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1. Introduction

Euler and Navier-Stokes equations are two important models in fluid dynamics. There are rich litera-
tures on the mathematical analysis around these equations. We refer to [11,23–26] and references therein
for mathematical results. There are deep relationships between Euler and Navier-Stokes equations. It is
well known that the Euler equations can be derived from Navier-Stokes equations through the vanishing
viscosity limit. Meanwhile, the Navier-Stokes equations can also be approximated by first-order partial
differential equations using different kinds of constitutive laws for non-Newtonian fluids. These approx-
imate equations are referred to as relaxed Euler systems or hyperbolic Navier-Stokes equations, see for
instance [10,16,30,33,34].

In the paper, we study the global-in-time convergence from relaxed Euler-type equations with Ol-
droyd’s constitutive laws to compressible full (non-isentropic) Navier-Stokes equations by letting relax-
ation times tend to zero. Let t ≥ 0 be the time variable and x = (x1, · · · , xd) ∈ R

d be the space variable.
The compressible full Navier-Stokes equations are of the form

⎧
⎪⎨

⎪⎩

∂tρ + div(ρu) = 0,
∂t(ρu) + div(ρu ⊗ u) + ∇p = divτ,

∂t(ρE) + div(ρuE + up) + divq = div(uτ),
(1.1)

in R
+ ×R

d, where ρ > 0 is the density, u = (u1, · · · , ud)� ∈ R
d is the velocity, θ is the temperature, p is

the pressure function, q ∈ R
d is the heat flux, τ is the stress tensor and E = e +

1
2
|u|2 is the total energy

per unit mass with e being the specific internal energy. The symbols � and ⊗ represent the transpose
and the tensor product, respectively. In (1.1), ρ, u and θ are independent variables, e and p are functions
of (ρ, θ). In particular, for the ideal fluid, we have

e = cvθ, p = Rρθ, (1.2)
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which satisfy the thermodynamic equation

ρ2eρ = p − θpθ, (1.3)

where R and cv are positive constants, and eρ = ∂e
∂ρ etc. Generally speaking, the heat flux q satisfies the

following Fourier’s law

q = −κ∇θ, (1.4)

where κ > 0 is the heat conduction constant. For Newtonian viscous fluids, the stress tensor τ takes the
form

τ = μσ(u) + λ(divu)Id, (1.5)

with

σ(u) = ∇u + (∇u)� − 2
d
(divu)Id.

Here Id denotes the unit matrix of order d. The parameters μ > 0 and λ > 0 are the shear and bulk
viscosity coefficients, respectively, which are all assumed to be constants.

For the full Navier-Stokes equations (1.1) with constitutive laws (1.4) and (1.5), the construction of the
corresponding relaxed Euler systems depends on the way how to decompose the second-order derivatives
divτ,div(uτ) and divq into first-order derivative terms. Clearly, there are lots of ways to do it, among
which the most natural one is to replace (1.4) and (1.5) by the following Maxwell’s constitutive laws [28]

ε21∂tq + q = −κ∇θ, (1.6)
ε22∂tτ + τ = μσ(u) + λ(divu)Id, (1.7)

where ε1 > 0 and ε2 > 0 are the relaxation times. Equations in (1.1) together with (1.6)-(1.7) form a
relaxed Euler system. Formally, letting (ε1, ε2) → 0 recovers the Navier-Stokes equations (1.1) with (1.4)
and (1.5). This idea is not recent. It dates back to 1860s, see for instance [3,4,28]. These approximations
have not only the mathematical sense but also physical interpretations. Relation (1.6), also known as the
Cattaneo’s law, gives rise to heat waves with finite propagation speed. Relation (1.7) describes motions
of viscoelastic fluids. The laws are combinations of the Newtonian’s law of viscosity and the Hooke’s law
of elasticity.

The existence of smooth solutions to system (1.1) with Maxwell’s constitutive laws (1.6) and (1.7) and
their convergence to the classical non-isentropic Navier-Stokes equations (1.1) with (1.4) and (1.5) have
been studied in previous works. In the case where ε1 = 0, the authors of [15] proved the global existence
of smooth solutions near constant equilibrium states for fixed ε2 > 0 and the local-in-time convergence
towards the Navier-Stokes equations as ε2 → 0. Similar results are obtained in [14] in the case where
ε2 = 0 and ε1 > 0. In these results, only one of the constitutive laws within (1.6) and (1.7) is used. Hence
the systems studied in [14,15] are of mixed hyperbolic-parabolic type in the sense of Shizuta-Kawashima
[19,39]. The local-in-time convergence is based on the error estimates between the original system and
the limiting system. For the isentropic Navier-Stokes equations with constitutive law (1.7), the author
of [42] obtained the local existence and the local convergence to the classical isentropic Navier-Stokes
equations under condition tr(τ) = 0, where tr(τ) means the trace of matrix τ . In [30], the first author
of the present paper constructed approximate systems with vector variables instead of tensor variables
by using Hurwitz-Radon matrices in both compressible and incompressible cases. He proved the uniform
(with respect to ε1 and ε2) global existence of smooth solutions near constant equilibrium state and the
global-in-time convergence of the systems towards classical isentropic Navier-Stokes equations. He also
obtained similar results for the isentropic Navier-Stokes equations with constitutive law (1.7) without
condition tr(τ) = 0. For the approximation of incompressible isentropic Navier-Stokes equations with
constitutive law (1.7), we also refer to [10,33,34,37,38].

However, these two constitutive laws (1.6) and (1.7) have drawbacks as they do not ensure Galilean
invariance. In other words, these laws lead to paradoxical evolution of thermal waves in a moving frame,
see [7]. To overcome it, the Oldroyd’s upper-convected time derivative (or simply Oldroyd derivative)
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should be considered. In this paper, we consider the following two constitutive laws. The first one is the
Cattaneo-Christov model introduced in [6],

ε21
(
∂tq + u · ∇q − q · ∇u + (divu)q

)
= −q − κ∇θ, (1.8)

in which the terms on the left-hand side are the Oldroyd derivative. It is proved in [6] that the constitutive
law (1.8) is Galilean invariant. The second one is the following Oldroyd-B model for the tensor variable
τ (see for instance [2,29,35,36] and the references therein)

ε22(∂tτ + u · ∇τ + g(τ,∇u)) + τ = μσ(u) + λ(divu)Id, (1.9)

where

g(τ,∇u) = τW (u) − W (u)τ, with W (u) =
1
2
(∇u − (∇u)�)

.

