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Abstract. The paper deals with the stability of a uniformly rotating finite mass consisting of two immiscible viscous in-
compressible fluids with unknown interface and exterior free boundary. Capillary forces act on both surfaces. The proof of
stability is based on the analysis of an evolutionary problem for small perturbations of the equilibrium state of a rotating
two-phase fluid. It is proved that for small initial data and small angular velocity, as well as the positivity of the second
variation of energy functional, the perturbation of the axisymmetric equilibrium figure exponentially tends to zero as t — oo,
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1. Introduction

The problem on an isolated liquid mass rotating about a fixed axis as a rigid body was treated by many
outstanding mathematicians such as Newton, Maclaurin, Jacobi, Kovalevskaya, Lyapunov [1,2], Poincare
[3] and others. Most of them considered self-gravitating rotating fluids but without surface tension.

The famous Plateau experiment raises an interesting mathematical problem of equilibrium figures of
a rotating fluid subjected to the capillary forces. In this experiment, one can observe the deformation of
a liquid sphere, consisting of oil and rotating in a fluid of the same density, into a torus as the angular
velocity increases. The attraction can be completely neglected in this case and the form is determined
solely by the rotation and the surface tension of the liquid. Mathematical treatment of this problem was
carried out by Globa-Mikhailenko [4], Boussinesq and especially by Charrueau [5,6]. The latter gave a
detailed analysis of the problem, calculated the form of equilibrium figures including the toroidal case
and considered some stability aspects. These results were presented in the book of Appell [7]. There
one can find reasoning about the dominant effect and calculations of the sizes of rotating liquid masses
which are affected by both self-gravity and capillarity. The potential of attraction forces increases in
proportion to the square of the dimensions, while the surface tension changes in inverse proportion to
the radius of curvature, which, for figures similar to each other, is proportional to the linear dimensions.
Therefore, with big masses, the attraction dominates, and the effect of surface tension is negligible. For
small masses, on the contrary, the attraction is negligible, and only the surface tension is significant; it
is this that restricts the amount of deformation caused by the centrifugal force and determines its limits.

The stability of equilibrium figures is one of the most important their characteristics. The first who
used analytical methods for studying the stability and instability of the forms of a rotating fluid mass was
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Lyapunov [1,8]. He analyzed the second variation of energy functional with respect to small perturbations
of figure boundary. The positivity of this variation guarantees the stability of the system because the
energy has a minimum at this state. The Lyapunov method was developed for the case of a rotating
capillary fluid by means of an analysis of the corresponding evolutionary free boundary problem in [9,10].

In the present paper, we extend the above technique to the case of a finite mass of two immiscible liquids
and treat stability problem for two rotating incompressible capillary fluids separated by an unknown
interface close to the boundary of an equilibrium figure. In addition, we rely on the previously obtained
results, in particular, we employ the existence of equilibrium figures for a two-phase liquid [11] and adapt
the proof of the global-in-time solvability for a nonlinear two-fluid problem with small data without
rotation to our case [12-14]. One of the main points is global solvability of a linear problem which is
based on the construction of a generalized energy function and a priori exponential energy inequality for
a solution. The idea of constructing such a function was formulated and used in the works of M. Padula
and one of the authors of the paper [15,16].

Let two viscous incompressible immiscible fluids of densities p and viscosities u* be contained in a
domain €; C R? bounded by the free surface I'; and separated by the variable interface I';. It is assumed
that T')" is the boundary of the domain 2, filled with a fluid of the density p* which is surrounded by

another fluid of the density p~ occupying the domain Q; = Q; \ ;. This two-phase drop rotates about
the vertical axis x3 (see Fig. 1). At the initial instant ¢ = 0, the surfaces Ty, I'{" are given. It is necessary
to find T, T}, as well as velocity vector field v(x,t) and pressure function p(x,t) satisfying the interface
problem for the Navier—Stokes system

p~ (D + (v V)v) — V30 + Vp =0,
V-v=0 in UQF=QfuQ;, t>0,
v(z,0) = vo(z) in UQT,

’]I‘(v,p)n|r, =0 Hmn onl,,

v = lim w(xt)— lim ov(x,t)=0,
[ ]|rjr ol ( ) ezoeT, ( )
zeQy z€Q,
[T(v,p)n]|r+ =oc"H'n onT},
t
Vpo=v-mn only=TUT,, (1.1)

where Dy = 0/0t, V = (0/0x1,0/0x2,0/0x3), vy is initial velocity distribution, T(v,p) = —p + u=S(v)
is stress tensor, S(v) = (Vv) + (Vv)T is doubled rate-of-strain tensor, the superscript 7' denotes the
transposition, p*, u= > 0 are the step-functions of density and dynamical viscosity equal to p~, p~ in
Q; and p*, pt in QF; H—, H' are twice the mean curvatures of the surfaces I';, I} (H+ < 0 at the
points where I‘?‘ is convex toward €, ); 0,01 > 0 are the coefficients of the surface tension on I';, I,
respectively; n(z,t) is the outward normal to I'; and T}, V;, is the velocity of evolution of the surfaces
I'; and I') in the direction of m. We suppose that a Cartesian coordinate system {z} is introduced in
R3. The centered dot means the Cartesian scalar product.

The summation is implied over the repeated indices from 1 to 3 if they are denoted by Latin letters.
We mark the vectors and the vector spaces by boldface letters.

We assume that the domains QF, Qg differ little from equilibrium figures F+ and F such that
951 =17*1, 9] = |7 (1.2)
We denote F~ = F\ F+. Due to the incompressibility of the liquids, equalities (1.2) hold for any ¢ > 0:

Q| =[F*], =7 (1.3)
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T3

2 = (x1,22)

FiG. 1. Two-phase drop

It implies the conservation of mass because of constant densities of the fluids. A solution of problem (1.1)
also satisfies the other conservation laws for ¢t > 0:

/ pixj da = / pixj dez =0, j=1,2,3, (barycenter conservation),
Q¢ Qo

/ pro(z,t)de = / prvo(z)dz =0 (momentum conservation),
Qq Qo

| oot m@de = [ pron) @ = [ o) oo (1.4)
Q¢ Qo F

= (62 (angular momentum conservation),
where n,(x) = e; x z, i = 1,2,3, p is the step-function of density equal to p~ in F~ and pT in F*, §F is
the Kronecker delta; w is the angular velocity of the rotation,

B = w/}_ﬁ(m)|x’|2 dz = wT

is the angular momentum of the rotating liquids, and |2’|? = 2% + 3. One can prove that (1.4) holds for
all t > 0 if it is satisfied for t = 0 (see [11]).

We introduce Gt = 0F " and G~ = OF (see Fig. 1).

