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Abstract. In this article, we establish the unique global solvability of a 2D stochastic Cahn—Hilliard-Oldroyd model of order
one, for the motion of an incompressible isothermal mixture of two (partially) immiscible non-Newtonian fluids having the
same density and perturbed by a multiplicative noise of Gaussian and Lévy type. The model consists of the stochastic
Oldroyd model of order one, coupled with a stochastic Cahn—Hilliard model. We prove the existence and uniqueness of a
strong solution (in the stochastic sense). The proofs are based on the Galerkin approximation technique. Moreover, we also
prove that under some conditions on the forcing terms, the strong solution converges exponentially in the mean square and
almost surely exponentially to the stationary solutions.
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1. Introduction

The Oldroyd model of order one arises in the dynamics of non-Newtonian fluids and is well-known as
the generalization of the initial-boundary value problem for the Navier—-Stokes equations. It is used to
model the motion of viscoelastic fluids (see [23,31]). The analysis of this model, both in the deterministic
and the stochastic cases has been investigated by several authors (see for instance [23,25-27,31,32]). The
well-posedness and the exponential stability of the model in two-dimensional bounded and unbounded
(Poincaré domains) domains, both in deterministic and stochastic settings is studied in [27]. The proof
of the existence and the uniqueness of weak solution in the deterministic case is obtained via a local
monotonicity property of the linear and nonlinear operators and a localized version of the Minty-Browder
technique. The global solvability results for the stochastic counterpart are obtained by a stochastic gen-
eralization of the Minty-Browder technique. In order to describe the behavior of complex fluids in Fluid
Mechanics, diffuse-interface methods are widely used by many researchers (see, e.g., [3,15] and references
therein). A typical example is a mixture of two incompressible fluids. The evolution of such a system is
described by a sufficiently simple model so-called H model (see [19,20,30] and references therein). This
consists in a suitable coupling of the Navier-Stokes equations for the (average) fluid velocity w through a
capillarity force proportional to V¢, where pu is the chemical potential, with a local or nonlocal Cahn—
Hilliard type equation for the order parameter ¢ through a transport term u-V¢. The mathematical and
the numerical analysis of the deterministic and the stochastic local and nonlocal Cahn—Hilliard—Navier—
Stokes (CH-NS) model has been considered by several authors such as [9-14,17,18,21,22,24,36-38] and
references therein. In [13], the authors considered the stochastic 3D globally modified local CH-NS equa-
tions with multiplicative Gaussian noise. They proved the existence and uniqueness of strong solution
(in the sense of partial differential equations and stochastic analysis) and derived the existence of a weak
martingale solution for the stochastic 3D local CH-NS equations. The third author of the paper has
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proved the existence and uniqueness of the probabilistic strong solution for the stochastic 2D local CH-
NS model with multiplicative Gaussian type of noise in [36] and studies the asymptotic stability of the
unique probabilistic strong solution of 2D local CH-NS model in [37]. He also proved the existence of weak
solution of 3D local CH-NS model with multiplicative non-Gaussian Lévy noise in [38]. Similar results
have been obtained for the 2D and 3D nonlocal CH-NS model in [9,11,12]. Generally, the CH-NS model
is used to modelise the flow of a Newtonian binary mixture. However, for viscoelastic binary fluids, the
behavior of viscoelastic fluids cannot be predicted by the means of usual Newton’s constitutive law since
they possess a memory of past deformations which is not the case for Newtonian fluids. Consequently,
we have to introduce a more general phenomenological model such as Oldroyd model in addition to the
Navier—Stokes equation as a constitutive equation to modelise the viscoelasticity. Taking into account
this fact, we derive a model where we will call Cahn—Hilliard—Oldroyd model.

In this article, we study a stochastic generalization model of the CH-NS model. More precisely, we
consider in a complete probability space (2, F,P) equipped with an increasing family of sub-sigma fields
{Fi}o<t<r of F such that Fy contains all elements F' € F with P(F') = 0 and F; = Ngs¢ Fs for 0 <t < T,
the following stochastic Cahn—Hilliard—Oldroyd model of order one, for the motion of an incompressible
isothermal mixture of two immiscible non-Newtonian fluids

du(t) + [-r1Au+ (8 * Au)(t) + (u.V)u + Vp — KuV | dt
= o1 (t,u, @)W} + [, vt u(t™), ¢(t), 2)7(dt, dz),

do(t) = oAy — w.V¢| dt + oo(t, u, ¢)dW2, (1.1)
div(u) =0,

in (0,7) x M with the conditions

Op¢ = 0pA¢p =0, on (0,T) x OM,
u=0 on (0,T) x OM, (1.2)
(’lL, Q‘))(O) = (u07 QSO) in M7

where T > 0, M is a bounded open domain in R? with a smooth boundary M and

(B * Au)(t) = /0 B(t — s)Au(s)ds.

In (1.1), W}, i = 1,2, are two cylindrical Wiener processes in a separable Hilbert space U defined on
the probability space (Q, F,P). Also Z is a measurable subspace of some Hilbert space and 7 (dt,dz) :=
w(dt,dz) — A(dz)dt is a compensated Poisson random measure, where A(dz) is a o-finite Lévy measure on
the Hilbert space with an associated Poisson random measure 7 (dt, dz) such that E[n(dt, dz)] = A(dz)dt.
The processes W/, i = 1,2, and 7 are mutually independent. Let v > 0 be the coefficient of kinematic
viscosity. In (1.1), for ¢,k > 0, we take

1 1
v = E, the kernel 3(t) = ve ™%, where v = —(v — E) >0 and 6 =->0. (1.3)
S S S S

If we take 11 = £ (or 7 = 0) in (1.3), then we obtain a model for the phase separation of an incompressible
and isothermal Newtonian binary fluid flow or the well-known Cahn—Hilliard-Navier—Stokes model [13,37,
38]. Note that ¢ is the relaxation time, and is characterized by the fact that after instantaneous cessation
of motion, the stresses in the fluid do not vanish instantaneously, but die out like e . Moreover,
the velocities of the flow, after instantaneous removal of the stresses, die out like e~ t, where k is
the retardation time. For the physical background and the mathematical modeling of viscoelastic fluid
flows involving memory effects, we refer the interested readers to [2,23,34], where the topic is studied
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extensively. The quantity g is the chemical potential of the binary mixture which is given by the variational
derivative of the following free energy functional

(o) = [ (51908 +ar(®)) do. (14)

where, F(r) = f07 f(¢)d( is the suitable double-well potential. The quantities vo and K are positive
constants that correspond to the mobility constant and capillarity (stress) coefficient, respectively. € and
«a are two positive parameters describing the interactions between the two phases. In particular, € is
related to the thickness of the interface separating the two fluids. A typical example of potential F' is
of logarithmic type. However, this potential is very often replaced by a polynomial approximation of
the type F(r) = y1r* — 4212, with 7; and 7 are positive constants. Note that in (1.1), the ¢ equation
modelises the evolution of the concentration of fluids which can be influenced by the thermal fluctuations
which is a random phenomena. In order to take into account this thermal fluctuations, we have introduce
a noise in addition to the ¢ equation as a constitutive equation. However, a Levy type noise in the ¢
equation is also possible but, the presence of such noise will involve probably more assumptions and will
increase significantly the size of the paper.

To the best of our knowledge, there is no mathematical analysis of the model (1.1) even in its deter-
ministic setting. This article is a contribution in that direction. Moreover, in the literature, there is no
work on stochastic two-phase flows models with both Gaussian and non-Gaussian type of noise. But a
such type of noise have been considered for instance in [27,29] for the Oldroyd model of order one and the
Navier—Stokes equation with hereditary viscosity. In general the presence of a noise on the concentration
equation in the two-phase flow model makes the analysis of the model more involved (see [13,16,37]).
In [13], an existence result has been obtained under the additional strong condition on the potential
f- In order to use a weakened condition on the potential function f for the existence result, we have
shown that the energy functional & is twice Fréchet differentiable which makes possible the application
of Tto’s formula to the process £y(¢). Note that in (1.1) it is possible to add a Lévy type of noise on the
relative concentration equation, but the analysis will be tedious. The purpose of the present manuscript
is to prove some results related to problem (1.1). Our main results are the following: First, we prove the
existence and uniqueness of strong solution (in the stochastic sense) for system (1.1). The method for the
proof is based in the Galerkin approximation. Secondly, getting the existence of a unique strong solution
in hand, we investigate the stability of this solution. More precisely, we prove that under some conditions
on the forcing terms, the strong solution converges exponentially in the mean square and almost surely
exponentially to the stationary solutions.

The rest of the paper is organized as follows. In the next section, we describe the mathematical setting
required to establish the unique solvability of the system (1.1). The hypothesis satisfied by the potential,
the noise coefficient and the external forcing are also discussed in the section. In Sect. 3, we introduce the
Galerkin approximation of our problem and we derive a priori estimates for its solution. Then we prove
the existence and the pathwise uniqueness of strong solution. In the last section, we analyze the stability
of stationary solutions.

2. Functional Setting, Hypothesis and Abstract Formulation

In this section, we fix the hypothesis and describe the functional spaces needed to establish the existence
and uniqueness of global strong solution of the system (1.1). We discuss the properties of linear and
nonlinear operators, and also of the kernel 3(t) = ye™%".
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2.1. Functional Setting

We now introduce the functional setup of Egs. (1.1)—(1.2). If X is real Hilbert space with inner product
(.,.)x, then we denote the induced norm by |.|x, while X* will indicate its dual. Let us consider the
Hilbert spaces

H = ueCo(M)E divu=0mM] , Vi = {ueCo((M)Z:divu=0imM "
where L2(M) = (L*(M))?, H(M) = (H}(M))?. We endow H; with the L?—inner product and norm

(u,v) :z/ w de, |ulpe = (u,u)'/2.
M

Moreover, the space V; is endowed with the scalar product and norm
2
((0,0)) = Y (D1, 00,0, [ull = ((u, )™
i=1
The norm in V; is equivalent to the H!(M)-norm (due to Poincaré’s inequality). We refer the reader to
[35] for more details on these spaces.
We now define the operator Ay by

Agu = —PAu, Yu € D(Ag) = H* (M) NV,

where P is the Leray-Helmholtz projector in L2(M) onto Hj. Then, Ay is a self-adjoint positive un-
bounded in H; which is associated with the scalar product defined above. Furthermore, Ay is a com-
pact linear operator on H; and by the classical spectral theorem, there exists a sequence A; with
0 <A <A <o <Ay < Apgr < -+ and a family w; € D(Ag) which is an orthonormal basis in
H1 and such that Ao’wj = )\jwj-

For u € Hy, we denote u; = (u,w;). Given a > 0, take

D(AG) = fue Hy : 37 X2 u? < o}, (2.1)
J
and define Afu = > Afujw;, u € D(AF). We equip D(AF) with the norm w2 = |Agul?, =
Z]‘ )‘§Q|uj|2~
We introduce the linear nonnegative unbounded operator on L?(M)
Arp=—Ap, Vo € D(41) = {<p € H*(M), Ope =0, on 8/\/1} , (2.2)

and we endow D(A;) with the norm |A; - | + | (-) |, which is equivalent to the H?-norm. We also define
the linear positive unbounded operator on the Hilbert space LZ(M) of the L2-functions with null mean

Bnp =—Ap, Vo € D(B,) = D(A1)N L(%(M) (2.3)

Note that B, ! is a compact linear operator on LZ(M). More generally, we can define BZ, for any
s € R, noting that |Bfl/2 “|z2, s > 0, is an equivalent norm to the canonical H*-norm on D(Bf/z) -
H*(M) N LE(M). Also note that A; = B,, on D(B,,). If ¢ is such that ¢ — (¢) € D(BZ/Q), we have that
|B3?(p — (N2 + ¢ — (@) |12 is equivalent to the H*-norm. Moreover, we set H5(M) = (H5(M))’,
whenever s < 0.