Hence, the relaxed Euler system for (1.1) with constitutive laws (1.8) and (1.9) is of the form
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ + div(ρu) = 0,
∂t(ρu) + div(ρu ⊗ u) + ∇p = divτ,

∂t(ρE) + div(ρuE + up) + divq = div(uτ),
ε21

(
∂tq + u · ∇q − q · ∇u + (divu)q

)
= −q − κ∇θ,

ε22(∂tτ + u · ∇τ + g(τ,∇u)) + τ

= μ
(
∇u + ∇u� − 2

d
(divu)Id

)
+ λ(divu)Id,

(1.10)

in R
+ × R

d.
System (1.10) is very complicated. One can observe that it contains d2 + 2d + 2 equations for fluids

in space R
d. So far the symmetrizable hyperbolicity for (1.10) is unknown in cases d ≥ 2. This makes it

hard to establish the existence results. See classical theories [18,21,24]. Moreover, when considering the
constitutive laws (1.8) and (1.9) at the same time, there are no apparent dissipative structures for ∇u
and ∇θ due to the loss of the elliptic structures for u and θ. This is different from the situation for the
systems treated in [14,15].

In a recent paper [16], the authors considered (1.10) in one space dimension. In this case, system (1.10)
is reduced to the following form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tρ + ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + p − τ) = 0,
∂t(ρE) + ∂x(ρuE + up + q − uτ) = 0,
ε21(∂tq + u∂xq) + κ∂xθ = −q,

ε22(∂tτ + u∂xτ) − λ∂xu = −τ,

(1.11)

in R
+ × R, with the initial data

(ρ, u, θ, q, τ)|t=0 = (ρε
0, u

ε
0, θ

ε
0, q

ε
0, τ

ε
0 )(x), (1.12)

where ε = (ε1, ε2). In the limit as ε → 0, we have formally

q = −κ∂xθ, τ = λ∂xu.

Substituting these relations into (1.11), we recover the following one-dimensional non-isentropic Navier-
Stokes equations

⎧
⎪⎨

⎪⎩

∂tρ + ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2) + ∂xp = λ∂xxu,

∂t(ρE) + ∂x(ρuE + up) = κ∂xxθ + λ∂x(u∂xu),
(1.13)

in R
+ ×R. Equations (1.13) have been widely studied. We refer to [13,17,20,27] for the global existence

of smooth solutions. See also [11,23] for related topics and references therein. In (1.11), ρ, u, θ, q and τ
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are independent variables, and both the internal energy e and the pressure function p are functions of
(ρ, θ, q, τ). In [16], the authors used the following state equations for e and p :

e = cvθ +
ε21

κρθ
q2 +

ε22
2λρ

τ2, (1.14)

p = Rρθ − ε21
2κθ

q2 − ε22
2λ

τ2. (1.15)

Equation (1.14) is based on the results in [8], where the authors rigorously proved that the constitutive
law (1.8) is consistent with the second law of thermodynamics if and only if the dependence of e on
q is quadratic. Similarly, the quadratic dependence of e on τ also implies the compatibility with the
second law of thermodynamics. The choice of equation (1.15) makes it consistent with (1.3) and the state
equations (1.14)-(1.15) yield formally those for the ideal fluid (1.2) as ε → 0. For more explanations, see
[5,9,16,41].

Let Ve = (1, 0, 1, 0, 0)� be an equilibrium state for (1.11). Due to the explicit expressions (1.14) and
(1.15), the authors of [16] constructed a strictly convex entropy for system (1.11), see Lemma 3.1 in [16]
or Lemma 3.1 below. Based on this, they established the global existence of smooth solutions near Ve for
fixed ε1 > 0 and ε2 > 0, and the local convergence of the system towards the classical full Navier-Stokes
equations as ε1 = ε2 → 0. However, the convergence for large time has not been investigated.

The purpose of this paper is to study the global convergence of system (1.11) with state equations
(1.14) and (1.15). The main results of the paper are contained in the following two theorems. The first
theorem shows the uniform global existence of smooth solutions to the Cauchy problem (1.11)-(1.12)
near Ve. The second one concerns the global convergence of the solution of (1.11) to that of the one-
dimensional full Navier-Stokes equations (1.13) for the ideal fluid (1.2) as ε → 0. Remark that in these
results condition ε1 = ε2 is not needed and system (1.11) is not included in the class of systems studied
in [22,31,32,43]. The proof of the results is based on uniform estimates with respect to the time and the
relaxation parameters. We use the strictly convex entropy given in [16] for the L2 estimate. A key step is
to find an appropriate symmetrizer of system (1.11) for higher-order estimates. It is well-known that the
second-order derivative of a strictly convex entropy provides a symmetrizer for a system of conservation
laws [1,12]. However, this result cannot be applied to (1.11) because it is a non-conservative system.

It is worth mentioning that the global existence result in the present paper is different from that
obtained in [16], which is not uniform with respect to ε1 and ε2. More precisely, there are terms ∂tq and
∂tτ in the definition of the energy in [16]. Because of boundary layers in the limit as ε → 0, such an energy
cannot be uniformly bounded with respect to the relaxation parameters. In order to avoid this situation,
in the proof of our results, the energy contains only terms of derivative of solutions with respect to x.

Theorem 1.1 (Uniform global existence). Let s ≥ 2 be an integer and (ρε
0 − 1, uε

0, θ
ε
0 − 1, qε

0, τ
ε
0 ) ∈ Hs(R).

There exist two positive constants δ and C, independent of ε1 and ε2, such that if

‖ρε
0 − 1‖s + ‖uε

0‖s + ‖θε
0 − 1‖s + ε1‖qε

0‖s + ε2‖τε
0‖ ≤ δ,

then for all ε1, ε2 ∈ (0, 1], the Cauchy problem (1.11)-(1.12) together with (1.14)-(1.15) admits a unique
global smooth solution (ρε, uε, θε, qε, τε) satisfying

ρε − 1, uε, θε − 1, qε, τε ∈ C(R+;Hs(R)) ∩ C1(R+;Hs−1(R)),

and

‖ρε(t) − 1‖2s + ‖uε(t)‖2s + ‖θε(t) − 1‖2s + ε21‖qε(t)‖2s + ε22‖τε(t)‖2s
+

∫ t

0

(‖∂xρε(t′)‖2s−1 + ‖∂xuε(t′)‖2s−1 + ‖∂xθε(t′)‖2s−1 + ‖qε(t′)‖2s + ‖τε(t′)‖2s
)
dt′

≤ C
(‖ρε

0 − 1‖2s + ‖uε
0‖2s + ‖θε

0 − 1‖2s + ε21‖qε
0‖2s + ε22‖τε

0‖2s
)
, ∀ t ≥ 0, (1.16)

where ‖ · ‖k denotes the usual norm of Hk(R).
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Theorem 1.2 (Global convergence). Let ε = (ε1, ε2) and (ρε, uε, θε, qε, τε) be the global solution obtained
in Theorem 1.1, then there exist functions (ρ̄, ū, θ̄) ∈ L∞(R+;Hs(R)) and (q̄, τ̄) ∈ L2(R+;Hs(R)), such
that, as ε → 0 up to subsequences,

(ρε, uε, θε) ⇀ (ρ̄, ū, θ̄) weakly- ∗ in L∞(R+;Hs(R)), (1.17)
(qε, τε) ⇀ (q̄, τ̄) weakly in L2(R+;Hs(R)), (1.18)

where (ρ̄, ū, θ̄) is the solution to the one-dimensional full compressible Navier-Stokes equations (1.13) for
the ideal fluid (1.2), with initial value (ρ̄0, ū0, θ̄0) which is the weak limit of (ρε

0, u
ε
0, θ

ε
0) up to subsequences.