Two-phase liquid mass uniformly rotating about the x3-axis with constant angular velocity w = /I
has velocity vector field

V(z) =wes X & = wns.

and pressure function
2
w
Pa) = polo'P + ¢

where p, p(jf are step-functions in F*. This motion is governed by the homogeneous steady Navier-Stokes
equations

p(V-V)V - iV?V + VP =0, V-V=0 inF=UF*
with the step-function i = p* in F* and i = p~ in F~. If one substitutes V,P into the boundary
conditions in (1.1), one obtains the equations for the surface G~ of the domain F and for the interface
G between the fluids

2
w
o H (x) —|—p77|z’\2 +py =0, ze€G,

2
U+H+(x)+(p+—p7)%|x’|2+p8' —-p, =0, z¢€ GT, (1.5)
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where H™, HT are twice the mean curvatures of G, G*. In [11] it was proved the existence of the surfaces
G~, G satisfying equations (1.5).

We assume the axial symmetry of F* and the symmetry of them about the plane z3 = 0; it implies
that

/ plx)ride =0, i=1,2.
F

/ prsdx =0, / przrjde =0, j=1,2. (1.6)
F F

Condition (1.6) corresponds to the first relation in (1.4) which means that the barycenter of the liquids
coincides with the origin all the time. The other conditions in (1.4), the conservation of momentum and
angular one, take the form

/ prv(z, t)de :/ pY(x)dx =0,
Q F

/ pEo(a,t) - m;(0)ds = / V() - mi(e)de = 638, i=1,2,3, (L.7)
Q4 F

It is reasonable to work with the problem for the perturbations of the velocity and pressure
ve(x,t) =v(x,t) — V(z), pr(a,t)=p(x,t)—Px)

written in the coordinate system rotating about the x3-axis with the angular velocity w.
We introduce the new coordinates {y;} and the new unknown functions (v, p) by the formulas

z = Z(wt)y,
o(y.t) = Z N wtvr (Z(wt)y,t), By,t) = pr(Z(wt)y,t),
where

cosf —sinf 0
Z(0)=| sinf cosf 0
0 0 1
We note that
Z7Hwt)(V - Vo), = w(ns(2) - Vi) o(y, t) = w(Z 'n(y) - V)0
0v 0v
= . V 3 7t f— —_—— [
w(n3(y) - Vy)0(y.t) = w2y - w1 )
and Dy, |,—zy = Div,.(Z2y,t) — (V- V)v,. Substituting this in (1.1) and acting by Z~!, we arrive at the
free boundary problem for the perturbations of the velocity © and pressure p:
p=(De% + (0 - V)0 + 2w(es x D)) — p=V? + Vp = 0,
V-o=0 inUQF=0Q,0Q, >0,
3(y,0) = vo(y) — V(y) = o(y), y € UQT =05 UQY,

2
-~ I _w N\~ ~_
T(®,p)n|p = (6" H (y) +p 7|y’l2+po)n, yely,

2
o w . .
[T(%.p)nl|ps = (" H (y) + [p¥]les 5 |y/1* +p5 —po)7. yeTT,
Va=v-n only=T; UL/, (1.8)

where QFf = Z-1(wt)QF, TF = Z-1(wt)TF, n is the outward normal to Ty, n = Zn, y' = (y1,y2,0), pg

psr are constants on I', and f‘j , respectively.
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The kinematic boundary condition in (1.1)

Vo =v-n,
where V,, is the normal velocity of T, is invariant with respect to our transformation. Indeed, let x(t)
be a point of I';. We have V,, = D;x - n, and since Dy;x = wDy

lp—o 2y + ZDyy, 2T = Z7', then
Dix-n =w(ez xy) 1+ Dyy-n. On the other hand, v-n =0 -n+w(es X y)-n. Hence, Dyy-n =0 -n
which means V; = v - n.

Relations (1.3), (1.4), (1.7) go over into
OF 1= 1771 Il =171,

(1.9)

/ piyj dy=0, j=1,2,3, (barycenter conservation)
Qq

/ pTo(y,t)dy =0, (momentum conservation)
Q¢

| oo mway+w [ fagndi=o [ menway =t (110)
where n,(y) = e; xy,i=1,2,3.
Let us suppose that the surfaces I‘ti can be given by the relations

IF ={y=2+N(@)r(z1), 2€G*},

and we map QF on F* by the transformation the inverse of which is

y=2z+ N*(2)r"(z,t) = e (z,1), (1.11)
where N™ and r* are extensions of IN and r into JF, respectively.
Due to (1.5), the boundary conditions

2
R _w N ~ =
o, = (0 H () +p Sl +pg)R yely,
2

JON w N\ ~ =~
[T(0,p)Rllry = (T HT () + [p* ey 5 W1 + 08 —po)n, v €LY,

t t 92
in (1.8) are equivalent to ones

—ph+ pS(V)hf = {0_ (H™(y) — H ™ (2))

w? . = -
o (=P fh yelr, zeg,
[— 58+ nFS@)llpy = {0 (H (y) = 1 (2)
+ “ﬁ 12 2 ~ f+ + 1.192
+[p]|F:r2(|y| |Z‘)1’1, ye t,ZEg. ( )
Our next goal is to linearize problem (1.8). To this end, we need to compute the first variation with
respect to r of the expressions H(y) — H(z), |y'|* — |2'|?, where y is connected with z by the relation
(1.11).

We compute the first and second variations of a functional R[r| with respect to r by the formulas

2
doR[r] = %R[STHS:O, (%R[r] = d—R[er

92 a0 (1.13)
It is clear that

d
oo(ly'l* = 12'7) = g (Iz' + N'sr* = |2')| [y = 22" N'r,  N'"= (N1, Vs, 0),
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and, according to [17],
So(H*(y) — H=(2)) = AFr + (Hiz(z) —2K=(2))r,

where A* are the Laplace - Beltrami operators on G*, respectively.
Applying (1.11) and using the above relations, we arrive at the linear problem corresponding to (1.8),
(1.12)

pi(th—l—Qw(egxw))—,uiVQw—i—Vp:O,
V.w=0 inF=F UFT, t>0,
w(z,0) =v(2) — V(2) = wo(z), z€F,
T(w,p)N +NByr=0 onG~,

w}|g+:0, [']I‘(w,p)NHg++NBO+r:0 on G,
Dir=w-N onG=G UG, r|t:0:7’0 on G, (1.14)
where
Byr=—0c"ATr—=b"(2)r, z€G7,
Bfr=—octAtr —bT(2)r, 2€G" (1.15)
with b= (2) = 0~ (K=" = 2K7) + p~w?N - 2/, b*(2) = ot (H*? — 2K*) + [0]| 5, N - 2/, 2’ = (21, 22,0),

KC* are the Gaussian curvatures of G*.
We recall the definition of the Sobolev—Slobodetskii spaces which we use in the present paper. The
isotropic space Wi(£2), Q C R™, is the space with the norm

gy = > ID%ult= 3 [ lu@)Ps
0<l7|<t 0<l7|<!t

if I = [l], i. e., [ is an integral number, and

. dz dy
||u||?,V21 ||U||2 (o) + Z / DI u( Dz];“(y)‘Z‘x_y‘mz,\

if Il =[]+ A A e (0,1). As usual, Dg;u denotes a (generalized) partial derivative — 9w where

Szt ... 0z ’
J = (jl7j2)"'j’n) and |.7‘ :jl + - +jn
We introduce the anisotropic spaces

Wy%(Qr) = Lo ((0,T), Wi(Q)), W3'"*(Qr) = Wy/?((0,T), L (9));

Qr = 2 x (0,T), the squares of norms in these spaces coincide, respectively, with

T
Ilygoqn = | IOyt Tulygun g,y = [l By
The space Wé’l/2(QT) =W (Qr)n W;’l/2(QT) can be supplied with the norm

||UHW2“/2(QT) = ||u||W2lv°(QT) + ||u||W20~l/2(QT)'

We will use another equivalent norm in Wzl’l/ *(Qr) below.