We note that
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Classically, there exists a sequence ; with 0 < 81 < G2 < -+ < B, < B4 < -+ - and a family ¢; € D(A;)
which is an orthonormal basis in L?(M) and such that A;v; = 3;;.
Now for o > 0 we define

oo
D(AY) ={p € Hy: > _B7|(¢,9)” < o0}, (2.5)
J
endowed with the Hilbertian norm [¢[3, 1= [Af¢|7. = >=; B7%((4,v;)[>.
We introduce the bilinear operators By, B1 (and their associated trilinear forms bg,b1) as well as the
coupling mapping Ry which are defined, from D(Ag) x D(Ap) into Hy, D(Ag) x D(A;) into L?(M) and
L*(M) x D(AB/Q) into Hi, respectively. More precisely, we set
(Bo(u,v) = [l(u- V)v]wdz
= bo(u,v,w), Yu,v,w € D(Ayp),

(Bi(u, ), ¥) = [\ l(u-V)plibdr »
= by (u, p,1), Yu € D(Ag), ¢, 1 € D(Ay), (2.6)
(Ro(p, ), w) = [ [uVelwda

= bi(w, 0, ), Yw € D(Ay), (1,0) € L2(M) x D(A"?).
Note that
Ro(p, 0) = PuVe.
Using an integration by part, we can check that
bo(u,v,v) =0, Yu,v € V7,
bi(v,0,¢) =0, Yo € Vi, ¢ € H'(M), (2.7)
(Ro(A16,9),v) = (B1(v,8), A1) = b1(v, ¢, A16), ¥(v, ) € V1 x D(Ay). (2.8)

We recall from [18] that, using the integration by parts, a suitable generalized Holder inequality and
a suitable Gagliardo-Nirenberg interpolation inequality, we derive that by, and b; satisfy the following
properties.

1bo (1w, v, w)| < clulya lul Y2 oll|w] 2 [w] 2, u,v,w e W,

b1 (1, &, )| < clul i a2 (1012 | Ar g1 1] 12 w € Vi, ¢ € D(Ay), ¥ € Ha,
b1 (1, &, )| < clul 2 |||/ A1 |57 |[0]| w € Vi, ¢ € D(A1), o € Ho. (2.9)
1Bo(u, 0)llvi < elulya lull2[o] 127 [ol|2 w,v,w € Vi (2.10)
o = JIelM21 Aol 2’ Asdlie, 6, p € D(A) o1
|Ro(A16, p)lvir < ¢ 12 1/2 1 1 11/2 | 43/2 4(1/2 43/2 (211)

1plV72| Aupl i o) V? |AY 201122, p e D(AL), ¢ € D(A?).
1B (u, §)llvy < clulrz|o]V/?|A1gl)s7, u € Hi, ¢ € D(Ay). (2.12)

owing to (1.2); we derive that

Ay ="0 on (0,T) x OM. (2.13)

From (2.13), we deduce the mass conservation in he deterministic case. In fact, for o5(-) = 0, from (2.13),
we have the conservation of the following quantity

() = 1M [ ott,a)da, (2.14)
M
where | M| stands for the Lebesgue measure of the domain M. More precisely, we have

(6(1)) = (¢(0)), Vvtel0,T]. (2.15)
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Hereafter, we assume that og(-) is chosen such that (2.14) is satisfied, which is the case if we assume that

t
</ 02(s,v,¢)dW3> =0, Vt>0, ve H, ¥ € H,, (2.16)
0

where Hj is defined by (2.19) below.
Due to the mass conservation, we have
(6(t)) = (¢(0)) =: Mo, Vt > 0. (2.17)

Thus, up to a shift of the order parameter field, we can always assume that the mean of ¢ is zero a the
initial time and, therefore it will remain zero for all positive times. Hereafter, we assume that

(¢(t)) = (¢(0)) = 0, Vi > 0. (2.18)
We set
Hy = D(AY?) and H = H, x D(AY?). (2.19)
The norm in Hy is denoted by || - ||, where [[¢||* = |A}/2w|i2. The space H is a complete metric space
with respect to the metric associated with the norm
(v, 95 = K™ ol* + ellv]*. (2.20)
We set Vo = D(A;) and define the Hilbert spaces U and V respectively by
U=Vix DAY, V=V, xVy =V x D(4), (2.21)
endowed with the scalar product whose associated norm are respectively
3/2
I, ) = ol + 147262, 11w, 9)IF = llo]® + [Ar[e. (2.22)
We will denote by \g a positive constant such that
Xol(v, )3 < Ml(v, )7 Y(v,9) €U. (2.23)

For uy = (v1, ¢1), us = (ve, ¢2), ug = (vs, d3) € V, we define
(B(u1,u2), uz) = b(ur, uz, uz) = bo(v1,v2,v3) + b1 (u1, g2, ¢3),
R(ui,uz) = (Ro(A161,92),0),  E(u1) = (0, A1 f(1)).
Lemma 2.1. The maps B, R and E are locally Lipschitz continuous i.e. for every r > 0, there exists a
constant C,. such that
[ B(v1,v1) — B(v2,v2)|
[R(v1,v1) = R(vz, v2)ly- < O [lor — w2l
[E(v1) = E(v2) |l < Crllor = vally, (2.24)
for all vi = (u1, ¢1), ug = (u2, p2) € V with ||v1]|y and ||v2|ly < r, where V* is the dual space of V.

v <G v — UQ”V:

Proof. Let vy = (u1,$1), uz = (u2,¢2) € Vand (w,v) € V. We assume that |[vq]|;, < 7 and [jvaly, < 7.
To prove (2.24);, we note that

[B(v1,v1) = B(vz, v2)lly- = [[Bo(u1, u1) — Bo(uz, uz)lly + [ Bi(ur, 1) — B(v2, ¢2)l pasry -
Also,

|(Bo(u1,u1) — Bo(uz,uz),w)| = [bo(ur, w1, w) — bo(u1, uz, w) + bo(ur, uz, w) — bo(uz, uz, w)|
= |bo(u1 — ug, uz, w) + bo(ur, uy — ug, w)| < |bo(us — ur, uz, w)| + |bo(ur, us — ur, w)|
< cljur — uzl| [Juz|| [lw]| + el[ur || lur — uz|| [w]| = 2¢ |lug — ut | [[w]] ,

which implies that
| Bo(u1,u1) — Bo(uz,us2)]

v < 2clluz — . (2.25)
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Proceeding similarly as in (2.25) and using the fact that D(A;) is continuously embedded in L?(M), we
obtain

|(B1(u1,¢1) — Bi(uz, ¢2),¥)| < |by(ur — ug, d1,9)| + |b1(uz, o1 — ¢2, )]

< clur — ual[ [Arda] g [Ard] 2 + clluzl [Ar| 2 [Ar(d1 — ¢2)l e

< er((lur — w2l + [Ar(d1 — ¢2)12) [A1¥)] 2 -
It then follows that

[B1(u1, ¢1) — B(va, d2)ll parry < er(llur — uall + [A1(d1 — ¢2)|12)- (2.26)
From (2.25) and (2.26) we derive that

1B(v1,v1) = B(va, v2)lly < 2¢||uz — url| w]| + er(lur — vzl 4 [A1(d1 — ¢2)| )
< Crflvr — v2ly
which prove (2.24);. Now, remark that
[R(v1,v1) = R(v2, v2)lly-

= [[Ro(A1¢1, ¢1) — R(A1¢2, d2)[ -

However,
[(Ro(A1p1, 1) — R(Arda, d2), w)| = |bi(w, d1, A1 (1 — ¢2))| + [b1(w, p1 — P2, A1¢2)]
< cllwll|A161] 2 |41 (81 = 62l 2 + w4163 2 A1 (&1 = 62) 12
<cr|w||Ai(p1 — A12)| 2 -
It follows that

|[Ro(A101,01) — R(A192, ¢2)|
which prove (2.24)5. Also, we remark that

[E(v1) = E(v2)lly-

vy < CrlAi(dr — Aiga)l e < Crflor — vally,

= [[A1f (1) — ALf(d2)llpear)
Let us recall from [18] that, there exists a monotone non-decreasing function Q1 (z1,x2) of 21 and x5 such

that
(A1 f(d1) — Arf(@2),¥)| = [{f(d1) — f(P2), A1)
< Q1] 1 P2ll) [A1(P1 — d2) 12 A1l -

We recall that, since ||¢1|| < ¢|A1¢1],2 < cer, ||@2]] < ¢|A1d2|,2 < cr and Q4 is a monotone non-decreasing
function, we have Q1(||#1]| , [|#2]|) < Q1(cr,er). So, we obtain

(A1 f (1) — AL f(d2), )| < Qui(er,er) [Ar(dr — d2)| 2 [A19)] 1o -

Hence
[E(v1) = E(v2)lly- = [[A1f(61) = Arf(d2)l prarr)
< Quler,er) [Ar(¢r — d2)lp2 < Crflur —v2ly,
which proves (2.24)3 and ends the proof of Lemma 2.1. O
Now, we discuss some properties of a general kernel 3(.) and then in particular 3(t) = ye%. we define

(Lu)(t) = (B + u)(t /ﬁt—s

A function ((-) is called positive kernel if the operator L is positive on L?(0,T; Hy) for all T > 0. That

is,
T T
/ (Lu(t), u(t)) = / / "Bt — ) (u(s), u(s))dsdt > 0,
0 o Jo
for all w € L*(0,T; Hy) and every T > 0.
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Let 3(0) be the Laplace transform of 3(t), i.e

3(0) = / h e "B(r)dr, 6€C.
Then we have from [5, Lemma 4.1] the folloowing result.
Lemma 2.2. Let § € L>®(0,00) be such that Re3(6) > 0 if Re(0) > 0. Then, 3(t) defines a positive kernel.
We also recall from [29, Lemma A;] the following result.

Lemma 2.3. Let 3(t) = ve %, 6 > 0, t € [0,T]. Then for any right continuous function with left limits,
f:[0,T] — [0,00), we have

T
/O SO *u)(s), u(s))ds > 0, (2.27)
for all w € L?(0,T; Hy).

