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Abstract. Turbulent compressible flows are encountered in many industrial applications, for instance when dealing with
combustion or aerodynamics. This paper is dedicated to the study of a simple turbulent model for compressible flows.
It is based on the Euler system with an energy equation and turbulence is accounted for with the help of an algebraic
closure that impacts the thermodynamical behavior. Thereby, no additional PDE is introduced in the Euler system. First, a
detailed study of the model is proposed: hyperbolicity, structure of the waves, nature of the fields, existence and uniqueness
of the Riemann problem. Then, numerical simulations are proposed on the basis of existing finite-volume schemes. These
simulations allow to perform verification test cases and more realistic explosion-like test cases with regards to the turbulence
level.
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Introduction

The modeling of compressible turbulent flows has actually been widely investigated for many years. It is
basically grounded on compressible Navier-Stokes equations, with an unsteady setting (see for instance
[1,2,4–7,9,10,18,19,21]).

Compressible turbulent models are used in many applications, for instance in the framework of com-
bustion and aerodynamics. They always involve three conservation laws that govern the evolution of
mass, momentum and total energy of the fluid. Using classical Reynolds averaging and denoting φ the
mean value of quantity φ, we recall that the Favre average ψ̃ of any variable ψ is defined as [5–7]:

ψ̃ =
ρψ

ρ
.

Hence, in the sequel, ρ, P will represent the mean density and the mean pressure respectively, while ũ
and ẽ will stand for the Favre average of velocity and internal energy. Exact balance laws thus read:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t(ρ) + ∇.(ρũ) = 0

∂t(ρũ) + ∇.

(

ρũ ⊗ ũ +
(

P +
2K

3

)

.I
)

= ε0∇.(Σtot(∇sũ))

∂t(ρE) + ∇.

(

ũ

(

ρE + P +
2K

3

))

= ε0∇.(Σtot(∇sũ)ũ)

(1)

where I is the identity matrix.
The second order tensor Σtot(∇sũ) cumulates laminar and turbulent viscous contributions, ε0 is a

positive parameter in [0,1] and K denotes the turbulent kinetic energy. The total energy is:

ρE = ρ(
ũ2

2
+ ẽ) + K,
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and ẽ is a function that is expected to be given through an equation of state (EOS), for instance, for a
perfect gas EOS:

ẽ(P , ρ) =
P

(γ − 1)ρ
,

with γ > 1. Obviously, ε0 = 0 corresponds to the limit case of vanishing viscosity. Actually, the three-
equation model (1) involves four main unknowns ρ, P , ũ and K. Thus one closure law is required for the
latter turbulent kinetic energy K, and several strategies have been proposed in the past for that purpose,
that we briefly summarize below.

The most widespread approach consists in deriving the governing equation for K, starting from Euler
or Navier-Stokes equations, and focusing on smooth solutions. Setting W the state variable, this leads to
the following PDE for K:

∂t(K) + ∇.(Kũ) +
2K

3
∇.(ũ) = rhsK(W,∇W ), (2)

where the right-handside term rhsK(W,∇W ) does not include any convective (first-order differential)
term. Thus, by introducing a change of variable:

ξ = K (ρ)−5/3,

where ξ is sometimes refered to as the turbulent entropy, Eq. (2) may be rewritten as:

∂t(ξ) + ũ∇.(ξ) = (ρ)−5/3rhsK(W,∇W ),

or alternatively using the mass balance equation:

∂t(ρξ) + ∇.(ρξũ) = (ρ)−2/3rhsK(W,∇W ).

Obviously, this only makes sense when restricting to smooth solutions. Some possible closure laws for
rhsK(W,∇W ) can be found in [18,21] for instance. However, as emphasized in [1,2,8,10], in the non
viscous case, it remains to define jump conditions, and this is not straightforward, due to the occurence
of non-conservative products (2K/3 ∇.ũ) in (2), which are active in genuinely non-linear fields associated
with eigenvalues ũ±ct, noting:

(ct)2 = c2 +
10K

9ρ
,

where c stands for the speed of acoustic waves in laminar flows.
Among other possibilities, we recall that the strategy proposed in [8] is only valid for weak enough

shock waves; besides, the approach suggested in [1,2] is expected to be meaningful for stronger shocks.
The reader is refered to [10] for a brief review. In the present paper, focus will be given on a simple
turbulent model obtained while neglecting rhsK(W,∇W ); thus, using the mass balance equation, an
obvious solution is:

ξ = ξ0.

This implies:

K = K(ρ) = ξ0(ρ)5/3. (3)

The resulting three-equation model [14] (whose counterpart is [15] in the two-phase framework) has thus
three main unknowns ρ, P , ũ, that are governed by the closed system (1).

We will assume the following numerical strategy, which consists in computing approximate solutions
of (1), using an explicit scheme for convective terms, and an implicit formulation for viscous terms, thus
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using the following time scheme:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρ
n+1 − ρ

n

Δt
= −{∇.(ρũ))

}n

(ρũ)n+1 − (ρũ)n

Δt
− ε0

{∇.(Σtot(∇sũ))
}n+1 = −

{

∇.

(

ρũ ⊗ ũ +
(

P +
2K

3

)

.I
)}n

(ρE)n+1 − (ρE)n

Δt
− ε0

{∇.(Σtot(∇sũ)ũ)
}n+1 = −

{

∇.

(

ũ

(

ρE + P +
2K

3

))}n

The present paper only focuses on the convective part of the system, second order tensors are not con-
sidered here and it investigates the main properties of the convective system associated with:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t(ρ) + ∇.(ρũ) = 0

∂t(ρũ) + ∇.

(

ρũ ⊗ ũ +
(

P +
2K

3

)

.I
)

= 0

∂t(ρE) + ∇.

(

ũ

(

ρE + P +
2K

3

))

= 0

(4)

which are detailed in Sect. 1. In particular, we will derive an entropy inequality which will enable to
select admissible solutions when investigating the one-dimensional Riemann problem, and we will find
the Riemann invariants associated with the LD (Linearly degenerate) and GNL (Genuinely non linear)
fields and characterize the conditions of the jump associated with system (4) in Sect. 2. In the case
of a perfect gas EOS, the existence and uniqueness of the solution of the Riemann problem of system
(4) will be proved in Sect. 3 (with “Appendix A”). In Sect. 4, we will introduce a simple approximate
Riemann solver in order to compute approximate solutions of the system introduced in Sect. 1. Some test
cases for verification including shock structures will be carried out in Section 5, where it will be checked
that this scheme enables to retrieve numerical convergence towards the exact solution even when shock
waves occur, with the expected convergence rate. Section 6 will be devoted to the presentation of some
two-dimensional computation The last section will be a conclusion of the work done in this paper.

Throughout the paper, standard ã and b notations will be skipped.

1. Turbulent Compressible Flow Model

As recalled before, the model [14] has been obtained by a statistical averaging of the Euler / Navier-Stokes
equations, and thus the following system of partial differential equations is considered:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t(ρ) + ∂x(ρu) = 0

∂t(ρu) + ∂x

(

ρu2 + P +
2K

3

)

= 0

∂t(ρE) + ∂x

(

u

(

ρE + P +
2K

3

))

= 0

(5)

It governs the mean evolution of mass, momentum and energy. The quantities ρ, u, P, K, and E respectively
represent the mean density, the mean velocity, the mean pressure, the turbulent kinetic energy and the
mean total energy. The latter quantity is given by:

ρE = ρe(P, ρ) +
ρu2

2
+ K, (6)

where e=e(P,ρ) is the mean specific internal energy, and the turbulent kinetic energy follows the law:

K = ξ0ρ
5/3, (7)

with ξ0 a positive constant.
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We introduce the celerity of density waves c(P,ρ) and the temperature T, such that:

c2(P, ρ) =
(

P

ρ2
− ∂ρe(P, ρ)

)

/∂P e(P, ρ), (8)

1
T

= (∂P e)−1(∂P s), (9)

where s=s(P, ρ) is the specific entropy complying with the constraint:

c2(P, ρ)(∂ps) + (∂ρs) = 0. (10)

We will also define the modified pressure P ∗:

P ∗ = P +
2
3
K. (11)

2. Main Properties of the Flow Model

In this section, we give some properties of system (5) in a general framework with respect to the EOS.

