ε‖Θ
Lq2Θ(Dε)

,

where we set (recall mϑ > 2)

q2 :=
6mϑ

3mϑ − 2
∈ (2, 3),

3
3 − q2

=
3mϑ − 2
mϑ − 2

.

As before, we choose Θ such that q2Θ = γ + Θ, which leads to

Θ = Θ2 := γ
3mϑ − 2
3mϑ + 2

> 1.
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This yields
∫

Dε

∣
∣S(ϑε,∇uε) : ∇ϕ

∣
∣ ≤ C‖�ε‖Θ

Lγ+Θ(Dε)
.

In particular, if we set

Θ := min{Θ1, Θ2} > 1, α − 3
mr

> max
{

2γ − 3
γ − 2

,
3mϑ − 2
mϑ − 2

}

> 3,

then q1 and q2 satisfy (23) and we infer
∫

Dε

∣
∣(�εuε ⊗ uε) : ∇ϕ

∣
∣ +

∫

Dε

∣
∣S(ϑε,∇uε) : ∇ϕ

∣
∣ ≤ C

(
1 + ‖�ε‖1+Θ

Lγ+Θ(Dε)

)
.

Since mϑ > 2, we have Θ ≤ γ 3mϑ−2
3mϑ+2 < γ, yielding 2Θ < γ + Θ. Thus we infer

∫

Dε

∣
∣(�εf + g) · ϕ

∣
∣ ≤ C (‖�ε‖L2(Dε) + 1)‖ϕ‖L2(Dε)

≤ C(2) (‖�ε‖Lγ+Θ(Dε) + 1)‖�ε‖Θ
L2Θ(Dε)

≤ C(2) (‖�ε‖Lγ+Θ(Dε) + 1)‖�ε‖Θ
Lγ+Θ(Dε)

≤ C(2) (‖�ε‖1+Θ
Lγ+Θ(Dε)

+ 1),

where in the last inequality we used

ab
1
p ≤ b + ap′ ∀a, b ≥ 0,

1
p

+
1
p′ = 1, (30)

which is a consequence of Young’s inequality, for b = ‖�ε‖1+Θ
Lγ+Θ(Dε)

and p = (1 + Θ)/Θ.
Farther, the estimate for the pressure reads

∫

Dε

∣
∣p(ϑε, �ε)〈�Θ

ε 〉∣∣ ≤ C

∫

Dε

(�γ
ε + �εϑε)〈�Θ

ε 〉

≤ C

(

‖�ε‖γ
Lγ(Dε)

+ ‖�ε‖
L

6
5 (Dε)

‖ϑε‖L6(Dε)

)

‖�ε‖Θ
LΘ(Dε)

≤ C

(

‖�ε‖γ
Lγ(Dε)

+ ‖�ε‖Lγ(Dε)

)

‖�ε‖Θ
LΘ(Dε)

.

Here we assumed that ϑε is bounded in L3mϑ(Dε) ⊂ L6(Dε). Using (30) for b = ‖�ε‖γ
Lγ(Dε)

and p = γ,
together with Θ < γ, which implies ‖�ε‖Θ

LΘ(Dε)
≤ 1 + ‖�ε‖γ

Lγ(Dε)
‖�ε‖Θ

LΘ(Dε)
, interpolation between the

norms of L1(Dε) and Lγ+Θ(Dε), and the fact that we control the L1-norm of �ε (i.e., the total mass),
we end up with

∫

Dε

∣
∣p(ϑε, �ε)〈�Θ

ε 〉∣∣ ≤ C

(

1 + ‖�ε‖γ
Lγ(Dε)

)

‖�ε‖Θ
LΘ(Dε)

≤ C

(

1 + ‖�ε‖γ
Lγ(Dε)

‖�ε‖Θ
LΘ(Dε)

)

≤ C

(

1 + ‖�ε‖λ
Lγ+Θ(Dε)

)

for some λ < γ + Θ. Lastly, we estimate
∫

Dε

|�Θ+1
ε ϑε| ≤ ‖ϑε‖Lq(Dε)‖�Θ+1

ε ‖
L

γ+Θ
Θ+1 (Dε)

≤ C ‖�ε‖Θ+1
Lγ+Θ(Dε)

,
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where we set q := (γ + Θ)/(γ − 1). Recalling that Θ < γ and γ > 2, this yields q ∈ (1, 4), which entails
in ‖ϑε‖Lq(Dε) ≤ C since we assume ‖ϑε‖L3mϑ (Dε) ≤ C and mϑ > 2.
Finally, we obtain from (29)

‖�ε‖γ+Θ
Lγ+Θ(Dε)

≤ C

(

1 + ‖�ε‖λ
Lγ+Θ(Dε)

)

for some 1 < λ < γ + Θ,

which yields the uniform bound on �ε in Lγ+Θ(Dε), provided ϑε is uniformly bounded in L3mϑ(Dε).
�

Combining the uniform estimates on �ε with these from (27), we obtain

‖uε‖H1
0 (Dε) + ‖�ε‖Lγ+Θ(Dε) + ‖∇ log ϑε‖L2(Dε) + ‖∇|ϑε|

mϑ
2 ‖L2(Dε) ≤ C,

‖ϑε‖L1(∂Dε) + ‖ϑ−1
ε ‖L1(∂Dε) ≤ C.