The Sobolev-Slobodetskii spaces of functions given on smooth surfaces, in particular, on G* and on
G% =G* % (0,T), T < oo, are introduced in the standard way, with the help of local maps and partition
of unity.

Moreover, we introduce also the norm

(s+1,1/2)
lu |S = lullwgtoy + Ml (o rws e >0
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t>0 1> R?

@’ = (z1,7)

F1a. 2. Two-phase equilibrium figure

Finally, we set

ullfysors) = Nulliyscen + lulliyyz-y,  ule =l

2. Linear Problem
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An analysis of nonstationary problem with free boundaries for the Navier —Stokes equations (1.8) with
initial data close to the regime of rotation of a two-layer fluid as a solid (see Fig. 2) is based on linearisation

(1.14).

We study the following two initial-boundary value problems for the Stokes equations in a given two-
phase domain separated by an axisymmetric surface of revolution G+ and bounded by an axisymmetric

surface G~ with respect to the unknown velocity vector field w and pressure function p:

p(Diw + 2w(es x w)) — iV>w + Vp = pf,
Vw=f=V-F imF=F UFT, t>0,
W|t:0:w0 in F,
T(w,p)N|, + NByr=d ong~,
[w]|g+:0, [T(’va)NHngJrNBarr:d on G,
Dor—w-N=g on G=G UG, rl,_y=70 ong,
and
p(Diw + 2w(es x w)) — AV’w +Vp=0, V-w=0 inF, t>0,
w|t=0=w0 in F,
T(w,p)N|, +NByr=0 ong-,
[w}|g+:0> [T(w,p)N]‘g+ JrNB(TT:O on G,
Dir—w-N=0 ong, r|

=0 ro on Q,

(2.1)

(2.2)

where w is the angular velocity of the rotation, r(z,t) is an unknown function defining the surfaces I‘ti;
N is the outward unit normal to G~ UG™; f, f,d, g, wo, ro are given functions; the expressions Boir are

defined by (1.15).
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We assume that the domains F* are symmetric with respect to 1, z2, z3, as well as the initial data
satisty, in accordance with the linearization of assumptions (1.9), (1.10), orthogonality conditions

| rlwrag =0,
G+
pi L To(lL')CEj dg + [ﬁ]|g+ /gJr To(lL')CEj dg = Oa ] = ]-7 27 37 (23)
/ pwo(x)dz =0,
f
| @) @) de (o [ rom(e) ny(e)dg
f —
= lalge [ rolem(@) - ny(x)ag) =o. (2.4
We introduce the notation Q% = F* % (0,7), G% = G* x (0,T), Dy = Q}' UQr, Qr = Q; Ua;,

Gr = GLUGT.
First, we study homogeneous problem (2.2).

Proposition 2.1. A solution of problem (2.2)~(2.4) satisfies conditions (2.3), (2.4) for all t > 0.

Proof. Due to the boundary conditions in (2.2), we have

4 r(m,t)dgz/ w-NdG= [ V- wdz=0,
dt Jg+ g+ F+
3/ r(z,t)dG= [ w-NdG=0
dt Jo- o
which implies
/ rdg = rodg = 0, / rdg = rodg = 0. (2.5)
G+ G+ - G-

Now we integrate the first equation in (2.2) over F~ U F+ = F. In view of (2.8), we obtain

d

—/ ﬁw(x7t)dx+2w<e3 X / ﬁwdx) —|—/ Ba(T)ng-i-/ B (r)NdG
dt F F G- g+

= d pw(z,t) da + Qw(eg X / W d:v) +/ rBy (N;)e; dG
dt Jx F -

G+

d
E(R/Fﬁwdm—i—Qw(egx/Fﬁwdm)
—w? (p_ /_ rx'dg + [ﬁ”g+ /g+ rx’ dg) =0. (2.6)

Since
d

—(p*/ radg + [p]| +/ rmdg):/pw(x,t)dx,
dt g 9 Jg+ F

equation (2.6) together with initial conditions (2.3), (2.4) can be regarded as a homogeneous Cauchy
problem for

Yo l(t) = p~ / r(z,t)xe dG + [p]|g+ / r(z,t)redg, a=1,2,
_ o+

and for | + pw3 dz. From the uniqueness of a trivial solution, it follows that y (t) = 0, /. 7 pws(z,t)dr =0,
which implies [ pwo dz = y/,(t) = 0, [ pwsdz = y5(t) = 0, and ys(t) = y3(0) = 0.
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When we multiply the first equation in (2.2) by n,(z) and integrate, we get

pw(z,t) - n3(z)dz + Qw/ pw - x'dz
F

i(/]__ﬁw~ﬂ3($)d$+w(p /g_ rlns(2)]? dG + (]| g+ /g+ T|n3|2dg)>
0,

dt Jz

G [t @ e =20 [ pualozde (o [ nale)x'dg
dt Jr F

+[ﬁ]lg+/ he XdG) =0,  a—1,2,
g+

which can be written as follows
d

dt(/f_ﬁw(x,t) ~m(m)dw+w(p*/_mg.nl(x)dg+ [7llg+ /g+ s M dg))
_w/fpw(x’t)'”2(‘”)dx+w(m/g s - n2(z) dG + [pllg+ /g+ 3 - 12 dG)
=0,

i(/fﬁw(x,t) ~T]2(9:)dx+w(p’/7rn3.ng(x)ngr [7llg+ /g+ s 'Uzdg))

o [ pwie ) mi)ds ol |
— 0.

s - (x) dG + [pl|g+ /g+ r1s - 1 dG)

Hence relations (2.4) are valid for all positive ¢, and the proposition is proved. O
Due to momentum conservation law, it is valid the following statement.