2.1. Entropy Inequality

In order to introduce an entropy inequality, we consider a viscous perturbation of system (5), which is
chosen as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t(ρ) + ∂x(ρu) = 0

∂t(ρu) + ∂x

(

ρu2 + P +
2K

3

)

= ε0∂x

(
2
3
μ∂xu

)

∂t(ρE) + ∂x

(

u

(

ρE + P +
2K

3

))

= ε0∂x

(
2
3
μu∂xu

)
(12)

Here μ represents the total viscosity and ε0 is a constant in ]0, 1]. In the following we consider the
conservative state variable:

w = (ρ, ρu, ρE),

and the flux:

F (w) = (ρu, ρu2 + P ∗, u(ρE + P ∗)).

We introduce the entropy–entropy flux pair (η, fη) with:

η(w) = −ρln(s), and fη(w) = uη. (13)

Proposition 1. Then the following inequality holds for smooth solutions of (12):

∂tη + ∂xfη ≤ 0. (14)

Proof. In the case of the viscous perturbed system (12), simple computations lead to the entropy inequal-
ity:

∂tη + ∂xfη = −1
s

∂s

∂P

(
∂e

∂P

)−1 2
3
ε0μ(∂xu)2 = − 2

3T
ε0μ(∂xu)2 ≤ 0.

�
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Remark 1. In the non viscous case, for a discontinuity travelling at speed σ, we will thus assume that
the following inequality holds true:

−σ[η] + [fη] ≤ 0. (15)

This will enable us to select the admissible solution of the Riemann problem associated with the conser-
vative system (5).

2.2. Hyperbolicity

The system is written in the form:

∂tW + A(W )∂xW = 0, (16)

where the primitive variable W reads:

W = (ρ, u, P )t.

The jacobian matrix A(W) is:

A(W ) =

⎛

⎝
u ρ 0

10K
9ρ2 u τ

0 ρc2 u

⎞

⎠ ,

where τ = 1/ρ denotes the specific volume.

Proposition 2. We define ct such that:

c2t = c2 +
10K

9ρ
.

System (16) is strictly hyperbolic, it admits three real eigenvalues:

λ1(W ) = u − ct, λ2(W ) = u, λ3(W ) = u + ct, (17)

and the associated eigenvectors rk(W) span the whole space R
3 provided that ct �= 0:

r1(W ) =
(
ρ,−ct, ρc2

)T
, r2(W ) =

(

ρ, 0,−10K

9

)T

, r3(W ) =
(
ρ, ct, ρc2

)T
. (18)

Fields associated with λ1(W ) and λ3(W ) are genuinely non linear (GNL), and field associated with λ2(W )
is linearly degenerate (LD).

Proof. The proof is simple when using the system written in the non conservative variable (s, u, P ∗), see
system (22), and it is thus left to the reader. Moreover, it should also be noted that examining the nature
(GNL or LD) of the waves is more simple when using this set of variables, see the following section. �

2.3. Riemann Invariants

Proposition 3. The two Riemann invariants associated with the LD field (λ2 = u) are the following
whatever the EOS is:

I21 (W ) = u , I22 (W ) = P ∗(P, ρ). (19)

The Riemann invariants associated with the two GNL waves read:

1 − rarefaction wave : I11 (W ) = s(P, ρ) , I12 (W ) = u +
∫ ρ

0

ct(I11 (W ), ρ′)
ρ′ dρ′. (20)

3 − rarefaction wave : I31 (W ) = s(P, ρ) , I32 (W ) = u −
∫ ρ

0

ct(I31 (W ), ρ′)
ρ′ dρ′. (21)
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Proof. Ii
k represents the k-th Riemann invariants for the i-th wave (1-rarefraction, 2-contact, 3-

rarefraction ). A Riemann invariant is a function that remains constant along the pathes defined by
the corresponding eigenvectors, it thus complies with:

dIi
k(W ).ri(W ) = 0.

It is straightforward to check that functions given by (19)–(20)–(21) comply with the condition above.
We also note that we can express Riemann invariants with the variable:

Y = (s, u, P ∗).

Actually, it may be checked that smooth solutions of (16) comply with:
⎧
⎪⎨

⎪⎩

∂ts + u∂xs = 0

∂tu + u∂xu + τ∂xP ∗ = 0

∂tP
∗ + ρc2t ∂xu + u∂xP ∗ = 0

(22)

If ¯̃ri(Y ) denote the eigenvectors associated with system (22) written in terms of variable Y, it may be
checked that functions ¯̃Ii

k(Y) satisfying:

d ¯̃Ii
k(Y ).¯̃ri(Y ) = 0,

are as follows:

1 − rarefaction wave : ¯̃I11 (Y ) = s, ¯̃I12 (Y ) = u +
∫ P ∗

0

1
ρ(s, P ∗′)ct(s, P ∗′)

dP ∗′.

2 − contact wave : ¯̃I21 (Y ) = u, ¯̃I22 (Y ) = P ∗.

3 − rarefaction wave : ¯̃I31 (Y ) = s, ¯̃I32 (Y ) = u −
∫ P ∗

0

1
ρ(s, P ∗′)ct(s, P ∗′)

dP ∗′.

Then, the same Riemann invariants Ii
k(W ) and ¯̃Ii

k(Y ) are retrieved up to the variable change W �→ Y .
�

2.4. Jump Conditions

We are now interested in discontinous solutions for sytem (5) whatever the EOS is. We denote

[f ] = fR − fL,

the jump between the left and right states on each side of a discontinuity travelling at speed σ.

Proposition 4. Jump conditions associated with system (5) may be written:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− σ[ρ] + [ρu] = 0,

− σ[ρu] +
[

ρu2 + P +
2K

3

]

= 0,

− σ[ρE] +
[

u

(

ρE + P +
2K

3

)]

= 0.

(23)

Those jump conditions may be rewritten as follows:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ = [ρu]/[ρ],

ρRρL[u]2 =
[

P +
2
3
K

]

[ρ],

ρ(u − σ)
([

e +
K

ρ

]

+ P ∗
[
1
ρ

])

= 0.

(24)

with φ̄ = φL+φR

2 .
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Remark 2. When dealing with the LD field associated with λ2=u the solution of the above jump condi-
tions is equivalent to the Riemann invariants (19), i.e. [I2k ]= 0.

Proof. By applying the Rankine-Hugoniot relation to the conservative system (5):

−σ[w] + [F (w)] = 0,

system (23) is straightforwardly obtained. For the first two equations of system (24), we can find it thanks
to simple calculations. We now detail the calculations necessary to find the third equation for system
(24).

We first note:

v = u − σ. (25)

From the first two relations of system (23), taking into account (25), we have:

−σ[ρ] + [ρu] = [ρv] = 0, (26)

−σ[ρu] +
[

ρu2 + P +
2K

3

]

= [ρvu] + [P ∗] = 0. (27)

We deduce from (26) that ρv is a constant across the discontinuity. By introducing v into the third
equation of system (23) and by using (26), we get the following form:

ρv[e] + ρv

[
u2

2

]

+ ρv[Kτ ] + P̄ ∗[u] + ū[P ∗] = 0. (28)

Then, by multiplying (27) by ū, we have:

ρv

[
u2

2

]

= −ū[P ∗]. (29)

Third equation of (24) is finally obtained by introducing (29) into (28):

ρv[e + Kτ ] + P̄ ∗[u] = ρv[e + Kτ ] + P̄ ∗[ρvτ ] = ρv([e + Kτ ] + P̄ ∗[τ ]) = 0, (30)

this completes the proof. �

Remark 3. In the case of a turbulent perfect gas EOS:

P = (γ − 1)ρe,

jump conditions (23) provide bounds for the density ratio whereas the pressure ratio has no bounds, i.e.
a shock wave separating two states YR and YL is such that:

β−1 ≤ ρr

ρl
≤ β,

with β = γ+1
γ−1 .