Note that these bounds are obtained by using the assumption that ϑε is uniformly bounded in L3mϑ(Dε).
This assumption will be proven in the next section.

4. Extension of Functions

In order to work in the fixed domain D instead of the variable domain Dε, we can extend the functions
uε and �ε as well as the measure σε simply by zero, which will preserve their regularity and their norms.
In particular, the extended functions are still uniformly bounded. In the sequel we will denote this zero
extension of a function f by f̃ .

However, the extension of the temperature is more delicate since an extension by zero will in general
not preserve its regularity. Since this extension was previously done in [17, Section 3], we will not repeat
the full arguments of the proofs. First recall that, by Lemma 1 and for ε > 0 small enough, the balls
{B2εαri

(εzi)}zi∈Φε(D) are disjoint. The first lemma we need thus follows by a trivial modification of the
proof from [17, Lemma 3.1]:

Lemma 5. Let Dε be defined as in (2) and let the assumptions of Lemma 1 hold. Then there is an almost
surely positive random variable ε0(ω) such that for all 0 < ε ≤ ε0 there exists an extension operator
Eε : H1(Dε) → H1(D) such that for any ϕ ∈ H1(Dε) and any zi ∈ Φε(D),

Eεϕ = ϕ in Dε,

‖∇Eεϕ‖L2(Bεαri
(εzi)) ≤ C ‖∇ϕ‖L2(B2εαri

(εzi)\Bεαri
(εzi))

and hence ‖∇Eεϕ‖L2(D) ≤ C ‖∇ϕ‖L2(Dε). Farther, for any 1 ≤ q ≤ ∞,

‖Eεϕ‖Lq(Bεαri
(εzi)) ≤ C ‖ϕ‖Lq(B2εαri

(εzi)\Bεαri
(εzi))

and therefore ‖Eεϕ‖Lq(D) ≤ C ‖ϕ‖Lq(Dε), where the constant C > 0 is independent of ε and i. Fur-
thermore, there exists an operator Ẽε : H1

≥0(Dε) → H1
≥0(D) with the same properties as above. Here

H1
≥0 denotes the Sobolev space of all non-negative functions in H1. In particular, one may choose

Ẽεϕ := max{0, Eεϕ}.
With the help of the extension operator Ẽε, we can bound the temperature uniformly w.r.t. ε:

Lemma 6. For ε > 0 small enough, we have ‖Ẽεϑε‖H1(D) + ‖Ẽεϑε‖L3mϑ (D) ≤ C for some C > 0 inde-
pendent of ε. In particular, we have ‖ϑε‖H1(Dε) + ‖ϑε‖L3mϑ (Dε) ≤ C uniformly in ε.

We further need to estimate the trace of ϑε on ∂Dε. Indeed, for fixed ε > 0, the trace of ϑε belongs
to L2mϑ(∂Dε). The next lemma enables us to control its norm in a quantitative way:
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Lemma 7. Under the assumptions of Theorem 2, we have for any zi ∈ Φε(D) and for ε > 0 small enough

‖ϑε‖2mϑ

L2mϑ (∂Bi)
≤ C

(

‖∇|ϑ|mϑ
2 ‖2L2(2Bi\Bi)

+ ‖ϑε‖3mϑ

L3mϑ (2Bi\Bi)
+ ‖ϑε‖2mϑ

L3mϑ (2Bi\Bi)

)

,

where we set Bi := Bεαri
(εzi) and 2Bi := B2εαri

(εzi).

The last ingredient we need is a trace estimate for the whole boundary of the holes, which was given
in [17, Corollary 3.1].

Corollary 1. Under the assumptions of Lemma 1 and Theorem 2, we have for any zi ∈ Φε(D) and for
ε > 0 small enough

‖ϑε‖L2mϑ (∪zi∈Φε(D)∂Bεαri
(εzi)) ≤ Cε

− 1
2mϑ .

Proof. For zi ∈ Φε(D), we set again Bi := Bεαri
(εzi) and 2Bi := B2εαri

(εzi). Then, using Hölder’s
inequality and Lemma 7, we get

∫

∪zi∈Φε(D)∂Bi

|ϑε|2mϑ =
∑

zi∈Φε(D)

∫

∂Bi

|ϑε|2mϑ

�
∑

zi∈Φε(D)

(∫

2Bi\Bi

|ϑε|3mϑ

) 2
3

+
∑

zi∈Φε(D)

∫

2Bi\Bi

∣
∣∇|ϑε|

mϑ
2

∣
∣2 +

∑

zi∈Φε(D)

∫

2Bi\Bi

|ϑ|3mϑ

�
( ∑

zi∈Φε(D)

∫

2Bi\Bi

|ϑε|3mϑ

) 2
3
( ∑

zi∈Φε(D)

1
) 1

3

+
∫

Dε

∣
∣∇|ϑε|

mϑ
2

∣
∣2 +

∫

Dε

|ϑ|3mϑ

�
(
#{zi ∈ Φε(D)})

