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Abstract. We consider a viscous incompressible fluid governed by the Navier–Stokes system written in a domain where a
part of the boundary can deform. We assume that the corresponding displacement follows a damped beam equation. Our
main results are the existence and uniqueness of strong solutions for the corresponding fluid-structure interaction system
in an Lp-Lq setting for small times or for small data. An important ingredient of the proof consists in the study of a linear
parabolic system coupling the non stationary Stokes system and a damped plate equation. We show that this linear system
possesses the maximal regularity property by proving the R-sectoriality of the corresponding operator. The proof of the
main results is then obtained by an appropriate change of variables to handle the free boundary and a fixed point argument
to treat the nonlinearities of this system.
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1. Introduction

In this work, we study the interaction between a viscous incompressible fluid and a deformable structure
located on a part of the fluid domain boundary. More precisely, we denote by F the reference domain for
the fluid. We assume that it is a smooth bounded domain of R3 such that its boundary ∂F contains a
flat part ΓS corresponding to the reference domain of the plate. We assume ΓS = S × {0}, where S is a
smooth domain of R2 and we set Γ0 := ∂F\ΓS . The set Γ0 is rigid and remains unchanged whereas the
plate domain ΓS can deform through exterior forces and in particular the force coming from the fluid
and if we denote by η its displacement, then the plate domain changes from ΓS to

ΓS(η) := {(s, η(s)) ; s ∈ S} .

In our study, we consider only displacements η regular enough and satisfying the boundary conditions
(the plate is clamped):

η = ∇sη · nS = 0 on ∂S (1.1)

and a condition insuring that the deformed plate does not have any contact with the other part of the
boundary of the fluid domain:

Γ0 ∩ ΓS(η) = ∅. (1.2)

We have denoted by nS the unitary exterior normal to ∂S and in the whole article we add the index s in
the gradient and in the Laplace operators if they apply to functions defined on S ⊂ R

2 (and we keep the
usual notation for functions defined on a domain of R3).
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With the above notations and hypotheses, Γ0 ∪ ΓS(η) corresponds to a closed simple and regular
surface which interior is the fluid domain F(η). In what follows, we consider that η is also a function
of time and its evolution is governed by a plate equation. If η(t, ·) satisfies the above conditions, we can
define the fluid domain F(η(t)) and we then denote by (ṽ, π̃) the Eulerian velocity and the pressure of
the fluid and we assume that they satisfy the incompressible Navier-Stokes system in F(η(t)). Then the
corresponding system we analyze reads as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂tṽ + (ṽ · ∇)ṽ − divT(ṽ, π̃) = 0, t > 0, x ∈ F(η(t)),
div ṽ = 0 t > 0, x ∈ F(η(t)),
ṽ(t, s, η(t, s)) = ∂tη(t, s)e3 t > 0, s ∈ S,

ṽ = 0 t > 0, x ∈ Γ0,

∂ttη + αΔ2
sη − βΔsη − γΔs∂tη = H(ṽ, π̃, η) t > 0, s ∈ S,

η = ∇sη · nS = 0 t > 0, s ∈ ∂S,

(1.3)

where (e1, e3, e3) is the canonical basis of R3. The fluid stress tensor T(ṽ, π̃) is given by

T(ṽ, π̃) = 2νD(ṽ) − π̃I3, D(ṽ) =
1
2
(

∇ṽ + ∇ṽ�) . (1.4)

The function H corresponds to the force of the fluid acting on the plate and can be expressed as follows:

H(ṽ, π̃, η) = −
√

1 + |∇sη|2 (T(ṽ, π̃)ñ) |ΓS(η(t)) · e3, (1.5)

where

ñ =
1

√

1 + |∇sη|2
[−∇sη, 1]� ,

is the unit normal to ΓS(η(t)) outward F(η(t)). The above system is completed by the following initial
data

η(0, ·) = η0
1 in S, ∂tη(0, ·) = η0

2 in S, ṽ(0, ·) = ṽ0 in F(η0
1). (1.6)

F(η)

ΓS(η)

Γ0

System (1.3) is a simplified model for blood flow in arteries (see, for instance the survey article [38])
and α, β, γ are non negative constants that corresponds to the physical properties of the wall tissue. Our
analysis will be done in the case α > 0, β � 0 and γ > 0 and to simplify, we consider in what follows the
case

α = 1, β = 0, γ = 1,

and the other cases can be done in the same way. Let us remark that the term −γΔs∂tη corresponds to
the damping in the plate equation. The other positive constant, appearing in (1.4) is the viscosity ν.
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An important remark in the study of (1.3)–(1.6) is that a solution (ṽ, π̃, η) satisfies

0 =
∫

F(η(t))

div ṽ dx =
∫

ΓS(η(t))

ṽ · ñ dΓ =
d

dt

∫

S
η ds.

Assuming that η0
1 has a zero mean, we deduce that this property is preserved for η all along. This leads

us to consider the space

Lq
m(S) =

{

f ∈ Lq(S) ;
∫

S
f ds = 0

}

, (1.7)

and the orthogonal projection Pm : Lq(S) → Lq
m(S), that is

Pmf = f − 1
|S|

∫

S
f ds (f ∈ Lq(S)). (1.8)

Taking the projection of the plate equation in (1.3) onto Lq
m(S) and onto Lq

m(S)⊥ yields the following
two equations:

∂ttη + PmΔ2
sη − Δs∂tη = Pm (H(ṽ, π̃, η)) t > 0, s ∈ S, (1.9)

and
∫

S
π̃(t, s, η(t, s)) ds =

∫

S
Δ2

sη(t, s) ds +
∫

S

√

1 + |∇sη|2 [(2νDṽ)ñ] (t, s, η(t, s)) · e3 ds. (1.10)

This means that, in contrast to the Navier–Stokes system without structure, the pressure is not determined
up to a constant. In what follows, we only keep (1.9) and solve the corresponding system up to constant
for the pressure, and Eq. (1.10) is used at the end to fix the constant for the pressure. We thus consider
the following system

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂tṽ + (ṽ · ∇)ṽ − divT(ṽ, π̃) = 0 t > 0, x ∈ F(η(t)),
div ṽ = 0 t > 0, x ∈ F(η(t)),
ṽ(t, s, η(t, s)) = ∂tη(t, s)e3 t > 0, s ∈ S,

ṽ = 0 t > 0, x ∈ Γ0,

∂ttη + PmΔ2
sη − Δs∂tη = PmH(ṽ, π̃, η) t > 0, s ∈ S,

η = ∇sη · nS = 0 t > 0, s ∈ ∂S,

η(0, ·) = η0
1 in S, ∂tη(0, ·) = η0

2 in S, ṽ(0, ·) = ṽ0 in F(η0
1).

(1.11)

To state our main result, we introduce some notations for our functional spaces. Firstly W s,q(Ω), with
s � 0 and q � 1, denotes the usual Sobolev space. Let k, k′ ∈ N, k < k′. For 1 � p < ∞, 1 � q < ∞, we
consider the standard definition of the Besov spaces by real interpolation of Sobolev spaces

Bs
q,p(F) =

(

W k,q(F),W k′,q(F)
)

θ,p
where s = (1 − θ)k + θk′, θ ∈ (0, 1).

We refer to [1] and [44] for a detailed presentation of the Besov spaces. We also introduce functional
spaces for the fluid velocity and pressure for a spatial domain depending on the displacement η of the
structure. Let 1 < p, q < ∞ and η ∈ Lp(0,∞;W 4,q(S)) ∩ W 2,p(0,∞;Lq(S)) satisfying (1.1) and (1.2).
We show in Sect. 2 that there exists a mapping X = Xη such that X(t, ·) is a C1-diffeomorphism from F
onto F(η(t)) and such that X ∈ Lp(0,∞;W 2,q(F)) ∩ W 2,p(0,∞;Lq(F)). Then for T ∈ (0,∞], we define

Lp(0, T ;Lq(F(η(·)))) :=
{

v ◦ X−1 ; v ∈ Lp(0, T ;Lq(F))
}

,

Lp(0, T ;W 2,q(F(η(·)))) :=
{

v ◦ X−1 ; v ∈ Lp(0, T ;W 2,q(F))
}

,

W 1,p(0, T ;Lq(F(η(·)))) :=
{

v ◦ X−1 ; v ∈ W 1,p(0, T ;Lq(F))
}

,

C0([0, T ];W 1,q(F(η(·)))) :=
{

v ◦ X−1 ; v ∈ C0([0, T ];W 1,q(F))
}

,

C0([0, T ];B2(1−1/p)
q,p (F(η(·)))) :=

{

v ◦ X−1 ; v ∈ C0([0, T ];B2(1−1/p)
q,p (F))