Proof. For the Euler equations (i.e. without turbulent contribution) with the instantaneous perfect gas
EOS:

P ′ = (γ − 1)ρ′e′,

we know that (see [17] ) the value of the ratio max(ρ′
r,ρ′

l)
min(ρ′

r,ρ′
l)

across a shock wave is bounded by:

β =
γ + 1
γ − 1

.

This means that in the non turbulent case:

β−1ρ′
l < ρ′

r < βρ′
l. (31)

Since β is a constant for the perfect gas EOS, a straightforward averaging of (31) provides:

β−1ρl < ρr < βρl. (32)
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t

x

1− wave 2− wave 3− wave

WL WR

W1 W2

Fig. 1. Solution of the Riemann problem which consists in four constant states WL, W1, W2 and WR separated by the
waves λi, i = {1, 2, 3}

We thus may wonder whether the solution of (5) also satisfies (32). Actually, formulae (53) in “Appen-
dix A.1” for the 1-shock wave provide:

Pr

Pl
=

βz1 − 1 + g1(z1)
β − z1

, and g1(z1) > 0, with z1 =
ρr

ρl
> 1.

Thus, it is staightforward to see that pressure ratio has no bound. Moreover, positive values of Pr , Pl

imply z1 < β, which means that:

ρr = max(ρr, ρl) < βρl = β min(ρr, ρl),

which completes the proof, since a similar result holds using formulae (55) in “Appendix A.1” for the
3-shock wave. �

3. Solution of the Riemann Problem

In this section, we are interested in finding the solution of the Riemann problem associated with (5) in
the case of a perfect gas EOS:

P = (γ − 1)ρe.

First we have to start connecting WL to WR through the intermediate states W1 and W2, where the
subscripts L and R denote respectively the left and the right states of the initial discontinuity, and the
subscript 1 (respectively 2) represents the intermediate state of the solution of the Riemann problem
between waves λ1 and λ2 (respectively between λ2 and λ3), see Fig. 1.

3.1. Waves Connection

We must first distinguish 4 cases for the solution of the Riemann problem, depending on the nature of
the two GNL waves associated with λ1 and λ3:

• case 1: 1-shock / 2-contact / 3-shock
• case 2: 1-rarefaction / 2-contact / 3-rarefaction
• case 3: 1-shock / 2-contact / 3-rarefaction
• case 4: 1-rarefaction / 2-contact / 3-shock
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Proposition 5. We first set:

z1 =
ρ1
ρL

and z2 =
ρ2
ρR

.

The solution of the Riemann problem associated with (5) is as follows:
case 1. We have for z1 > 1 and z2 > 1:

uR − uL + cLf1(z1,KL/PL) + cRf2(z2,KR/PR) = 0,

and:

PLh1(z1,KL/PL) +
2KL

3
z
5/3
1 = PRh2(z2,KR/PR) +

2KR

3
z
5/3
2 ,

with the following definitions:

f1(z1,KL/PL) =

√(
z1 − 1
γz1

)(

−1 +
2
3

KL

PL
(z5/3

1 − 1) + h1(z1,KL/PL)
)

,

h1(z1,KL/PL) =
βz1 − 1 + g1(z1,KL/PL)

β − z1
,

g1(z1,KL/PL) =
2KL

3PL

(
z
8/3
1 − 4z

5/3
1 + 4z1 − 1

)
,

and:

f2(z2,KR/PR) =

√(
z2 − 1
γz2

) (

−1 +
2
3

KR

PR
(z5/3

2 − 1) + h2(z2,KR/PR)
)

,

h2(z2,KR/PR) =
βz2 − 1 + g2(z2,KR/PR)

β − z2
,

g2(z2,KR/PR) =
2KR

3PR

(
z
8/3
2 − 4z

5/3
2 + 4z2 − 1

)
,

and KL,R = ξ0ρ
5/3
L,R.

case 2. We have for z1 ≤ 1 and z2 ≤ 1:

uR − uL + cLB1(z1,KL/PL) + cRB2(z2,KR/PR) = 0,

and:

PLQ1(z1) +
2KL

3
z
5/3
1 = PRQ2(z2) +

2KR

3
z
5/3
2 ,

with the following definitions:

B1(z1,KL/PL) =
∫ z1

1

(

zγ−3 +
10KL

9γPL
z−4/3

)1/2

dz,

Q1(z1) = zγ
1 ,

B2(z2,KR/PR) =
∫ z2

1

(

zγ−3 +
10KR

9γPR
z−4/3

)1/2

dz,

Q2(z2) = zγ
2 .

case 3. We have for z1 > 1 and z2 ≤ 1:

uR − uL + cRB2(z2,KR/PR) + cLf1(z1,KL/PL) = 0,

and

PLh1(z1,KL/PL) +
2KL

3
z
5/3
1 = PRQ2(z2) +

2KR

3
z
5/3
2 .
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case 4. We have for z1 ≤ 1 and z2 > 1:

uR − uL + cLB1(z1,KL/PL) + cRf2(z2,KR/PR) = 0,

PLQ1(z1) +
2KL

3
z
5/3
1 = PRh2(z2,KR/PR) +

2KR

3
z
5/3
2 .

The reader is referred to Appendices A.1 and A.2 for a proof.

3.2. Existence and Uniqueness of the Solution

Proposition 6. The Riemann problem associated with (5) and initial states:

W (x < 0, t = 0) = WL,

W (x > 0, t = 0) = WR,

admits a unique self-similar solution:

W (x, t) = ω(x/t),

with no vacuum occurrence, provided that initial left and right states, WL and WR, are such that:

uR − uL < XL + XR, (33)

with Xi =
∫ ρi

0

ct(s, ρ′)
ρ′ dρ′.

The reader is referred to “Appendix A” for a proof which is based on the proof proposed in [17].

Remark 4. For ξ0 = 0, we have ct = c and condition (33) is equivalent to the condition of no vacuum
occurrence for Euler with a perfect gas EOS.

4. An Approximate Numerical Riemann Solver

Approximate Riemann solvers are commonly used in order to compute approximate solutions of hyper-
bolic problems, where contact waves, rarefactions and shock waves co-exist (see among others the original
paper [12] and the books [11,20]).

We consider a classical finite volume formulation. The segment [a, b] is divided into cells Ii, where
xi+ 1

2
represents the cell interface between cells Ii and Ii+1, and xi represents the cell center. We define

Δtn the time step at time tn and Δxi the length of Ii: tn+1 = tn + Δtn and Δxi = xi+ 1
2

− xi− 1
2
.

4.1. VFRoe-ncv Scheme

In this section, we recall an extension of the VFRoe scheme [16] called VFRoe-ncv which was proposed in
order to deal with hyperbolic systems in [3]. The VFRoe-ncv scheme is an approximate Godunov scheme
where the approximate value at the interface between two cells is computed as detailed below.

First, system (5) may be rewritten as follows:

∂tZ + B(Z)∂xZ = 0, (34)

where:

Z = (ρ, u, P ∗)t,

and

B(Z) =

⎛

⎝
u ρ 0
0 u τ
0 ρct

2 u

⎞

⎠ ,
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and also:

P ∗ = P +
2K

3
, τ =

1
ρ
.