1
3 + 1,

where in the last inequality we used the uniform bounds on ϑε and ∇|ϑε|
mϑ
2 . From Remark 4, for ε > 0

small enough, the number of points zi ∈ Φε(D) is bounded by Cε−3, which immediately implies our
desired result. �

Summarizing all the above results, we know the existence of an almost surely positive random variable
ε0(ω) such that for all 0 < ε ≤ ε0 the solution (�ε,uε, ϑε) to (3)-(17) and the measure σε, suitably extended
to the whole of D, satisfy

σ̃ε(D) + ‖ũε‖H1
0 (D) + ‖�̃ε‖Lγ+Θ(D) + ‖Eεϑε‖H1(D)∩L3mϑ (D) + ‖Eε log(ϑε)‖H1(D) ≤ C, (31)

where Θ is defined in (28). Further, ϑε has a well defined trace on each ∂Bεαri
(εzi), the norm of which

is controlled by Corollary 1.

5. Equations in Fixed Domain

In this section, we will show the homogenization result for Navier-Stokes-Fourier equations in a randomly
perforated domain in the subcritical case α > 3. The proof of such result in the case of periodically
arranged holes is given in [17, Section 4]. Since their methods apply almost verbatim to our situation,
we will just focus on the differences due to the random setting. Again, we will always assume that the
moment bound mr ≥ 3 in (1) to bound the measures of Dε and ∂Dε.
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First, the bounds in (27) and (31) enable us to extract subsequences such that

ũε ⇀ u weakly in H1
0 (D), ũε → u strongly in Lq(D) for all 1 ≤ q < 6,

�̃ε ⇀ � weakly in Lγ+Θ(D),

Eεϑε ⇀ ϑ weakly in H1(D), Eεϑε → ϑ strongly in Lq(D) for all 1 ≤ q < 3mϑ,

Eε log(ϑε) ⇀ log(ϑ) weakly in H1(D),

where we denote by log(ϑ) the weak limit of Eε log(ϑε) in H1(D).

5.1. Limit Passage in the Energy, Continuity, and Momentum Equation

To pass to the limit in the energy balance (5), we use its weak formulation (21) and the fact ũε = 0 in
D \ Dε to write

−
∫

D

(

�̃εE(�̃ε, ũε, ϑ̃ε)ũε + p(�̃ε, ϑ̃ε)ũε − S(ϑ̃ε,∇ũε)ũε − κ(ϑ̃ε)∇Eεϑε

)

· ∇ψ

+ L

∫

∂D

(ϑε − ϑ0)ψ −
∫

D

(�̃εf + g) · ũεψ

=
∫

D\Dε

κ(ϑε)∇ϑε · ∇ψ − L

∫

∪zi∈Φε(D)∂Bεαri
(εzi)

(ϑε − ϑ0)ψ

=: I1 + I2

(32)

for any ψ ∈ C1(D), where E(�ε,uε, ϑε) is the total energy from (15). We want to show that both integrals
on the right hand-site vanish as ε → 0. For I1, by Hölder’s inequality, we get

|I1| ≤ C‖∇ψ‖L∞(D)(1 + ‖ϑε‖mϑ

L3mϑ (D\Dε)
)‖∇ϑε‖L2(D\Dε)|D \ Dε| 1

6 → 0,

where we used that |D \ Dε| → 0 by (26). For I2, let us set Bi := Bεαri
(εzi). Using Corollary 1 and that

‖ϑ0‖Lq(∂Dε) is uniformly bounded for some q > 1 w.r.t. ε, together with α > 3, mr > 2 and Lemma 3,
we obtain

|I2| � ‖ϑε‖L2mϑ (∪zi∈Φε(D)∂Bi)

∣
∣
∣
∣

⋃

zi∈Φε(D)

∂Bi

∣
∣
∣
∣

2mϑ−1
2mϑ

+ ‖ϑ0‖Lq(∪zi∈Φε(D)∂Bi)

∣
∣
∣
∣

⋃

zi∈Φε(D)

∂Bi

∣
∣
∣
∣

q−1
q

� ε
− 1

2mϑ

( ∑

zi∈Φε(D)

ε2αr2i

) 2mϑ−1
2mϑ

+
( ∑

zi∈Φε(D)

ε2αr2i

) q−1
q

� ε
(2α−3)(2mϑ−1)−1

2mϑ + ε
(2α−3)(q−1)

q → 0,

where we used that (2α−3)(2mϑ −1) > 1 due to our assumptions α > 3mϑ−2
mϑ−2 and mϑ > 2. Hence, letting

ε → 0 on the left hand-site of (32), we get by the strong convergences of uε and ϑε

−
∫

D

(
(
�e(ϑ, �) +

1
2
�|u|2 + p(ϑ, �) − S(ϑ,∇u)

)
u − κ(ϑ)∇ϑ

)

· ∇ψ

+ L

∫

∂D

(ϑ − ϑ0)ψ =
∫

D

(�f + g) · uψ.