Moreover,

q̄ = −κ∂xθ̄, τ̄ = λ∂xū.

The rest of the paper is organized as follows. In the next section, we prove results on the hyperbolic
structure for system (1.11). These results are crucial in the proof of the above theorems. Section 3 is
devoted to uniform global estimates. The proof of the theorems are completed in the last section.

2. Symmetrizable Hyperbolicity

In what follows, s ≥ 2 denotes an integer. Let ε = (ε1, ε2) and C be a generic positive constant independent
of ε and any time. We assume that ε1, ε2 ∈ (0, 1]. For a integer k ≥ 1, we denote by ‖ · ‖k, ‖ · ‖ and
‖ · ‖∞ the norms of the usual Sobolev spaces Hk(R), L2(R) and L∞(R), respectively. The inner product
in L2 (R) is denoted by

〈·, ·〉. In the proof we will frequently use the fact that the embedding from H l(R)
to L∞(R) is continuous for all integers l ≥ 1.

For simplicity, the dependence of solution on the parameters ε1 and ε2 is not expressed explicitly. We
want to write (1.11) into a first-order quasilinear system of variables (ρ, u, θ, q, τ). First, it is clear that
by using (1.15) and the first equation in (1.11), the second equation in (1.11) is equivalent to

ρ(∂tu + u∂xu) + pρ∂xρ + pθ∂xθ + pq∂xq + (pτ − 1)∂xτ = 0.

Similarly, by using the first two equations in (1.11), the third equation in (1.11) is equivalent to

ρ∂te + ρu∂xe + (p − τ)∂xu + ∂xq = 0. (2.1)

This equation can be further treated by using equations (1.3), (1.14) and (1.15). Indeed,

ρ∂te = ρeθ∂tθ + ρeρ∂tρ + ρeq∂tq + ρeτ∂tτ

= ρeθ∂tθ + ρeρ∂tρ + ρ
2q

κθρ
(−ε21u∂xq − q − κ∂xθ) + ρ

τ

λρ
(−ε22u∂xτ − τ + λ∂xu)

= ρeθ∂tθ + ρeρ∂tρ − 2q

θ
∂xθ − 2ε21uq

κθ
∂xq − 2q2

κθ
− ε22uτ

λ
∂xτ − τ2

λ
+ τ∂xu,

and

ρu∂xe = ρueθ∂xθ + ρueρ∂xρ + ρueq∂xq + ρueτ∂xτ

= ρueθ∂xθ + ρueρ∂xρ +
2ε21uq

κθ
∂xq +

ε22uτ

λ
∂xτ,

hence,

ρ∂te + ρu∂xe = ρeθ∂tθ +
(
ρueθ − 2q

θ

)
∂xθ + ρeρ(∂tρ + u∂xρ) − 2q2

κθ
− τ2

λ
+ τ∂xu.

Combining the last equation with (1.3), (2.1) and the first equation in (1.11), we have

ρeθ∂tθ + θpθ∂xu +
(
ρueθ − 2q

θ

)
∂xθ + ∂xq =

2q2

κθ
+

τ2

λ
.
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Therefore, system (1.11) is equivalent to
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tρ + ∂x(ρu) = 0,
ρ(∂tu + u∂xu) + pρ∂xρ + pθ∂xθ + pq∂xq + (pτ − 1)∂xτ = 0,

ρθeθ∂tθ + θ2pθ∂xu + (ρuθeθ − 2q)∂xθ + θ∂xq = 2q2

κ + θτ2

λ ,

ε21(∂tq + u∂xq) + κ∂xθ = −q,

ε22(∂tτ + u∂xτ) − λ∂xu = −τ.

(2.2)

Let D0(ε) be a diagonal matrix defined by

D0(ε) = diag
(
1, 1, 1, ε21, ε

2
2

)
.

Then system (2.2) is written as

D0(ε)Vt + A(V )∂xV + BV = F (V ), (2.3)

where

V = (ρ, u, θ, q, τ)�, F (V ) =
(

0, 0,
1

ρθeθ

(2q2

κ
+

θτ2

λ

)
, 0, 0

)�
,

and

A(V ) =

⎛

⎜
⎜
⎜
⎜
⎝

u ρ 0 0 0
pρ

ρ u pθ

ρ
pq

ρ
pτ −1

ρ

0 θpθ

ρeθ
u − 2q

ρθeθ

1
ρeθ

0
0 0 κ ε21u 0
0 −λ 0 0 ε22u

⎞

⎟
⎟
⎟
⎟
⎠

, B =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

.

We define

A0(V ) = Ã0(V )D0(ε), Ã(V ) = Ã0(V )A(V ),

with

Ã0(V ) =

⎛

⎜
⎜
⎜
⎜
⎝

θ2pρpθ 0 0 0 0
0 ρ2θ2pθ 0 0 0
0 0 ρ2θeθpθ − 1

κ (ρ2qeθ) 0
0 0 − ε2

1
κ ρ2qeθ

1
κ (ρθpθ + 2ρqpq) 0

0 0 0 0 1
λ

(
ρθ2pθ(1 − pτ )

)

⎞

⎟
⎟
⎟
⎟
⎠

.

Then straightforward calculations give

A0(V ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

θ2pρpθ 0 0 0 0
0 ρ2θ2pθ 0 0 0

0 0 ρ2θeθpθ − ε2
1
κ (ρ2qeθ) 0

0 0 − ε2
1
κ (ρ2qeθ)

ε2
1
κ

(
ρθpθ + 2ρqpq

)
0

0 0 0 0 ε2
2
λ

(
ρθ2pθ(1 − pτ )

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Ã(V ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

uθ2pρpθ ρθ2pρpθ 0 0 0
ρθ2pρpθ ρ2uθ2pθ ρθ2p2θ ρθ2pθpq ρθ2pθ(pτ − 1)

0 ρθ2p2θ J1 ρθpθ + ρ2uθeθpq 0
0 ρθ2pθpq ρθpθ + ρ2uθeθpq J2 0

0 ρθ2pθ(pτ − 1) 0 0 ε2
2
λ

(
ρuθ2pθ(1 − pτ )

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where

J1 = ρ2uθeθpθ − 2ρqpθ − ρ2qeθ, J2 =
ε21
κ

(
ρu(θpθ + 2qpq) − ρq

)
.
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It is clear that A0(V ) and Ã(V ) are symmetric. Let T > 0 and

N = ρ − 1, Θ = θ − 1, W =
(
N,u, Θ, ε1q, ε2τ

)�
.