We then consider the Riemann problem associated with system (34) and initial conditions:

Z(x < 0, t = 0) = ZL, Z(x > 0, t = 0) = ZR. (35)

At each interface between two cells, we solve the following linearized Riemann problem:

∂tZ + B(Z̄)∂xZ = 0, (36)

where Z̄ = (ZL + ZR)/2. System (36) contains 3 linearly degenerate fields, thus the solution of the one-
dimensional Riemann problem is simple. Indeed, it only requires computing three real coefficients noted
αi (for i=1 to 3) and such that:

ZR − ZL =
3∑

i=1

αir̂i,

where r̂i represents the basis of right eigenvectors of the matrix B(Z̄):

r̂1 = (1,−ĉtτ̄ , ĉt
2)T , r̂2 = (1, 0, 0)T , r̂3 = (1, ĉtτ̄ , ĉt

2)T .

More details concerning the explicit computation of the intermediate states Z1 and Z2 can be found in
“Appendix B”. Hence the exact solution Z∗(ZL, ZR) at the initial discontinuity location, i.e. at x/t = 0,
of the linearized Riemann problem associated with system (36) and initial conditions (35) is given by:

Z∗(ZL, ZR) =

⎧
⎪⎪⎨

⎪⎪⎩

ZL if λ̄1 ≥ 0;
Z1 if λ̄1 < 0 and λ̄2 ≥ 0;
Z2 if λ̄2 < 0 and λ̄3 ≥ 0;
ZR if λ̄3 < 0;

(37)

where:

λ1 = ū − ĉt, λ2 = ū, λ3 = ū + ĉt,

and also:

ĉt(ρ, P ) = ct(ρ̄, P̄ ) =

√

γP (P̄ ∗, ρ̄)
ρ̄

+
10
9

K(ρ̄)
ρ̄

. (38)

Finally the numerical scheme reads:

Δxi(wn+1
i − wn

i ) + Δt(Fn
i+ 1

2
− Fn

i− 1
2
) = 0, (39)

where the numerical flux is computed thanks to the exact solution (37) of the linearized problem (36)–(35)
with ZL = Zn

i and ZR = Zn
i+1:

Fn
i+ 1

2
= F (w(Z∗(Zn

i , Zn
i+1))).

In the definition of the numerical flux above, it should be noted that we have w = (ρ, ρu, ρE) and that
w �→ F (w) corresponds to the analytical flux of system (5) as defined in Sect. 2.1. Moreover, we apply
the Courant–Friedrichs–Lewy (CFL) condition:

Δtn

Δxj
max(|λi|) < 1,

in scheme (39).

Remark 5. An entropy correction is required (see [13]) to compute shock tube problems when one sonic
point is present in the rarefaction wave.



42 Page 12 of 34 S. Gavrilyuk et al. JMFM

Remark 6. The alternative choice of the non-conservative variable (s, u, P ∗) has not been retained here
because it requires a non-explicit change of variable. The latter thus increases the computational cost of
the scheme. This variable change corresponds to finding ρ such that:

P (ρ, sL,R) +
2
3
ξ0ρ

5
3 = P ∗

L,R,

for given sL,R and P ∗
L,R. Thus it will not be considered in the sequel.

5. Numerical Results

We present now some numerical results obtained for the model and scheme detailed in the previous
sections. We focus here on two test cases that involve shock waves: the double-shock test case (i.e. case 1
in Sect. 3.1) and a “strong shock wave” test case. The former allows to compute accurately the solution
of the Riemann problem, and it is thus useful for convergence study. Indeed, the computation of an
exact solution of a Riemann problem involving a rarefaction wave requires a numerical integration of the
rarefaction fan. These are thus less accurately computed. The second test case corresponds to a situation
where initial states present a great ratio of pressure and density. It is representative of situations involving
explosion or detonation waves. It should be noted that qualitative results for a test case involving two
symmetric rarefaction waves have been added in “Appendix C”.

Numerical convergence curves, at a given time, are represented by the logarithm of the relative L1-
error as a function of the logarithm of the mesh size. The relative L1-error is computed at time tn on the
whole regular mesh as:

∑
i |φapprox,n

i − φexact(xi, t
n)|Δxi

∑
i |φexact(xi, tn)|Δxi

. (40)

Obviously, when
∑

i |φexact(xi, t
n)| = 0 , this definition is meaningless and we change it into:

∑

i

|φapprox,n
i − φexact(xi, t

n)|.

The first test case provides a comparison between the exact solution and the approximate solution and
it enables to obtain a numerical convergence curve on the basis of the error (40). For the other test cases,
only qualitative plots of the approximate solutions are presented at a given final time for the density, the
velocity, the pressure P and the modified pressure P ∗.

All the computations are performed for a given value of CFL = 0.5, and for different values of
the parameter ξ0. It should be recalled that when ξ0 = 0, the modified pressure P ∗ is equal to the
thermodynamical pressure P . Moreover, in all the tests below, we have considered the perfect gas EOS:

P = (γ − 1)ρe,

where the constant γ is equal to 7
5 . The computational domain is [0, 1] and the initial discontinuity

separating states WL and WR is located at x= 0.5. The domain [0, 1] is discretized using uniform cells,
Δxi = Δx, and the number of cells varies from 200 up to 1× 105 cells.

5.1. Test 1: Double Shock Wave

In this test case, we compare the exact solution of the one-dimensional Riemann problem with the
approximate solution. Three different values of ξ0 are used ξ0 = {0; 10,000; 50,000}. Each value of ξ0
leads to a different Riemann problem whose initial conditions are given below:

• For ξ0=0:

(ρL, uL, PL) = (1, 550, 106)
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(ρR, uR, PR) = (1,−618.107550, 103990.112994)

• For ξ0=10,000:

(ρL, uL, PL) = (1, 650, 106)

(ρR, uR, PR) = (1,−687.545913, 98007.273140)

• For ξ0=50,000:

(ρL, uL, PL) = (1, 750, 106)

(ρR, uR, PR) = (1,−750.364690, 94038.441853)

Figures 2, 4 and 6 show qualitative comparisons between the exact solutions and the approximate solutions
for a mesh that contains 500 cells and for respectively ξ0 = {0; 10,000; 50,000}. Figures 3, 5 and 7 show
the convergence curves for the set of variables {ρ, u, P, P ∗} and for the three different values of ξ0.

First of all we notice that max(ρl,ρr)
min(ρl,ρr)

≈ 4.25, which is less than β (for γ = 1.4 we get β = 6). This is in
agreement with the theory as mentioned in Remark 3. The approximated shock wave profile is monotonic;
there are no spurious oscillations in the vicinity of the shock. The error varies as ≈ h1 for variables u and
P ∗ on fine meshes, and as ≈ h1/2 for ρ and P on fine meshes (owing to the occurrence of the contact
discontinuity), see Fig. 3. This behavior is due to the VFRoe-ncv scheme using the variable (u, P ∗) and
the perfect gas EOS. Indeed, thanks to the latter, profiles for the velocity and the modified pressure are
almost uniform around the contact location. On fine meshes, the error on the approximated velocity and
modified pressure are thus not influenced by the larger error on the contact wave. This is not the case
for the density and the pressure P , which therefore have an effective convergence rate of 1/2. For ξ0 = 0,
the system corresponds to the classical Euler system and P = P ∗. Then the effective convergence rate
reported in [3] is recovered for P (Fig. 3).

5.2. Test 2: Strong Shock Wave

The propagation of strong shock waves, generated by a strong explosion is of great interest from a physical
point of view due to its numerous applications in various fields. In order to mimic such situations, we
consider here a Riemann problem for which the left state corresponds to a gas at very high pressure with
respect to the right state, the latter representing the ambient conditions. The high pressurized gas then
expands rapidly and generates strong waves. When the pressure ratios between left and right states are
high enough, a supersonic rarefaction wave is observed. For the latter the two extremities of the fan of
the rarefaction wave travel in opposite directions (see Fig. 8). In these situations, an entropy correction
is mandatory for the VFRoe-ncv scheme, as the one proposed in [13] and implemented here. Without
the latter, computations fail because of the occurrence of a discontinuous - and non physical - pattern
in the rarefaction fan (in fact at the location of the initial discontinuity). Thus this test is of interest
and it shows what happens for the flows during strong variations in density, which originate from strong
variations in pressure and temperature.