}

,

where we have set (v ◦ X−1)(t, x) := v(t, (X(t, ·))−1(x)) for simplicity.
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Finally, let us give the conditions we need on the initial conditions for the system (1.11): we assume

η0
1 ∈ B2(2−1/p)

q,p (S), η0
2 ∈ B2(1−1/p)

q,p (S), ṽ0 ∈ B2(1−1/p)
q,p (F(η0

1)) (1.12)

with the compatibility conditions

η0
1 = ∇sη

0
1 · nS = 0 on ∂S, Γ0 ∩ ΓS(η0

1) = ∅,

∫

S
η0
1 ds = 0,

∫

S
η0
2 ds = 0, div ṽ0 = 0 in F(η0

1),

(1.13)
and

⎧

⎪

⎨

⎪

⎩

ṽ0(s, η0
1(s)) · ñ0 = η0

2(s)e3 · ñ0 s ∈ S, ṽ0 · ñ0 = 0 on Γ0 if 1
p + 1

2q > 1,

ṽ0(s, η0
1(s)) = η0

2(s)e3 s ∈ S, ṽ0 = 0 on Γ0, η0
2 = 0 on ∂S if 1

p + 1
2q < 1,

∇sη
0
2 · nS = 0 on ∂S if 1

p + 1
2q < 1

2 .

(1.14)

Here ñ0 is the unit exterior normal to ΓS(η0
1) outward F(η0

1).
We are now in a position to state our main results. The first one is the local in time existence and

uniqueness of strong solutions for (1.11).

Theorem 1.1. Let p, q ∈ (1,∞) such that
1
p

+
1
2q

�= 1,
1
p

+
1
2q

�= 1
2

and
1
p

+
3
2q

<
3
2
. (1.15)

Let us assume that η0
1 = 0 and (η0

2 , ṽ0) satisfies (1.12), (1.13), (1.14). Then there exists T > 0, depending
only on (η0

2 , ṽ0), such that the system (1.11) admits a unique strong solution (ṽ, π̃, η) in the class of
functions satisfying

ṽ ∈ Lp(0, T ;W 2,q(F(η(·)))) ∩ L∞(0, T ;B2(1−1/p)
q,p (F(η(·)))) ∩ W 1,p(0, T ;Lq(F(η(·)))),

π̃ ∈ Lp(0, T ;W 1,q
m (F(η(·)))),

η ∈ Lp(0, T ;W 4,q(S)) ∩ L∞(0, T ;B2(2−1/p)
q,p (S)) ∩ W 1,p(0, T ;W 2,q(S)),

∂tη ∈ Lp(0, T ;W 2,q(S)) ∩ L∞(0, T ;B2(1−1/p)
q,p (S)) ∩ W 1,p(0, T ;Lq(S)).

Moreover, Γ0 ∩ ΓS(η(t)) = ∅ for all t ∈ [0, T ].

Our second main result asserts the global existence and uniqueness of strong solution for (1.11) under
a smallness condition on the initial data.

Theorem 1.2. Let p, q ∈ (1,∞) satisfying the conditions (1.15). Then there exists β0 > 0 such that, for
all β ∈ [0, β0] there exists ε0 such that for any (η0

1 , η0
2 , ṽ0) satisfying (1.12), (1.13), (1.14) and

‖ṽ0‖
B

2(1−1/p)
q,p (F(η0

1))
+ ‖η0

1‖
B

2(2−1/p)
q,p (S)

+ ‖η0
2‖

B
2(1−1/p)
q,p (S)

< ε0, (1.16)

the system (1.11) admits a unique strong solution (ṽ, π̃, η) in the class of functions satisfying

ṽ ∈ Lp
β(0,∞;W 2,q(F(η(·)))) ∩ L∞

β (0,∞;B2(1−1/p)
q,p (F(η(·)))) ∩ W 1,p

β (0,∞;Lq(F(η(·)))),
π̃ ∈ Lp

β(0,∞;W 1,q
m (F(η(·)))),

η ∈ Lp
β(0,∞;W 4,q(S)) ∩ L∞

β (0,∞;B2(2−1/p)
q,p (S)) ∩ W 1,p

β (0,∞;W 2,q(S)),

∂tη ∈ Lp
β(0,∞;W 2,q(S)) ∩ L∞

β (0,∞;B2(1−1/p)
q,p (S)) ∩ W 1,p

β (0,∞;Lq(S)).

Moreover, Γ0 ∩ ΓS(η(t)) = ∅ for all t ∈ [0,∞).

In the above statement, we have used a similar notation as in (1.7):

Lq
m(F) :=

{

f ∈ Lq(F) ;
∫

F
f = 0 dx

}

, W s,q
m (F) := W s,q(F) ∩ Lq

m(F).

We also set

W s,q
m (S) = W s,q(S) ∩ Lq

m(S).
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We denote by W s,q
0 (S) the closure of C∞

c (S) in W s,q(S) and we set

W s,q
0,m(S) = W s,q

0 (Ω) ∩ Lq
m(S).

We define similarly W s,q
0 (F), W s,q

0,m(F).
Finally, we also need the following notation in what follows: for T ∈ (0,∞],

W 1,2
p,q ((0, T );F) = Lp(0, T ;W 2,q(F)) ∩ W 1,p(0, T ;Lq(F)),

W 2,4
p,q ((0, T );S) = Lp(0, T ;W 4,q(S)) ∩ W 1,p(0, T ;W 2,q(S)) ∩ W 2,p(0, T ;Lq(S)),

W 1,2
p,q ((0, T );S) = Lp(0, T ;W 2,q(S)) ∩ W 1,p(0, T ;Lq(S)).

We have the following embeddings (see, for instance, [2, Theorem 4.10.2, p.180]),

W 1,2
p,q ((0, T );F) ↪→ C0

b ([0, T );B2(1−1/p)
q,p (F)), (1.17)

W 2,4
p,q ((0, T );S) ↪→ C0

b ([0, T );B2(2−1/p)
q,p (S)) ∩ C1

b ([0, T );B2(1−1/p)
q,p (S)) (1.18)

where Ck
b is the set of continuous and bounded functions with derivatives continuous and bounded up to

the order k. In particular, in what follows, we use the following norm for W 1,2
p,q ((0, T );F):

‖f‖W 1,2
p,q ((0,T );F) := ‖f‖Lp(0,T ;W 2,q(F)) + ‖f‖W 1,p(0,T ;Lq(F)) + ‖f‖

C0
b ([0,T );B

2(1−1/p)
q,p (F))

and we proceed similarly for the two other spaces.
For β � 0, p ∈ [1,∞] and for X a Banach space, we also introduce the notation

Lp
β(0,∞;X) :=

{

f ; t → eβtf(t) ∈ Lp(0,∞;X)
}

,

and a similar notation for W 1,2
p,q,β((0,∞);F), W 2,4

p,q,β((0,∞);S), etc.
Let us give some remarks on Theorems 1.1 and 1.2. First let us point out that the system (1.11)

has already been studied by several authors: existence of weak solutions ([9,26,37]), uniqueness of weak
solutions ([25]), existence of strong solutions ([7,32,34]), feedback stabilization ([5,40]), global existence
of strong solutions and study of the contacts ([22]). Some works consider also the case of a beam/plate
without damping (that is without the term −Δs∂tη): [6,21,23]. We refer, for instance, to [24] and refer-
ences therein for a concise description of recent progress in this field. It is important to notice that all
the above works correspond to a “Hilbert” framework whereas our results are done in a “Lp-Lq” frame-
work. Working in such a framework allows us to extend the result obtained in the “Hilbert” framework,
but it should be noticed that several questions on fluid-structure interaction systems, in the “Hilbert”
framework, have been handled by considering a “Lp-Lq” framework: for instance, the uniqueness of weak
solutions (see [8,20]), the asymptotic behavior for large time (see [16]), the asymptotic behavior for small
structures (see [31]), etc.

For this approach, several recent results have been obtained for fluid systems, with or without struc-
ture. For instance, one can quote [19] (viscous incompressible fluid), [15], (viscous compressible fluid),
[27,28] (viscous compressible fluid with rigid bodies), [18,35] (incompressible viscous fluid and rigid
bodies). Here we consider an incompressible viscous fluid coupled with a structure satisfying an infinite-
dimensional system and we thus need to go beyond the theory developed for instance in [35].