We denote

E (t) = ‖W (t, ·)‖2s, ET = sup
0≤t≤T

E (t). (2.4)

In Theorem 1.1, estimate (1.16) implies that ET is uniformly sufficiently small when E (0) is, although the
L∞(0, T ;Hs(R)) norm of q and τ may not be uniformly small with respect to ε1 and ε2. The following
result shows that A0(V ) is positive definite when ET is sufficiently small.

Lemma 2.1. Let W ∈ C([0, T ];Hs(R)) be the smooth solution to (2.2) with (1.14)-(1.15) and (1.12). Then
there exist constants δ > 0 and c1 > 0, independent of ε1 and ε2, such that if E 1/2

T ≤ δ, we have

c1 ≤ ρ, θ, pρ, pθ, eθ ≤ C, (2.5)
‖pq‖s ≤ Cδε1, ‖pτ‖s ≤ Cδε2, ‖qpq‖s ≤ Cδ, (2.6)

and A0(V ) is positive definite and then system (2.2) is symmetrizable hyperbolic.

Proof. When ET is sufficiently small, ρ and θ are sufficiently close to 1, then they have uniform positive
upper and lower bounds. From the state equations (1.14) and (1.15), we have

pρ = Rθ, pθ = Rρ +
ε21

2κθ2
q2, eθ = cv − ε21

κρθ2
q2, (2.7)

which imply (2.5) since ‖ε1q‖∞ ≤ ET which is sufficiently small. Besides,

pq = − ε21
κθ

q, pτ = −ε22
λ

τ, qpq = − ε21
κθ

q2, (2.8)

which imply (2.6).
Moreover,

∣
∣
∣
∣
∣

ρ2θeθpθ − ε2
1
κ (ρ2qeθ)

− ε2
1
κ (ρ2qeθ)

ε2
1
κ

(
ρθpθ + 2ρqpq

)

∣
∣
∣
∣
∣
=

ε21ρ
3eθ

κ

(

θ2p2θ − ε21q
2

κ
(2pθ + ρeθ)

)

.

Then (2.5) implies that the above determinate is positive for sufficiently small ET . From (2.6) and ε2 ≤ 1,
we also have ‖pτ‖s ≤ Cδ. Therefore, A0(V ) is positive definite from its explicit expression. �

Applying the theory on the symmetrizable hyperbolic system, Lemma 2.1 implies the local existence
of smooth solutions to the Cauchy problem (2.2) with (1.14)-(1.15) and (1.12) from the classical iteration
technique and fixed point theorems, see for instance [18,21,24].

3. Uniform Global Estimates

Let T > 0 and W = (N,u, Θ, ε1q, ε2τ)� be the unique local smooth solution to (2.2) with (1.14)-(1.15)
and (1.12), defined on [0, T ]. We assume that ET defined in (2.4) is sufficiently small. This gives rise to
the rational assumption that

|ρ − 1| ≤ 1
2
, |θ − 1| ≤ 1

2
, |pτ | ≤ 1

2
. (3.1)

We want to establish the uniform global estimate for W with respect to the parameters ε1 and ε2 and
the time T . For this purpose, we introduce the following dissipative energy

D(t) = ‖∂xN(t)‖2s−1 + ‖∂xu(t)‖2s−1 + ‖∂xΘ(t)‖2s−1 + ‖q(t)‖2s + ‖τ(t)‖2s.
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3.1. L2-estimate

The L2 estimate relies on the existence of a strictly convex entropy and its corresponding entropy flux.

Lemma 3.1. For system (2.2), there exists a strictly convex entropy η and its corresponding entropy flux
Ψ satisfying

∂tη(W ) + ∂xΨ(W ) +
q2

κθ2
+

τ2

λθ
= 0, (3.2)

where

η(W ) = R(ρ ln ρ − ρ + 1) +
1
2
ρu2 + cvρ(θ − ln θ − 1) +

ε21
κθ

(

1 − 1
2θ

)

q2 +
ε22
2λ

τ2,

and

Ψ(W ) = Rρ(ln ρ − 1)u +
1
2
ρu3 + cvρu(θ − ln θ − 1) + (p − τ)u +

(
1 − 1

θ

)
q

+
ε21u

κθ

(
1 − 1

2θ

)
q2 +

ε22
2λ

uτ2.

In addition, if ET is sufficiently small, the following L2-energy estimate holds

‖(ρ − 1, u, θ − 1, ε1q, ε2τ)(t)‖2 +
∫ t

0

(‖q(t′)‖2 + ‖τ(t′)‖2)dt′

≤ C
(‖ρ0 − 1‖2 + ‖u0‖2 + ‖θ0 − 1‖2 + ε21‖q0‖2 + ε22‖τ0‖2

)
, ∀ t ∈ [0, T ]. (3.3)

Proof. The entropy-entropy flux identity (3.2) was established in [16]. We now prove (3.3). By the Taylor’s
expansion at (ρ, θ) = (1, 1) and (3.1), we have

cvρ(θ − ln θ − 1) =
cvρ

2θ̂2
Θ2 ≥ 1

9
cvΘ2, R(ρ ln ρ − ρ + 1) =

R

2ρ̂
N2 ≥ R

3
N2,

where ρ̂ is between ρ and 1, and θ̂ is between θ and 1. By Lemma 2.1, this implies that there exists a
constant c2 > 0, such that

c2|W |2 ≤ η(W ) ≤ C|W |2,
where | · | is the Euclidean norm in R

5. Integrating (3.2) over [0, t] for t ∈ [0, T ] implies (3.3). �

3.2. Higher Order Estimates

Let l be an integer with 1 ≤ l ≤ s. Applying ∂l
x to both sides of the equation (2.3) yields

D0(ε)∂t(∂l
xV ) + A(V )∂x(∂l

xV ) + ∂l
x(BV ) = ∂l

xF (V ) + Kl,

where

Kl = A(V )∂l+1
x V − ∂l

x(A(V )∂xV ).

Then,

A0(V )∂t(∂l
xV ) + Ã(V )∂x(∂l

xV ) + Ã0(V )∂l
x(BV ) = Ã0(V )∂l

xF (V ) + Ã0(V )Kl.