Remark 2.1. (1) As proved in [28, Lemma 2.6], with a change of variable and change of integrals, it can
be easily seen that, if 3 € L1(0,T), f,g € L?(0,T), for some T > 0, then we have

1/2

( / oy ( / tﬁ(t—s)f(s)ds>2>1/2 < ( / : Iﬁ(t)Idt> ( / Tf(t)f?(t)dt) S o)

(2) If we take g(t) = 1, and f(t) = |u(t)|,- in (2.28) with u € L?*(0,T; H,), we obtain
1/2

</OT (/Otﬂ(tS) u(s) 72 d5>2>1/2 < </OT |ﬂ(t)dt> (/OT u(t) 7 dt) . (2.29)

(3) For B(t) = ve~%, we know that

/5 :land 3(0) = ﬁ>0 for Ref > 0,

and by Lemma 2.2, 3(t) is a positive kernel. Hence, we have

T T
/0 (B * Agu)(t), u(t))dt :/O (8 * Vu)(t), Vu(t))dt > 0. (2.30)

Using the fact that || Aou|

v < llull, we get

¢ ¢
108+ A Ol < [ B =) [ vu(s)l ds < [ A=) [us)] ds, (2.31)
0 0
and hence by (2.29), we have

/OT ||(5*Aou)(t)”%/f dté/ (/ Bt —s) [|Aou(s) |y )
< (/0 ﬁ(t)dt) /OTH“()” dt < %/ ()| dt, (2:32)

Remark 2.2. Using the Cauchy-Schwarz and Holder inequalities and (2 32), we derive that

1, ) (/ u(]? ds>

< ( 0 ﬂ(s)ds> s as < 3 / Ju(s)? ds. (2.33)

for u € L*(0,T;V1).

/2

/OT<(5*Aou)() )t < (/ 18+ Agu)(s)
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2.2. Hypothesis
We assume that W, i = 1,2 are formally given by the expansion
)
Wit) =Y Bi(te;, j=1.2, (2.34)
j=1

where 3;(t), j € N are independent one dimensional Brownian motions on (R, F,P), and {;}52; is an
orthonormal basis on U. We also define the auxiliary space Uy containing U, that is defined by

o0 00 2
o
Uy = Zajej : Z 7; < o0 g,

j=1 =

endowed with the scalar product
(u, v)v, *Z 5 forufZajej, vaﬂ]e]
J=1 j J=1 j=1
The stochastic forcing takes the following form
it u, @)AW' () = Y ol(t,u, ¢)dp;(t), i=1,2, (2.35)

j=1

with suitable restrictions on the growth of the diffusion coefficients aj- specified below.
Let us denote by D([0,T]; H1), the set of all Hj-valued functions defined on [0,T], which are right
continuous and have left limits (Cadlag functions) for every t € [0, T]. Also, let

MZP(Hy) = LP (2% (0,T] x Z,B((0,T) x F x Z),dt @ P @ X; Hy), (2.36)
be the space of all B((0,T] x F x Z) measurable functions ~ : [0,7] x Q x Z — H; such that

/OT/Zlv(twﬂ) 20 \(dz)dt

For any Hilbert space H, we will denote by £?(U; H) the separable Hilbert space of Hilbert-Schmidt
operators from U into H.

To simplify the notations, we set (without loss of generality) 11 = v = ¢ = a = K = 1. Let us assume
that the potential function f and the noise coefficients o;(-,-), i = 1,2 and ~(, -, -) satisfy the following
hypothesis.

(H1) f € C?(R) satisfies

E < +00.

{lim inf|, o0 f/(r) > 0, (2.37)

|FO () < ep(1+7]*77), Vr eR, i=0,1,2,

where ¢y is some positive constant.
(H2) For all ¢t € [0,T], (fot oa(s,u, 9)dW?2) = 0 and there exist positive constants Ky ; K3 such that

[ .9l M) < K1+ (w.6)5).
[ .9l M) < K1+ w65, (2.38)
|02t 1, ) 22 g1y = D |02 (., 0) || < Ko,
j=1

uniformly in ¢ € [0, 7] for all (u, ) € H.
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(H4) For all ¢ € [0,T], there exists a positive constant L such that

Z loi(t,ur, 1) — o4(t, u2,¢2)|£2(UH / |y(t, u1, @1, 2) — Y(t, ua, P2, )\2L2 A(dz)

=1

< L ‘(uh ¢1) - (u27¢2)|7-[ ) (239)
for all (ui,d)i) ceH,t=1,2.

Remark 2.3. Condition (2.38)3 on the noise is widely employed in literature (see [16]). This condition
implies that o9(.,0,0) € LP(Q, F,P; L?(0,T; £L2(U; Hy))), for all p > 2. Indeed,

T p/2
E </ ||02(.,0,0)H22(U;H2) ds) < K(z;/2Tp/2 < 00,
0

For any (v,%) € H, we set
E(v,9) = [vlf2 +260(¥) + e1 = |(v, )3, +20(F (W), 1) + e, (240)

where ¢; > 0 is a constant large enough and independent on (v, ) such that £(v, ) is non-negative (note
that Fp is bounded from below).

2.3. Abstract Formulation

Using the notations above, we rewrite problem (1.1)—(1.2) as:

du(t) + [ Aou + (6 + Agu)(t) + Bo(u, u) — KRo(A19, ¢)]dt

=o1(t,u, @) AW + [, vt u(t™), ¢(t), 2)7(dt,dz), in V",

dp(t) + [v2A1p + Bi(u, ¢)|dt = oa(t,u, ¢)dWE, in H=1(D), (2.41)
p=—eAi¢+af(¢), in H (D),

(u, 9)(0) = (uo, ¢o),

which is equivalent to for all (v,%) € Vi x HY(D),

(u(t),v) + /0 (r1Agu + (B * Agu)(t) + Bo(u,u) — KRo(A16, ¢),v)dt = (ug,v)

—I—/O (o1(s,u, )dWt, v / / s,u(s7), P(s), 2),v)w(ds, dz), (2.42)
(6(1), 8) + / 12V 11, Vib)ds = (6o, ) + / (02(5,u, 0)AW2, 1),
0 0

p=—cAi¢+af(p)
P-a.s. and for all ¢ € [0, T], for some fixed point (ug, @) in H.

Remark 2.4. In the weak formulation (2.41), the term pV¢ is replaced by A1¢V¢. This is justified since
f(#)Vo is the gradient of F(¢) and can be incorporated into the pressure gradient, see [18] for details.

Let us now give the definition of a unique global strong solution in the probabilistic sense to the
system (2.41).

Definition 2.1. (Global strong solution) Let the Fy-measurable initial data (ug, ¢o) € L*(2, F,P;H) be
given. An H-valued Fi-adapted cadlag process (u, ¢)(:) is called a strong solution to (2.41) if (u,¢) €
LP(Q, F,P; L>°(0,T;H)) N LP(Q, F,P; L?(0,T;U)), for all p > 2 and satisfies (2.42).
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Definition 2.2. A strong solution (u,$)(:) to (2.41) is called a unique strong solution if (i, ¢)(-) is an
another strong solution, then

}P’{wEQ; (u, 6)(t) = (@, )(1), forall te [o,T]} ~ 1.

3. Existence and Uniqueness

In this section, we establish the global solvability of the system (2.41). To simplify the notations, through-
out this section, we will set (without loss of generality) 11 = v5 = @ = ¢ = K = 1. We first prove the
following energy type equality.

Proposition 3.1. If (u, @) is a variational solution to (2.41), then (u, @) satisfies

t

£ o))+ [ (8= Va(). Vu)ds+2 [ (Ju(s)]? + Vu(s)Fs) ds = Euo. o)
[ oatss )y a5+ 2 [ (02(600,6). 0081 0) 42 [ (02(5,0,0). )0

t +oo
/O ;/M [|va§(s,u,¢)(x)|2 +|f'(p(s,2))] |a§(s,u,¢)(x)|2] dads

+2/0 /Z('y(s,u(s_),¢(s),z),u)7~r(ds7dz)—|—/0 /ZT(s,z)w(ds,dz), (3.1)
where
T(s,2) = [uls™) + (s, u(s ™), 6(5), 2) 72 — Ju(s7)[}2 = 2(3(s,u(s7), é(s), 2), u(s)).
Proof. We apply infinite dimensional Itd’s formula (see [33]) to the process |u|%2 to find
)32 = [uO) 32 2 [ (Agut (8 Apu)(s) = Rol4r0).)ds
+/0 |01(5,u,¢)|2£2(U;H1)d5+2/0 (o1(s,u, ), u)dW(s)
+2/0 /Z('y(&u(s‘)ﬁ(s),z),u)fr(d&dz)—i—/o /ZT(s,z)w(ds,dz). (3.2)

We want now to write Itd’s formula for the free energy functional £y(¢), ¢ € D(A1). To this end, we
should first prove that & : D(A;) — [0,00) is twice Fréchet differentiable. Let ¢,1 € D(A;), using the
Taylor-Lagrange formula, we derive that

Ealo-+0) (o) — (V.50 = [ soyuds| = |l + [ [ (1= oro+ sopvdsas].

Owing to the condition (2.37) and the fact that D(A;) is continuously embedded in Hy and in L (M),
we infer that
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Eold+ ) — E(d) — (Vé, V) — /M F(@)da

1
< el A + 0]~ sup [1— | / F(6+ 59,
s€[0,1] 0
1
< A + el Ayl / 7+ s9)|,
0

1
2
< e Al (1+cf/M/0 (1+ |6 + s0b]))dads
< O(M, f) [Arl72 (14192 + W] 12).

Therefore,

L 80+ ¥) — E0(0) = (Vo.V¥) - [y S(@)wda|
$—0,9#0 | A1 2
This proves that the first Fréchet derivative D : D(A;) — L(D(A1);R) of & is given by
DEO)IY] = (V0. V0) + [ f(@vde. 6.0 € D(A), (33)

Also, it is easy to see that D& is Fréchet-differentiable with D2&y : D(A;) — L(D(A1); L(D(A1);R))
given by

D2y (6)[, ¢] = (Vib, Vi) — /M F(@)bodz, db.p € D(Ay). (3.4)

Indeed, by direct computation, we can check that

IDEW(S + )] — DE(S) o] — D*Ea(d)ib, ]| = ‘ / (6 + ) — F(9))pde — /M 7 (6)pda

f(@+ sv) = f(d)bpda

By the embedding of D(A;) in L (M) and in Lz(/\/l), the mean value theorem and (2.37), we note that

f(@+s¢) = f1(9)dede

< ] e [0l / F(6+ 50) — £(6)] u ds
1
< e|Arbl s [ Argl o / P (64 s) — F(9)],1 ds

1 "
<clAY|p2 |A1<P|L2A ‘5¢f )

M1/2
< ST e 1 Ar gl e

- 2

|A1|72 | Arepl s - (3.5)

From (3.5), we arrive at

/O 1 /M(f’(¢ T 5) — £(9))bpds

" s1|1p<1 {|A1@/’| ] < C(M)|A19Y] 2 — 0asp — 0in D(Ay),
1925 L2
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from which we get (3.4). Furthermore, from the hypothesis (H1), we can easily check that the deriva-
tives DEy and D?&, are continuous and bounded on bounded subsets of D(A;). Hence, observing that
D2Ey(¢) = p, we can apply Itd’s formula to E(¢) in the classical version of [8] to derive that

50(¢(t))+/0 \VM\QLz ds"’/o (U'V¢7M)d8=50(¢0)+/0 (o2(s,u, ), 1) dW?>(s)

(IR 2 2 ' 2 2
3 > [ Vo ua)@ + 17 @)l o3 o) @) deds. (35)

Adding (3.2) with (3.6) and using (2.8) and the fact that (u- V@, f(¢)) = 0, we obtain (3.1) which ends
the proof of the Proposition 3.1. |

Theorem 3.1. We suppose that the Assumptions (H1)-(H4) hold. Moreover, we assume that o1(-,0,0) €
LP(Q, F,P; L?(0,T; £L2(U; Hy))) and that (ug,¢o) € LP(Q,F,P,H) satisfies EEP (ug, o) < oo, for all
p > 2. Then the system (2.41) has a unique strong solution.