Our approach to prove Theorems 1.1 and 1.2 is quite classical. Since the fluid domain F(η(t)) depends
on the structure displacement η, we first reformulate the problem in a fixed domain. This is achieved by
“geometric” change of variables. Next we associate the original nonlinear problem to a linear one. The
linear system preserves the fluid-structure coupling. A crucial step here is to establish the Lp-Lq regularity
property in the infinite time horizon. This is done by showing that the associate linear operator is R-
sectorial and generates an exponentially stable semigroup. We then use the Banach fixed point theorem
to prove existence and uniqueness results. Note that for Theorem 1.2, we assume the same conditions on
(p, q) than for Theorem 1.1 but the result should be also true for 1

p + 3
2q = 3

2 . However to deal with this
case one needs some precise results on the interpolation of Besov spaces (see for instance Lemma 2.1).

Let us also remark that this work could also be done in the corresponding 2D/1D model, that is
F a regular bounded domain in R

2 such that ∂F contains a flat part ΓS = S × {0}, where S is an



103 Page 6 of 23 D. Maity, and T. Takahashi JMFM

open bounded interval of R. In that case, we would obtain the same result as in Theorem 1.1 and in
Theorem 1.2 but with the following condition on p, q:

1
p

+
1
2q

�= 1,
1
p

+
1
2q

�= 1
2

and
1
p

+
1
q

<
3
2
.

The plan of the paper is as follows. In the next section, we use a change of variables to rewrite the
governing equations in a cylindrical domain and we also restate our result after change of variables. Then,
in Sect. 3, we recall several important results about maximal Lp regularity for Cauchy problems and in
particular how to use the R-sectoriality property. We use these results to study in Sect. 4 the linearized
system. Finally in Sect. 5 and in Sect. 6, we estimate the nonlinear terms which allows us to prove the
main results with a fixed point argument.

2. Change of Variables

In order to prove Theorem 1.2, we first rewrite the system (1.11) in the cylindrical domain (0,∞) × F
by constructing an invertible mapping X(t, ·) from the reference configuration F onto F(η(t)). More
generally, for any η ∈ C1(S) satisfying (1.1) and a smallness condition

‖η‖L∞(S) � c0 (2.1)

that ensures in particular (1.2), we can construct a diffeomorphism Xη : F → F(η). To do this, we follow
the approach of [5]: there exists α > 0 such that

V−α := S × (−α, 0) ⊂ F , Vα := S × (0, α) ⊂ R
3 \ F . (2.2)

Notice that, ∂Vα ∩ ∂F = ΓS . We consider ψ ∈ C∞
c (R) such that

ψ = 1 in (−α/2, α/2), ψ = 0 in R \ (−α, α), 0 � ψ � 1. (2.3)

Let us extend η by 0 in R
2 \ S so that η ∈ C1

c (R2) and let us define Xη by

Xη

⎛

⎝

⎡

⎣

y1

y2

y3

⎤

⎦

⎞

⎠ =

⎛

⎝

⎡

⎣

y1

y2

y3 + ψ(y3)η(y1, y2)

⎤

⎦

⎞

⎠

⎛

⎝y =

⎡

⎣

y1

y2

y3

⎤

⎦ ∈ R
3

⎞

⎠ . (2.4)

If we choose c0 in (2.1) as

c0 :=
1

2‖ψ′‖L∞(R)
(2.5)

then Xη is a C1-diffeomorphism from F onto F(η) with Xη(ΓS) = ΓS(η). Note that (2.1) and (2.5) yield
that |η| � α/2 in S.

Let us assume now that η depends also on time and satisfies for all t relation (2.1) with c0 given by
(2.5). We can define

X(t, ·) := Xη(t). (2.6)

In particular, X(t, ·) is a C1-diffeomorphism from F onto F(η(t)). For each t � 0, we denote by Y (t, ·) =
X(t, ·)−1, the inverse of X(t, ·). We have X ∈ C0

b ([0,∞);C1(F)) and for all t ∈ (0,∞), y = [y1 y2 y3]� ∈
S × (−α/2, α/2),

det ∇X(t, y) = 1, Cof(∇X)(t, y) =

⎡

⎣

1 0 −∂y1η(t, y1, y2)
0 1 −∂y2η(t, y1, y2)
0 0 1

⎤

⎦ . (2.7)

We consider the following change of unknowns

v(t, y) = Cof ∇X�(t, y)ṽ(t,X(t, y)), π(t, y) = π̃(t,X(t, y)), (t, y) ∈ (0,∞) × F . (2.8)
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The system (1.11) can be rewritten in the form
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂tv − divT(v, π) = F (v, π, η) t > 0, y ∈ F ,

div v = 0 t > 0, y ∈ F ,

v(t, s, 0) = ∂tη(t, s)e3 t > 0, s ∈ S,

v = 0 t > 0, y ∈ Γ0,

∂ttη + Pm

(

Δ2
sη
)

− Δs∂tη

= −Pm

(

T(v, π)|ΓS
e3 · e3

)

+ Pm

(

H(v, π, η)
)

t > 0, s ∈ S,

η = ∇sη · nS = 0 t > 0, s ∈ ∂S,

η(0, ·) = η0
1 in S, ∂tη(0, ·) = η0

2 in S, v(0, ·) = v0 in F ,

(2.9)

where
v0(y) := Cof ∇X�(0, y)ṽ0(X(0, y)) = Cof ∇X�

η0
1
(y)ṽ0(Xη0

1
(y)). (2.10)

Let us write
a := Cof(∇Y )�, b := Cof(∇X)� (2.11)

so that
v(t, y) = b(t, y)ṽ(t,X(t, y)), ṽ(t, x) = a(t, x)v(t, Y (t, x)). (2.12)

After some standard calculation, we find that in (2.9), the expressions of F = (Fα)α=1,2,3 and H are

Fα(v, π, η) = ν
∑

i,j,k

bαi
∂2aik

∂x2
j

(X)vk + 2ν
∑

i,j,k,�

bαi
∂aik

∂xj
(X)

∂vk

∂y�

∂Y�

∂xj
(X)

+ ν
∑

j,�,m

∂2vα

∂y�∂ym

(

∂Y�

∂xj
(X)

∂Ym

∂xj
(X) − δ�,jδm,j

)

+ ν
∑

j,�

∂vα

∂y�

∂2Y�

∂x2
j

(X)

−
∑

k,i

∂π

∂yk

(

det(∇X)
∂Yα

∂xi
(X)

∂Yk

∂xi
(X) − δα,iδk,i

)

−
∑

i,j,k,m

bαi
∂aik

∂xj
(X)ajm(X)vkvm − 1

det(∇X)
[(v · ∇)v]α

− [b(∂ta)(X)v]α − [(∇v)(∂tY )(X)]α , (2.13)

H(v, π, η) = ν

{

3
∑

k=1

(

2
∑

i=1

∂si
η

[

∂aik

∂x3
(X) +

∂a3k

∂xi
(X)

]

− 2
∂a3k

∂x3
(X)

)

vk

+
3
∑

k=1

(

2
∑

i=1

∂si
η

[

aik(X)
∂Y�

∂x3
(X) + a3k(X)

∂Y�

∂xi
(X)

]

−2
[

a3k(X)
∂Y�

∂x3
(X) − δ2,kδ2,�

])

∂vk

∂y�

}

(t, s, 1). (2.14)

We prove the following result

Lemma 2.1. Let 1 < p, q < ∞ such that
1
p

+
3
2q

<
3
2
, (2.15)

and (η0
1 , ṽ0) satisfies (1.12). Then v0 defined by (2.10) satisfies v0 ∈ B

2(1−1/p)
q,p (F).

Proof. By using (2.15), we deduce that η0
1 ∈ C1(S). In particular, the map

ṽ0 → v̂0 = ṽ0 ◦ Xη0
1

(2.16)
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is linear and continuous from Lq(F(η0
1)) into Lq(F). Let us show that it is also continuous from W 2,q(F(η0

1))
into W 2,q(F): Some computation yields

∂2v̂0

∂yi∂yj
(y) =

∑

k,�

∂2ṽ0

∂x�∂xk
(Xη0

1
(y))

∂Xη0
1 ,�

∂yj
(y)

∂Xη0
1 ,k

∂yi
(y) +

∂ṽ0

∂xk
(Xη0

1
(y))

∂2Xη0
1 ,k

∂yi∂yj
(y). (2.17)

Using that η0
1 ∈ C1(S), we deduce that the first term in the right-hand side of the above relation belongs

to Lq(F). For the second term, we first note that
∂ṽ0

∂xk
(X(·)) ∈ W 1,q(F) and

∂2Xη0
1 ,k

∂yi∂yj
∈ B2(1−1/p)

q,p (F).