Corollary 2.1. There holds the following decomposition

3
w=w"+Y di(r)n,,
=1

L

where w= is a vector field orthogonal to all the vectors of rigid motion n, 1. e.,

/ ﬁwL : ndx = 07 77(55) = €; or 'I’]({L’) = 771‘(@7 = 172737
F

and

di(r) =—§(p‘/_rn3-mdg+[ﬁ]\g+ /g+ rng - m;dg), S =/Fﬁ|ml2dw~ (2.7)

Proposition 2.2. The following relations hold:

By(n-N)=-w’pn-a, zeg,

Bi(n-N) = —llgin -, zecq*, (2.8)
where m is an arbitrary vector of rigid motion.

Proof. Let Q. be a bounded domain with the boundary I'., and n. be the external normal to I'.. The
equality

w2
/ (O'HE(Z’) + p7|x/|2 —l—po)ng(x) ‘mi(z)dl. = pw2/ ni(z) - x' dle,

€ €

i=1,2,3, (2.9)
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follows from
/ H.(x)n. -n,dl'. = / Ap.x-n;dl': =0,
. e
which is a consequence of the well-known Weierstrass formula

H.(x)n. = Ar_z,

and from

[ wPnem@dr. = [ Ve =2 [ n) i
Fs Qs QE

/ng-nidFE:/ V-n,(zx)dz = 0.
I Q.

Next, by TS we denote the surfaces given by x = y +eNr, y € G*, and QF, O mean the domains

bounded by the surfaces TF, T+ UTZ and close to F*, respectively; Q. = QF UQZ. Finally, let N* and
7* be the extensions of N* and r into F.

We generalize (2.9) on the surfaces I'Z:
— — _w2 112 — —
| (o @+ o S i ) (a)my(o)
re
+ 7+ + w? o4 —\ gt
(0" HZ @) + 1% 1" 2+ 915 = pg ) (@) - my(a) .
re <2
—( [ o e dos [t ' ds)
Q. of ©

:w2(/ p’m—':c’der/ P+"71":13/d:c) :w2/ pim'm'dfﬂ-
Q- of Q.

By using equations (1.5) for GF, we obtain

[ (o (@ -1 w)
w2 ~
2P = ) ) e(e) )y [T )N )] 06
ot (H* (2) — HF
+ [ (o @ -t w)

+ (ol 5 (212 = 1) ) me@) - @) o, X ()N ()] 4G

:€’1w2{p’(/ i(z) -2 dz - /m(y)~y’dy> +p+</m'w’dx* /m(y)‘y’dy>}, (2.10)

Qe F- Qf Ft
where L, is the Jacobi matrix of the (invertible) transformation
r=y+eN"r": F — Q.

~

L. is its co-factor matrix.
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The first variation of (2.10) leads to
[ BN nwag+ [ BN )
= —lim 6‘1w2,0‘(/ ni(z) -’ dz —/ n:(y) -y’ dy)
e—0 Qs F-
— lim e 'w?p*t (/ n;(x) - &' dw — / n:(y) -y dy)
£—0 Qf Ft
= —pr‘(/ n;(y) - y'rdsS —/ ni(y) - y'r dg) - wzp*/ n;(y) - y'rdg
G- g+t g+
=—w’p~ /7 n:(y) - y'rdG — w?[p]| . /g+ n;(y) -y'rdg
which implies

By ()N - n,(y) dG = —w?p~ / n:(y) - y'rdG

G- _
and
B 0IN mi(5) 49 =~ | miy)-y/rdg.
G+ g+
It is true the same for N - e; instead of N - n,. In view of the arbitrariness of r, Proposition 2.2 is
proved. (I

Theorem 2.1 (Local Solvability of the Linear Problem). Let G € W23/2+l and ro € WFHG) with | €

A
(1/2,1). For arbitrary f € W5Y3(Dy), f € W (Dy), f=V-F, F e Wy 3(Dy), [F- Nl|g = 0,

1,1 1
wy € WiHH(F), d = d, +dN, d, € Wy 227 1(Gr), N-d, = 0,d e W, 2°(Gr)nWY? (0, T; W, 2(G)),
g€ W23/2+l’3/4+l/2(GT), T < o0, satisfying compatibility conditions
V- wo = f|t:0a
[wollg+ =0, [4™TgS(wo)Nllg+ = drli=o, p HgS(wo)Nlg- = drli=o,
A
where lIgb = b — (N - b)N, problem (2.1) has a unique solution (w,p,r) such that w € W;+l’1+2 (Dr),
1 L
pE Wl2’2 (Dr), Vp € Wl2’2 (D7), 7(-,t) € WEHG) for any t € (0,T) and
||W||W§+l’1+l/2(DT) + HvPHbfWZZJN(DT) + ”pHW;l/z(DT) + ||THW25/2+1,5/4+1/2(GT)
+ ||Dtrij/“lv?’/“l/z(GT) < C(T){Hbff”bfwlvaZ(DT) + ||f||W21+l=°(DT)
1+1/2,1/2
+ ”beHWS’HZ/z(DT) + HbdeHblez“”‘l/”l/“(GT) + U|d|gT /2:1/2)
o lglygarsnaraire gy, + IWolly st ey + ol ) | (2.11)
Remark 2.1. From trace theorem for p € W, "' (G7), it follows that
oG Dlly2r2gy < e{Iolwaoan) + IDipllar } ¢ € 10,7,
which implies the inequality

G, D)l ) < c{||7‘HW25/2+z,,o(GT) + ||Dtr||W23/z+z,o(GT)}.

This means that I'c € W2 for all t € [0,T].
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Proof. Let r1 be a function satisfying the conditions

71(y,0) = ro(y),
Dyr1(y,0) = g(y,0) +wo(y) - N(y) = ro(y)

and the estimates

(3+1.3)
|7"1|G2T 274 H'Dt’l"lHWQ%-H l C{||7”1||W2+L 4+2(G + ||Dt’l“1|| 3+z 3+2(G )}
< C{”TOHWg“(g) + ||7”o||W2l+1/2(g)}- (2.12)

Such 7 exists due to Proposition 4.1 in [20] and equivalent normalizations of the Sobolev —Slobodetskii
spaces.

We can write

BEr(y,t) = BEri(y,t /B Dy(r(y,7) =iy, 7)) dr

t
—Bgnln.t)+ [ B (s(07) + wlyr) - N - D7) dr.
0
Consequently, system (2.1) can be transformed to the form:

ﬁ(DtW + 2w(es x w)) — aV2w + Vp = pf,
V-w=/f inF, t>0,
W(y,O) = Wo(y) in ‘7:7

pgS(wWN|,- =d,,  [wllgr =0, [ TIgS(w =d,,

Nllg.