The rest of this section is devoted to the proof of Theorem 3.1. The method relies on Galerkin
approximation and deterministic Gronwall’s lemma. For the existence part, instead of the Minty-Browder
technique used in [27], we prove the existence and certain uniform estimates for the sequence (U, Pm)m
of the approximation. Then, as in [37], we use the properties of stopping times and some basic convergence
principles from functional analysis to prove the existence of the solution.

3.1. Existence of Strong Solution

Let us consider a finite dimensional Galerkin approximation of the system (2.41). Consider {(w;,%;), j =
1,...} C V be a orthogonal basis of H, where {w;, j =1,...} and {¢;, j = 1,...} are eigenvectors of A
and A; respectively given in the previous section. We set for m € N, H,,, = span{(w1, 1), .. .., (Wm,¥m)}
= Hy; X Hop,. We look for (U, ¢m) € H,y, solutions to the ordinary differential equations

iy, (t) + PL[Aotm + (8% Aot (t) + Bo(tm, tm) — Ro(A1Pum, dm)]dt

= Pro1(t, tm, dm)dWL (8) + [, PhAE um (), dm (1), 2)7(dt, d2),

A (t) + P2 A1 i + B1(tm, dp)|dt = P2, (t, Uy, b ) AW 2 (1), (3.7)
tim = Pi[A1¢m + f(dm)],

(umv ¢M)(0) = Pm(um ¢O)7

where P,, = (P}, P2): H x L>(M) — H,, is the orthogonal projection, W} (t) = P W}, for i = 1,2.
Since the deterministic terms of (3.7) are locally Lipschitz (see Lemma 2.1), and P! o;(.), i = 1,2
and P}y(.) is globally Lipschitz, the system (3.7) has a unique H,,-valued cadlag local strong solution
(U, pm) € L2(Q, F,P; L*°(0,T;H,,)) with paths u € D(0,T; Hy,) and ¢ € C([0;T); Hap ), P-a.s. (see
[1,27]). Let us now derive the a-priori energy estimates satisfied by the system (3.7).

Proposition 3.2. Let (um,, ¢m) be the unique solution of the system (3.7) with (ug, o) € LP(Q, F,P;H),
for all p > 2. If (ug, o) is such that EEP (ug, dg) < 0o for all p > 2, then there exists a positive constant
C independent of m such that for all p > 2,

E| sup sP(um,¢m>(s>+< /0 (IV8nl2 + ) ds) ] < CO+EE(uo,d0)),  (38)

0<t<T

T
B sup &l 0)(5) +E [ ([Thiml3a + un) ds < Cluo, o). (3.9)
s€[0,T] 0
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Proof. By finite dimensional 1td’s formula (see [4, Theorem 4.4.7]) and the fact that by (wm, Um, tm) = 0,
we obtain for all ¢ € [0, 7],

t
it (D)2 = Jt ()2 — 2 / (At + (8% Agtim)(5) — Ro(A1um, b)), i )ds
0

+ t
+/ },Pyanl(Saumv(bm”iz(U.H )dS + 2/ (P'rlnal(s’um’d)m)’um)dwgn(s)
0 s Hy

+2/0t/z(77,£ﬂ(8,um(s_)7¢m(s), 2), U )7 (ds, dz) / / m(ds,dz),  (3.10)

Uy (5,2) = |t (57) + Ph(s, tm(s7), o (s), 2)| 20 — [ (s7)| 2
f2(7771n’y(5,um(sf),qﬁm(s),z),um). (3'11)

where

Note that (2.30) easily gives

/ (B * Agum), U )ds = / ((B * V), Vi )ds > 0. (3.12)
0 0

Therefore, using the fact that |a:|iQ — |y|iz + |z — y|2LQ =2(zx—y,x), Yo,y € Hy, we infer from (3.10) that

t
tn ()2 < [1t (0) 22 — 2 / (Aot + (8 % Agtizn)(5) — Ro( A1, bm), thm)ds
0
t
/(P 01(5 uma¢m) um)dW}n(S)
2 - 2
//‘ (8, U (8), P (8) z)‘L2 ﬂ(ds,dz)—&—/o ’Pmol(s,um,¢m)|£2(U;Hl)ds

1 _ -
+2/0 /Z(Pm'y(s,um(s ), dm(8), 2), um )7 (ds, dz). (3.13)

Note that, since spam{ty,.... ¢y} C D(A1), we infer that DEy(dy) = pm. Therefore, applying Itd’s
formula to the process Eo(dm), we get

t
2E0(pm (t) |V,um|L2 ds+/ (U, * Vo, fhm)ds
t
— 260 (60 (0)) + / (P2,03(5, s b)) ATV2, (5)

+/ / ‘V J (85 Uiy O ) (2 ‘ + 1 (P (s, ) |‘ ] (8, U, Om) (T )| }dmds. (3.14)
Using the fact that Hy — LP(M), p > 2, by assumption (H1), we get

t m
/0 Zl//vl UV’P,QTLU?(S,um,qu)(:E)‘Q + | f (b (s, 2))] ‘Pia?(s,um,qu)(x)ﬂ dxds
¢ mo ot
< c/o ||02(s,um,¢m)|%Q(U;HQ)ds—i—CfZ/o /M | O] ’P%U?(&ltm,qﬁm)(x)’?dxds
< c/ loa(s umv¢m)|‘£2(u ) ds—l—CfZ/ / bl |Pro (s um,qﬁm)’ (z)dzds

< C/ lloa(s um7¢m)|‘[)2(U (Hy) ds"'CfZ/ 6ml[72 [P (5t ) HL4 ds
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t t
< C/ llo2(s; U, QS'W)Hi?(U;Hz) ds + C/ H(bmHQ o2 (s, um, ¢m)||2£2(U;H2) ds. (3.15)
0 0
Now, for each n > 1, we consider the F;-stopping time 7,)* defined by:
t
7" = min <T, inf {t € [0,T] : E(um, om)(t) + 2/ (||um||2 + ||/j’mH2) ds > n2}> ) (3.16)
0

For fixed m, the sequence {7";n > 1} is increasing to 7. Adding (3.10) with (3.14) after using (3.12)
and (3.15), we get for all ¢ € [0,T7],

E(um, dm)(E AT

tAT"
2 [ (19l + ) ds < Euo, 0
0
tAT" 9 tAT,
+/ |’P1%101(37um7¢m)|52(U;H1)d3+2/ (PvznO—Q(svum7¢m)aﬂm)dW72n(s)
0 0
tAT™ ) t ) )
o [ 1oa(o 8 iy 5+ [ 1017 loato.tms 0o ds
tAT
+2/ (7)1 01(3 um7¢m) Um dWl / / dS dZ)

+2/ / L (5, (57 ), b (5), 2), ) (ds, d2). (3.17)

Now raising both sides to the power p > 2, taking supremum over s € [0, A7."] and taking mathematical
expectation we have

E  sup  EP(um, dm)(r)

re[0,tAT]

tAT
0

tAT
n 2
+E (/ ‘P’}nO’l(S,um7¢m)‘£2(U;Hl) dS)
0

p

t/\‘r:L" p
ds 1 AE / luml? | ds < EP(uo, do)
0

p t/\T?
E 1 o l12)d
e (/ (1+ 16 ||>s>

P

” P
+E  sup /(P%UQ(S,Um7¢m)aMm)dWri(r)
rel0,garm] |Jo
. p
+2E  sup /(P:nol(sauqusm)aum)dwgz(s)
re[0,tAT]
+cE  sup |I;(r)|]P+cE  sup |Is(r)|". (3.18)
0<r<tAT™ O<r<tnr

where

{|um )+ PEA(T, U (T _),¢m(7),z)‘iz — |um(7_)‘iz}7~r(d7, dz),

\
N\

[ {n() + P (5,108,000, D2 — ()12 } A

Nc\
c\N\

/ PLA(5: 4 (), b (5), 2), 4 (5)A(d2) s

Z
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c ' ! S, Um (S ), Om(S), 2 22 z)ds
< /O/Z|m<, (57), 6m(5), 2)[ 20 A(d2)d
< ek [0 [ ) ). (3.19)

As in [6,7], we note that
/Z{yum(s—) PR (). G(8),2) 30 — ()2} Ad2)
< Jtm(57)|% / PLAS, tn(57), Sm(5), 2) 2 A(d2)

+C/Z [PaA(S, tm(57), (), 2)| 12 Md2)

<cota |(Um7¢m)|3-[ +e2 |(um7 ¢m)|;1{
< Ko + K3 | (i, &), - (3.20)
It follows that

) p/2
(/ / t(57) + Py (5, (5=, &), 2) 12 = [ ()3 | A(dz)ds)

p/2

< e(KoT)P/? + ¢(K3)P/? (/tmn E% (U, ¢5m)ds> . (3.21)
0

Applying Burkholder-Davis—Gundy’s inequality (see [33, Theorem 48]) and using (3.20)—(3.21), we derive
that
P

E sup |I5(r)" <

A~

E sup € (tmbun)(r) + c(KaT)P/? + c( )P E ( /W"’ewm,gbm)dS)
0

0<r<tATm rel0,tAT?]
1 t/\T,;;n
<IE s € 0n)0) + KT oK) TP E [ e )i
re[0,tAT] 0
(3.22)
Using Holder’s inequality, it follows from (3.19) that
tAT™ p
Bl A < cKBE( [ (Wm0 s
0
tAT,,
< C(Ko,T)+ ch/ EEP (U, Pm)(5)ds. (3.23)
0

By Doob’s inequality, we derive will the help of (2.38); and Holder’s inequality that

P
2E  sup / (Pmo'l (Sa Um ¢m)7 um)dWr}@(r)

rel0,tAT™]

tATT p/2
n 2
S CE </ |7D1,1nO'1(S,Um, ¢m)|L2(U'H1) |um|i2 d’/‘)
0 5

: p/2
<B| s E(unon)0) | ||P;ai(s,um,¢m>||22(U;H1)ds]

0<r<tAT™

p

1 t/\T;TL )
e s eP(um,¢m><r>+cE</0 Hmai(s,um,%)HZQ(U;HQdr>

T4 o<r<tarm
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tAT"
< EE sup  EP (U, dm) (1) + C (Ko, T) + ch/ EEP (wp,, o) (8)dr. (3.24)
0

0<r<tATm

By Holder’s inequality, we derive that

tAT " tAT"
“ ) .
E (/0 |P71n01(57um7¢m)|£2(U;H1) ds) +cE (/0 (1+ ¢m2)d5>

AT T
< C(T, L)IE/ (14 EP(tum, dm))ds + cE </ lo1 (s, 0, 0)|22(U;H1) dS)
0 0

p p

p

T

tATI P
< C(T,L) + C(T, L)E / E2(wrn, ) (5)ds + ( / 04(5,0,0) s 7, ds) L (3.25)
0 0