Therefore by [44, Theorem(i), page 196],
∂2Xη0

1 ,k

∂yi∂yj
∈ W s1,q(F) for any s1 < 2(1−1/p). Applying standard

result on the product of Sobolev spaces we conclude that the second term in (2.17) also belongs to Lq(F).
Then by interpolation, we deduce that the map (2.16) is linear continuous from B

2(1−1/p)
q,p (F(η0

1)) into
B

2(1−1/p)
q,p (F). Therefore, if v0 ∈ B

2(1−1/p)
q,p (F(η0

1)), we have

Cof ∇X�
η0
1

∈ B1+2(1−1/p)
q,p (F), v̂0 ∈ B2(1−1/p)

q,p (F)

and we deduce that the product v0 ∈ B
2(1−1/p)
q,p (F) by using [41, Theorem 2, pp.191-192, relation (17)].

�

Using the above lemma and the definition of X defined in (2.6), the hypotheses (1.12), (1.13), (1.14)
on the initial conditions are transformed into the following conditions:

η0
1 ∈ B2(2−1/p)

q,p (S), η0
2 ∈ B2(1−1/p)

q,p (S), v0 ∈ B2(1−1/p)
q,p (F), (2.18)

η0
1 = ∇sη

0
1 · nS = 0 on ∂S, Γ0 ∩ ΓS(η0

1) = ∅,

∫

S
η0
1 ds = 0,

∫

S
η0
2 ds = 0,

div(v0) = 0 in F , (2.19)
⎧

⎪

⎨

⎪

⎩

v0(s, 0) · e3 = η0
2(s) s ∈ S, v0 · n = 0 on Γ0 if 1

p + 1
2q > 1,

v0(s, 0) = η0
2(s)e3 s ∈ S, v0 = 0 on Γ0, η0

2 = 0 on ∂S if 1
p + 1

2q < 1,

∇sη
0
2 · nS = 0 on ∂S if 1

p + 1
2q < 1

2 .

(2.20)

Here n is the unit normal to ∂F outward F and in particular on ΓS , n = e3.
Using the above change of variables Theorem 1.1 and Theorem 1.2 can be rephrased as

Theorem 2.2. Let p, q ∈ (1,∞) satisfying the condition (1.15). Let us assume that η0
1 = 0 and (η0

2 , v0)
satisfies (2.18), (2.19), (2.20). Then there exists T > 0, depending only on (η0

2 , v0), such that the system
(2.9) admits a unique strong solution (v, π, η) in the class of functions satisfying

v ∈ W 1,2
p,q ((0, T );F), π ∈ Lp(0, T ;W 1,q

m (F)), η ∈ W 2,4
p,q ((0, T );S)

Moreover, η satisfies (2.1) and X(t, ·) : F → F(η(t)) is a C1-diffeomorphism for all t ∈ [0, T ].

Theorem 2.3. Let p, q ∈ (1,∞) satisfying the condition (1.15). Then there exists β0 > 0 such that, for all
β ∈ [0, β0], there exist ε0 and C > 0, such that for any (η0

1 , η0
2 , v0) satisfying (2.18), (2.19), (2.20) and

‖η0
1‖

B
2(2−1/p)
q,p (S)

+ ‖η0
2‖

B
2(1−1/p)
q,p (S)

+ ‖v0‖
B

2(1−1/p)
q,p (F)

< ε0, (2.21)

the system (2.9) admits a unique strong solution (v, π, η) in the class of functions satisfying

v ∈ W 1,2
p,q,β((0,∞);F), π ∈ Lp

β(0,∞;W 1,q
m (F)), η ∈ W 2,4

p,q,β((0,∞);S)

Moreover, η satisfies (2.1) and X(t, ·) : F → F(η(t)) is a C1-diffeomorphism for all t ∈ [0,∞).
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3. Some Background on R-sectorial Operators

In this section, we recall some important facts on R-sectorial operators. This notion is associated with
the property of R-boundedness (R for Randomized) for a family of operators that we recall here (see, for
instance, [10,11,30,45]):

Definition 3.1. Let X and Y be Banach spaces. A family of operators E ⊂ L(X ,Y) is called R−bounded
if there exist p ∈ [1,∞) and a constant C > 0, such that for any integer N � 1, any T1, . . . TN ∈ E , any
independent Rademacher random variables r1, . . . , rN , and any x1, . . . , xN ∈ X ,

⎛

⎝E

∥

∥

∥

∥

∥

∥

N
∑

j=1

rjTjxj

∥

∥

∥

∥

∥

∥

p

Y

⎞

⎠

1/p

� C

⎛

⎝E

∥

∥

∥

∥

∥

∥

N
∑

j=1

rjxj

∥

∥

∥

∥

∥

∥

p

X

⎞

⎠

1/p

.

The smallest constant C in the above inequality is called the Rp-bound of E on L(X ,Y) and is denoted
by Rp(E).

In the above definition, we denote by E the expectation and a Rademacher random variable is a sym-
metric random variables with value in {−1, 1}. It is proved in [11, p.26] that this definition is independent
of p ∈ [1,∞).

We have the following useful properties (see Proposition 3.4 in [11]):

Rp(E1 + E2) � Rp(E1) + Rp(E2), Rp(E1E2) � Rp(E1)Rp(E2). (3.1)

For any β ∈ (0, π), we write

Σβ = {λ ∈ C \ {0} ; | arg(λ)| < β}.

We recall the following definition:

Definition 3.2 (sectorial and R-sectorial operators). Let A be a densely defined closed linear operator on
a Banach space X with domain D(A). We say that A is a (R)-sectorial operator of angle β ∈ (0, π) if

Σβ ⊂ ρ(A)

and if the set

Rβ =
{

λ(λ − A)−1 ; λ ∈ Σβ

}

is (R)-bounded in L(X ).

We denote by Mβ(A) (respectively Rβ(A)) the bound (respectively the R-bound) of Rβ . One can
replace in the above definitions Rβ by the set

˜Rβ =
{

A(λ − A)−1 ; λ ∈ Σβ

}

.

In that case, we denote the uniform bound and the R-bound by ˜Mβ(A) and ˜Rβ(A).
This notion of R-sectorial operators is related to the maximal regularity of type Lp by the following

result due to [45] (see also [11, p.45]).

Theorem 3.3. Let X be a UMD Banach space and A a densely defined, closed linear operator on X . Then
the following assertions are equivalent:

1. For any T ∈ (0,∞] and for any f ∈ Lp(0, T ;X ), the Cauchy problem

u′ = Au + f in (0, T ), u(0) = 0 (3.2)

admits a unique solution u with u′, Au ∈ Lp(0, T ;X ) and there exists a constant C > 0 such that

‖u′‖Lp(0,T ;X ) + ‖Au‖Lp(0,T ;X ) � C‖f‖Lp(0,T ;X ).

2. A is R-sectorial of angle > π
2 .



103 Page 10 of 23 D. Maity, and T. Takahashi JMFM

We recall that X is a UMD Banach space if the Hilbert transform is bounded in Lp(R;X ) for p ∈ (1,∞).
In particular, the closed subspaces of Lq(Ω) for q ∈ (1,∞) are UMD Banach spaces. We refer the reader
to [2, pp.141–147] for more information on UMD spaces.

Combining the above theorem with [13, Theorem 2.4] and [43, Theorem 1.8.2], we can deduce the
following result on the system

u′ = Au + f in (0,∞), u(0) = u0. (3.3)

Corollary 3.4. Let X be a UMD Banach space, 1 < p < ∞ and let A be a closed, densely defined operator
in X with domain D(A). Let us assume that A is a R-sectorial operator of angle > π

2 and that the
semigroup generated by A has negative exponential type. Then for every u0 ∈ (X ,D(A))1−1/p,p and for
every f ∈ Lp(0,∞;X ), the system (3.3) admits a unique solution in Lp(0,∞;D(A)) ∩ W 1,p(0,∞;X ).

Let us also mention, the following useful result on the perturbation theory of R-sectoriality, obtained
in [29, Corollary 2].

Proposition 3.5. Let A be a R-sectorial operator of angle β on a Banach space X . Let B : D(B) → X be
a linear operator such that D(A) ⊂ D(B) and such that there exist a, b � 0 satisfying

‖Bx‖X � a‖Ax‖X + b‖x‖X (x ∈ D(A)). (3.4)

If

a <
1

˜Mβ(A)˜Rβ(A)
and λ >

bMβ(A)˜Rβ(A)

1 − a˜Mβ(A)˜Rβ(A)
,

then A + B − λ is R-sectorial of angle β.