Here, f(ϑ, �) denotes the weak limit of a function f(ϑε, �ε) in some suitable Lq-space. Further, the
temperature ϑ > 0 a.e. in D and log(ϑ) = log(ϑ), which can be proven as shown in [17, Lemma 4.]. For
convenience, we repeat the proof here:

Lemma 8. The limiting temperature ϑ > 0 a.e. in D and further log(ϑ) = log(ϑ).
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Proof. First, since Eεϑε → ϑ strongly in, say, L2(D), we can extract a subsequence (not relabeled) such
that Eεϑε → ϑ a.e. in D, which yields that the limit temperature cannot be negative. It thus suffices to
proof that it can be zero just on a set of measure zero. To this end we assume the contrary, that is, there
exists a δ > 0 such that |{ϑ = 0}| = δ. For l ∈ N take a subsequence εl ≤ min{ 1

l , ε0(ω)}, where ε0(ω) > 0
is as in Lemma 1, and consider the sets

Dl0 :=
∞⋃

l=l0

⋃

zi∈Φεl (D)

Bεα
l ri

(εlzi).

Since for εl > 0 small enough we have
∣
∣
∣
∣

⋃

zi∈Φεl (D)

Bεα
l ri

(εlzi)
∣
∣
∣
∣ ≤ C

l3(α−1)

by (26) and α > 3, we can find l0 ∈ N such that |Dl0 | ≤ δ
2 .

We have Eεl
log(ϑεl

) ⇀ log(ϑ) weakly in Lq(D) for all 1 ≤ q ≤ 2, in particular log(ϑ) > −∞ a.e. in
D. Since we have also ϑ̃εl

→ ϑ a.e. in D and thus a.e. in D \Dl0 , we infer by Vitali’s convergence theorem
log(ϑ̃εl

) → log(ϑ) in Lq(D \Dl0) for some q > 1. Since by definition of Eε we have log(ϑ̃εl
) = Eεl

log(ϑεl
)

in D \Dl0 , we have log(ϑ) = log(ϑ) a.e. in D \Dl0 , which yields log(ϑ) > −∞ a.e. in D \Dl0 . This means
that ϑ can be zero at most on the set Dl0 which has measure less than δ/2, which is a contradiction.
Thus ϑ > 0 and log(ϑ) = log(ϑ) a.e. in D. �

It remains to show the energy balance for the limit functions, which is in fact a consequence of the
strong convergence of the density �ε to � at least in L1(D). More precisely, the strong convergence holds
in Lq(D) for any 1 ≤ q < γ + Θ. Since the proof of this fact is nowadays well understood and applies
verbatim to our case of a random perforation, we refer to [17, Section 5.3]. γ + Θ ≥ γ + 1 > 3.

We now turn to the continuity and momentum equation. Recall that the continuity equation holds in
the weak and renormalized sense (18) and (19), so we obtain by the strong convergence of uε to u

div(�u) = 0 in D′(R3) (33)

and

div(b(�)u) + (�b′(�) − b(�)) div(u) = 0 in D′(R3),

where we denote by f(�) the weak limit of a function f(�ε) in some suitable Lq-space. Moreover, by
Remark 3, (33) implies that the couple (�,u) fulfils the renormalized continuity equation (19) for any
b ∈ C([0,∞)) ∩ C1((0,∞)) satisfying the conditions of Remark 3.

To pass to the limit in the momentum equation, we need to construct suitable test functions. To this
end, we recall a lemma from [15]:

Lemma 9. Let α > 2, D ⊂ R
3 be a bounded C2 domain with 0 ∈ D, and (Φ,R) = ({zi}, {ri}) be a marked

Poisson point process with intensity λ > 0 and ri ≥ 0 with E(rmr
i ) < ∞ for mr > max{3/(α − 2), 3}.

Then for any 1 < q < 3 such that (3 − q)α − 3 > 0 and for almost every ω there exist a positive ε0(ω)
and a family of functions {gε}ε>0 ⊂ W 1,q(D) such that for 0 < ε ≤ ε0,

gε = 0 in
⋃

zj∈Φε(D)

Bεαrj
(εzj), gε → 1 in W 1,q(D) as ε → 0 (34)

and there is a constant C > 0 such that

‖1 − gε‖Lq(D) ≤ Cε
3(α−1)

q , ‖∇gε‖Lq(D) ≤ Cε
3(α−1)

q −α. (35)
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Proof. By mr > 3/(α − 2) and Lemma 1, all the balls {B2εαrj
(εzj)}zj∈Φε(D) are disjoint. Thus, there

exist functions gε ∈ C∞(D) such that

0 ≤ gε ≤ 1, gε = 0 in
⋃

zj∈Φε(D)

Bεαrj
(εzj), gε = 1 in D \

⋃

zj∈Φε(D)

B2εαrj
(εzj),

‖∇gε‖L∞(B2εαrj
(εzj)) ≤ C(εαrj)−1 for all zj ∈ Φε(D),

where the constant C > 0 is independent of ε and rj . Moreover, since mr ≥ 3, (25) yields lim
ε→0

ε3
∑

zj∈Φε(D)

r3j = C, thus implying
∣
∣
∣
∣

⋃

zj∈Φε(D)

B2εαrj
(εzj)

∣
∣
∣
∣ ≤ |B2|ε3α

∑

zj∈Φε(D)

r3j ≤ Cε3(α−1)

for ε > 0 small enough. This together with direct calculation yields that for any 1 < q < 3,

‖1 − gε‖Lq(D) ≤ Cε
3(α−1)

q , ‖∇gε‖Lq(D) ≤ Cε
3(α−1)

q −α.