Taking the inner product of the above system with ∂l
xV in L2(R), we have

d

dt

〈
A0(V )∂l

xV, ∂l
xV

〉
+ 2

〈
Ã0(V )∂l

x(BV ), ∂l
xV

〉

=
〈
∂tA0(V )∂l

xV, ∂l
xV

〉
+

〈
∂xÃ(V )∂l

xV, ∂l
xV

〉
+ 2

〈
Ã0(V )∂l

xF (V ), ∂l
xV

〉
+ 2

〈
Ã0(V )Kl, ∂

l
xV

〉
. (3.4)

We deal with (3.4) term by term in a series of lemmas as follows.
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Lemma 3.2. There exists positive constants c3 and c4 such that

2
∣
∣
〈
Ã0(V )∂l

x(BV ), ∂l
xV

〉∣
∣ ≥ c3‖∂l

xq‖2 + c4‖∂l
xτ‖2 − CE

1/2
T D(t). (3.5)

Proof. By the definition of Ã0(V ) and B together with (2.8), we have

Ã0(V )∂l
x(BV ) =

(

0, 0, 0,−ρ2qeθ

κ
∂l

xq,
ρθpθ + 2ρqpq

κ
∂l

xq,
ρθ2pθ(1 − pτ )

λ
∂l

xτ

)�
,

which implies that
〈
Ã0(V )∂l

x(BV ), ∂l
xV

〉
= −

〈
ρ2qeθ

κ
∂l

xq, ∂l
xΘ

〉

+
〈

ρθpθ + 2ρqpq

κ
∂l

xq, ∂l
xq

〉

+
〈

ρθ2pθ(1 − pτ )
λ

∂l
xτ, ∂l

xτ

〉

.

Obviously,
∣
∣
∣
∣

〈
ρ2qeθ

κ
∂l

xq, ∂l
xΘ

〉∣
∣
∣
∣ ≤ C‖∂l

xΘ‖∞‖q‖‖∂l
xq‖ ≤ CE

1/2
T D(t).

For the second term, noticing that
ρθpθ

κ
has a uniform lower bound when ET is sufficiently small. Besides,

the last estimate in (2.6) implies that
2ρqpq

κ
is small and consequently, there exists a positive constant

c3 such that

2
〈

ρθpθ + 2ρqpq

κ
∂l

xq, ∂l
xq

〉

≥ c3‖∂l
xq‖2.

Similarly, (3.1) implies that 1 − pτ ≥ 1
2
. Therefore, there exists a positive constant c4 such that

2
〈

ρθ2pθ(1 − pτ )
λ

∂l
xτ, ∂l

xτ

〉

≥ c4‖∂l
xτ‖2.

Combining all these estimates yields (3.5). �
Lemma 3.3. It holds

∣
∣
〈
∂tA0(V )∂l

xV, ∂l
xV

〉∣
∣ ≤ CE

1/2
T D(t). (3.6)

Proof. We denote

V =
(

V1

V2

)

, V1 =

⎛

⎝
N
u
Θ

⎞

⎠ , V2 =
(

q
τ

)

,

and

A0(V ) =
(

A11
0 (V ) A12

0 (V )
A21

0 (V ) A22
0 (V )

)

, Ã(V ) =
(

Ã11(V ) Ã12(V )
Ã21(V ) Ã22(V )

)

,

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A11
0 (V ) =

⎛

⎝
θ2pρpθ 0 0
0 ρ2θ2pθ 0
0 0 ρ2θeθpθ

⎞

⎠ ,

A12
0 (V ) =

(
A21

0 (V )
)� =

⎛

⎝

0 0
0 0
− ε2

1
κ

(
ρ2qeθ

)
0

⎞

⎠ ,

A22
0 (V ) =

(
ε2
1
κ (ρθpθ + 2ρqpq) 0
0 ε2

2
λ

(
ρθ2pθ(1 − pτ )

)

)

.
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Obviously,
〈
∂tA0(V )∂l

xV, ∂l
xV

〉
=

〈
∂tA

11
0 (V )∂l

xV1, ∂
l
xV1

〉
+ 2

〈
∂tA

12
0 (V )∂l

xV2, ∂
l
xV1

〉
+

〈
∂tA

22
0 (V )∂l

xV2, ∂
l
xV2

〉
.

From (1.14) and (1.15), we see that A11
0 (V ) is a smooth function of (N,Θ, ε21q

2). Moreover, from (2.2)
together with the Cauchy-Schwarz inequality, we have

‖∂tN‖∞ + ‖∂tΘ‖∞ ≤ CE
1/2
T + C

(‖q‖s + ‖q‖2s + ‖τ‖2s
)
,

ε21‖∂tq‖∞ ≤ CE
1/2
T + C‖q‖s,

ε21‖∂t(q2)‖∞ ≤ CE
1/2
T + C‖q‖s + C‖q‖2s.

Hence,

‖∂tA
11
0 (V )‖∞ ≤ CE

1/2
T + C

(‖q‖s + ‖q‖2s + ‖τ‖2s
)
.

Moreover,

2‖q‖s‖∂l
xV1‖2 ≤ (‖∂l

xV1‖2 + ‖q‖2s
)‖∂l

xV1‖ ≤ CE
1/2
T D(t).

Since ET is uniformly small, we also have
(‖q‖2s + ‖τ‖2s

)‖∂l
xV1‖2 ≤ CETD(t) ≤ CE

1/2
T D(t).

Therefore,
∣
∣
〈
∂tA

11
0 (V )∂l

xV1, ∂
l
xV1

〉∣
∣ ≤ CE

1/2
T D(t).

Next, a straightforward calculation yields
〈
∂tA

12
0 (V )∂l

xV2, ∂
l
xV1

〉
= −ε21

κ

〈
∂t(ρ2qeθ)∂l

xq, ∂l
xΘ

〉
.

From (2.7), we have

ρ2qeθ = cνρ2q − ε21ρq3

κθ2
.

Then (2.2) together with the bound of ET yields

ε21
κ

‖∂t

(
ρ2qeθ

)‖∞ ≤ CE
1/2
T + C‖q‖s + Cε1‖τ‖2s.

Therefore,
∣
∣
〈
∂tA

12
0 (V )∂l

xV2, ∂
l
xV1

〉∣
∣ ≤ ε21

κ
‖∂t

(
ρ2qeθ

)‖∞‖∂l
xq‖‖∂l

xΘ‖
≤ CE

1/2
T D(t) + CE

1/2
T ‖q‖2s + C(ε1‖∂l

xq‖‖∂l
xΘ‖)‖τ‖2s

≤ CE
1/2
T D(t).

Finally,
〈
∂tA

22
0 (V )∂l

xV2, ∂
l
xV2

〉
=

ε21
κ

〈
∂t(ρθpθ + 2ρqpq)∂l

xq, ∂l
xq

〉
+

ε22
λ

〈
∂t

(
ρθ2pθ(1 − pτ )

)
∂l

xτ, ∂l
xτ

〉
.

Similarly to the estimates above, we have

ε21
∥
∥∂t(ρθpθ + 2ρqpq)

∥
∥

∞ ≤ CE
1/2
T + Cε21

(‖q‖s + ‖q‖2s + ‖τ‖2s
)
,

and

ε22
∥
∥∂t

(
ρθ2pθ(1 − pτ )

)∥
∥

∞ ≤ CE
1/2
T + Cε22

(‖q‖s + ‖q‖2s + ‖τ‖s + ‖τ‖2s
)
,

which imply that
∣
∣
〈
∂tA

22
0 (V )∂l

xV2, ∂
l
xV2

〉∣
∣ ≤ CE

1/2
T D(t).