4. Linearized System

In order to study the system (2.9), we linearized it and use the theory of the previous section. To this
aim, we introduce the operator T : L2(S) → L2(∂F) defined by

(T η)(y) = (Pmη(s)) e3 if y = (s, 0) ∈ ΓS ,

(T η)(y) = 0 if y ∈ Γ0. (4.1)

We consider the following linear system
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂tv − divT(v, π) = f in (0,∞) × F ,

div v = 0 in (0,∞) × F ,

v = T η2 on (0,∞) × ∂F
∂tη1 = η2 in (0,∞) × S,

∂tη2 + Pm

(

Δ2
sη1

)

− Δsη2 = −Pm

(

T(v, π)|ΓS
e3 · e3

)

+ Pmh in (0,∞) × S,

η1 = ∇sη1 · nS = 0 on (0,∞) × ∂S,

η1(0, ·) = η0
1 in S, η2(0, ·) = η0

2 in S, v(0, ·) = v0 in F .

(4.2)

One can simplify the system (4.2): using that div v = 0 in F and v1 = v2 = 0 on ΓS we deduce that
(Dv)|ΓS

e3 · e3 = 0. Thus

−Pm

(

T(v, π)|ΓS
e3 · e3

)

= γmπ,

where γm is the following modified trace operator:

γmf := Pm(f |ΓS
) = f(·, 0) − 1

|S|

∫

S
f(s′, 0) ds′ (f ∈ W r,q(F) with r > 1/q). (4.3)

This cancelation plays no role in our result and is only used to simplify the calculation.
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4.1. The Fluid Operator

Here we recall some results on the Stokes operator in the Lq framework. Let us introduce the Banach
space

W q
div(F) = {ϕ ∈ Lq(F) ; div ϕ ∈ Lq(F)} ,

equipped with the norm

‖ϕ‖W q
div(F) := ‖ϕ‖Lq(F) + ‖div ϕ‖Lq(F).

We recall (see, for instance, [17, Lemma 1]) that the normal trace can be extended as a continuous and
surjective map

γn : W q
div(F) → W−1/q,q(∂F),

ϕ → ϕ · n.

In particular, we can define

Lq
σ(F) = {ϕ ∈ Lq(F) ; div ϕ = 0 in F , ϕ · n = 0 on ∂F} .

We have the following Helmholtz-Weyl decomposition (see, for instance Section 3 and Theorem 2 of [17]):

Lq(F) = Lq
σ(F) ⊕ Gq(F), where Gq(F) =

{

∇ϕ ; ϕ ∈ W 1,q(F)
}

.

The corresponding projection operator P from Lq(F) onto Lq
σ(F) can be obtained as

Pf = f − ∇ϕ, (4.4)

where ϕ ∈ W 1,q(F) is a solution of the following Neumann problem

Δϕ = div f in F ,
∂ϕ

∂n
= f · n on ∂F , (4.5)

that is a solution of
∫

F
∇ϕ · ∇ψ dy =

∫

F
f · ∇ψ dy (ψ ∈ W 1,q′

(F)),

where q′ is the conjugate exponent of q.
Let us denote by AF = PΔ, the Stokes operator in Lq

σ(F) with domain

D(AF ) = W 2,q(F) ∩ W 1,q
0 (F) ∩ Lq

σ(F).

Theorem 4.1. Assume 1 < q < ∞. Then the Stokes operator AF generates a C0-semigroup of negative
type. Moreover AF is an R-sectorial operator in Lq

σ(F) of angle β for any β ∈ (0, π).

For the proof, we refer to Corollary 1.2 and Theorem 1.4 in [19].

4.2. The Structure Operator

Let us set

XS = W 2,q
0,m(S) × Lq

m(S)

and let us consider the operator AS : D(AS) → XS defined by

D(AS) =
(

W 4,q(S) ∩ W 2,q
0,m(S)

)

× W 2,q
0,m(S), AS =

(

0 Id
−PmΔ2 Δ

)

,

where Pm is defined by (1.8).

Theorem 4.2. Let us assume that 1 < q < ∞. Then there exists γ1 > 0 such that AS −γ1 is an R-sectorial
operator on XS of angle β1 > π/2.



103 Page 12 of 23 D. Maity, and T. Takahashi JMFM

Proof. We first consider

X 0
S := W 2,q

0 (S) × Lq(S)

and the operator A0
S defined by

D(A0
S) =

(

W 4,q(S) ∩ W 2,q
0 (S)

)

× W 2,q
0 (S), A0

S =
(

0 Id
−Δ2 Δ

)

.

Applying Theorem 5.1 in [12], we have that A0
S is R-sectorial in X 0

S of angle β0 > π/2.

Now we can extend AS on D(A0
S) by ˜AS = A0

S + BS where

BS =
(

0 0
(Id − Pm)Δ2 0

)

, (Id − Pm)Δ2η1 =
1

|S|

∫

∂S
(∇Δη1) · nS ds.

Using standard result on the trace operator, we see that BS satisfies the hypotheses of Proposition 3.5
and in particular for any a > 0 there exists b > 0 such that (3.4) holds. Therefore, there exists γ1 > 0
such that ˜AS − γ1 is an R-sectorial operator on X 0

S of angle β0.
Let λ �= 0, (g1, g2) ∈ XS and (η1, η2) ∈ D(A0

S) such that

(λ − ˜AS)
[

η1

η2

]

=
[

g1

g2

]

.

We can write this equation as

λη1 − η2 = g1 in S,

λη2 + PmΔ2η1 − Δη2 = g2, in S,

η1 = ∇sη1 · nS = η2 = ∇sη2 · nS = 0 on ∂S.

Integrating the first two equations over S we find that (η1, η2) ∈ D(AS). Thus
[

(λ − ˜AS)−1
]

|XS

= (λ − AS)−1.

Using basic properties on R-boundedness, we deduce the result. �

4.3. The Fluid-Structure Operator

In this subsection we rewrite (4.2) in a suitable operator form. The idea is to eliminate the pressure from
both the fluid and the structure equations. To eliminate the pressure from the fluid equation we use the
Leray projector P defined in Eq. (4.4). Following [39], we first decompose the fluid velocity into two parts
Pv and (Id − P)v. Next, we split the pressure into two parts, one which depends on Pv and another
part which depends on η2. This will lead us to an equation of evolution for (Pv, η1, η2) and an algebraic
equation for (Id − P)v.

The advantage of this formulation is that the R-boundedness of the fluid-structure operator can
be obtained just by using the fact that the operators AF and AS are R-sectorial and a perturbation
argument. This idea has been used in several fluid-solid interaction problems in the Hilbert space setting
as well as in Lq-setting (see, for instance, [27,34,36,40] and the references therein).

Let us consider the following problem :
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−divT(w,ψ) = f in F ,
div w = 0 in F ,

w = T g on ∂F ,
∫

F
ψ dx = 0.

(4.6)

From [42, Proposition 2.3, p. 35], we have the following result:
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Lemma 4.3. Assume 1 < q < ∞. For any f ∈ Lq(F) and g ∈ W 2,q
0,m(S), the system (4.6) admits a unique

solution (w,ψ) ∈ W 2,q(F) × W 1,q
m (F).

This allows us to introduce the following operators: we consider

Dv ∈ L(W 2,q
0,m(S),W 2,q(F)) and Dp ∈ L(W 2,q

0,m(S),W 1,q
m (F)) (4.7)

defined by
Dvg = w, Dpg = ψ, (4.8)

where (w,ψ) is the solution to the problem (4.6) associated with g and in the case f = 0.
Second, we consider the Neumann problem

Δϕ = 0 in F ,
∂ϕ

∂n
= h on ∂F ,

∫

F
ϕ dx = 0. (4.9)

Let us denote by N the operator defined by

Nh = ϕ. (4.10)

Using classical results (see for instance Theorem 4.2 and Theorem 4.3 of [33]), we have the following
properties of N :

N ∈ L(W 1−1/q,q
m (∂F),W 2,q

m (F)), N ∈ L(W−1/q,q
m (∂F),W 1,q

m (F)),

N ∈ L(Lq
m(∂F),W 1+1/q−ε,q

m (F)), (4.11)

for any ε > 0. We recall that W
−1/q,q
m (∂F) is defined as follows:

W−1/q,q
m (∂F) =

{

h ∈ W−1/q,q(∂F) ; 〈h, 1〉W −1/q,q,W 1−1/q′,q′ = 0
}

, (4.12)

where q′ the conjugate exponent of q.
We also define

NSg = Nh with h(y) =

{

g(s) if y = (s, 0) ∈ ΓS ,

0 if y ∈ Γ0.
(4.13)

From the above properties of N , we deduce that

NS ∈ L(Lq
m(S),W 1+1/q−ε,q

m (F)), (4.14)

for any ε > 0.
Finally, we introduce the operator NHW ∈ L(Lq(F),W 1,q

m (F)) defined by

NHW f = ϕ, (4.15)

where ϕ solves (4.5).
Using the above operators, we can obtain the following proposition. The proof is similar to the proof

of [36, Proposition 3.7]. For the sake of completeness, we provide a short proof here.