We propose here to examine the approximate solution for a Riemann problem with a pressure and
density ratio equal to 1000. More precisely, we choose the left and right states such that:

(ρ, u, P )L = (1000 × ρ0, 0, 1000 × P0), and (ρ, u, P )R = (ρ0, 0, P0),

and where the right state corresponds to ambient gas at rest: (ρ0, P0)= (1, 105). Figures 9, 10, 11 and 12
show the behavior of the density, velocity, pressure and modified pressure at a given time Tf = 1.25 10−4 s,
on different meshes with 500 cells, 5000 cells and 50,000 cells. Moreover, we set ξ0 = 10,000 which
corresponds to a high level of turbulence.
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Fig. 2. Double-shock wave test case. Density (top left), velocity (top right) and pressure (bottom). Comparison between
the exact solution (green) and the approximate solution (purple) at t = 3 10−2 s, CFL = 0.5, 500 cells, ξ0 = 0 (Color

figure online)

Fig. 3. Double-shock wave test case. Convergence curves: logarithm of the relative L1-error versus the logarithm of the
mesh size with uniform meshes containing from 200 to 55,000 cells. The error is plotted for variables, ρ, u and P ∗, ξ0 = 0

(recall that here P ∗ = P )



JMFM Theoretical and Numerical Analysis of a Simple Model Page 15 of 34 42

Fig. 4. Double-shock wave test case. Density (top left), velocity (top right), pressure (bottom left) and P ∗ (bottom
right). Comparison between the exact solution (green) and the approximate solution (purple) at t = 3 10−2 s, CFL = 0.5,

500 cells, ξ0 = 10,000 (Color figure online)

Fig. 5. Double-shock wave test case. Convergence curves: logarithm of the relative L1-error versus the logarithm of the
mesh size with uniform meshes containing from 200 to 55,000 cells. The error is plotted for variables, ρ, u, P and P ∗,

ξ0 = 10,000
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Fig. 6. Double-shock wave test case. Density (top left), velocity (top right), pressure (bottom left) and P ∗ (bottom
right). Comparison between the exact solution (green) and the approximate solution (purple) at t = 3 10−2 s, CFL = 0.5,

500 cells, ξ0 = 50,000 (Color figure online)

It should be noted that in this test case, the contact wave and the shock wave travel to the right
with a high velocity: respectively ∼ 2168 m/s (see Fig. 10) and ∼ 2680 m/s. Moreover, the fan of the
rarefaction wave expands to the left with a velocity of −1152 m/s and to the right with a velocity of
1791 m/s. Hence, both the shock wave and the rarefaction wave remain very close to the contact wave
(see on the density variable in Fig. 9 or on the pressure P on Fig. 11). In particular, when focusing on
the present final time Tf = 1.25 10−4 s: the rarefaction fan corresponds to the interval [0.356, 0.724], the
contact wave is located around x = 0.771 and the shock wave is located around x = 0.835 (see Fig. 8).
The distance between the two GNL waves and the contact wave is thus small. Since the numerical scheme
is not very accurate on the contact wave, the approximated values for the intermediate states 1 and 2 (see
Fig. 8) are not very accurate on coarse meshes. Indeed, the results of Fig. 11 clearly show that at least
5000 cells are needed in order to get a correct approximation of the intermediate state 2; whereas it is
not yet sufficient for intermediate state 1. As a consequence, fine meshes have to be used in order to get a
correct accuracy of the location of the approximate contact wave and of the pressure level of P ∗ between
the rarefaction wave and the shock wave. Obviously, an other solution could be to use a second order
extension of the scheme based for instance on a MUSCL reconstruction with a slope limiter and a second
order Runge–Kutta time-scheme, see [11] or [20] among others. This is an important point because the
increase of P ∗ across the front of the shock will determine the importance of the impact of the shock on
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Fig. 7. Double-shock wave test case. Convergence curves: logarithm of the relative L1-error versus the logarithm of the
mesh size with uniform meshes containing from 200 to 55,000 cells. The error is plotted for variables, ρ, u, P and P ∗,

ξ0 = 50,000
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Fig. 8. Sketch of the waves in the (x, t)-plane for the strong shock test case at time Tf = 1.25 10−4 s

the surroundings. Moreover, an accurate location of the front of the shock enables to get the correct time
at which the surroundings would be impacted.

Due to the entropy correction implemented in the numerical scheme, the approximate profiles in
the rarefaction fan remain “regular” and monotonic, even if very small perturbations may be observed
on very coarse meshes around x = 0.5. We also notice that in the vicinity of the shock wave, we have
ρ2
ρL

≈ 5.35
1 = 5.35. This is still less than the theoretical limit β = 6 (see Fig. 9) as pointed out by remark 3.

At last, the VFRoe-ncv scheme using the variable (ρ, u, P ∗) enables to maintain uniform profiles for the
modified pressure P ∗ and the velocity u around the contact wave, see Figs. 10 and 12 .

6. 2D Numerical Results

In the two-dimensional case, the numerical scheme reads:

vol(Ωi)(wn+1
i − wn

i ) + Δtn
∑

j∈V(i)

F (w(Z∗
ij), nij)Γij = 0, (41)
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Fig. 9. Strong shock wave test case. Density for ξ0 = 10,000 and for meshes with 500, 5000 and 50,000 cells

Fig. 10. Strong shock wave test case. Velocity for ξ0 = 10,000 and for meshes with 500, 5000 and 50,000 cells

where V(i) refers to the neighboring cells of Ωi, Γij is the length of the interface between cells Ωi and
Ωj , and vol(Ωi) is the area of Ωi. The quantity F (w(Z∗

ij), nij) denotes the numerical flux at the interface
between cells Ωi and Ωj , nij stands for the unit normal vector directed from Ωi to Ωj and Z∗

ij is the
solution of the linearized Riemann problem at the face between cells Ωi and Ωj along the nij-direction.
The flux for model (4) in 2D is given in the nij-direction by:

F (w, ni,j) =

⎛

⎜
⎝

(ρU.n)ij

(ρ(U.n)U + P ∗n)ij

((U.n)(ρE + P ∗))ij

⎞

⎟
⎠ , (42)

where w = (ρ, ρU, ρE), and where the velocity vector U gathers the two components of the velocity along
the axis x and y: U = (ux, uy). The solution Z∗

ij of the linearized Riemann problem is computed thanks
to shceme used for 1D simulations by using Ωi and Ωj as L and R states, see also appendix B .Indeed,
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Fig. 11. Strong shock wave test case. Pressure P for ξ0 = 10,000 and for meshes with 500, 5000 and 50,000 cells

Fig. 12. Strong shock wave test case. Modified pressure P ∗ for ξ0 = 10,000 and for meshes with 500, 5000 and 50,000 cells

it should be noted that for the 2D flux (42), the velocity component wich is orthogonal to nij is simply
advected with velocity U.nij [3].