This proves the lemma. �
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Lemma 3.4. It holds
∣
∣
〈
∂xÃ(V )∂l

xV, ∂l
xV

〉∣
∣ ≤ CE

1/2
T D(t). (3.7)

Proof. From (1.14) and (1.15) and the explicit expression of Ã(V ), we see that all elements of Ã(V ) are
smooth functions of (ρ, u, θ, ε21q

2, ε22τ
2) except J1. Noticing that J1 appears at the position of the third

line and the third column of Ã(V ) and

‖∂xJ1‖∞ ≤ C(‖∂xW‖s−1 + ‖q‖s),

we obtain
∣
∣
〈
∂xÃ(V )∂l

xV, ∂l
xV

〉∣
∣ ≤ C‖∂xW‖∞‖∂l

xV ‖2 +
∣
∣
〈
∂xJ1∂

l
xΘ, ∂l

xΘ
〉∣
∣

≤ CE
1/2
T D(t) + C‖∂xJ1‖∞‖∂l

xΘ‖2
≤ CE

1/2
T D(t) + C‖q‖s‖∂l

xΘ‖2
≤ CE

1/2
T D(t).

This proves (3.7). �
Lemma 3.5. It holds

∣
∣
〈
Ã0(V )∂l

xF (V ), ∂l
xV

〉∣
∣ ≤ CE

1/2
T D(t). (3.8)

Proof. By the definition of Ã0(V ) and F , we have

Ã0(V )∂l
xF (V ) =

(

0, 0, ρ2θeθpθ∂
l
x

(
1

ρθeθ

(
2q2

κ
+

θτ2

λ

))

,−ε21ρ
2qeθ

κ
∂l

x

(
1

ρθeθ

(
2q2

κ
+

θτ2

λ

))

, 0
)�

.

It follows that
∣
∣
〈
Ã0(V )∂l

xF (V ), ∂l
xV

〉∣
∣

≤
∣
∣
∣
∣

〈

ρ2θeθpθ∂
l
x

(
1

ρθeθ

(
2q2

κ
+

θτ2

λ

))

, ∂l
xΘ

〉∣
∣
∣
∣ +

∣
∣
∣
∣

〈
ε21ρ

2qeθ

κ
∂l

x

(
1

ρθeθ

(
2q2

κ
+

θτ2

λ

))

, ∂l
xq

〉∣
∣
∣
∣

≤ C(‖∂l
xΘ‖∞ + ‖ε1∂

l
xq‖‖ε1q‖∞)(‖q‖2s + ‖τ‖2s)

≤ CE
1/2
T D(t),

which proves (3.8). �
Lemma 3.6. It holds

∣
∣
〈
Ã0(V )Kl, ∂

l
xV

〉∣
∣ ≤ CE

1/2
T D(t). (3.9)

Proof. Recall that

Kl = A(V )∂l+1
x V − ∂l

x(A(V )∂xV ).

Similarly to the proof of Lemma 3.4, it is easy to see that all elements of A(V ) are smooth functions of
(ρ, u, θ, ε21q

2, ε22τ
2) except the element at the position of the third line and the third column. We denote

by J3 this element. Then

J3 = u − 2q

ρθeθ
,

and

‖∂xJ3‖s−1 ≤ C(‖∂xW‖s−1 + ‖q‖s).

The only two terms that contain J3 are the following
〈
∂l

xΘ, ρ2θeθpθ

(
∂l

x (J3∂xΘ) − J3∂
l+1
x Θ

)〉
and −

〈

∂l
xq,

ε21ρ
2qeθ

κ

(
∂l

x (J3∂xΘ) − J3∂
l+1
x Θ

)
〉

,

which can be treated similarly to the proof of Lemma 3.4 and are obviously bounded by CE
1/2
T D(t).
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On the other hand, each element of Ã0(V ) is uniformly bounded in L∞([0, T ] × R) except for the
element at the position of the third line and the fourth column. This element is − 1

κ (ρ2qeθ) which only
touches the fourth line of Kl in the product Ã0(V )Kl. Now the only nonzero element on the fourth line of
Kl is ε21(u∂l+1

x q − ∂l
x(u∂xq)). Then the fourth component of Ã0(V )Kl is − ε2

1
κ (ρ2qeθ)(u∂l+1

x q − ∂l
x(u∂xq)).

By the Moser-type calculus inequalities (see [24] for instance), we have

ε21
∣
∣
〈
ρ2qeθ(u∂l+1

x q − ∂l
x(u∂xq)), ∂l

xΘ
〉∣
∣ ≤ CE

1/2
T D(t).

The estimates for the other terms can be easily obtained. This proves (3.9). �

3.3. Dissipative Estimates for ∂xN , ∂xu and ∂xΘ

Lemma 3.7 (Dissipative estimates for ∂xΘ). It holds

ε21

s−1∑

m=0

d

dt

〈
∂m

x q, ∂m+1
x Θ

〉
+

κ

4
‖∂xΘ‖2s−1 ≤ Cν‖∂xu‖2s−1 + C‖q‖2s + CE

1/2
T D(t), (3.10)

where ν > 0 is a small positive constant to be determined later.

Proof. Let m be an integer with 0 ≤ m ≤ s− 1. Applying ∂m
x to the fourth equation in (2.2) and making

the inner product of the resulting equation with ∂m+1
x Θ in L2(R), we have

κ‖∂m+1
x Θ‖2 = −ε21

d

dt

〈
∂m

x q, ∂m+1
x Θ

〉
+ ε21

〈
∂t∂

m+1
x Θ, ∂m

x q
〉

− ε21
〈
∂m+1

x Θ, ∂m
x (u∂xq)

〉 − 〈
∂m

x q, ∂m+1
x Θ

〉
.

Obviously,
∣
∣ε21

〈
∂m+1

x Θ, ∂m
x (u∂xq)

〉
+

〈
∂m

x q, ∂m+1
x Θ

〉∣
∣ ≤ κ

2
‖∂m+1

x Θ‖2 + C‖q‖2s.
Therefore,

ε21
d

dt

〈
∂m

x q, ∂m+1
x Θ

〉
+

κ

2
‖∂m+1

x Θ‖2 ≤ ε21
〈
∂t∂

m+1
x Θ, ∂m

x q
〉

+ C‖q‖2s. (3.11)

By using the third equation in (2.2) and an integration by parts, we have

ε21
∣
∣
〈
∂t∂

m+1
x Θ, ∂m

x q
〉∣
∣ ≤ ε1

∣
∣
∣
∣

〈

∂m
x

(

u∂xθ +
θpθ

ρeθ
∂xu − 2q

ρθeθ
∂xθ +

1
ρeθ

∂xq

)

, ∂m+1
x (ε1q)

〉∣
∣
∣
∣

+ ε1

∣
∣
∣
∣

〈

∂m
x

(
2q2

κρθeθ
+

τ2

λρeθ

)

, ∂m+1
x (ε1q)

〉∣
∣
∣
∣ .