�

Using the cut-off functions from Lemma 9, the proof of Lemma 4.2 in [17] applies verbatim to our
situation, yielding the following result:

Lemma 10. Under the assumptions of Theorem 2, there holds

div(�̃εũε ⊗ ũε) + ∇p(Ẽεϑε, �̃ε) − div S(Ẽεϑε,∇ũε) = �̃εf + g + Fε in D′(D),

where Fε is a distribution satisfying

|〈Fε, ϕ〉D′(D),D(D)| ≤ Cεν
(‖∇ϕ‖

L
γ+Θ

Θ
+ξ(D)

+ ‖ϕ‖Lr(D)

)

for all ϕ ∈ D(D), where Θ is defined in (28), and ν, ξ, r are defined such that the following conditions
are fulfiled:

0 < ξ < 1, 0 < h(ξ) = 3(α − 1)
(

γ + Θ

Θ
+ ξ

)−1

− α,

1 < r < ∞,
1
r

+
(

γ + Θ

Θ
+ ξ

)−1

=
Θ

γ + Θ
,

0 < ν < ∞, ν = min
{

3(α − 1)
r

, h(ξ)
}

.

Let us remark that the conditions on ξ, r, and ν occurring in [17] are only valid for the case Θ = 2γ−3,
where we have 3(γ+Θ)

2(γ+Θ)−3 = 3(γ−1)
2γ−3 = γ+Θ

Θ , see also (37) below. For this reason, we repeat the proof here.

Proof. (Proof of Lemma 10) For legibility, we will identify functions [�ε,uε, ϑε], defined on the domain
Dε, with their extensions [�̃ε, ũε, Ẽεϑε] to the whole of D.

Let ϕ ∈ D(D) and decompose ϕ = ϕgε + ϕ(1 − gε), then ϕgε is a proper test function in the second
equation of (4). Hence,

∫

D

�εuε ⊗ uε : ∇ϕ + p(�ε, ϑε) div ϕ − S(ϑε,∇uε) : ∇ϕ + (�εf + g) · ϕ

=
∫

Dε

�εuε ⊗ uε : ∇(ϕgε) + p(�ε, ϑε) div(ϕgε) − S(ϑε,∇uε) : ∇(ϕgε) + (�εf + g) · (ϕgε) + Iε

= Iε,
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where the remainder is given by

Iε :=
4∑

j=1

Ij,ε :=
∫

D

�εuε ⊗ uε : (1 − gε)∇ϕ − �εuε ⊗ uε : (∇gε ⊗ ϕ)

+
∫

D

p(�ε, ϑε)(1 − gε) div ϕ − p(�ε, ϑε)∇gε · ϕ

+
∫

D

−S(ϑε,∇uε) : (1 − gε)∇ϕ + S(ϑε,∇uε) : (∇gε ⊗ ϕ)

+
∫

D

(�εf + g) · (1 − gε)ϕ.

We start with Iε,2, which is the most restrictive one. We split the integral due to the definition of the
pressure as p = a�γ + cv(γ − 1)�ϑ into

Iε,2 =
∫

D

p(�ε, ϑε)[(1 − gε) div ϕ − ∇gε · ϕ]

=
∫

D

a�γ
ε [(1 − gε) div ϕ − ∇gε · ϕ]

+
∫

D

cv(γ − 1)�εϑε[(1 − gε) div ϕ − ∇gε · ϕ]

=: I1 + I2.

For I1, we estimate

|I1| ≤ C ‖�γ
ε‖

L
γ+Θ

γ (D)

(‖(1 − gε) div ϕ‖
L

γ+Θ
Θ (D)

+ ‖∇gε · ϕ‖
L

γ+Θ
Θ (D)

)

= C ‖�ε‖γ
Lγ+Θ(D)

(‖(1 − gε)∇ϕ‖
L

γ+Θ
Θ (D)

+ ‖∇gε · ϕ‖
L

γ+Θ
Θ (D)

)

≤ C
(‖(1 − gε)∇ϕ‖

L
γ+Θ

Θ (D)
+ ‖∇gε · ϕ‖

L
γ+Θ

Θ (D)

)

≤ C
(‖1 − gε‖Lr(D)‖∇ϕ‖

L
γ+Θ

Θ
+ξ(D)

+ ‖∇gε‖
L

γ+Θ
Θ

+ξ(D)
‖ϕ‖Lr(D)

)
,

where we used the uniform bound on �ε in Lγ+Θ(D), and ξ ∈ (0, 1) and r ∈ (1,∞) are determined by

1
r

+
(

γ + Θ

Θ
+ ξ

)−1

=
Θ

γ + Θ
. (36)

From (35), we obtain

‖1 − gε‖Lr(D) ≤ C ε
3(α−1)

r , ‖∇gε‖
L

γ+Θ
Θ

+ξ(D)
≤ C ε3(α−1)

(
γ+Θ

Θ +ξ
)−1−α

as well as

3(α − 1)
(

γ + Θ

Θ

)−1

− α =
3(α − 1)Θ − α(γ + Θ)

γ + Θ
=

α(2Θ − γ) − 3Θ

γ + Θ
> 0

⇐⇒ α(2Θ − γ) > 3Θ.