Proposition 4.4. Let 1 < p, q < ∞. Assume

v ∈ W 1,2
p,q ((0,∞);F), π ∈ Lp(0,∞;W 1,q

m (F)),

η1 ∈ W 2,4
p,q ((0,∞);S), η2 ∈ W 1,2

p,q ((0,∞);S).

Then (v, π, η1, η2) is a solution of (4.2) if and only if
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Pv′ = AF Pv − AF PDvη2 + Pf in (0,∞),
∂tη1 = η2 in (0,∞),
(Id + γmNS)∂tη2 + PmΔ2η1 − Δη2 = γmN(νΔPv · n) + Pmh + γmNHW f in (0,∞),
[Pv, η1, η2]�(0, ·) = [Pv0, η0

1 , η0
2 ]�

(Id − P)v = (Id − P)Dvη2 in (0,∞),
π = N(νΔPv · n) − NS∂tη2 + NHW f in (0,∞).

(4.16)
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Proof. Considering the equation satisfied by (v − Dvg, π − Dpg), we obtain (4.16)1 and (4.16)5. Using
(4.4) and (4.5), it follows that Δ(Id − P)v = 0 in F . Thus applying the divergence and normal trace
operators to (4.6), we infer that

Δψ = divf in F ,
∂ψ

∂n
= f · n + νΔPv · n − T ∂tη2 · n on ∂F . (4.17)

Note that div ΔPv = 0 and therefore ΔPv · n belongs to W
−1/q,q
m (∂F). The expression of ψ then follows

from the definition of the operators N , NS and NHW defined in (4.10), (4.13) and (4.15) respective-
ly. Finally, using the expression of the pressure π we can rewrite the equation satisfied by η2 as in
(4.16)3. �

In the literature, the operator

MS := Id + γmNS

is known as the added mass operator. We are going to show that it is invertible.

Lemma 4.5. The operator MS = Id + γmNS ∈ L(Lq
m(S)) is an automorphism in W s,q

m (S) for any s ∈
[0, 1). Moreover, M−1

S − Id ∈ L(Lq
m(S),W s,q

m (S)), for any s ∈ [0, 1). In particular, M−1
S − Id is a compact

operator on Lq
m(S).

Proof. At first, we show that MS is an invertible operator on Lq
m(S). Since

γmNS ∈ L(Lq
m(S),W 1−ε,q

m (S)),

for any ε ∈ (0, 1], it is sufficient to show that the kernel of MS is reduced to {0}: assume

(Id + γmNS)f = 0. (4.18)

Then f ∈ W 1−ε,q
m (S) ⊂ L2

m(S) for ε small enough. In particular (see (4.13)), ϑ = NSf ∈ H1(F) is the
weak solution of

Δϑ = 0 in F ,
∂ϑ

∂n
= f on ΓS ,

∂ϑ

∂n
= 0 on Γ0.

Multiplying (4.18) by f and using the above system, we deduce after integration by parts,
∫

S
[(Id + γmNS)f ] f ds =

∫

S
f2 ds +

∫

F
|∇ϑ|2 dy = 0.

Thus f = 0 and MS is an invertible operator on Lq
m(S). Let s ∈ [0, 1) and f0 ∈ W s,q

m (S). By the above
argument, there exists a unique f ∈ Lq

m(S) such that

(Id + γmNS)f = f0.

As γmNSf ∈ W s.q
m (S) we conclude that f ∈ W s,q

m (S). Thus MS is an invertible operator on W s,q
m (S).

Finally, the compactness of the operator M−1
S − Id follows from the following identity

M−1
S − Id = M−1

S − M−1
S MS = −M−1

S γmNS .

�

We are now in a position to rewrite the system (4.2) in a suitable operator form. Let us set

X = Lq
σ(F) × XS (4.19)

and consider the operator AFS : D(AFS) → X defined by

D(AFS) =
{

[v, η1, η2]� ∈
[

W 2,q(F) ∩ Lq
σ(F)

]

× D(AS) ; v − PDvη2 ∈ D(AF )
}

,

and

AFS = A0
FS + BFS ,
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with

A0
FS :=

⎡

⎣

AF 0 −AF PDv

0 0 Id
0 −PmΔ2 Δ

⎤

⎦ (4.20)

and

BFS =

⎡

⎣

0 0 0
0 0 0

M−1
S γmN(νΔ(·) · n) −(M−1

S − Id)PmΔ2 (M−1
S − Id)Δ

⎤

⎦ . (4.21)

Combining Proposition 4.4 and Lemma 4.5, we can rewrite the system (4.2) as

d

dt

⎡

⎣

Pv
η1

η2

⎤

⎦ = AFS

⎡

⎣

Pv
η1

η2

⎤

⎦ +

⎡

⎣

Pf
0
h

⎤

⎦ ,

⎡

⎣

Pv
η1

η2

⎤

⎦ (0) =

⎡

⎣

Pv0

η0
1

η0
2

⎤

⎦ , (4.22)

(Id − P)v = (Id − P)Dvη2, (4.23)

π = N(νΔPv · n) − NS∂tη2 + NHW f, (4.24)

where
h = M−1

S Pmh + M−1
S γmNHW f. (4.25)

4.4. R-Sectoriality of the Operator AF S

In this subsection we prove the following theorem

Theorem 4.6. Let 1 < q < ∞. There exists γ2 > 0 such that AFS − γ2 is an R-sectorial operator in X of
angle > π/2. Moreover the operator AFS generates an exponentially stable semigroup on X : there exist
constants C > 0 and β0 > 0 such that

∥

∥etAF S (v0, η0
1 , η0

2)�∥
∥

X � Ce−β0t
∥

∥(v0, η0
1 , η0

2)�∥
∥

X (t � 0). (4.26)

Proof. Observe that

λ
(

λ − A0
FS

)−1
=

[

λ(λ − AF )−1 −AF (λ − AF )−1P ˜Dvλ(λ − AS)−1

0 λ(λ − AS)−1

]

,

where ˜Dv [f1, f2]
� = Dvf2. Using a standard transposition method and Lemma 4.3, we see that

Dv ∈ L(Lq
m(S), Lq(F)). (4.27)

Therefore by Theorems 4.1 and 4.2, there exists γ > 0 such that A0
FS − γ is R-sectorial operator in X of

angle > π/2.
Next, we want to show BFS ∈ L(D(AFS),X ) is a compact operator. Assume [v, η1, η2]� ∈ D(AFS).

Then Δv ∈ Lq(F) and div Δv = 0 and thus from the trace result recalled in Sect. 4.1,

(Δv) · n ∈ W−1/q,q
m (∂F).

This yields N((Δv) · n) ∈ W 1,q
m (F), γmN((Δv) · n) ∈ W

1−1/q,q
m (S) and, using Lemma 4.5,

M−1
S γmN((Δv) · n) ∈ W 1−1/q,q

m (S).

On the other hand, using again Lemma 4.5, we deduce

(M−1
S − Id)PmΔ2 ∈ L(W 4,q(S),W 1−ε,q

m (S)), (M−1
S − Id)Δ ∈ L(W 2,q

m (S),W 1−ε,q
m (S))

for any ε > 0. Therefore, BFS ∈ L(D(AFS),X ) is a compact operator and by [14, Chapter III, Lemma
2.16], BFS is a A0

FS-bounded operator with relative bound 0. Finally, using Proposition 3.5 we conclude
the first part of the theorem. In particular AFS generates an analytic semigroup and to show the second
part of the theorem, it is sufficient to show that

C
+ = {λ ∈ C ; Reλ � 0} ⊂ ρ(AFS).
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Moreover, using that AFS has a compact resolvent and the Fredholm alternative theorem, we can show
the above relation by proving that ker(λ − AFS) = {0} for λ ∈ C

+. Assume λ ∈ C
+ and

(v, π, η1, η2) ∈ W 2,q(F) × W 1,q
m (F) × W 4,q

m (S) × W 2,q
m (S)

satisfy
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

λv − divT(v, π) = 0 in F ,

div v = 0 in F ,

v = T η2 on ∂F ,

λη1 − η2 = 0 in S,

λη2 + PmΔ2η1 − Δη2 = γmπ in S,

η1 = ∇sη1 · nS = 0 on ∂S.