In order to compute the numerical fluxes at the rigid wall boundaries, we use the classical “mirror
state” technique. For the numerical treatment of inlet and outlet boundary conditions the reader may
also refer to [3] for more details. Moreover, we apply the Courant–Friedrichs–Lewy (CFL) condition:

Δtn

vol(Ωi)
max(|λi|) =

1
2
,

in scheme (41).
We present here a numerical simulation obtained in a two-dimensional domain for model (4). The

parameters of the EOS are the same than those chosen for the 1D results of the previous sections. Let
us consider the domain (x, y) ∈ [−1, 1] × [0, 1]. A small rectangular obstacle with a length Lb = 0.05m
and a height Hb = 0.1m is placed at x = 0.15m. The obstacle and the boundary y = 0 (i.e. the ground)
are considered as rigid walls. Outlet conditions are imposed for the other boundaries. The complete
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Fig. 13. Sketch of the domain for the 2D simulation. The half-circle delimited by a dashed line corresponds to the initial
high pressure domain. The rectangular domain delimited by a doted line corresponds to the part of the domain where the

mesh is refined. The black dots correspond to the three probes

setting is depicted in Fig. 13. The initial conditions of the test case carried out in this section are
representative of an explosion involving hydrogen. At ambiant temperature and pressure, the AICC1

pressure of stoechiometric mixture of air and hydrogen is close to 10 bars. We choose here to set a high
pressure zone inside a half-circle, whose centre is (0, 0) and whose radius is 0.05m. In the rest of the
domain, ambiant conditions are set. The initial flow is assumed to be at rest everywhere in the domain.
In the whole computational domain, we set ξ0 = 105, and the perfect gas EOS:

P = (γ − 1)ρe,

with the constant γ = 7
5 is still considered. Thus, according to the EOS parameters, the initial conditions

read:

(ρ, u, v, P ) =
{

(1.2 kg/m3
, 0 m/s, 0 m/s, 106 Pa) if x2 + y2 ≤ (0.05)2;

(0.8 kg/m3
, 0 m/s, 0 m/s, 105 Pa) if x2 + y2 > (0.05)2.

(43)

In order to highlight the influence of the turbulence for this test case, the current results (for ξ0 = 105)
are compared with the same case without turbulence (ξ0=0). Three probes are chosen at elevation y = 0.1
and for different x:

• probe 1 is centered, x = 0,
• probe 2 is set on the left part of the domain x = −0.15,
• and probe 3 is set on the right part, just above the rectangular obstacle, at x = 0.15 (see also

Fig. 13).
The following results have been obtained for an unstructured mesh composed of 67,300 triangular

cells, see in Figs. 14 and 15 for a view of the mesh. In Figs. 16 and 17 , the turbulent kinetic energy,
the modified pressure and the velocity field have been plotted. The influence of the obstacle can clearly
be observed. The effects of turbulence can be observed in Figs. 18 and 19 when comparing the laminar
and the turbulent cases. With ξ0 = 105 the turbulent energy reaches an important level. In particular,
the influence on the pressure P is clear: the traveling velocity of the waves is slightly different, while the
amplitude of the pressure waves are noticeably modified. Most of the turbulent kinetic energy is located
at the shock front, which seems quite natural owing to the model.

7. Conclusion

The main aim of the paper is to study a simple compressible turbulent model, with a specific behaviour
in shocks waves (turbulent entropy is constant across shock waves).

1Adiabatic Isochoric Complete Combustion.
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Fig. 14. Overview of the whole mesh for the 2D computational domain

Fig. 15. Zoom of the 2D mesh around the high pressure zone (in red) and the obstacle (Color figure online)

From a mathematical modeling point of view, an analysis of the conservative system (5) shows the
hyperbolicity and the wave structure associated with LD and GNL (Riemann invariants) fields. In order to
characterize shock waves, exact jump conditions can be defined. This analysis with a turbulent perfect gas
EOS shows that the Riemann problem associated with system (5) admits a unique self-similar solution
with no vaccum occurence. This result is the straightforward counterpart of the well-known result of
existence and uniqueness in the Euler framework, while focusing on perfect gas equation of state (see for
instance [11,17]).

An approximate Godunov solver has been implemented and some verification test cases including
shock structures have been computed. A 2D hydrogen explosion test case has been computed and shown
in Sect. 6.

Ongoing work concerns a more complex model [10], which would allow variations of the turbulent
entropy ξ through the shock waves. This one reads:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t(ρ) + ∇.(ρũ) = 0

∂t(ρũ) + ∇.

(

ρũ ⊗ ũ +
(

P +
2K

3

)

.I
)

= ε0∇.(Σtot(∇sũ))

∂t(ρE) + ∇.

(

ũ

(

ρE + P +
2K

3

))

= ε0∇.(Σtot(∇sũ)ũ)

∂t(ρξ) + ∇.(ρξũ) = (ρ)−2/3rhsK(W,∇W ) + RHSSW

(44)

The first term on the right-hand side of the last equation in (44) takes classical source terms into account
(see introduction), while RHSSW enables to account for turbulent entropy local variations through shock
waves [10].
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Fig. 16. Distributions of the turbulent kinetic energy K (top) and modified pressure P ∗ (bottom)
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A. Solution of the Riemann Problem

In this section, the notations depicted by Fig. 1 are used. We recall that the subscript L, 1, 2 and R
respectively denote: the left state, the intermediate states between 1- and 2-wave, the intermediate states
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Fig. 17. Distributions of the norm of the velocity field (top) and velocity field (bottom)

between 2- and 3-wave and the right state. The left and right states correspond to the initial states of
the Riemann problem. We also recall that v stands for the velocity in the shock referential: v = u − σ,
where σ is the shock speed.

The proof of existence and uniqueness of a solution of the Riemann problem associated with system
(5) is built here following [17]. In reference [17], the proof of the existence and uniqueness of a solution
of the Riemann problem is built for the Euler system with a perfect gas EOS, but it may be extended
to some suitable EOS. System of Eqs. (5) corresponds in fact to the Euler system of equations with
a pressure law P ∗ that is a correction of the perfect gas pressure law P pg. We have the pressure law
P ∗(ρ, e) = P pg(ρ, e)+2K(ρ)/3 and the modified internal energy e∗(ρ, e) = e+K(ρ)/ρ. Actually, we show
below that the proof proposed in [17] can also be extended to our system of equations.

As in [17], the outline of the proof in this appendix is the following. First, the paths across each wave
are defined using the Riemann invariants or the Rankine-Hugoniot relations established in Sects. 2.3
and 2.4 . These paths are defined through two parameters which are the density ratios: z1 = ρ1/ρ2 and
z2 = ρ2/ρR. Then, the connection between the different waves is performed. Afterwards, it can be proved
that solving the Riemann problem is equivalent to finding a root in ]0, β[ of a function z2 �→ H(z2) which
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Fig. 18. Comparison between the pressure values in the turbulent (ξ0 = 105) and laminar (ξ0 = 0) cases at the three
probes versus time
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Fig. 19. Plot of the turbulent energy at the 3 probes versus time for ξ0 = 105

is continuous and increasing, with β = (γ + 1)/(γ − 1). It should be noted that, since γ > 1, we have
β > 1. Moreover, under the assumption that void does not occur, it can be shown that this function H
is such that:

lim
z2→0+

H(z2) × lim
z2→β−

H(z2) < 0.

At least, this allows to conclude the proof of existence and uniqueness of a solution of the Riemann
problem thanks to the theorem of the intermediate values.

A.1. Paths Across the Waves of the System

According to section (2.2), the waves associated with the eigenvalues λ1 and λ3 are GNL waves. They
can be either shock waves or rarefaction waves. For the former the path across the wave is defined
thanks to the Rankine-Hugoniot relations, whereas for the latter the Riemann invariants are used. The
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field associated with the eigenvalue λ2 is linearly degenerated so that it can be described by both the
Rankine-Hugoniot relations or the Riemann Invariants.

Definition of shock waves.
Let us first start by the case of the shock waves. The jump conditions for system (5) are given in Sect. 2.4
by relations (24) and are recalled below:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[ρv] = 0,

[ρv2 + P ∗] = 0,

ρv

([

e +
K

ρ

]

+ P ∗
[
1
ρ

])

= 0.

(45)

These relations involve the square of the jump of the velocity: [u]2. Hence the velocity jump is not
uniquely defined and an additional information must be added to relations (24) in order to get a unique
definition of the velocity jump across the shock. We use here the entropy inequality for that purpose. We
recall the entropy inequality associated with (45), and given by (15):

B = −σ[η]RL + [uη]RL < 0, (46)

with η = −ρln(s).
Since [ρv]RL =0, we can rewrite B in the following form:

B = −[ρvln(s)]RL = −ρv
[ln(s)]RL

[s]RL
[s]RL < 0,

so that we get:

A = ρv[s]RL = [ρvs]RL > 0.