By (2.37), (3.7)4, and the fact that H; — L?(M) we infer that
)| < M@l e < IMITHCRL+ [dinl72) < el M7+ [lénl®). (3.26)

By Doob’s inequality, Holder’s inequality, the condition (2.29), (3.26) and Young’s and Poincaré-
Wirtinger’s inequalities, we infer that
P

E sup
rel0,tAT?]

tATT p/2
n 2
< cE (/ |P}n‘71(57um7¢m)|[:2(U;L2(D)) |“m|i2 ds)
0

) tAT ) AT )
<ekfE( [ Wuliedst [ 1) s

tAT p/2 AT p/2
oK} E ( [ Whalis ds> + KR ( [ ds>
0 0

1/2 t/\T"YL
+CMKEE [ (14 oml”)ds
0

/T (P72n(7'2(37 U, ¢m)a ,Um)dW'rgz(T)
0

p/2

IN

A
o
2
~
[
| —
=
~
h
>
3“3
<
=
3
e
N
QU
©»
N——
3

IN

Ky 1 e 2 ’ p/2 e 2p
+3E( [ Vinliads) +C@KEE [T (0 o ))ds

IN

CKP 1 AT 9 p /2 AT
%o 4 3B / Vpim|2e ds | +C(T)KE IE/ E (o) (). (3.27)
0 0

It follows from (3.18)—(3.27) that

E  sup &P (um, dm)(r)

re[0,tAT]
AT p AT p
+ 3E (/ |V b |72 dS) +4E (/ ||Um||2d5> < EP(uo, o) + C(T, Ko)
0 0
AT T ) p
4+ O(T, Ko, L) / EEP (i, ) (5)ds + cE ( / 04(5,0,0) 2 ds> , (3.28)
0 0

(3.8) follows from Gronwall’s lemma and the fact that 77* T as n goes to oo.
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By Young’s inequality, and (3.8), we derive that

1 1
E sup &(tm,dm)(s) < =E sup E*(tm, dm)(s) + = < C(1 +EE(ug, o)), (3.29)
5€[0,T] $€[0,T] 2
2
T T
2 2 1 2 2 1
2 m S 5 m|[,2 m 5
E/ (19sml3e + lluml*) ds < SE (/ (19sml3e + lluml*) ds |+
< C(1+EE*(uo, ¢o)). (3.30)
From (3.29) and (3.30) we get (3.9). The Proposition 3.2 is then proved. O

Corollary 3.1. Under the same hypothesis as in Proposition 3.2, there exists a positive constant C' inde-
pendent of m such that for all p > 2,

T 2
| sup, [ )@+ [ (Wt + |47, ] ) as| <c. (331)
0<t<T 0 L
r 2 3/2 . |? 3
E[ up_ (6 (O + ( | (1m0 + |46, ) ds) e ()
0<t<T 0 L
r 2 T 2
B [ 1@n)ieds 4B [ 1Bulum 653 ds < (3.33)
0 0
r 2 T 2
]E/ 1Botms ) ()11 ds—HE/ | Ro(A1m, 60 (s) 2. ds < C, (3.34)
0 0
2 T . 9
SE | [ 1Pho im0
=1
T 2
+E / / IPL (5t (57), 6 (5), 2| A(d2)ds | < C. (3.35)
0 Zom
Proof. By (3.7)4, (2.37) and the Poincaré-Wirtinger inequality, we note that
[F(@m)[72 < Cr+ [I6mll*) < Cr(1+ E*(tm, dm)), (3.36)
[A16ml7s < clpml7s +c|f(dm)7:
< e|Vimliz + ¢l () + ¢ | f(ém)[72 (3.37)

< | Viml3s + | M2 Cr+ | ¢mll?) + ¢ | (dm)]72
< ¢|Vimlas + CM, £)1 + E(tm, b)),

2
|42 6m| , < clVitmli + clf (9n)Voml7a

< c|Vimlrz + Cr|6m)? [Ardmlre + 1 A16ml72). (3.38)

The estimates (3.31), (3.32) and the first part of (3.33) follows from (3.36)—(3.38) and the Proposition 3.2.
By (2.10), (2.11) and (2.12), we also note that
T

T
& [ B0 )6 dsE [ 104160, 0)(5)

2
v ds

T

T 2
< [ a5 a9 s+ 2 [ o) [ A7 0, s

1/2 T 2
< (E sup |Um(8)|iz> E (/ ||Um||2d5>
0<s<T 0

1/2
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e . ) b 1/2
+e (E sup ||¢m<s>||4) E ( / \Ai’%m] ds> < C(ug, ¢o) < 0, (3.39)
0<s<T 0 L2
r 2 r 2
B [ B, ) ()35 d5 < B [ a3 0] 41002 5
0 0
r 4 r 2 2
< cE/ [tm |2 ds —I—E/ |omll” [A1dm|72 ds < C, (3.40)
0 0
T i 2
/0 |'P1Zno'i(svumv¢m)|£2(U;Hi)ds

2
Z]E
=1

+E

/ / [Py (5, (57), (), 2) A(dz)ds]
0 Z
T

2 T
§K1T+K1E/ |(tm, $m) ()3, ds + > B / |0i(s,0,0)|22(U;Hi)d5]
0 i1 0

<K T+ K\TE sup E(um, dm)(s) < Clug, ¢o) < 0. (3.41)
0<s<T
By (3.39)-(3.41) we end the proof of Corollary 3.1. O

From the Corollary 3.1, and along with the Banach-Alaoglu theorem, one can extract a subsequence
still denoted by (uy,, ¢r,) to simplify the notation which converges to the following limits

(tms dm) = (w:0) in - LP(QF BiL=(0, T H)),
(tm, om) = (u,0)  in LP(Q,F,P; L2(0,T3V)),
(Um, $m) = (u,¢)  in L2(Q,F,P;L*0,T;V)),
6m —¢ i LP(Q,F,PL*(0,T; D(AY?))),
Bo(um, pm) = By in L*Q,F,P;L2(0,T;Vy)),
Ro(A1¢m, ¢m) = Ry in  L*(Q,F,P;L(0,T; V7)),
Bi(tm, dm) — B in L, F,P; L2(0,T; H),
Fém) = F0 in LY(Q.F,BL2(0,T; LA(M)),
'ano'i(-,um, Pm) — Pi(") in LQ(Qa}—v P, L2(07T§ 52([]? H;))), i=12,
PLo( (), om()) = B() 0 ME(Hy).
With these convergence at hand we see from (3.7) that (u,)(.) satisfies the following It6 stochastic
differential: For all ¢ € [0, T7,

t t t t t
u(t) + / (6 * Agu)ds + / Aouds + / BY(s)ds = ug + / RY(s)ds + / D (s)dW}
0 0 0 0

0
+/Ot/Z\IJ(s,z)7~r(d8,dZ)a

t t t
o(t) +/O AypPds +/0 BY(s)ds = ¢q +/O Dy(s)dW?2,
p’ =AM+ f°, (3.43)

P-almost surely as equality in V{* x H3.

From the energy estimates (see Corollary 3.1), (w,, ¢m) is almost surely uniformly convergent on
finite intervals [0,77] to (u, ¢), from which it follows that (u, ) is Fi-adapted and the Fi-adapted paths
of u are cadlag while the Fi-adapted paths of ¢ are continuous (see [4, Theorem 6.2.3]).

(3.42)
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Proposition 3.3. We have the following identities
Bo(u, u) :Bg7 Ro(A1¢, 9) :R8’ By (u, ¢) :B(1)7

0 , (3.44)
f((rbm) :f ) ’}/(S,U,(,ZS) :\I/(S), Ji(57u7¢) :dsi(s)7 1= 1a2
Proof. Let (tim, m, fim) = PO, (u, ¢, 1), where PO, = (PL P2 P2). We have
|Gy B)|, < 101,01
([T = [CRO] (3.45)
(T s Om) — (u, $) in V for almost every (w,t) € Q x [0,7T7,
(@ $m) — (u,¢) in L*(Q, F,B; L*(0,T; V).
From (3.7) and (3.43), we derive that for 1 <k <m,
<am - um(t)’ wk>
t t
Jr/o (Ao (U, — um,), wi)ds Jr/o ((B* Ao (U, — um)), wi)ds
t t
[ B306) = B ) = [ (R = Fol i, ). wi)ds
0
+oo
+Z/ €lf)l *Ul S Uma¢m €5, Wk dﬂ + Z / Q)l eijk d/BJ
j=m+1
/ / (8,2) = Y(8, um (87 ), dm(8), 2), wy )T (ds, dz) (3.46)
- )m7¢k>
t t
; / (A (i — fim), ) ds + / (BY(5) = B (ttm, b))l =
0
+oo
+Z/ @2 '_U2suma¢m e]vwk dﬁ + Z / ¢2 egawk d/BJ
j=m+1
(fim — pms A10x) = (A1 (G — G ) Artor) + (fO — F(dm), A1) (3.47)
Note that since By, Rg and By are bilinear, we derive that
B Bo(um,um) BO Bo(amvﬂm) —I—Bo(ﬁm _umaam) +BO(umaam _um)a
Ry — Ro(A1dm, o) = R — Ro(A16m, $m) + Ro(A1(Sm — bm), Sm) + Ro(A1dm, dm — dim)
B Bl(um7¢m) Bl(umv(bm)+Bl(um_uma¢m>+Bl(um7q;m_¢m)a
= f(om) = F(@m) + F(Dm) — f(dm). (3.48)
Let us set 0,,, = Uy — U, P = gi)m — Omy Cm = fbm — fbm- From It0’s formula, we have
d<9m7wk>2 = 2<6m,UIk>d<9m,'lUk> + ZK@l(t)eJ - Ul(ta Um, ¢m)ejvwk>]2dt
j=1
+oo
£ Y (@a0ewPder [ Y onndz),  (349)
j=m+1 z

where

T(5,2) = [tm(57) + Py (s, um(s7), Om(s), 2) = Phi(s, 2)|
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- |um(87)|iz - Q(Prln’Y(svum(Si)’Qsm(s)v Z)’um)
= [PLA(s, tm(57), Sm(s), 2) — PLP1(5,2)] ] -

It follows that

t t
0 (B)2s + 2 / (802 + (BY — Bo(ttm, ), O))ds = 2 / (RY— Ro(Arbmn, ). O} ds
0 0

m t , 400 t ]
+22/ (@1(5)e; — 015, s S, OB +2 3 /(@1(s)ej,9m>dﬁ§
j=1"0 j=m+170

m t +oo t
+Z/ PLI®1(s)ej — 01(, tm, Sm)ej]|rads + > /|P;¢1(s)ej\12ds
j=1"0 0

j=m+1

—1—2/0 /Z(Prln(‘ll(s,z)—“Y(s,um(s_),¢>m(s),z)),9m)7~r(ds,dz)
+/0 /ZT(s,z)w(ds,dz)—2/0 (8% V), VO, )ds.