¢ t
N - T(w,p)N|,_ — 07N~A7/W‘g— dr =d' +0’7/B/dT—|—O'7VgH ~/wd7‘
0

— awapr-y’/W -Ndr + 207/ng : VgNdr on G,

t ¢
[N T(w,p)N]|5 — 0N - A" [wlg+ d7 = d' + a+/B’ dr + O'+VQH'/W dr
0 0

—oTW?p)lg+ N - y’/w "Ndr + 20" / Vgw :VgNdr on G7, (2.13)
where d' = d — oBiry, B' = BE(Dir1 — g), Vg is the surface gradient on Gt; S:T = S;;T;;. In (2.13), we
have used that

A*N = VgH* — (H* — 25N

(Lemma 10.7 in [18]). Such problems were investigated in [14,21,22], where, in particular, the solvability
of (2.13) without the terms 2w(es x w) and

¢
UngH~/ wdr —UiWQ[ﬁ”giN'y/fgW'N‘gi dr
0

+20% [ Vgw(y,t) : VgN(y)|g= dr
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and the estimate of its solution

||WHW22+Z=1+Z/2(DT) + HVPHWLQJ/?(DT) + Hp||w20=’/2(DT) < C(T){”f”vvév’/?(DT)
+ ”fHWzl“vO(DT) + ”F”Wg’H”Q(DT) + ”d"'”Wl;l/z’l/Z“/‘l(GT)

14+1/2,1/2
+ |d/|(GT /2:1/2) + HB’HWZL,1/2,1/271/4(GT) + HWOHW;“(}‘)} (2.14)

were established. Inequality (2.14) together with (2.12) implies estimate (2.11) because the additional
terms are of lower order and have no essential influence on the final result. In addition, in [21,22], we
considered the whole space with a closed interface. We note that the results for bounded domains are
similar [14]. Near the outer boundary, one should apply the estimates obtained in [23] for a single liquid
of finite volume. O

Now we consider homogeneous problem (2.2) with wg and r( satisfying orthogonality conditions (2.3),
(2.4). At first, exponentially weighted Lo-estimates of w and r will be obtained.

Proposition 2.3. Assume that the form
Ro(r) = / rBirdg (2.15)
g
is positive definite, i. e.,
CilHTH?/le(g) < Ro(r) < CHT”%/VQI(g) (2.16)
for arbitrary r(x) satisfying (2.3). Then a solution of (2.2)—(2.4) satisfies the inequality
et 1% + e r( D20 < e lwoll + IrolZs gy} ¢ >0, (2.17)
where (1, ¢ > 0 are independent of t.

Proof. In order to prove (2.17), we multiply the first equation in problem (2.2) by w and integrate by
parts. As a result, using the boundary conditions and the self-adjointness of the operators l’)’oi (r), we have
energy relations

1d

O:/ pDiw-w —V - -T(w,q) -w)de = -—
f( K ) 2dt /-

plw|? dz + /f AIS(w)P? dx

- [ TN wag— [ v N, - wag

- %% plw|* da +/ﬂ|S(w)|2dx +/W-NBS_(T) dg +/W-NBO_(7")dQ
F F G+ G-
— (ot acs [r5i0)ag+ [ )ag) + [ uistwl . (2.18)
F G+ G- F

Making the same but with W € W3 (F) such that

V-W=0 in F, W-Nlgz=r,
W lwz ) < elirlyrs -

ID:W |7 < c|Dirllg < cf|w - Nllg,



40 Page 14 of 26 I. V. Denisova and V. A. Solonnikov JMFM

we obtain

0= d pw Wd:r:—/

ﬁw~Dtha:+2w/ (es x w) - Wdz
at -

_7.'

+ [ w.NBr()dg+ [ W NBF(r)dG + / AS(w) : S(W) da
G- G+ F

p'w stc—/ﬁw~’Dthx+2w/(egxw)-de
f

T -

—l—/ AS(w) : S(W)dx—l—/ rBy (r) dg+/ rBy () dg. (2.19)
F - gt
Since due to (2.5) fgi rdG = 0, such W exists.

Now we estimate the generalized energy. We multiply (2.19) by small v > 0 and add to (2.18), which
gives

d
EOREIOR

where

g:l(/mwﬁdm/ rsg<r)dg+/ rBo_(r)dng’Y/ﬁw'de),
2\ JF G+ - F

512/ ﬂ|§(w)|2dx+'y(2w/(egxw)-de—/ pw - DWW dx
F F F

+/fﬁS('w) :S(W)dm—&-/irl?g(r)dg-i-/

By (r) dg).
G+

By virtue (2.16), we have
eafllwls + Irlivse)} < € < eafllwlz + 1m0 -
In view of Corollary 2.1, w = w' + Z?:1 (1), (r) = wt + w’ and, hence,
IVpwllF = Vow |7 + |vVow' |17,

- 3 _ .
whete [\/pw'[3 = S0 dudy Sy = S0, Sid2, Sy = [y -y, S = Sy and dy, = 1,2,3,
are defined by (2.7). It is easily seen that [|\/pw’||% is a positive quadratic form with respect to r.
Consequently,

es{ w2 + 71200} < € < col w13 + 71l )}
Next, we apply the Korn inequality, valid for the functions orthogonal to all rigid displacement vectors
24],

crl| Ve [ < esl|VAES(w )% = csllVAS(w)|%.

Then we can use the Poincaré inequality

collw™ |5 < crollpw % < ennllpVw™ |5

0:/ ﬁwdx:/ pwt dz
F F
due to (2.4) and (1.6).

Hence, by the Holder inequality, for small enough v, we have

&1 = 26:E

since

with some (1 > 0. Consequently,

%E(t) +26:E(t) <0
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which implies
E < e 2tg(0)
and inequality (2.17). O

Remark 2.2. We observe that condition (2.16) coincides with the positiveness of the second variation of
the potential energy

ey W o
Glr) = oH T +o7 T | =5 [ I’ e =i 10— pi 07
for given volumes of QF. One can calculate it by (1.13):
2
2 _ - 2 2, W 2 2 2 —n, 2
60G(r)—/g {07 (Varl? +2r%) — p* (aN|x\ [#/[H) 1 + py Hr? } d

2 w0 o 2 2 V2
+ o { T(|Vgr|? + 2Kr?) |ng (8N|$ | — |2'| H)r + (pg — po )Hr }dg
(see [9,11]). Due to equations (1.5), this yields
5eG(r) = / {0_|Vgr\2 + (0_(21C —H?*) — p N - :B’)rz} dg
G-

_4_/g+ {0+|Vg7‘|2+( (2K — H2 |g+w N - ar:) }dg-

The nonnegativity of the second variation of the potential G(r) on the subspace of r satisfying orthogo-
nality conditions (2.3) guarantees weak lower semicontinuity of it whence together with the coerciveness
of the potential it follows the existence of a minimum. It is clear that the minimum realizes at r = 0
which implies the stability of equilibrium figures F and F* given by (1.5) that are the Euler equations
for the potential G(r).

This approach corresponds to the variational setting for stability problem of the boundaries G*.