By using the first jump relation equation of (45):

[ρv]RL = ρ̄[v]RL + v̄[ρ]RL = 0,

A can be rewritten :

A = ϑ[v]RL , (47)

with:

ϑ = ρ̄s − ρ̄
[ρs]RL
[ρ]RL

.

In the case of a perfect gas EOS, we have ρs = Pτγ−1. Let us define:

a =
τR

τL
, Rp =

PR

PL
,

so that ϑ reads:

ϑ =
(Pτγ−1)L

1 − a
(1 − Rpa

γ). (48)

In the following the sign of ϑ is studied, so that the sign of [v]RL and then [u]RL can be exhibited. By using
the third jump relation equation of (45):

[e + Kτ ]RL + P̄ ∗[τ ]RL = 0,

we get:

γP̄ [τ ]RL + τ̄ [P ]RL + (γ − 1)τ̄ [K]RL +
5
3
(γ − 1)K̄[τ ]RL = 0.

Thus, we have:

Rp(βa − 1) = β − a +
KL

PL

(
(a + 1)(1 − a−5/3) + 5/3(1 − a)(1 + a−5/3)

)
. (49)
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− 0 +

00

− 0 +

Fig. 20. Variation table for gL and gT functions

By replacing the formula of Rp (49) into that of ϑ (48), we get:

ϑ

(Pτγ−1)L
= (1 − a)−1(βa − 1)−1gL(a) +

2KL

3PL
aγ−5/3(1 − a)−1(βa − 1)−1gT (a),

where:
{

gL(a) = βa − 1 − aγ(β − a),
gT (a) = a8/3 − 1 − 4a5/3 + 4a.

(50)

Figure 20 gives the sign and variations of these 2 functions on the interval [ 1β , β].
We can deduce from Fig. 20 that:

ϑ

(Pτγ−1)L
≤ 0 ∀a ∈]

1
β

, β[.

Since A ¿ 0, we deduce from (47) that [v]RL < 0 and thus that [u]RL < 0 .
Hence, for system (5) the relation [u] < 0 holds across a shock wave, and thus the entropy inequality (10)
allows to define shocks in a unique manner through:

[u]2 + [τ ][P ] = 0 and [u] < 0 ⇐⇒ [u] = −
√

−[τ ][P ].

Furthermore, when void does not occur, c̃i > 0 for i ∈ {L, 1, 2, R}, we always get the same order for
the eigenvalues: λ1 < λ2 < λ3, so that we also have the relation:

u1 = λ2(W1) > σ1 =⇒ v1 = u1 − σ1 > 0 (51)

and

u2 = λ2(W2) < σ2 =⇒ v2 = u2 − σ2 < 0 (52)

Since [u] = [v] = [ρτv] = ρv[τ ], and [u] < 0 in shocks, we have v[τ ] < 0 in shocks. Thus, thanks to the
signs of v1 and v2:

τ1 < τL =⇒ z1 > 1,

in the 1-shock, and:

τR > τ2 =⇒ z2 > 1,

in the 3-shock. It should be noted that the jump relations (24) also leads to the relation:

(ρv)2[τ ] + [P ∗] = 0.

Therefore, using the results above on [τ ], we get that P ∗
1 > P ∗

L in a 1-shock and P ∗
R < P ∗

2 in a 3-shock
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Path across a 1-shock wave.
The path across a 1-shock wave is obtained through the parameter z1 thanks to the Rankine-Hugoniot
relations (24) and to the Lax criterion. After some calculus, it yields that a 1-shock is defined for z1 > 1
by the relations:

{
u1 = uL − cLf1(z1,KL/PL),
P1 = PLh1(z1,KL/PL), (53)

with the functions:

f1(z1,KL/PL) =

√(
z1 − 1
γz1

)(

−1 +
2
3

KL

PL
(z5/3

1 − 1) + h1(z1,KL/PL)
)

,

h1(z1,KL/PL) =
βz1 − 1 + g1(z1,KL/PL)

β − z1
,

g1(z1,KL/PL) =
2KL

3PL

(
z
8/3
1 − 4z

5/3
1 + 4z1 − 1

)
, (54)

and KL = ξ0ρ
5/3
L .

Path across a 3-shock wave.
For a 3-shock, the path depends on z2 > 1 and by using the Rankine-Hugoniot relations (24) and the
Lax criterion we get:

{
u2 = uR + cRf2(z2,KR/PR),
P2 = PRh2(z2,KR/PR), (55)

with the functions:

f2(z2,KR/PR) =

√(
z2 − 1
γz2

) (

−1 +
2
3

KR

PR
(z5/3

2 − 1) + h2(z2,KR/PR)
)

,

h2(z2,KR/PR) =
βz2 − 1 + g2(z2,KR/PR)

β − z2
,

g2(z2,KR/PR) =
2KR

3PR

(
z
8/3
2 − 4z

5/3
2 + 4z2 − 1

)
, (56)

and KR = ξ0ρ
5/3
R .

Path across a 1-rarefaction wave.
In a 1-rarefaction wave the Riemann Invariants ˜̄I11 and ˜̄I12 exhibited in Sect. 2.3 remain constant. Hence,
we get the following relations in a 1-rarefaction wave for z1 < 1:

sL = s1, (57)

and

uL +
∫ ρL

0

ct(s, ρ′)
ρ′ dρ′ = u1 +

∫ ρ1

0

ct(s, ρ′)
ρ′ dρ′. (58)

Then, using the thermodynamical closures chosen for the model, (57) and (58) can be rewritten in the
form:

{
u1 − uL + cLB1(z1,KL/PL) = 0,
P1 = PLQ1(z1),

(59)

with the following definitions:

B1(z1,KL/PL) =
∫ z1

1

(

zγ−3 +
10KL

9γPL
z−4/3

)1/2

dz,

Q1(z1) = zγ
1 .

(60)
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Path across a 3-rarefaction wave.
With the same arguments, using the Riemann Invariants ˜̄I31 and ˜̄I32 , one can write for a 3-rarefaction
wave for z2 < 1:

{
u2 − uR − cRB2(z2,KR/PR) = 0,
P2 = PRQ2(z2),

(61)

with the following definitions:

B2(z2,KR/PR) =
∫ z2

1

(

zγ−3 +
10KR

9γPR
z−4/3

)1/2

dz,

Q2(z2) = zγ
2 .

(62)

Path across the 2-contact wave.
In the 2-wave, the 2-Riemann invariants u and P ∗ are constant. Hence, the following relations arise:

P ∗
1 = P ∗

2 , (63)

and

u1 = u2. (64)

Remark 7. Functions B1 and B2 are defined on the basis of an integral of the form:

I(z) =
∫ 1

z

(
xγ−3 + a0x

−4/3
)1/2

dx,

for z ∈ [0, 1], with a0 ≥ 0, γ > 1 and β = (γ + 1)/(γ − 1) > 1. Oviously, we have I(z) ≥ 0. For γ ∈]1, 5/3]
and γ ≥ 5/3, the integral I(z) can be respectively bounded by:

I(z) ≤ 2
√

1 + a0

γ − 1
(1 − z(γ−1)/2),

and

I(z) ≤ 3
√

1 + a0(1 − z1/3).

Hence, the integral I(z), and thus functions B1 and B2, are defined for z in [0, 1]. Moreover, it should be
noticed that:

I(z) = 3
√

1 + a0(1 − z1/3),

for γ = 5/3.