(3.50)

Also, applying the 1t6 formula to the process Hpm||2, and replacing ¥y, in (3.47)3 by (,,, — £pm, We obtain

t
lom (DI + 2/0 IS l” + € [A1pml7s + (BY = Bi(tm, ém), Arpm)]ds

+ 2/ [§<Cm7 A1Pm> + g(fb - f((bm)’ Alpm> - <fb - f(¢m>7A1Cm>]dS

0
m t ) +oo t )
=N / (@3(5)e; — 01 (5, s Sum)es )y +2 Y / (2(3)e; pm) 11,5,
j=170 j=m+170

- ! +00 ¢
+3 [ IPheso)es — oxtsum ol ds+ 30 [ IPRs)e] .
j=170 0

j=m+1
Note that, owing to (Bo(tm, 0m), Om) = bo(tm, Om, b0m) = 0, we have
(BY — Bo(tim, ttm ), Om) = (BY — Bo (il itm ), O + (Bo(Orm Tim ) O
< (B8 = Bolims i) 6m) + 5 [l + 1| 2

Also we have

t
/ ((B+V0,,),V0,)ds >0,
0

<B? - Bl(urm ¢vn)7A1pm> = <B? - Bl(ﬂ/mv ng)7A1pm>
+ <Bl(9m7 ém)aAlpm> + <Bl(uma Pm)7A1Pm>

_ - 1 ¢

< (BY = B (itm, bm), A1pm) + 7 ([0l + 5 | 410m] 1)
2 2 2 ~ 2 ~ 2 2

+ cllomll” | A10m[ 72 1Oml7z + climl 3 [am | lom*

- 1
<R8 - RO(Al(bm: Qsm)a 9m> S <R8 - RO(A1¢ma ¢m)7 9m> + Z(HGm” + % |A1pm|i2)

2 2 2 - 12 <2 2
+clA1dmlpz (10m|pe + lomll”) + c||@m|| [A1dm L |Om |72 -

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)
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Recall that from [18], there exists a monotone non-decreasing function Qq(x1, 23) such that

(£ F(Om), ArGm) < (= F(B), Arond 5 Gl P+ @u (|6 D(1Aréml3s + ) lowl?
EF0 = F(6m): Arpu) < (" = F(Bu). Alpm> 7|A1pm|p+@1] D loml?
&l Arpm) < 5 16l + S [Aroml2 (3.56)
Z/O |,P711[@1(s)ej - Jl(saum7¢m)ej]|2L2 ds < ||’P7%z(¢1(8) - Ul(svumv¢m))||2ﬁ2(U;Hl)
< [[Pr(e1(sw,6) = o1 (5, s b)) ooy
+ 2((737%1(@1(8) - 01(8’ U, (bm))vtpﬁw(@l(s) - Ol(S,U, ¢))))C2(U;H1)
— | Ph 1,4 6) = @1(9)) |22
< 2L2 |u — |32 + 2L2 (B i) |3,
+ 2((Ph(@1(5) = 01.(5, s Sun)), P (@1(5) = 015,10, 0)))) 2 vem
— [[Ph (o1 (5, 6) = 1) 2 s, (3.57)
Z/O Hprzn[@Q(S)ej - UQ(Svum’¢m)ej]||2d3 < ||,P31(¢)2(8) - UQ(Svumv¢m))||2£2(U;H2)
<222 6= || + 22 (B o)y
+ 2((P2(@2(5) = 92(5, s Sun)), P (Pa(s) = 0a(5,1,6))) e2wem)
— [[P2 (02(5, 1, 6) = B2(5) |z 7,11, (3.58)
T(s,2) = ‘Prlnly(s U (87 ), Pm(8), 2) — P, W(S7Z)| 2
= |Pr(v(s,u(s7), 6(5), 2) = ¥(5, (7)) P (D (5), 2) 2
+2<7>1< (s,2) = w(s,um< ) Om(s),2)), P (W (s, > A(s,u(s7), 6(s), 2)))
— [Pl (s, ul(s7), 6(5), 2) = W(s,2))| 1
<20 |(u(s7).6(5)) — (@ é (D[, + 27 On(s). omlo))
— [P (2 (s,uls7), 6(5), ) W (s,2))| 2 + S1(5, 2), (3.59)
where
S1(5,2) = 2Py, (5, 2) = (5, tm (57, m(5), 2)), Ph(W(s,2) = 1(s,u(s7), 8(s), 2))-
Let us set

2 2
Z(t) = [0m ()2 + lpm O,
Yi(t) = cllim|® + clloml* + [A16m[7z + ¢ lim[72 [|Tm ] + | A1 672

~ 2 ~ 2 5 - 2 9
el [l + il ottt 1 352
K (t) = 10 ” + (1 = c€) 1Gmll* + € | A1pml 72 (3.60)
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where £ is small enough such that 1 — ¢£ > 0. Also, let us set

o(t) = exp (- /Ot Yl(s)ds) .

Adding (3.50) with (3.51), using (3.52)—(3.59), it follows from It&’s formula that
t t
Eo(t)Z(t) + E/ o(s)Ka(s)ds + E/ o(s)||Ph (o1 (s,u, ¢) — @1(8))|‘2£2(U_H1) ds
0 0 :
t
2
+ ]E/O G(S) |’P'r2n(02(sa u, ¢) - QQ(S))HL‘?(U;Hz) ds
t
+ E/ a(s) ‘P%l(v(s_,u(s_)ﬁ(s_),z) - &P(s,z))ﬁz ds
0
t t
< ]E/ 0 (5) (= BY + Bo (i, i), O ) +]E/ 0 (5) (= BY + By (iim, dm), A1pm)ds
0 0

2

+ar’E [ o) (a5 005) — (am<s->7$m<s>)\ﬁds
+ Z / $)|PL®1(s)e;| 7, ds + Z / ) |P2®s(s)e; | ds

j=m+1 Jj=m+1

+ 28 / 0(5)(B1() — 01, s i), B1(5) — 015, 1 ) 2 v 3

+2E/ a(s)((Pa2(s) — 028, tm, Pm ), Pa(s) — 02(s, u, ))) 2(U;my)ds

15

—HE/ / $)S1(s, 2)n(dz ds)—i—]E/Ot (s)(RY — Ro(A1¢m, dm), Om)ds. (3.61)

Now, for each n > 1, we consider the F;-stopping time 7,, defined by:

t
=i (Tint {1 € 0.7) ol + [ o) ds > 7} ).

We derive from (3.61) that
Eo(ra)Z(r) + E / o(s)Ka(s)ds + E / o(5) | PL(01(5, 1 6) = 1(5) || 10, 5
+E / " () [P(0a(5, 4, 0) — Ba(5))[Pa gy, ds
+E / " o(5) [P (5, uls ™), B(s), 2) — W(s, ) ds

2

<428 [ o(s)|(u(s7).0(0) = (i (57): G ()],
400 Tn
+ Z E/ o(s)|[PLo1(s)ej|rads + > E/O s) || P2&a(s)e; || ds

J=m+l j=m+1
+ QIE/O " o(5)((P1(s) = 01(8, Um, D), P1(s) — 01(5,u, D)) L2 (U311, ) s
+ QIE/O ’ o (s)((P2(s) — 02(8, Um, dm), P2(s) — 02(8, 4, D)) 221,11, d

+E/ o(s)(—Bg+Bo(ﬂm,ﬂm),9m>ds—|—IE/ 0(8) (=B + Bi (i, o), Arpyn)ds
0 0
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+E/OT” o(5) (RO — Ro(Ardms dm), 0 ds+IEJ/ / $)S1(s, 2)n(dz, ds). (3.62)

Now, we want to prove that the right side of (3.62) goes to 0 as m goes to +o0o. We first note that, since
0<o(t) <1and (tm,Pm) — (u,¢) in L2(Q, F,P; L?(0,T;V)), we have

o (E /OTn o(s) ‘(u(s),qb(s)) -~ (am(s),ém(s))‘ids
+]%:+1 / s) |Pr®1(s eg\Lz ds—l—J%:H / $)|[P2®s(s)es||* ds | =o. (3.63)

Following the same way as in [14,36], we derive that

lim IE/ () (=B + Bo (i, lim ), O )ds = 0,
0

m—>—+00

nni IE/ o(s)(RY — Ro(A1bm, dm ), O )ds = 0,
m— oo O

lin}_ IE/ o(s)(=BY + B (i, ¢~>m), A1pm)ds = 0.
m-— o0 0

Since P}, o Pi, = Pi,, and HPi | <1,i=1,2, it follows that
1[077'71 o’( ) ( ( ) O'i(S,’lL, ¢)) € Lz(Qﬂfa ]P)a L2(07T7 ‘cz(U7Hl))a
10,710 ()P (U (s, 2) = 7(5,u, ¢, 2)) € MZ(H).

Therefore, as ’P1 Yyt () G (1)) — ¥(.) in MZ(Hy) and P?oi(c, wm, @) — Pi(-) in L2 (Q, F,P; L?
(0, T; £2(U H;))), i=1,2, we see that

lim IE/ / $)S1(s, 2)n(dz,ds) = (3.64)
m—+00
hni IE:/ ( )((Pvln( ( ) — Ji(sﬂum7¢m))7lprlﬁ(¢i(8) —oi(s,u, ¢))))£2(U;H7‘,)ds =0, 1=12
m——>1+00 0
(3.65)
This concludes that the right side of (3.62) goes to 0 as m goes to +oc.
Now using the fact that 1jo ;)0 (t) < 1, we derive from (3.62) that
- 2
A E (Ol = m E (i, () = (s ) (7| =0
i B [T Kads = i B [0+ (0= 16l + c€ Lupn s
2
— i E / (= o * + (1= c€) [ — i * + €€ [ A42(Bs = 6], s =0
m—+00 0 L2
hH_li_ ]E/ H,Pgn(o'l(s?uv(b)_él(s))}’i2(UHl)dS:O
m—s 400 0 )
. ™ 2 2 .
mli»rrim]EA Hpm(oé(svuvqs)_@2(8))}’52((]71{2) ds =0
iim B [ [P uls ) 0(7).2) (s, 2)) [} ds =0, (3.66)
m——->1+00 O

We note that from (3.66)3.45 and the fact that the sequence {7,,; n > 1} is increasing to T', we derive
that

oi(s,u,¢) = ®i(s) in L*(Q, F,P; L*(0,T; L*(U; Hy)), i = 1,2,
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(s, u(s7), d(s),2) = ¥(s,2), in MZ(H,).
The end of the proof of the Proposition 3.3 is very similar to [36, Proof of Claim 2]. O

By Proposition 3.3, we infer from (3.43) that (u, ¢) is a strong solution of problem (1.1) in the sense
of Definition 2.1.

3.2. Uniqueness of Strong Solution

Assume that (u1,¢1) and (ug, ¢2) are two strong solutions to (1.1). We set (w, v, u) = (u1, ¢, p1) —
(u25¢2au2)5 6-7,() = Oi('7u1(')7¢1(')) - Ui(',UQ('),(bQ(')), 1 = 1a2 and ;5/(7) = 7('au1(')7¢1(')7') -
v(+, uz(+), d2(+), ). Then (w, 1)) satisfies the following system

dw + [Aow + (8 * Aow)(t) + Bo(uz, w) + Bo(w,uy)]dt

= [Ro(A162,v) + Ro(Ari, ¢1)]dt + 61 (t)dW} + [, 3(t, 2)7(dt, dz) in V7,

dip + [Ar (1 — (p) + Bi(uz, %) + Bi(w, ¢1)|dt = +62(t)dWZ, in H-Y(M), (3.67)
=AY+ f(d1) — f(d2),

(w,$)(0) = (0,0).