We distinguish two cases of Θ from its definition in (28). First, assume

Θ = min
{

2γ − 3, γ
3mϑ − 2
3mϑ + 2

}

= 2γ − 3.

Then

α(2Θ − γ) = α(3γ − 6) > 3Θ = 3(2γ − 3) ⇐⇒ α >
2γ − 3
γ − 2

,
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which is true by condition (24). Second, if

Θ = min
{

2γ − 3, γ
3mϑ − 2
3mϑ + 2

}

= γ
3mϑ − 2
3mϑ + 2

,

then

α(2Θ − γ) = αγ

(
6mϑ − 4
3mϑ + 2

− 1
)

> 3Θ = γ
9mϑ − 6
3mϑ + 2

⇐⇒ α
3mϑ − 6
3mϑ + 2

>
9mϑ − 6
3mϑ + 2

⇐⇒ α >
3mϑ − 2
mϑ − 2

,

which again holds by (24). We therefore may choose ξ ∈ (0, 1) small enough such that

h(ξ) := 3(α − 1)
(

γ + Θ

Θ
+ ξ

)−1

− α > 0.

For this ξ, let r be defined by (36), and

ν := min
{

3(α − 1)
r

, h(ξ)
}

> 0,

then we may estimate I1 by

|I1| ≤ C εν
(‖∇ϕ‖

L
γ+Θ

Θ
+ξ(D)

+ ‖ϕ‖Lr(D)

)
.

Let us further note that
3(γ + Θ)

2(γ + Θ) − 3
≤ γ + Θ

Θ
⇐⇒ 3Θ ≤ 2(γ + Θ) − 3 ⇐⇒ Θ ≤ 2γ − 3, (37)

which is always true by the definition of Θ in (28). Now, we get for I2

|I2| ≤ C ‖�ε‖Lγ+Θ(D)‖ϑε‖L3(D)

(‖(1 − gε) div ϕ‖
L

3(γ+Θ)
2(γ+Θ)−3 (D)

+ ‖∇gε · ϕ‖
L

3(γ+Θ)
2(γ+Θ)−3 (D)

)

≤ C
(‖(1 − gε)∇ϕ‖

L
3(γ+Θ)

2(γ+Θ)−3 (D)
+ ‖∇gε · ϕ‖

L
3(γ+Θ)

2(γ+Θ)−3 (D)

)

≤ C
(‖(1 − gε)∇ϕ‖

L
γ+Θ

Θ (D)
+ ‖∇gε · ϕ‖

L
γ+Θ

Θ (D)

)
,

where we used the uniform bounds on �ε in Lγ+Θ(D) and on ϑε in any Lq(D) for 1 ≤ q ≤ 3mϑ. Hence,
we may proceed as for I1 to eventually get for Iε,2 the bound

|Iε,2| ≤ |I1| + |I2| ≤ C εν
(‖∇ϕ‖

L
γ+Θ

Θ
+ξ(D)

+ ‖ϕ‖Lr(D)

)
.

For Iε,1 and Iε,4, we use the uniform bounds on �ε and uε as well as (37) to get

|Iε,1| ≤ ‖�ε‖Lγ+Θ(D)‖uε‖2L6(D)

(‖(1 − gε)∇ϕ‖
L

3(γ+Θ)
2(γ+Θ)−3 (D)

+ ‖∇gε ⊗ ϕ‖
L

3(γ+Θ)
2(γ+Θ)−3 (D)

)

≤ C
(‖(1 − gε)∇ϕ‖

L
γ+Θ

Θ (D)
+ ‖∇gε ⊗ ϕ‖

L
γ+Θ

Θ (D)

)
,

and also

|Iε,4| ≤ C (1 + ‖�ε‖
L

γ+Θ
γ (D)

)‖(1 − gε)ϕ‖
L

γ+Θ
Θ (D)

≤ C (1 + ‖�ε‖Lγ+Θ(D))‖(1 − gε)ϕ‖
L

γ+Θ
Θ (D)

≤ C ‖(1 − gε)ϕ‖
L

γ+Θ
Θ (D)

.

For Iε,3, we estimate

|Iε,3| ≤ C (1 + ‖ϑε‖
L

2(γ+Θ)
γ−Θ (D)

)‖∇uε‖L2(D)

(‖(1 − gε)∇ϕ‖
L

γ+Θ
Θ (D)

+ ‖∇gε ⊗ ϕ‖
L

γ+Θ
Θ (D)

)

≤ C
(‖(1 − gε)∇ϕ‖

L
γ+Θ

Θ (D)
+ ‖∇gε ⊗ ϕ‖

L
γ+Θ

Θ (D)

)
,
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where we used the uniform bound on ϑε in Lq(D) for any 1 ≤ q ≤ 3mϑ, and the fact that

2(γ + Θ)
γ − Θ

≤ 3mϑ ⇐⇒ 2γ + 2Θ ≤ 3γmϑ − 3Θmϑ ⇐⇒ Θ ≤ γ
3mϑ − 2
3mϑ + 2

,

which is true by (28). Finally, we may proceed for Iε,1, Iε,3 and Iε,4 similar to the estimates of Iε,2 to
finish the proof. �

5.2. Limit Passage in the Entropy Equation and Entropy Inequality

We want now to pass to the limit in the entropy balance (22) and show that the limits (σ,u, ϑ) fulfil also
(8). Since this point is missing in [17], we follow the proof of [18]. We first show that the entropy balance
(22) is satisfied for the extended functions “up to a small error”:

Lemma 11. Under the assumptions of Theorem 2, we have

〈σ̃ε, ψ〉M+(D) +
∫

∂Dε

Lϑ0

ϑε
ψ = −

∫

D

(
�̃εs(ϑ̃ε, �̃ε)ũε − κ(ϑ̃ε)∇Eε log(ϑε)

) · ∇ψ + L

∫

∂D

ψ + 〈Rε, ψ〉 (38)

with 〈Rε, ψ〉 → 0 for any ψ ∈ C1(D) with ψ ≥ 0. Here, we denote �̃εs(ϑ̃ε, �̃ε) = cv�̃εEε log(ϑε) − cv(γ −
1)�̃ε log(�̃ε) with the convention 0 · log(0) = 0.

Proof. Let ψ ∈ C1(D) with ψ ≥ 0, then ψχDε
is a proper test function in the entropy balance (22) in

Dε. We further have ψ = ψχDε
+ ψχD\Dε

and hence

〈σ̃ε, ψ〉M+(D) +
∫

∂Dε

Lϑ0

ϑε
ψ +

∫

D

(
�̃εs(ϑ̃ε, �̃ε)ũε − κ(ϑ̃ε)∇Eε log(ϑε)

) · ∇ψ − L

∫

∂D

ψ

= 〈σε, ψ〉M+(Dε)
+

∫

∂Dε

Lϑ0

ϑε
ψ +

∫

Dε

(
�εs(ϑε, �ε)uε − κ(ϑε)∇ log(ϑε)

) · ∇ψ − L

∫

∂Dε

ψ

+ 〈σ̃ε, ψ〉M+(D\Dε)
+

∫

D\Dε

(
�̃εs(ϑ̃ε, �̃ε)ũε − κ(ϑ̃ε)∇Eε log(ϑε)

) · ∇ψ + L

∫

∂(D\Dε)

ψ =:
7∑

i=1

Ii.

Clearly
4∑

i=1

Ii = 0 because of (22). Further, I5 = 0 since σε has been extended to zero outside Dε. For I7

we obtain I7 → 0 by (26). By �̃ε = 0 outside Dε, we get

I6 = −
∫

D\Dε

κ(ϑ̃ε)∇Eε log(ϑε) · ∇ψ

≤ C ‖∇ψ‖L∞(D\Dε)‖∇ log(ϑε)‖L2(D\Dε)‖κ(ϑε)‖L3(D\Dε)|D \ Dε| 1
6 → 0,

where we used that ‖ϑε‖L3mϑ (Dε) ≤ C and κ(ϑ) ≤ C(1 + ϑmϑ) for some mϑ > 2 as well as |D \ Dε| → 0
by (26). �

Remark 5. Note that due to the mere low control ‖ϑ−1
ε ‖L1(∂Dε) ≤ C, we are not able to prove

∫
∂Dε\∂D

Lϑ0ψ/ϑε → 0 as ε → 0, which would finally yield that the weak-* limit of σ̃ε in M+(D) would satisfy
the balance of entropy in the limiting domain D. Due to

∫
∂Dε\∂D

Lϑ0ψ/ϑε ≥ 0 we rather have that
lim supε→0 σ̃ε ≤ σ in the sense of measures, where σ ∈ M+(D) is defined as the entropy production rate
for the limiting system in D.

We turn now to the limit ε → 0 in (38). We will again follow the arguments given in [18, Section 3.2].
First, by the uniform estimates developed in (27) and (31) and the strong convergence of the temperature
and velocity, we have

�̃εs(�̃ε, ϑ̃ε) ⇀ �s(�, ϑ) = cv� log(ϑ) − cv(γ − 1)� log(�)
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weakly in Lp(D) for some p > 1 as well as

�̃εs(�̃ε, ϑ̃ε)ũε ⇀ �s(�, ϑ)u = cv� log(ϑ)u − cv(γ − 1)� log(�)u

weakly in Lp(D) for some p > 1. The term κ(ϑ̃ε)∇Eε log(ϑε) can be handled by ϑ̃ε → ϑ strongly in
Lq(D) for any 1 ≤ q < 3mϑ and ∇Eε log(ϑε) ⇀ ∇ log(ϑ) weakly in L2(D). As mentioned in Remark 5,
we infer

〈σ, ψ〉M+(D) +
∫

∂D

Lϑ0

ϑ
ψ ≥ −

∫

D

(
�s(ϑ, �)u − κ(ϑ)∇ log(ϑ)

) · ∇ψ + L

∫

∂D

ψ.