A.2. Connection Between the Different Waves

Thanks to the relations of the previous section, the left state WL and the intermediate state W1 are
related through the 1-wave thanks to

{
u1 = uL − cLGL(z1),

P1 = PLFL(z1),
(65)

where the functions FL and GL are respectively defined piecewise through the relations obtained either
for a rarefaction wave, z1 ≤ 1, or for a shock wave, z1 ¿ 1, using respectively (53)–(54) and (59)–(60). So
we obtain the definitions:

FL(z1) =

{
h1(z1,KL/PL) if z1 > 1,

Q1(z1) if z1 ≤ 1,
(66)

and

GL(z1) =

{
f1(z1,KL/PL) if z1 > 1,

B1(z1,KL/PL) if z1 ≤ 1.
(67)
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In the same way, for the 3-wave, the following relations hold between WR and W2:
{

u2 = uR + cRGR(z2),

P2 = PRFR(z2),
(68)

where according to (55)–(56) and (61)–(62), we have:

FR(z2) =

{
h2(z2,KR/PR) if z2 > 1,

Q2(z2) if z2 ≤ 1,
(69)

and

GR(z2) =

{
f2(z2,KR/PR) if z2 > 1,

B2(z2,KR/PR) if z2 ≤ 1.
(70)

Due to the order of the different waves for system (5) which is always such that λ1 < λ2 < λ3,
the connection of the two GNL waves is easily performed through the contact wave using relations (63)
and (64). Indeed, the modified pressure reads: P ∗ = P + 2K/3. Hence by combining Eq. (63) with first
equation of (65) and first equation of (68), we obtain:

PLFL(z1) +
2
3
KLz

5/3
1 = PRFR(z2) +

2
3
KRz

5/3
2 , (71)

The velocity equality (64) combined with second equation of (65) and second equation of (68) yields:

uR + cRGR(z2) − uL + cLGL(z1) = 0. (72)

System (71)–(72) is a 2 × 2 non-linear system for the unknowns (z1, z2) ∈]0, β[2. Let us now study this
system.

A.3. Existence and Uniqueness of a Solution for the Riemann Problem

It can been proved that FL and GL (respectively FR and GR) are differentiable functions of z1 ∈]0, β[
(respectively of z2 ∈]0, β[). By differentiating Eq. (71) with respect to z1 and z2, it can be shown that
dz1/dz2 > 0. Then, thanks to (71) one can implicitly define a variable change z2 �→ Z1(z2) which gives
z1 as a function of z2:

z1 = Z1(z2).

Relation (72) can thus be expressed as a function of the sole variable z2, and finding a solution of system
(71)–(72) is equivalent to finding a root of the function z2 �→ H(z2) defined on ]0, β[ as:

H(z2) = uR + cRGR(z2) − uL + cLGL(Z1(z2)). (73)

When differentiating H with respect to z2, we find that:

H′(z2) = cRG′
R(z2) + cL

dZ1(z2)
dz2

G′
L(Z1(z2)). (74)

It can be shown that G′
L and G′

R are positive functions, so that z2 �→ H(z2) is a continuous and increasing
function on ]0, β[.
By studying the definition of GL and GR, the following limits can be found:

lim
z2→0+

(cLGL(Z1(z2)) + cRGR(z2)) = cLB1(0,KL/PL) + cRB2(0,KR/PR).

and

lim
z2→β−

(cLGL(Z1(z2)) + cRGR(z2)) = +∞

The variable change Z1 is an increasing function of z2. Hence, when z2 tends to zero, z1 also tends to zero.
This means that the first limit above is reached in the cases where both 1- and 3- waves are rarefaction
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Fig. 21. Double rarefaction test case. Density (top left), velocity (top right) and pressure (bottom). Approximate solution
at time tf = 3 10−4s, CFL = 0.5, for 500 cells and ξ0 = 0

waves. On the contrary, the second limit is reached in the cases where both 1- and 3- waves are shock
waves (we recall that γ > 1 ⇒ β > 1). These two limits then give the following limits for H:

lim
z2→0+

H(z2) = uR − uL + cLB1(0,KL/PL) + cRB2(0,KR/PR),

and

lim
z2→β−

H(z2) = +∞.

Since the function z2 �→ H(z2) is increasing and continuous on ]0, β[, the intermediate value theorem can
be applied in order to conclude that H admits a unique root provided that the following condition holds:

uR − uL + cLB1(0,KL/PL) + cRB2(0,KR/PR) < 0 (75)

As a consequence, the Riemann problem associated with system (5) possesses a unique solution if and
only if condition (75) holds.

B. Building the Intermediate States for VFRoe-ncv

As depicted in Sect. 4, the VFRoe-ncv scheme is based on the computation of the exact solution of a
linearized version of the Riemann problem at the interface between two cells. It thus relies on finding the
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Fig. 22. Double rarefaction test case. Density (top left), velocity (top right), pressure P (bottom left) and modified
pressure P ∗ (bottom right). Approximate solution at time tf = 3 10−4s, CFL = 0.5, for 500 cells and ξ0 = 5000

two intermediate states Z1 and Z2: the state Z1 (resp. Z2) is between the linearized waves λ̄1 and λ̄2

(resp. λ̄2 and λ̄3). We have:

Z1 = ZL + α1r̂1, (76)

Z2 = Z1 + α2r̂2, (77)

ZR = Z2 + α3r̂3, (78)

where the linearized right eigenvectors are:

r̂1 = (1,−ĉtτ̄ , ĉt
2)T , r̂2 = (1, 0, 0)T , r̂3 = (1, ĉtτ̄ , ĉt

2)T ,

and where the coefficients α1 and α3 associated with the eigenvalues λ̄1 and λ̄3 read:

α1 =
1
2

[P ∗]RL
ĉt

2 − 1
2

[u]RL ρ̄

ĉt
,

α3 =
1
2

[P ∗]RL
ĉt

2 +
1
2

[u]RL ρ̄

ĉt
.

The linearized sound speed ĉt is defined by Eq. (38). It should be noted that thanks to (77), we have:

u1 = u2, and P ∗
1 = P ∗

2 .
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Fig. 23. Double rarefaction test case. Density (top left), velocity (top right), pressure P (bottom left) and modified
pressure P ∗ (bottom right). Approximate solution at time tf = 3 10−4s, CFL = 0.5, for 500 cells and ξ0 = 10,000

After simple calculus on Eqs. (76) and (78), the following intermediate values can be found:

u1 = u2 = ū − 1
2ρ̄ĉt

[P ∗]RL ,

P ∗
1 = P ∗

2 = P̄ ∗ − ρ̄ĉt

2
[u]RL ,

ρ1 = ρL +
[P ∗]RL
2ĉt

2 − ρ̄

2ĉt
[u]RL , ρ2 = ρR − [P ∗]RL

2ĉt
2 − ρ̄

2ĉt
[u]RL .

C. Additional Numerical Results: A Symmetric Double Rarefaction Wave

This test case is representative of what happens close to a wall when the fluid flows outward or in a
bluff-body. In these situations, the pressure decreases at the wall generating a rarefaction wave that
propagates outwards from the wall. We reproduce such a configuration here with a symmetric double
rarefaction wave test case for which the initial condition of the Riemann problem uses the “mirror state”
strategy:

(ρ, u, P )L = (ρ0,−u0, P0), and (ρ, u, P )R = (ρ0, u0, P0),
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with a negative normal velocity u0 and (ρ0, u0, P0) = (1, 370, 105). The first test case (ξ0 = 0) is inspired
from [3].

Profiles of the approximate solutions along the x-domain are given in Figs. 21, 22 and 23 for a mesh with
500 cells and using three values of ξ0 = {0, 5000, 10,000}. They involve a low-density state in the center
of the domain, between the two rarefaction waves. This feature makes this problem a test for assessing
the performance of numerical methods for low-density flows. Indeed, this test case allows to examine the
stability of the scheme together with the preservation of positivity of the approximate density around
x = 0.5 (which corresponds to the fictive wall location). The classical drawback of Godunov-type schemes
on the density variable near the position of initial discontinuity x = 0.5 can be observed: an undershoot
of the density profile which tends to vanish when the mesh is refined.
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