We apply infinite dimensional It6’s formula (see [33]) to the process \w|2LQ and using the fact that \x|2Lg -
3 4 |2 — yl32 = 2(x — y,x), Yo,y € Hy to find that

t

t t
|w|2Lz +2/0 ||w(s)\|2ds: —2/0 ((ﬁ*Vw),Vw)ds—Q/o bo(w, w1, w)ds
t t
+2/0 <RO(A1¢27¢)+RO(A11/)7¢1)7U’>d5+/0 /Z|’~Y(572)|2L2 m(ds, dz)
L , t X
+/O ||01(s)||£2(U;Hl)ds+2/0 (G1(5), w(s))dW?

+2/0 /Z(:y(s,z),w(sf))ﬁ'(ds,dz). (3.68)

Also, applying the It6 formula to the process ||¢||2, we get
t

ol = -2 / (A (i — (), Ar9)ds — 2 / by (w, 61, A1) ds

t t t
2 / by (uz, ¥, Ayip)ds + / 152(5) 12 ds + 2 / (G2(5), () mad W2, (3.69)

Now we take the duality of (3.67)3 with A;(pu — (u)) — £A1e), where £ > 0 is small enough and will be
selected later. Adding the resulting equality to (3.68) and (3.69), we derive that

(w0, )12, +2 / ()2 + 1 — ()12 + €| Arg[a)ds = —2 / (8 * Vaw), Vaw)ds
—2/0 bo(w,ul,w)ds+2/0 <R0(A1¢52,’¢),’w>d8—2/0 b1(U2,’¢,A1w)dS
2 / (€07 (61) — F(62), Avid) — (F(1) — F($2), Al — ()]s

0 t 5 t
v e (), Arg)ds + / 161(5)]1 % 1, s + 2 / (61(s), w(s)) AW
0 0
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t t
+ [ 1oy s +2 [ (@als). 072

: :
+/O /Z|§/(s,z)|2Lz7r(ds,dz)+2/O /Z(ﬁ(s,z),w(s_))ﬁ(d&dz). (3.70)

We note that
[bo 0, ua, w)| < 5||w||2 e fun|* wlgs (3.71)
a2, 4] < S 1AL + cluslZa s 07, (3.72)
[{Ro(Ara, 9 w)] < (ol + €142 + clfwl2a + V9122 2] 62[3 (3.73)
E1F(61) — £(62), M| < 35 [l + Qullnl el ] (3.74)

((F(61) — F(@2) 1= )| < S s — (]

+ Qulo] 620D (14161172 + 1 Ardal7) 41, (3.75)
€100~ (), A1) 2] < S Al + € V(s — ()12 (3.76)
151 (5) 1720 110y + 162(9) 122 .10 + /Z (s, 2)[32 Mdz) < L|(w,9)[3, . (3.77)

where ()7 is a suitable monotone non-decreasing function independent on time and the initial condition.
Now, let us set Vs (t) = |w(t)|2L2 + |l|*, and
2 2 2 2 2
K1 (t) = c(lurll” + [ualpe [lul|” + [|62]" [A1¢2[72)
+ QI lld20)(|Argn |72 + [Ardal7a), (3.78)

ot sn (- [ 00,

So, applying Itd’s formula, to the real-valued process o(t))s(t), using (3.70) and the inequalities (3.71)—
(3.77)7 we derive that

Eo()Y2(t) + JE/O o(s)([w( )N + (1 = c€) [|(1 = (u)|I* + € |Arep[72)ds

t

+2E /t o(s)((B* Vw),Vw)ds < LE | o(s)Va(s)ds, 0<t<T.
0 0

Note that the expectation of the stochastic integrals in (3.70) varnishes. Therefore we obtain

Eo(t)Ys(t) < LE /Ot o(s)Va(s)ds, 0<t<T.

It follows from the deterministic Gronwall lemma that Y5 (t) = 0 P-a.s., for all ¢ € [0, T]. Hence (uq, ¢1) =
(uz, ¢2), P-a.s., for all t € [0,7]. Note that in (3.70), we choose & > 0 and small enough such that
1—c£>0.

4. Exponential Behavior

In this section, we show some aspects of the effects produced in the long-time behavior of the solution to
a two dimensional Cahn—Hilliard—Oldroyd model with order one for the non-Newtonian two phase fluid
flows under the presence of stochastic perturbations. More precisely, we discuss the moment exponential
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stability and almost sure exponential stability of strong solutions (u, ¢) of stochastic 2D Cahn—Hilliard—
Oldroyd model under some conditions.
We will consider the following system

) + [1Aou + (B * Aou)(t) + Bo(u,u) — KRo(eA1¢, ¢)]dt
(t)dt + o1 (t,u, d)dW + [, v(t,u(t™), (1), z)7(dt, dz)dt, in V¥,
)+ [ A1 + Bi(u, ¢)]dt = go(t)dt + oo(t,u, )dW2, in H=H(M),
eA1¢+ af(o)(u, $)(0) = (uo, do),

[0,T] — V;* x Hy is Borel measurable function such that g € L2(0,T; V;* x Hy).

du(t
7
do(t
u =
where g = (g1, 92) :

Remark 4.1. From the previous section, it is clear that for g = (g1, g2) € L?*(0,T; V;* x Hy), there exists
a unique (pathwise) global strong solution for the system (4.1) under the hypothesis (H1)—(H4).

Hereafter, as in [37], we assume that f satisfies the additional condition. For all ¢1, @2 € D(Ag/ 2)7

(0 A1 f(¢1) — A1 f($2), A1y — Arera) > —ao | AV (61 — ¢2) . (4.2)
372, |2
(@ALf(91), A1) = —ao |47 %6| |, (4.3)
where ag > 0 is a positive constants independent of ¢ and ¢s.
Assuming that g is independent of ¢, we now consider the following stationary equation
(1 4+ 3) Aou™ + Bo(u*,u*) — KRo(eA10*,¢*) = g1, (4.4)
voeATG* + adi f(¢*) + Bi(u*, ¢*) = go.

Then we recall the following solvability result for the system (4.4) for v = (v1 4 %) > 0, where the proof
is very similar to [37, Section 3.1].

Lemma 4.1. If g = (g1,92) € Vi* x V5, then there exists a stationary solution (u*,¢*) € U to system
(4.4), Moreover, for ¢ > 0 large enough such that as = min(K~1v,e%vy — cag) is non negative, if ag —
2(lg1 13- + llg2lly-) > 0, then the stationary solution to (4.4) is unique.

Now, we give the definition of exponential stability.

Definition 4.1. We say that a strong solution (u, ¢)(t) to (4.1) converges to (u*, ¢*) € H exponentially in
the mean square if there exists a > 0 and My = My ((u, ¢)(0)) > 0 such that

E|(u, §)(t) — (u*,¢")|5, < Moe™®, t>0. (4.5)

If (u*,¢*) is a solution to (4.4), we say that (u*,¢*) is exponentially stable in the mean square provided
that every strong solution to (4.1) converges to (u*, ¢*) exponentially in the mean square with the same
exponential order a > 0.

Theorem 4.1. Let (u*,¢*) be the unique stationary solution of (4.4) and o;(s,u*,¢*) = 0, i = 1,2,

v(s,u*, ¢*, 2), for all s > 0 and z € Z. Suppose that the assumption (H1)-(H5) are satisfied, then the
strong solution (u, ) (t) of system (4.1) converges to the stationary solution (u*, ¢*) of the system (4.4) is
exponentially stable in the mean square provided that € is large enough such that ag > 0 and the following
inequality holds

agL
Xo

,€) and ¢ > 0 is given below.

az > 2¢q |[(u*, 0", + (4.6)

where ap = min(K vy, 1962 — ape), az = max(K~!
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Proof. With the condition (4.6), one can chose a constant a > 0 such that

0<a<min{6 Ao (—261 I(u* )||u—°2“;f>}. (4.7)

We set (w,¥)(t) = (u, ¢)(t) — (u*, ¢*).

Applying the infinite dimensional Ito formula to the process K~ 1e20t [w(t)[?, we get
K e fw(t)[72 — K~ w(0)|7:
t ¢
= 2a/ e2asict |w|iz ds — QICflul/ €2 (Agu, w)ds

0

0
; t
—ZIC_l/ 62“5<(ﬁ*Aou)(S),w>d5_2K_1/ eQas<BO(u7u),w>d8
0 0
t

t
+2 / e***(Ro(eA1¢, 9), w)ds + 27" / e*** (g1, w)ds

0 0

e / 20 o4 (511, 0) e 1,10, 5+ 2K~ / 25 (4 (5, 4, 8), w) W]

/ [ s ute),ols), 23 wldz ds)ds

+2/C_1/0 62“3/Z(’y(s,u(s_),qS(s),z),w)ﬁ'(dz,ds). (4.8)

Applying the Itd formula to the process ee?%! |Vz/1(t)|iz , we derive that
e [V (t)[ 72
t t
= |V1/)(0)|iz + 2a5/ e2as |V¢(s)|iz ds — 21/25/ 245 (A2, e Ayap)ds
0

0
t

t
9 / €9 (AL F(9), e Ay} ds — 2 / ¢253( By (u, 6), e Arp)ds
0 0
t t
+25/ e2as(gg,A11/))d$+5/ e2as ||U2(37u,¢)||2[,2(U;H2)d8
0 0

t
—|—2/ €25 (oo (s,u, @), V), dW?2. (4.9)
0
Summing (4.8) and (4.9), after using (4.3), we derive that
| (w, ) (1)1
¢

t
_ \(w,w)(on;ma/ e2as|(w,¢)(s)|${ds—2/c*y1/ €233 ( Agu, w)ds
0 0
t

¢
- 2V2€/ 295 (A2, e Ayap)ds — 21/2a/ e (A1 f(¢),eA1)ds

0 0
t t
— 2Kt / 2 (B x Agu)(s), w)ds — 2" / e (Bo(u,u), w)ds
0 0
¢ ¢
+ 2/ e?**(Ro(e A1, ¢), w)ds — 2/ e2** (B (u, $), eA1¢)ds

0

0

t t t

pokt [ g s 2 [ e Avids +e [ foa(s. ) B, 05
0 0 0
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t t
[ e o (5,0, By ds+ K70 [ [ (s,ule).05), 23 m(dz.ds)
0 0 Z
t
2t [ [ (a(suls )00, 2), ) ds)
0 A

t t
+ 2/C_1/ e (o1 (s,u, @), w)dWL + 2/ e (aa(s,u, @), ) g, dW?2.
0 0

)