Theorem 2.2 (Global Solvability of the Linear Homogeneous Problem). If estimate (2.16) is valid for the
functional Ro(r) defined by (2.15) then problem (2.2) with wo € Wy (F), ro € W2THG), 1 € (1/2,1),
satisfying compatibility conditions

V-wy=0, [wolgr =0, [pFlgS(wo)N]|g+ =0, p TgS(we)N|g- =0, (2.20)

and orthogonality conditions (2.3), (2.4), has a unique solution (w,p,r) such that w € W2+l 1-H/Q(Doo),
pe W l/2( ), Vp € W) Z/Z( Do), 7(-,t) € W2ZTHG) for any t € (0,00). This solution is subjected to
the inequality

”eﬁtwll 2+l,1+%(Dm +||eﬁtva

+[le”Der| 303

+ e

3+, 5+
W22 4

8t
Sy TIPl % (Goo)

L,
2
g, S c{lwollyy 141z + lIroll w216 } (2.21)

with certain > 0 and the constant ¢ independent of T'.

For obtaining bounds for higher order norms of the solution similar to (2.17), we invoke a local-in-time
estimate of the solution.

Proposition 2.4. Let T > 2. The solution of problem (2.2), (2.3), (2.4) is subject to the inequality

Wl arinrs v
lgoennes IR Rl

v Il g+ +Der|

LE+4 $+1,34L
T2 (Gry-1,tg) W2 42 (Gro—1,10)

< AlIWlQuy-20 + 17llGrg 200 ) (2.22)
where 2 < t() < T, Dtl,tz =F x (tl,tg), Qtl,tz =0 x (tl,tz), Q :FU]:_, th,tz = g X (tl,tg).
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Proof. We fix ty € (2,T) and multiply (2.2) by the cutoff function () (t), smooth, monotone, equal to
zero for t < tg — 2+ A/2 and to one for ¢t >ty — 2+ X, where A € (0,1], and such that for ¢, () = %t(t)
and (5 (t), the inequalities

sup |Q(t)| <ed !, Sup|é:)\(t)| <ea?
teR teR

hold.
Then for wy = wly, px = plx, ™A = 7{)\, We obtain

pt (th,\ + 2wV - (e3 X W)\)) — V2w + Vpa = ptwis,
V-wy=0 in F*, t>0,
wi(y,0) =0 in F, rx(y,00=0 on G,
willgr =0,  [pTgS(wx)N]|;, =0,
N - '11“(W>\,p>\)NHg+ + ot Byralgr =0,
pHgS(wA)N|;_ =0, N-T(wx,pa)N|g_ + 07 Boralg- =0,
Dyry —wy -N=7r{(t) on G. (2.23)

By Theorem 2.1 applied to system (2.23), (2.3), (2.4), estimate (2.11) for wy, px, 7y is valid whence it
follows that

U\ = Hw||W§H'Hl/2(Dt,1+A,to) + ||Vp||WL2,l/2(Dt1+/HO) + ||pHWQL’l/2(Dt1+)\,t,O)

+ ||7"||W25/2+z,5/4+z/2(c w0) + ||Dt’f'||W23/2+l,3/4+l/2

t1HA, (Gty4a,t0)

-2
< cA {”w”Wé’”Q(Dth/z,to) + ||T’||W§/2+z,3/4+z/2(th+)\/27t0)}, (224)

where t; = tg — 2.

Now, we apply interpolation inequalities
||’LUHW12,1/2( o) < %2||’wHW§+z,1+z/2(

—1
0) +C% ||w||Qt1+/\/2,t,0’

Dy yay2,t Diiyay2,t

390
||T||W23/2+Z’O(Gt1+>\/2) < %2”T”W25/2+Z’O(Gt1+>\/2,to) +ex P ”THGHJM/?J()’

g2 0 S D grse2 s+

+a/2)

with s¢ > 0 which leads to
T(N\) < 22N 2U(N/2) + o mAT?K.

Here W(A) denotes the left-hand side in (2.24), K = [|wl|q,, ,, + 7., ., » m = 3+2l. Setting e = 6A < 1,
we obtain

AF2W(N) < 6222 (N /2)" T2 W (N /2) + o6 ™K.
This implies

63)\_m_2

TN <es(ON " HEK+27'K+22K+-+) < =12

K < 2e3\"m 2K

if ¢1622™%2 < 1/2. For X\ = 1 this inequality is equivalent to (2.22). O
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Proof of Theorem 2.2. By Theorem 2.1 and Proposition 2.4, one has

TN |2, 50112 S+ 19pl2,

1,1l
T—j—1,T—j Y2 (Dr_j_17—5)

+ Hp”?xvzl*’/z ) + ||r||12xv25/2+”5/4+”2(c

(Dr—j-1,1 T—j-1,T—j)

+ HDtrH12/1/23/””3/4“/2(GT,J-,1,T,j)}

< e wld, 4 B, aa, o F=01 T] =2 (2.25)

Taking the sum of (2.25) from j =0 to j = [T| — 2, we obtain the inequality which implies

T
YZ_ g1, r(€7w, e¥p, ) < /T . e ([l DI + (- 6)]3) at, (2.26)
where

El,tz(uv%p) = ”u”WgH’lH/z(Dtl,tg) + HVq||ng’l/2(Dt1,t2) + HQHW2“/2(DH)1/2)

Flpllyygrzevsrsie g,y FIPepllyysresisae g, -
By adding the estimate

Yy (w,p,7) < e{ llwollZy 11 ) + ol a0 g }

to (2.26), choosing 5 < (31 and making use of (2.17), we arrive at an inequality equivalent to (2.21). O

3. The Nonlinear Problem
After transformation (1.11), problem (1.8), (1.12) can be written in the form [13]:

p(Dru+ 2w(es x u)) — pV*u+ Vg =1 (u,q,7),
V-u=ly(u,r)=V-L(u,r) in F, t>0,

p HgS(u)N =13 (u,7) on G,

ALS(N]|y, =1 () on G*,

—q+p N-S(u)N+Byr=1I;(ur)+Il;(r) ongG,

[uHng =0, [-¢+@aN- S(u)NHg+ +Bfr=1f(u,r)+1F(r) on G,

Dir —u-N=lg(u,r) ong,

u’t:O =ug in F, r‘t:O =rg ong, (3.1)
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where u(z,t) = v(e,(2,1),t), uo(z) = (e, (2,0),0), q(z,t) = p(er(z,t),1),

L(u,q,r) = (V> = Vu+ (V = V)g + pDyr* (LIN* - V)u

—p(L7a- V)u
L(u,r)=(Z-L)V-u=V-L(ur), Lur)=(Z-L)mu,
Iy (u,r) = p~ g (MgS(u)N — TIS(w)i(e,)),
If (u,r) = [allg (gS(u)N — IS(w)i(e,))] |
l4_(ua T) = [ (N S( )N - n(er) (u)fl(er)),
() = [(N - S@N = f(e,) - Swpile)] |,
_ [ a2 /. ET(Z, sr)N w*
Is(r)=o0 /0 (1- s)ﬁ(ﬁ T(2,8r)Vg - m) ds + a4 N %2,
dz /. LT (z,sr)N
IF(ry=0 /0 (1-98)—5 P (L T(z,8r)\Vg - m) ds
+ 5[l g NP,
LN
lo(u, ) = (m - N) ‘u, (3.2)