Obviously,

ε1

∣
∣
∣
∣

〈

∂m
x

(

u∂xθ +
θpθ

ρeθ
∂xu − 2q

ρθeθ
∂xθ +

1
ρeθ

∂xq

)

, ∂m+1
x (ε1q)

〉∣
∣
∣
∣

≤ κ

4
‖∂xΘ‖2s−1 + ν‖∂xu‖2s−1 + C‖q‖2s + CE

1/2
T D(t),

and

ε1

∣
∣
∣
∣

〈

∂m
x

(
2q2

κρθeθ
+

τ2

λρeθ

)

, ∂m+1
x (ε1q)

〉∣
∣
∣
∣ ≤ Cε1‖ε1q‖s‖q‖2s + Cε1‖ε1q‖s‖τ‖2s
≤ CE

1/2
T D(t).

Combining these estimates, we arrive at

ε21
∣
∣
〈
∂t∂

m+1
x Θ, ∂m

x q
〉∣
∣ ≤ κ

4
‖∂xΘ‖2s−1 + ν‖∂xu‖2s−1 + C‖q‖2s + CE

1/2
T D(t).
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This together with (3.11) yields

ε21
d

dt

〈
∂m

x q, ∂m+1
x Θ

〉
+

κ

4
‖∂m+1

x Θ‖2 ≤ ν‖∂xu‖2s−1 + C‖q‖2s + CE
1/2
T D(t).

Adding this inequality for all 0 ≤ m ≤ s − 1 yields (3.10). �

Lemma 3.8 (Dissipative estimates for ∂xu). It holds

− ε22

s−1∑

m=0

d

dt

〈
∂m

x τ, ∂m+1
x u

〉
+

λ

2
‖∂xu‖2s−1 ≤ Cν(‖∂xN‖2s−1 + ‖∂xu‖2s−1 + ‖∂xΘ‖2s−1)

+C
(‖q‖2s + ‖τ‖2s

)
+ CE

1/2
T D(t), (3.12)

where ν > 0 is a small positive constant to be determined later.

Proof. For 0 ≤ m ≤ s − 1, applying ∂m
x to the fifth equation in (2.2) and making the inner product of

the resulting equation with ∂m+1
x u in L2(R), we have

λ‖∂m+1
x u‖2 = ε22

d

dt

〈
∂m

x τ, ∂m+1
x u

〉 − ε22
〈
∂t∂

m+1
x u, ∂m

x τ
〉

+ ε22
〈
∂m+1

x u, ∂m
x (u∂xτ)

〉
+

〈
∂m+1

x u, ∂m
x τ

〉
.

Obviously,

∣
∣ε22

〈
∂m+1

x u, ∂m
x (u∂xτ)

〉
+

〈
∂m+1

x u, ∂m
x τ

〉∣
∣ ≤ λ

2
‖∂m+1

x u‖2 + C‖τ‖2s + CE
1/2
T D(t).

Therefore,

− ε22
d

dt

〈
∂m

x τ, ∂m+1
x u

〉
+

λ

2
‖∂m+1

x u‖2 ≤ −ε22
〈
∂t∂

m+1
x u, ∂m

x τ
〉

+ C‖τ‖2s + CE
1/2
T D(t). (3.13)

By using the second equation in (2.2) and an integration by parts, we have

∣
∣ε22

〈
∂t∂

m+1
x u, ∂m

x τ
〉∣
∣ ≤ ε22

∣
∣
∣
∣

〈

∂m
x

(
ρu∂xu + pρ∂xρ + pθ∂xθ

ρ

)

, ∂m+1
x τ

〉∣
∣
∣
∣

+ε22

∣
∣
∣
∣

〈

∂m
x

(
pq∂xq + (pτ − 1)∂xτ

ρ

)

, ∂m+1
x τ

〉∣
∣
∣
∣

≤ ν
(‖∂xN‖2s−1 + ‖∂xu‖2s−1 + ‖∂xΘ‖2s−1

)
+ C

(‖q‖2s + ‖τ‖2s
)
.

Substituting this estimate into (3.13) and adding the resulting equation for all 0 ≤ m ≤ s−1 yield (3.12).
�

Lemma 3.9 (Dissipative estimates for ∂xN). It holds

s−1∑

m=0

d

dt

〈
∂m

x u, ∂m+1
x N

〉
+

R

6
‖∂xN‖2s−1

≤ C
(‖∂xu‖2s−1 + ‖∂xΘ‖2s−1

)
+ C

(‖q‖2s + ‖τ‖2s
)

+ CE
1/2
T D(t). (3.14)

Proof. We first write the second equation in (2.2) as

∂tu +
Rθ

ρ
∂xN +

1
ρ

(
ρu∂xu + pθ∂xθ + pq∂xq + (pτ − 1)∂xτ

)
= 0.
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For m ≤ s−1, applying ∂m
x to the above equation and making the inner product of the resulting equation

with ∂m+1
x N in L2(R), we have

〈

∂m+1
x N,

Rθ

ρ
∂m+1

x N

〉

= − d

dt

〈
∂m

x u, ∂m+1
x N

〉
+

〈
∂m

x u, ∂t∂
m+1
x N

〉

−
〈

∂m
x

(
ρu∂xu + pθ∂xθ + pq∂xq + (pτ − 1)∂xτ

ρ

)

, ∂m+1
x N

〉

−
〈

∂m
x

(
Rθ

ρ
∂xN

)

− Rθ

ρ
∂m+1

x N, ∂m+1
x N

〉

.

Noticing (3.1), we have
〈

∂m+1
x N,

Rθ

ρ
∂m+1

x N

〉

≥ R

3
‖∂m+1

x N‖2.

It is clear that
∣
∣
∣
∣

〈

∂m
x

(
ρu∂xu + pθ∂xθ + pq∂xq + (pτ − 1)∂xτ

ρ

)

, ∂m+1
x N

〉∣
∣
∣
∣

≤ R

6
‖∂m+1

x N‖2 + C
(‖∂xu‖2s−1 + ‖∂xΘ‖2s−1

)
+ C

(‖q‖2s + ‖τ‖2s
)
,

and by the Moser-type calculus inequalities,
∣
∣
∣
∣

〈

∂m
x

(
Rθ

ρ
∂xN

)

− Rθ

ρ
∂m+1

x N, ∂m+1
x N

〉∣
∣
∣
∣ ≤ C‖∂xθ‖s−1‖∂xN‖2s−1 + C‖∂xN‖3s−1

≤ CE
1/2
T D(t).

Moreover, by the mass equation in (2.2) and the integration by parts, we obtain
∣
∣
〈
∂m

x u, ∂t∂
m+1
x N

〉∣
∣ =

∣
∣
〈
∂m+1

x u, ∂m+1
x (ρu)

〉∣
∣

≤ C‖∂xu‖s−1(‖∂m
x (∂xNu + ρ∂xu)‖)

≤ C‖∂xu‖2s−1 + CE
1/2
T D(t).