Using the definition of 8 = ve™°!, we note that

¢ ¢

/ e2* (B x Agu*,w(s))ds = g/ e295(1 — e79%) (Agu*, w(s))ds.
0 0

Using (4.11), we infer from (4.4) that (u*, ¢*) satisfies

t t
2K 1y, / e (Agu*, w)ds + 2K~ 1 / 24 (B x Agu*, w(s))ds
0 0

2IC 1y
T

t t
+ 21/25/ e (A2¢* e Ayy)ds + 2K ! / e2*(Bo(u*,u*), w)ds
0 0

¢
/ e(2a=95 (Agu* w(s))ds
0

t t
9 / €93 (Ro(e A16", 6), w)ds + 2 / 93(By (u*, 6%), e A1) ds
0 0

t t t
oma [ (@) s =20 [ g wyds 422 [ oo, Ao
0 0 0
Using (4.10) and (4.12), we derive that
a 2
U E |(w, ¥)(t)3,

t
—E|(w,0)(0)f} +2a | *E|(w,0)(o)f3 ds
0
t t 2
— 2Ky / K |Jw(s)|? ds — 2V2€2/ e*“E ’Ai)/21/’(5)‘L2 ds
0 0

t ¢
- 2V2aIE/O e (A1 f(o) — A1 f(¢"),cA1¢p)ds — 2IC_1E/O €25 (B * Agw)(s), w)ds

2K 1y
)

t t
+ ]E/ e (Agu* w(s))ds — 2/C71E/ 2% by (w, u*, w)ds
0 0

t t
—2E/ e2asb1(u*,1/1,5A11/1)ds+2]E/ by (w, 1, e A1¢%)ds
0 0
t 5 t 5
e [ sl 0) gy A5+ KB [ € o1(5.0. )y 45
0 0

+IC1E/Ot 62‘”/2|'y(s,u(s),¢)(3),z)|ig A(dz)ds.
Using (2.30), we have
]E/t 24 (B x Agw)(s),w)ds = E/t €245 ((B * Vw)(s), Vw)ds > 0.
Using Cauchy—SchWaurzO7 Holder’s and Young’s inequali(;ies7 we get

t t
E / e20=83( A u* w(s))ds < / 23— 1% | law(s)|| ds
0 0

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)
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. 1/2 " 1/2
< ([ e ompetas) (B[ e o))
0 0
%% ! 9 2 K=ty 2
E as d —_— ||u" 4.1
< [ e uePas s s el )
for 0 < a < é.
Note that
K oo (w, u, w)| < ey [Ju|| ffw]® (4.16)
|b1(w, ¥, eA10%)| < ec|A1| 2 [A19"| 12 [[w]|
<o ‘A?’/? (ol + ]AB/Q L2> (4.17)
by (u®, e A1 )] < e [lu” \Ai’/“’w § (4.18)
Va0 A1 F(8) — a Ay f(7), e Arep) > _aoyzg\ (4.19)
Using (2.39), (4.16)—(4.19) and (2.23) in (4.13) we get
a « 2a + L * * i as
B |(w )0 +2 (%2 - BED) o o), / 2 || (w, )(s) [z ds
2 2)\0 0
K:_Q’y2 9
<E 2 _ *or . 4.2
= |(U},1[))(0)|H + 20&262(5—(1) H(u 7¢ )”Z,{ ( 0)
Since a satisfies (4.7), we finally have
B (0. 6)(0) < e [El(w, ) O + s—ord— [(u*,6")| (4.21)
’ H = ’ H 20 52( ) ul» .
and hence (u, ¢)(t) converges to (u*, ¢*) exponentially in the mean square. ]

Theorem 4.2. Suppose that all conditions given in Theorem 4.1 are satisfied, then the strong solution
(u, ®)(t) of (4.1) converges to the stationary solution (u*,$*) of (4.4) almost surely exponentially.

Proof. Let n=1,2,...., and h > 0. By the It0 formula, for any ¢ > N we have
2
[(w, ¥)(8) |5
t t 2
— ltw, ) h) =2 [ )P ds -2 [ (4700 ds
nh nh

t t
— 21/2a/ (ALf(¢) — AL f(¢¥),eA1ap)ds — 2K / ((Bx Agw)(s), w)ds
nh nh
1 t t
2’C§ 2 /nh e 9% (Agu*, w(s))ds — 2K~ 1 /nh bo(w, u*, w)ds

t t
9 / by (0, e Ayp)ds + 2 / by (w, 1, e A1 6 ) ds

h nh

+E/ o2 (s, U7¢)||5(U Hg)ds""C / o1(s U7¢)||L2(U Hl)d

K /nh/ (s, uls), b(s), )20 A(d=)ds

t

+oK ! h(al(s,m b), wydW} + 2E/h(02(s,u, }), V), dW?2. (4.22)
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Taking supremum from nh to (n + 1)h and then taking expectation in (4.22) after using (4.14)—(4.19)
with a = 1, we find
(n+1)h

E  sup ()0 + sk / 1w, 9) ()|, ds < E |(w,0)(nh),
nh<t<(n+1)h nh

—2,2

K v * %\ [|2 _—26nh * * (n+Dh 2
+ 53 1w, 6%l e + 21 [|(u”, 07|l B [[(w, ¥)(5)lly ds
20&25 nh

(n+1)h

(n+1)h
+€]E/h ||0'2(S,’LL, ¢)H2(U7H2) dS+IC71]E/h ||0'1(S,’LL, ¢)H2(U7H1) ds

(n+1)h
+KE / h / Iy (s, u(s), 6(5), 2) 20 A(dz)ds

+2K7'E  sup
nh<t<(n+1)h

/n; /2(7(5’ u(s™), §(s), 2), w)7(dz, ds)

+2K7'E sup

/ (01 (5,1, §), w)dWW!
nh

nh<t<(n+1)h
t
+ 2 sup / (02(87 U, ¢)a ¢)H2 dW32 . (423)
nh<t<(n+1)h |/nh
By, Davis’, Holder’s, and Young’s inequalities we derive
t t
€E s | [ (oo vl +E s | (oas 0 0)man?
nh<t<(n+1)h |J/nh nh<t<(n+1)h |/ nh
(n+1)h , ) 1/2
<k B ([ (s, ol ds
(n+1)h , , 1/2
+ ceE (/h ||U2(5,U7¢)||L(U;H2) ol ds)
1 ) 2 (n+1)h )
< gE sup [(w, ) ()[3, + 2 ZE/ lloi(s, u, ¢)||L(U;H,~,) ds (4.24)
nh<t<(n+1)h i—0 nh

An application of the Burkholder-Davis—-Gundy inequality (see [33, Theorem 48]), Hélder’s, and Young’s
inequalities yield

K'E sup
nh<t<(n+1)h

(n+1)h 1/2
< 2K'E ( [ [ .o, 20l w(dz,ds>>
nh Z

/,; /Z(V(S’ u(s™), 6(s), 2), w)w(dz, ds)ds

nh<t<(n+1)h

(n+1)h 1/2
<KTE s |ulg (/ / |w(s,u<s>,¢<s>,z>imdz,ds))
nh zZ

1 (n+1)h
< §]E sup |(w,z/1)(t)|${ + CQ]E/ / [v(s,u(s), P(s), Z)|2LZ A(dz)ds. (4.25)
nh<t<(n+1)h nh z

Combining (4.24) and (4.25), substituting it in (4.23), and then using (2.39), we get
(n+1)h

E  swp  |(w@)O)f + b / a0 ()I1 ds

nh<t<(n+1)h nh
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2 ,C7272 * g x\[12 _—26nh
< 2B |(w, )b + - w6 e (4.26)
where I
c
as =2\ <a2 — 2 ||(u*, ")l + ;()) > 0.
Using (4.21) in (4.26), we arrive at
’C_272 20 —a * * —2an
B s w0 < (2B w0+ S el ) et )
nh<t<(n+1)h Q2 ( a)

For 6 € (0,a), we set
b = {w cN: sup |(w,w)(t)|${ > e_(a_e)"h} )
nh<t<(n+1)h

By Chebychev’s inequality, we also have
P(Q,) <R sup |(w,)(1)],

nh<t<(n+1)h
K=2~4%(26 — a e ok —90n
< (21w )0, + < FE D o) ) e (1.28)

which implies that

S K2~2(26 — 1
> PO, < (28w O + 10 ) ) g < oo
n=1

Therefore, by the Borel-Cantelli lemma, there is a finite integer no(w) such that

sup [(w, w)(t)ﬁ{ <e(a=mh p_ g, (4.29)
nh<t<(n+1)h
for all n > ng, and the Theorem 4.2 is then proved. O

For the next theorem we assume that g; and g2 depend on u(-), ¢(-) and satisfy the following Lipschitz
condition: For all (u1, ¢1), (ug, ¢p2) € U,

lg1(u1, @2) — g1(u1, @2 Vi < Ly |[(u1, ¢1) — (U27¢2)Hua
lg2(u1, ¢1) — g2(uz, 2)ll g, < La|(ur, d1) — (u2, 24 -

(4.30)

Theorem 4.3. If g;(0,0) =0, 0;(¢,0,0) =0, i = 1,2 and v(¢,0,0,2) = 0, for allt > 0 and z € Z, then
any strong solution (u,@)(t) to (4.1) converges to zero almost surely exponentially if
L L
ay > K 'Ly — Lz +asl) (4.31)
2o
Proof. Owing to (4.31), one can chose a constant a > 0 such that
L 3L

0<a< X <a2 —K 'Ly — (2;;“)) : (4.32)

0

Applying the infinite dimensional It6 formula to the process K~ te?et |u(t)\ig and g2 |V1/J(t)|iz respec-
tively, summing the results and using (2.7)-(2.8), we get

e |(u, ) ()5

t
= |(u, ¢)(0)|§_( + 2a/ e2es |(u, d))(s)|$1 ds — 2]C711/1/ 62“5<A0u,u>ds
0

0

t t
- 21/25/ 2 (Ap, e A1 ¢)ds — 2V2a/ e (A1f(¢),eA10)ds
0 0
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' t
_ oK1 / 62as<(ﬂ * Agu)(s), u)ds + oKt / e2as (91 (u, @), u)ds
0 0
t K 2
n 25/ 2% (Vs (u, ¢), Vé)ds +6/ p2as ||az(s,U,¢)||L(U;H2) ds
0 0
+K- / 2% |loy (s, U7¢)||£UH1 ds
et [ [ (o000, 6060 ) ()
—|—2K_1/ e2as/(7(57u(5_)7(b(s),z,’),u)ﬁ'(d%dS)
0 Z

t t
+2 [ (s 0) W] 42 [ oa(s,0,0), ). (4.33)
0 0

Using (2.30), (4.3), (2.39) and (4.30), we infer from (4.33) that
t

t
S |(u, ) (1) 2, + 200E / €295 |1, §)(s)[1%, ds < E |(s, §)(0)]2, + 2aE / &% | (u, ) (5)|2, ds

t
+ 2K 1E / €295 gy (u, §), upds + 2 / €295 (Vgy(u, 6), V)ds + cE / €295 7y (5,14, 8) 2 spry 05

0

¢ ¢
- as - as - 2
+K 1]E/O e? Hal(s,u,gb)Hi(U;Hl)ds—i-lC 1IE/O e? /Z|’y(s,u(s ),ng(s),z)|L2 A(dz)ds

t t
< E |(u,¢)(0)]3, + 2/C‘1L1]E/ e || (u, @) ()|l ds + (2a + Lz + azL)E/ e |(u, ¢)(s)l7, ds.
0 0

This implies that

t
R |(u, 6) (1) 3, +2 <a2 KL - W) B [ w0))F ds < El(w, )0,
0 0

under the condition (4.31), it is immediate that

E|(u, ¢)(t)]2; < E|(u, $)(0)[2, e,

This implies that the strong solution of (4.1) converges to zero exponentially in the mean square. We can
then finish the proof using the same method as in the proof of Theorem 4.2. O
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