T is the identity matrix, £ is the Jacobi matrix of transformation (1.11):

()13 .
L(zr) = {5§+W}ij_1’ L=detf, L=LLY

i _ LT(z,r)N
I£T (z,7)N]’

V = £-TV is the transformed gradient V, (“T” means transposition),

S(u) = Vu+ (Vu)7 is the transformed doubled rate-of-strain tensor;

IIb = b — n - b is the projection of a vector b on the tangent plane to Ty, Vg =1IgV.
The conditions (1.9), (1.10) can be expressed in terms of r as follows (see [16])

/ ©*(2,1)dG =0,  p~ ¢_(Z,T)dg+[ﬁ]fg+/ Pt (z,r)dG =0,
g* G- G+

/ pu(z,t)L(z,r)dz = 0,
F

[ putet) myenn)dz o [ pngten) myen) Lz )z
F F

- / e(=) - my(2)dz, j=1,2,3, (3.3)
f

where

r2 r3
ot (z,r) =7 — ?'Hi(z) + g/Ci(z),
T2 ,,,3 7,4
YE(er) = ¢F (5 )2+ N ) (G - THEE) + 7).
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Proposition 3.1. For arbitrary numbers I, vectors I, m, M = (M, Mo, M3), a function fo € Wi(F) and
a vector field by € ng“/’"(g), there exist 7 € WiTH(G) and w € W5 (F) satisfying the conditions

/7 r(2)dG =1, /g+ r(2)dG = I*,

p- | r(2)mdg + llos /g ()G =1

[ iz = m.

[ @ n@a ol [ @m0

Flalor [ ) () 0) = M. j=1.23
V-u=fy imF, by-ng=0 ongG*,
p IgS(u)N=by onG , [ullg+ =0, [allgS(u)N]|g+ =by ongt, (3.4)
and the inequality
Izt gy + llhwssrcn
< (|4 17 18+ Il M+ ollwgory + Bbollyvegg, )-

Proof. We set

I"N(z)-z C~ _
r(z)= ——=—+-—=L-N(z), z€G,
= A TN
ITN(z)-z C*
= l-N *. .
r(2) 37| +|]—'+| (2), z€g (3.5)
For these functions, relations (3.4) hold if p~C~ + [p]|g+CT = 1; we put
Y +_ _ ollgr
="+ 17l =7+ 17l

Next, we construct u; satisfying the equations
V- U, = fo in .7:,

[ui]lg+ =0,  w1-N=fi ong, (3.6)
where
_ N(z)-=z | _
fl(Z)_W/}‘fO(Z)dZ+mK N(z), z€g,
filz) = ]\;)'(;Lf [ @+ ﬁK* N(z), zeG*

with some vectors K+ defined below. Since
| neao= [ ez [ peao= [ e ds
G- F G+ F+
the necessary compatibility conditions
ped= [ n@a- [ e [ = [ ne)d
F- G- g+ g+ F+
hold and there exists u; satisfying (3.6) and the inequality

Hu1||W21+z(]_-) < C(”fO”WZ’(]-') + ”leWQl“/Q(g))'
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From the relations
/ (V- -u)zdz = —/ puy dz + p_/ (u; -N)zdG + [ﬁ]|g+/ (u; - N)zdg,
F F - G+
f]ng:K_, / f]ng:K+,
G- g+

we can conclude that

/ﬁmdzz—/ﬁfoZdZ-FP_K_‘*‘[ﬁHg*KJr:m
F F

if
- _ p7 —
K = e o o),
+ (Al g+ _ .
Kt = 7p‘2+[gﬁ]\é+ (m+ [ pfozdz);
hence,

[willypasi ey < eIl follwer) + Iml).
Now we find a vector field us satisfying the relations
p TgS(u2)N = bo(2) — p gS(u)N =b'(2), 2€G,
[ATgS(uz) Nllg+ = bo(2) — [i1gS(u1)Nllg+ = b'(2), 2€G7,
Following [13], we set ug =rot®(z), where ® € W2t (F),
_0®(z) 0 0?®(2)

B(z) = N =% aNT = b'(z)x N, z€G,
0P ?® ,
o) =0 —o, (0] =ve kN, sedr,

and we require that
||¢’HW22+l(fi) < C”b/”W;“/?(gi)-

Finally, we define
3 —_
u3(z) = Z Mk,I‘OtBiA(Z),
k=1
where A € C3°(F ™), p~ [- A(z)dz = 3 and

W= M= [ plan(z) + wale) - mif)

—w(p‘/ mg~nkdg+[ﬁ]\g+/ rn3~nkdg)~
G- G-

—~

We have [ pus(z)-n;(z)dz = M; and
H“3||W21+l(]:) < | M.

It is easily seen that the function r defined in (3.5) and the vector © = u; + us + ugz satisfy all the
necessary requirements. The proposition is proved. O

The main result of the paper is as follows.
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Theorem 3.1 (Global Solvability of the Nonlinear Problem). Let ug € Wy (F), ro € WitH(G), I €
(1/2,1). We assume that smallness and compatibility conditions

o llyya+t gy + lIrollyyz+1g) S € <1, (3.7)
V ug =ly(ug,rg) inF,
p IgS(ug)N =15 (ug,r9) on G-,
fuol [ =0, [AllgS(uo)N]|,, = 1f (ug,70) on G*

are satisfied, as well as restrictions (3.3) at t =0 and inequality (2.16) hold.

Then problem (3.1) has a unique solution defined in the infinite time interval t > 0 and

t t t
Hea uHW22+z,1+z/2(Doo) + ||ea VqHWZz,z/z(DOO) + Hea q”Wzl/? (O’OO;WZI/2(Q))

+ ||eatq||W2’;‘l/2(Doc) + ||eat7’HW§/2+”5/4+l/2(gm) + HeMDtTH?/VS/2+1,3/4+1/2(G00)

< C(||uO||W21+l(]_-) + HTO||W22+l(g)) (3.8)

with certain o > 0.

Proof. We outline the main ideas of the proof.

A solution to (3.1) is sought in the form of the sum
u:u/+u//7 q:q/_"_q//’ r:T/+TII.

We write conditions (3.3) in the form

/ rdG = (r—goi(z,?“)) dg, on G*,
g+ G+
p*/irzdg+[ﬁ]|g+ /g+ rzdg:,zf/i (rz—¢~(2,7))dG
Hlallos [ (ra=v7(r) do.
g+

/ﬁudz:/ ﬁu(l—L(z,r)) dz,

F F
[men@asso(p [ rmenag-+ialgs [ omensa0)

:w(P_ /g s -1 dG + [pl|g+ /g 7‘773"7jdg_/§t pins(y)-m(y)dy)

+ [ om0 = D) ds+ [ ) n)as =123 (3.9)
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and construct the functions w(, r{ satisfying the relations (see Proposition 3.1)

[ g = [ (ro= st do.