(4.28)

First we notice that

(v, π, η1, η2) ∈ W 2,2(F) × W 1,2
m (F) × W 4,2

m (S) × W 2,2
m (S). (4.29)

If q � 2 then it is a consequence of Hölder’s inequality. Let us assume that 1 < q < 2 and let us take
λ0 ∈ ρ(AFS) (see Theorem 4.6). We have

(λ0 − AFS)[v, η1, η2]� = (λ0 − λ)[v, η1, η2]�

By following the calculation done in Sect. 4.3, we see that the system (4.28) can be written as
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(λ0 − AFS)

⎡

⎢

⎣

Pv

η1

η2

⎤

⎥

⎦
= (λ0 − λ)

⎡

⎢

⎣

Pv

η1

η2

⎤

⎥

⎦
,

(Id − P)v = (Id − P)Dvη2,

π = N(νΔPv · n) − λNSη2.

Since W 2,q(F) ⊂ L2(F), W 2,q(S) ⊂ L2(S) and (λ0 − AFS) is invertible, we deduce (4.29).
Using (4.29), we can multiply (4.28)1 by v and (4.28)5 by η2, and we obtain after integration by parts:

λ

∫

F
|v|2 dy + 2ν

∫

F
|D(v)|2 dy + λ

∫

S
|η2|2 ds + λ

∫

S
|Δsη1|2 ds +

∫

S
|∇sη2|2 ds = 0.

Since Reλ � 0, from the above equality and using the boundary conditions we obtain that v = π = η1 =
η2 = 0. This completes the proof of the theorem. �

In order to obtain a result of well-posedness on the system (4.2), we need to impose some compatibility
conditions on the data:

η0
1 = ∇sη

0
1 · nS = 0 on ∂S,

∫

S
η0
1 ds = 0,

∫

S
η0
2 ds = 0, div v0 = 0 in F , (4.30)

and
⎧

⎪

⎨

⎪

⎩

v0 · n = T η2 · n on ∂F if 1
p + 1

2q > 1,

v0 = T η2 on ∂F , η0
2 = 0 on ∂S if 1

p + 1
2q < 1,

∇sη
0
2 · nS = 0 on ∂S if 1

p + 1
2q < 1

2 .

(4.31)

We deduce from Theorem 4.6 the following result

Corollary 4.7. Let p, q ∈ (1,∞) with
1
p

+
1
2q

�= 1
2
,

1
p

+
1
2q

�= 1 and let β ∈ [0, β0], where β0 is the constant

in Theorem 4.6. Assume

v0 ∈ B2(1−1/p)
q,p (F), η0

1 ∈ B2(2−1/p)
q,p (S), η0

2 ∈ B2(1−1/p)
q,p (S),

f ∈ Lp
β(0,∞;Lq(F)), h ∈ Lp

β(0,∞;Lq(S)) (4.32)
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satisfy the compatibility conditions (4.30) and (4.31). Then the system (4.2) admits a unique strong
solution

v ∈ W 1,2
p,q,β((0,∞);F), π ∈ Lp

β(0,∞;W 1,q
m (F)),

η1 ∈ W 2,4
p,q,β((0,∞);S) ∩ Lp(0,∞;Lq

m(S)),

η2 ∈ W 1,2
p,q,β((0,∞);S) ∩ Lp(0,∞;Lq

m(S)).

Moreover, there exists a constant CL depending on p, q and the geometry such that

‖v‖W 1,2
p,q,β((0,∞);F) + ‖π‖Lp

β(0,∞;W 1,q
m (F)) + ‖η1‖W 2,4

p,q,β((0,∞);S) + ‖η2‖W 1,2
p,q,β((0,∞);S)

� CL

(

‖v0‖
B

2(1−1/p)
q,p (F)

+ ‖η0
1‖

B
2(2−1/p)
q,p (S)

+ ‖η0
2‖

B
2(1−1/p)
q,p (S)

+ ‖f‖Lp
β(0,∞;Lq(F)) + ‖h‖Lp

β(0,∞;Lq(S))

)

. (4.33)

Proof. Let us first consider the case β = 0. Using (4.25), (4.15) and Lemma 4.5 we can also verify that
h ∈ Lp(0,∞;Lq

m(S)).
The compatibility conditions (4.30), (4.31) and the interpolation results [3, Theorem 3.4] and [4,

Theorem 4.9.1 and Example 4.9.3]) yield
[

Pv0, η0
1 , η0

2

]� ∈ (X ,D(AFS))1−1/p,p

and
[

Pf, 0, h
]� ∈ Lp(0,∞;X ).

From Theorem 4.6, we know that AFS generates an analytic exponentially stable semigroup on X
and is a R-sectorial operator on X . Therefore by Corollary 3.4

(Pv, η1, η2) ∈ Lp(0,∞;D(AFS)) ∩ W 1,p(0,∞;X ).

We deduce from (4.23), (4.7) and (4.27) that v ∈ W 1,2
p,q ((0,∞);F) and next using relations (4.11), (4.14)

and (4.15), we obtain π ∈ Lp(0,∞;W 1,q
m (F)).

The case β > 0 can be reduced to the previous case by multiplying all the functions by eβt and using
the fact that AFS + β is a R-sectorial operator and generates an exponentially stable semigroup. �

5. Local in Time Existence

The aim of this section is to prove Theorems 1.1 and 2.2. Throughout this section we assume the following

Assumption 5.1. η0
1 = 0, (p, q) ∈ (1,∞) satisfies (1.15) and (η0

2 , v0) satisfies (2.18), (2.19), (2.20).

For T > 0 and R > 0, we define ST,R as follows

ST,R :=
{

(f, h) ∈ Lp(0, T ;Lq(F)) × Lp(0, T ;Lq(S)) ; ‖f‖Lp(0,T ;Lq(F)) + ‖h‖Lp(0,T ;Lq(S)) � R
}

. (5.1)

In order to prove Theorem 2.2, we show that for R fixed and for T small, we can define the map

NT,R : ST,R −→ ST,R (f, h) −→ (F (v, π, η),H(v, π, η)), (5.2)

where (v, π, η) is the solution to the system (4.2) in (0, T ) × F (see Corollary 4.7) and where F and H
are given by (2.13)–(2.14). Then we show that for T small enough and R fixed NT,R(ST,R) ⊂ ST,R (see
Proposition 5.2 below) and that, NT,R|ST,R

is a strict contraction (see Proposition 5.3 below). This shows
that NT,R admits a unique fixed point and allows us to deduce Theorem 2.2.

First, we deduce from Corollary 4.7 that

‖v‖W 1,2
p,q ((0,T );F)+‖π‖Lp(0,T ;W 1,q

m (F))+‖η‖W 2,4
p,q ((0,T );S) � C(‖v0‖

B
2(1−1/p)
q,p (F)

+‖η0
2‖

B
2(1−1/p)
q,p (S)

+R). (5.3)
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We take in what follows

R := ‖v0‖
B

2(1−1/p)
q,p (F)

+ ‖η0
2‖

B
2(1−1/p)
q,p (S)

and the constants below may depend on R, but not on T . In order to simplify the computation, we also
assume that T ∈ (0, 1).