Combining all these estimates, we arrive at

d

dt

〈
∂m

x u, ∂m+1
x N

〉
+

R

6
‖∂m+1

x N‖2 ≤ C
(‖∂xu‖2s−1 + ‖∂xΘ‖2s−1

)
+ C

(‖q‖2s + ‖τ‖2s
)

+ CE
1/2
T D(t).

Adding the above estimate for all m ≤ s − 1 yields (3.14). �

4. Proof of Theorems 1.1-1.2

Lemma 4.1 (Final energy estimate). If ET is sufficiently small, then

E (t) +
∫ t

0

D(t′)dt′ ≤ CE (0), ∀ t ∈ [0, T ]. (4.1)

Proof. Combining (3.4) and Lemmas 3.2-3.6, and adding for all 1 ≤ l ≤ s, we arrive at
s∑

l=1

d

dt

〈
A0(V )∂l

xV, ∂l
xV

〉
+ c3‖∂xq‖2s−1 + c4‖∂xτ‖2s−1 ≤ CE

1/2
T D(t). (4.2)

Since A0(V ) is positive definite with respect to W , there exists a constant c5 > 0, independent of ε1 and
ε2, such that

〈
A0(V )∂l

xV, ∂l
xV

〉 ≥ c5‖∂l
xW‖2.



JMFM Global Convergence to Compressible Full Navier–Stokes Equations Page 15 of 17 29

Integrating (4.2) over [0, T ] together with (3.3) yields

‖W (t)‖2s +
∫ t

0

(‖q(t′)‖2s + ‖τ(t′)‖2s
)
dt′ ≤ CE (0) + CE

1/2
T

∫ t

0

D(t′)dt′. (4.3)

On the other hand, combining the estimates in Lemmas 3.7-3.9, we have

s−1∑

m=0

d

dt

(
ε21

〈
∂m

x q, ∂m+1
x Θ

〉 − ε22
〈
∂m

x τ, ∂m+1
x u

〉
+ α

〈
∂m

x u, ∂m+1
x N

〉)

+
Rα

6
‖∂xN‖2s−1 +

λ

2
‖∂xu‖2s−1 +

κ

4
‖∂xΘ‖2s−1

≤ Cν‖∂xN‖2s−1 + C(ν + α)(‖∂xu‖2s−1 + ‖∂xΘ‖2s−1) + C
(‖q‖2s + ‖τ‖2s

)
+ CE

1/2
T D(t),

where α > 0 is a constant. We choose ν > 0 and α > 0 sufficiently small such that

2Cν ≤ Rα

6
, 8C(ν + α) ≤ min(λ, κ).

It follows that there is a constant a0 > 0, independent of ε1 and ε2, such that

s−1∑

m=0

d

dt

(
ε21

〈
∂m

x q, ∂m+1
x Θ

〉 − ε22
〈
∂m

x τ, ∂m+1
x u

〉
+ α

〈
∂m

x u, ∂m+1
x N

〉)

+ a0

(‖∂xN‖2s−1 + ‖∂xu‖2s−1 + ‖∂xΘ‖2s−1

)

≤ C
(‖q‖2s + ‖τ‖2s

)
+ CE

1/2
T D(t). (4.4)

It is clear that
∣
∣ε21

〈
∂m

x q, ∂m+1
x Θ

〉 − ε22
〈
∂m

x τ, ∂m+1
x u

〉
+ α

〈
∂m

x u, ∂m+1
x N

〉∣
∣ ≤ C‖W‖2s.

Integrating (4.4) over [0, T ] yields

−C‖W (t)‖2s + a0

∫ t

0

(‖∂xN(t′)‖2s−1 + ‖∂xu(t′)‖2s−1 + ‖∂xΘ(t′)‖2s−1

)
dt′

≤ CE (0) + C

∫ t

0

(‖q(t′)‖2s + ‖τ(t′)‖2s
)

+ CE
1/2
T

∫ t

0

D(t′)dt′.

This inequality together with (4.3) yields

E (t) +
∫ t

0

D(t′)dt′ ≤ CE (0) + CE
1/2
T

∫ t

0

D(t′)dt′,

which implies (4.1) since ET is sufficiently small. �

Proof of Theorem 1.1. The estimate in Lemma 4.1 shows that the smooth solution W is uniformly
bounded in L∞([0, T ];Hs(R)) with respect to ε and T . By the bootstrap principle, it yields uniformly
global solution. In particular, this estimate gives (1.16). �

Proof of Theorem 1.2. From (1.11), (ρε, uε, θε, qε, τε) satisfies the following system
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tρ
ε + ∂x(ρεuε) = 0,

∂t(ρεuε) + ∂x(ρε(uε)2 + pε − τε) = 0,
∂t(ρεEε) + ∂x(ρεuεEε + uεpε + qε − uετε) = 0,
ε21(∂tq

ε + uε∂xqε) + κ∂xθε = −qε,

ε22(∂tτ
ε + uε∂xτε) − λ∂xuε = −τε,

(4.5)
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in R
+ × R, where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

eε = cvθε +
ε21

κρεθε
(qε)2 +

ε22
2λρε

(τε)2,

pε = Rρεθε − ε21
2κθε

(qε)2 − ε22
2λ

(τε)2,

Eε = eε +
1
2
(uε)2.

(4.6)

The uniform estimate (1.16) implies that the sequences (ρε − 1)ε, (uε)ε and (θε − 1)ε are bounded in
L∞(R+;Hs(R)) and the sequence (qε)ε and (τε)ε are bounded in L2(R+;Hs(R)). It follows that there
exist functions (ρ̄, ū, θ̄) ∈ L∞(R+;Hs(R)) and (q̄, τ̄) ∈ L2(R+;Hs(R)), such that (1.17)-(1.18) hold. In
addition, as ε → 0,

ε21(∂tq
ε + uε∂xqε) ⇀ 0 in D′(R+ × R),

and

ε22(∂tτ
ε + uε∂xτε) ⇀ 0 in D′(R+ × R).

Moreover, from the first three equations in (4.5), it is easy to see that (∂tρ
ε)ε, (∂tu

ε)ε and (∂tθ
ε)ε are

bounded in L2(R+;Hs−1(R)). Hence, by a classical compactness theorem [40], for all T > 0, (ρε)ε, (uε)ε

and (θε)ε are relatively compact in C([0, T ];Hs−1
loc (R)). As a consequence, as ε → 0, up to subsequences,

(ρε, uε, θε) → (ρ̄, ū, θ̄) strongly in C([0, T ];Hs−1
loc (R)).

This is sufficient to pass the limit in (4.5)-(4.6) in the sense of distributions and to obtain the Navier-
Stokes equations for the ideal fluid. This ends the proof of Theorem 1.2. �
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