G=* g=*

oo [ madg+lpllos [ madg=p [ (rea v (zm))dg
) a ]

+ [ﬁ]|g+ /g+ (roz — " (2,10)) dG,
/ puy dz = / pug (1 — L(z,70)) dz,
F F

[ n@az+u(o [ menag+ialg. [ e a)
F G- g+
:w(p’/ ron3~njdg+[ﬁ]|g+/ rong-mdg—/ pins(y)~nj(y)dy)
G- G Qo

+/ﬁuO-77j(Z)(1—L(Z7T)) dz+/ pia(2) - mj(z)dz,  j=1,2,3,
F F
V-ug =ly(ug,79) in F,

p-gS(ug)N|; =15 (uo,0),  [ug]]g, =0, [AgS(uf)N]|;, =1 (w0, 70).

Then we set u(, = ug — u(, ry, = ro — r{ and define (u’,¢’,7’) as a solution to the problem

p(Dytd (2,t) + 2w(es x u)) — pV>u' + V¢’ =0, V-u' =0 inF,

u*HgS(u')NLj_ =0, —¢+pu N-SW)N+Byr'=0 ong-,
Wllge =0, [AILS@W)N()]|g. =0,

[—d +p N -S()N]|;, +Bjr' =0 ong*,

D' —u'-N=0 ong,

u'(2,0) =uy(z), z€F, 1r'(z,0)=r)z), z€g.

JMFM

(3.10)

(3.11)

We note that the initial data wy, r{ satisfy (2.3), (2.4) and homogeneous compatibility conditions (2.20).

Finally, we find (u”,¢"”,r") as a solution to the system

p(thu// Jr 2(,()(63 X u//)) . ﬂv2u// Jr vq// — ll(ul Jr u//,q/ + q//’r/ + 7/_//),
V-u" =L@ +u" 7" +7") inF, t>0,
p HIgS(u")N =13 (0" +u”, 7" +r") on g™,

[u"Hg+ =0, [plgS(u”)N] |g+ =17 +u",7" +7") ongGt,
—¢"+p N-SW')N+Byr" =l (0 +a" 7" +r")+ 10" +r") ongG™,
[—¢" + N - S(u")N]|g+ + Bfr" =1 (W' +u”, 7" +7") + 17 (' +7") on G,
Dyr” —u” N =lg(u’ +u”, 7" +71") on g,

7 o " o
u |t:0—u0 in F, T |t:0—r0 on G.

(3.12)
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We consider restrictions (3.10). If (3.7) holds, then the expressions
= [ (o () 0.
gt
t=p" [ (=97 r) a9+ Bl [ oz = 9o ag,
m = /fpuo(l — L(z,10)) dz,

sz/ puo-nj(l—L(z,ro))dz, j:1,2,3,
]:

and the functions fo = la(wo,70), bo(2) = l3i(u0, o), 2 € G, satisfy the inequality
L 7+ 12+ ] + M+ [ follwg sy + 1Boll vz g
< C5(||UO||W21+l(}-) + ||7"0|‘W22+l(g))~
Hence,
CE(HUOHW;“(]:) + HTOHW;“(Q))a

C(HUOHW;“(}') + ||7'0||W22+l(g))-

HUE)/”W;H(}-) + ||7"6/||W22+’(g) <
Hu6||W21+z(]_.) + ||T6||W22+L(g) <

Moreover, in view of (3.9), (3.10), u(, | is subject to the necessary conditions

/ ré)i dg = / (ro — rgi)dg :/ o(z,70)dS =0,
G* G+ G+

p‘/ r{;zjdgﬂﬁ]\w/ r’0+zjdg:p—/ w;(z7r0)dg+[ﬁ“g+/ 4G =0,
g- g+ g- g+

/ pujdg =0,
pe
[t my(e)az (o /g g, + (il /g iy myds) =0,
By Theorem 2.2, the solution (', ¢’,r’) of problem (3.11) satisfies the inequality
Nr( ) = G T st o + 1 ) gzt g
< ClefﬁT{”“OHWﬁ’(f) +lrollwz+tg) }-
We fix T' = Ty so large that
cre P10 < 0/2 < 1/2, 8> 0.

40

As for the problem (3.12), it is solved by iterations, as in [13], on the basis of inequality (2.11) and

the estimate of nonlinear terms (3.2)
Zp(u,q,7) < Y7 (u,q,7),
(see also [19]), where
Vr(u,4,7) = [llyzonaonm ) + 190ty + i,
Flrllyysrzsrsrsrirz gy + P lyarerianviz g,y
Za(s4,7) = a7 g 2 + 102G ) goro oy + N0 v,
a0,y osrmrm1370 g + a0t ) g + 1)

+ ||16(11, ’I”)||W23/2+l,3/4+1/2(GT).

(1+1/2,1/2)
Gr
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Thus, if € is small enough, we obtain

Yr, (ul/7q//’7,//) < 025(”“0”{4/21“(?) + ||T0HW22+1(9))-
It follows that

N7, (u,7) < Np, (', r") + N, (u”,r"")

<
< (0/2+ c2e) ([[woll et 5y + I70llywz+1(gy)-

In the case of cae < /2, due to (3.7), this implies

Y (u,,7) < e luollygerm + Irollwzgy) < ce,

||u( T0)||W1+l(]_—) + ||T‘( TO)HWHl(g) (||u0||W1+z (F) + ||T'0||W2+l(g)) (313)

Inequalities (3.13) allow us to extend the solution (u,q,r) to the intervals (T, 27p),. .., (kTo, (k +
1)), - . . up to the infinite interval ¢ > 0 by the repeated applications of the obtained local result and to
complete the proof of Theorem 3.1, as in [13].

Let us consider the case k = 1. Estimate (3.13) means

N1 = Ngpy(ur,m) < e,

with uy, = u(-, kTp), r = r(-, kTp). So the problem is solvable in the time interval (Tp,27p) and

N <O°NP,, 0<1,

YP<ceN?, j=1,....k, (3.14)
are proved, then

NP <o <OYNG <072 (3.15)

Let 6, > 60 (6, = e °T0, 0 < o < 3). We take the sum of (3.14), (3.15) multiplied by 6] */. This leads
to

—2j A72 2 2 0% 92
Zel N-<NO+NOZ@<91 7 SNg,

k
; 0
-2
Eﬁ 91 Jyf(u’q,r) < CH%%HQNOQ < CNg

And, finally, by passing to the limit as & — oo in the last estimate, we arrive at an inequality equivalent
o (3.8). |
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