Last, let us prove that σ fulfils inequality (8). To this end, we notice that

S(ϑ̃ε,∇ũε) : ∇ũε

ϑ̃ε

=
1
2

∣
∣
∣
∣

√
μ(ϑ̃ε)

ϑ̃ε

(∇ũε + ∇T ũε − 2
3

div ũεI
)
∣
∣
∣
∣

2

+
∣
∣
∣
∣

√
η(ϑ̃ε)
ϑ̃ε

div ũε

∣
∣
∣
∣

2

and use weak lower semi-continuity of the L2-norm to infer

S(ϑ,∇u) : ∇u

ϑ
≤ lim inf

ε→0

S(ϑ̃ε,∇ũε) : ∇ũε

ϑ̃ε

in the sense of distributions. Let us now focus on the second term in (8), which by Fourier’s law (13) and
extension of ϑε to the whole domain D is of the form

κ(ϑ̃ε)|∇Eε log(ϑε)|2.
By assumption (14), it is enough to consider this term for κ(ϑ) = 1 + ϑmϑ . In this case, we get

κ(ϑ̃ε)|∇Eε log(ϑε)|2 = |∇Eε log(ϑε)|2 + ϑ̃mϑ−2
ε |∇ϑ̃ε|2,

where we used that Eεϕ = ϕ in Dε and ϑ̃ε(x) = 0 whenever x ∈ Bεαrj
(εzj).

Let us focus on the first term and fix δ > 0. Then, along the same lines as in [18, Section 3.2],
∫

D

|∇Eε log(ϑε)|2

≥ −
∫

D\Dε

|∇Eε log(ϑε)|2−δχ{|∇Eε log(ϑε)|>1} +
∫

D

|∇Eε log(ϑε)|2−δ

+
∫

Dε

(

|∇Eε log(ϑε)|2 − |∇Eε log(ϑε)|2−δ

)

χ{|∇Eε log(ϑε)|≤1} =:
3∑

i=1

Ii.

(39)

We now estimate, using Hölder’s inequality,

|I1| =
∫

D\Dε

|∇Eε log(ϑε)|2−δχ{|∇Eε log(ϑε)|>1} ≤ ‖∇Eε log(ϑε)‖2−δ
L2(D)|D \ Dε| 2

δ .

Hence, for fixed δ > 0, we have I1 → 0 as ε → 0 since |Dε| → |D| by (26). Further, we get |I3| ≤ C(δ) → 0

as δ → 0 uniformly in ε, since the function z 
→ |z2−z2−δ| obtains in (0, 1) its maximum at z0 =
(
1− δ

2

) 1
δ .

Thus, I3 is bounded independently of ε.
Let us now pass to the limit ε → 0 in (39). Due to the strong convergence of the temperature, the fact
that the second term in (39) is bounded in Lq(D) for some q > 1 and the weak lower semicontinuity of
the Lq-norm, we obtain

lim inf
ε→0

∫

D

|∇Eε log(ϑε)|2 ≥
∫

D

|∇ log(ϑ)|2−δ + C(δ).

Since |∇ log(ϑ)|2−δ converges for δ → 0 a.e. in D to |∇ log(ϑ)|2 and is bounded by

|∇ log(ϑ)|2−δ = |∇ log(ϑ)|2−δχ{|∇ log(ϑ)|>1} + |∇ log(ϑ)|2−δχ{|∇ log(ϑ)|≤1}
≤ |∇ log(ϑ)|2 + 1 ∈ L1(D),
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together with Lebesgue’s convergence theorem, we infer in the limit δ → 0

lim inf
ε→0

∫

D

|∇Eε log(ϑε)|2 ≥
∫

D

|∇ log(ϑ)|2.

Seeing that the above inequalities remain valid if the integrands are multiplied by arbitrary ψ ∈ C1(D),
ψ ≥ 0, and that the term ϑ̃mϑ−2

ε |∇ϑ̃ε|2 can be handled similarly due to the fact that ∇|ϑ̃ε|
mϑ
2 is bounded

in L2(D), we achieve at

lim inf
ε→0

∫

D

κ(ϑ̃ε)|∇Eε log(ϑε)|2 ≥
∫

D

κ(ϑ)|∇ log(ϑ)|2,

which eventually yields for any ψ ∈ C1(D) with ψ ≥ 0
∫

D

(
S(ϑ,∇u) : ∇u

ϑ
+ κ(ϑ)|∇ log(ϑ)|2

)

ψ

≤ lim inf
ε→0

∫

D

(
S(ϑ̃ε,∇ũε) : ∇ũε

ϑ̃ε

+ κ(ϑ̃ε)|∇Eε log(ϑε)|2
)

ψ

≤ lim inf
ε→0

〈σ̃ε, ψ〉 ≤ 〈σ, ψ〉.

To finish the proof of Theorem 2, we have to show

�e(ϑ, �) = �e(ϑ, �), �s(ϑ, �) = �s(ϑ, �), �s(ϑ, �)u = �s(ϑ, �)u, p(ϑ, �) = p(ϑ, �).

By the strong convergence of ϑε to ϑ in any Lq(D) for 1 ≤ q < 3mϑ, it is sufficient to show the strong
convergence of �ε to �, which is proven in [17, Section 5.3]. To summarize, we finally have that the
weak limit (�,u, ϑ) is a solution to problem (3)–(17) in the limit domain D. This completes the proof of
Theorem 2.
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