With these conventions, by using [44, (7), p.196], we have that for any s1 ∈ (0, 2(1 − 1/p)), with s1

not an integer,

‖η‖L∞(0,T ;W 2+s1,q(S)) + ‖η‖W 1,∞(0,T ;W s1,q(S)) + ‖v‖L∞(0,T ;W s1,q(F)) � C. (5.4)

Since η(0, ·) = 0, we have

‖η‖L∞(0,T ;W 2,q(S)) � CT 1/p′‖∂tη‖Lp(0,T ;W 2,q(S)) � CT 1/p′
. (5.5)

Thus, by interpolation between (5.4) and (5.5) ([43, Theorem 2, p. 317]), we deduce that for any s1 ∈
(0, 2(1 − 1/p)), there exists ε = ε(s1) > 0 such that

‖η‖L∞(0,T ;W 2+s1,q(S)) � CT ε. (5.6)

From (1.15), there exists s1 ∈ (0, 2(1−1/p)), such that s1+1 > 3/q and thus with the Sobolev embeddings,
we deduce that

‖η‖L∞(0,T ;C1(S)) � CT ε. (5.7)

Therefore, for T small enough, η(t, ·) satisfies (2.1) for all t ∈ [0, T ] where c0 is defined in (2.5). We
can thus construct X by (2.6) so that X(t, ·) is a C1-diffeomorphism from F onto F(η(t)). We can also
consider F (v, π, η) and H(v, π, η)) given by (2.13)–(2.14). In order to estimate these expressions, we also
note that by (real or complex) interpolation ([43, Theorem 2, p. 317]) for θ ∈ (0, 1),

‖v(t, ·)‖W s2,q(F) � C‖v(t, ·)‖1−θ
W s1,q(F)‖v(t, ·)‖θ

W 2,q(F), s2 = 2θ + (1 − θ)s1,

if s2 is not an integer. We can find θ ∈ (0, 1/3) and s1 ∈ (0, 2(1 − 1/p)) such that s2 � 2/q so that by
Sobolev embeddings,

‖v‖L3p(0,T ;L3q(F)) � CT ε‖v‖1−θ
L∞(0,T ;W s1,q(F))‖v‖θ

Lp(0,T ;W 2,q(F)) � CT ε (5.8)

and similarly,

‖∇2
sη‖L3p(0,T ;L3q(S)) + ‖∂tη‖L3p(0,T ;L3q(S)) � CT ε, (5.9)

‖∇v‖L3p/2(0,T ;L3q/2(F)) + ‖∇3
sη‖L3p/2(0,T ;L3q/2(S)) + ‖∇s∂tη‖L3p/2(0,T ;L3q/2(S)) � CT ε. (5.10)

We are now in position to prove the following result:

Proposition 5.2. With the above assumptions (in particular Assumption 5.1), there exists T > 0 small
enough such that the map NT,R (see (5.2)) is well-defined and satisfies NT,R(ST,R) ⊂ ST,R.

Proof. From (2.4) and (5.7), we deduce that for T > 0 small enough

‖∇X − I3‖L∞(0,T ;C0(F)) + ‖∇Y (X) − I3‖L∞(0,T ;C0(F))

+ ‖a(X) − I3‖L∞(0,T ;C0(F)) + ‖b − I3‖L∞(0,T ;C0(F)) � CT ε, (5.11)

‖det(∇X) − 1‖L∞(0,T ;C0(F)) � CT ε,
1
2

� ‖det ∇X‖L∞(0,T ;C0(F)) � 3
2
, (5.12)

‖∇X‖L∞(0,T ;C0(F)) + ‖∇Y (X)‖L∞(0,T ;C0(F)) + ‖a(X)‖L∞(0,T ;C0(F)) + ‖b‖L∞(0,T ;C0(F)) � C. (5.13)

We recall that a and b are defined by (2.11).
By using standard properties of linear algebra, we have that

a(X) =
∇X

det(∇X)
(5.14)
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and thus for all i, j, k,
∣

∣

∣

∣

∂aik

∂xj
(X)

∣

∣

∣

∣

� C
∣

∣∇2X
∣

∣ � C
(

|η| + |∇sη| + |∇2
sη|

)

, (5.15)
∣

∣

∣

∣

∣

∂2aik

∂x2
j

(X)

∣

∣

∣

∣

∣

� C
(

∣

∣∇2X
∣

∣

2
+
∣

∣∇3X
∣

∣

)

� C
(

(

|η| + |∇sη| + |∇2
sη|

)2
+ |∇3

sη|
)

, (5.16)

|∂ta(X)| � C
(∣

∣∇2X
∣

∣ + |∇∂tX|
)

� C
(

|η| + |∇sη| + |∇2
sη| + |∇s∂tη|

)

. (5.17)

We also have

|∂tY (X)| � C |∂tX| � C|∂tη|, (5.18)
∣

∣

∣

∣

∣

∂2Y�

∂x2
j

(X)

∣

∣

∣

∣

∣

� C
∣

∣∇2X
∣

∣ � C
(

|η| + |∇sη| + |∇2
sη|

)

. (5.19)

Combining the above estimates with (5.8), (5.9) and (5.10), we deduce that F defined by (2.13)
satisfies

‖F (v, π, η)‖Lp(0,T ;Lq(F)) � CT ε. (5.20)

Using trace theorems, we deduce from (5.3) and from (5.10) that

‖∇v‖Lp(0,T ;Lq(∂F)) � C, ‖v‖L3p/2(0,T ;L3q/2(∂F)) � CT ε.

From this relation, the above estimates and (5.9), (5.10), we deduce that H defined by (2.14) satisfies

‖H(v, π, η)‖Lp(0,T ;Lq(S)) � CT ε. (5.21)

Relations (5.20) and (5.21) yield that N (BT,R) ⊂ BT,R for T small enough. �

Proposition 5.3. With the above assumptions (in particular Assumption 5.1), there exists T > 0 small
enough such that the map NT,R (see (5.2)) is a strict contraction on ST,R.

Proof. The proof is similar to the proof of Proposition 5.2, we only give the main ideas and omit the
details. We consider (f (i), h(i)), i = 1, 2. We have

NT,R(f (1), h(1)) − NT,R(f (2), h(2))

= (F (v(1), π(1), η(1)) − F (v(2), π(2), η(2)),H(v(1), π(1), η(1)) − H(v(2), π(2), η(2))), (5.22)

where (v(i), π(i), η(i)) is the solution to the system (4.2) in (0, T ) × F (see Corollary 4.7) associated with
(f (i), h(i)), i = 1, 2 and where F and H are given by (2.13)-(2.14). By taking T as Proposition 5.2, we
have for each i that (v(i), π(i), η(i)) satisfies the same property obtained in the proof of Proposition 5.2
and in particular, X(i), Y (i), a(i), b(i) defined by (2.6) and (2.11) satisfy also the same properties obtained
in the proof of Proposition 5.2.

We write

v = v(1) − v(2), pi = π(1) − π(2), η = η(1) − η(2), f = f (1) − f (2), g = g(1) − g(2),

Applying Corollary 4.7, we first obtain

‖v‖W 1,2
p,q ((0,T );F) + ‖π‖Lp(0,T ;W 1,q

m (F)) + ‖η‖W 2,4
p,q ((0,T );S) � C(‖f‖Lp(0,T ;Lq(F)) + ‖h‖Lp(0,T ;Lq(S))). (5.23)

As in the proof of Proposition 5.2, the constants below may depend on R, but not on T and we assume
T ∈ (0, 1) to simplify. Following the proof of (5.7), we can obtain

‖η‖L∞(0,T ;C1(S)) � CT ε(‖f‖Lp(0,T ;Lq(F)) + ‖h‖Lp(0,T ;Lq(S))) (5.24)

and following the proof of (5.8), (5.9) and (5.10), we deduce

‖v‖L3p(0,T ;L3q(F)) + ‖∇2
sη‖L3p(0,T ;L3q(S)) + ‖∂tη‖L3p(0,T ;L3q(S))

� CT ε(‖f‖Lp(0,T ;Lq(F)) + ‖h‖Lp(0,T ;Lq(S))) (5.25)
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and

‖∇v‖L3p/2(0,T ;L3q/2(F)) + ‖∇3
sη‖L3p/2(0,T ;L3q/2(S)) + ‖∇s∂tη‖L3p/2(0,T ;L3q/2(S))

� CT ε(‖f‖Lp(0,T ;Lq(F)) + ‖h‖Lp(0,T ;Lq(S))). (5.26)

Using trace theorems, we deduce from the above estimates that

‖∇v‖Lp(0,T ;Lq(∂F)) � C(‖f‖Lp(0,T ;Lq(F)) + ‖h‖Lp(0,T ;Lq(S))),
‖v‖L3p/2(0,T ;L3q/2(∂F)) � CT ε(‖f‖Lp(0,T ;Lq(F)) + ‖h‖Lp(0,T ;Lq(S))).

We also deduce from the above estimate and from (2.6) that

‖∇X(1) − ∇X(2)‖L∞(0,T ;C0(F)) + ‖∇Y (1)(X(1)) − ∇Y (2)(X(2))‖L∞(0,T ;C0(F))

+ ‖a(1)(X(1)) − a(2)(X(2))‖L∞(0,T ;C0(F)) + ‖b(1) − b(2)‖L∞(0,T ;C0(F))

+ ‖det(∇X(1)) − det(∇X(2))‖L∞(0,T ;C0(F)) � CT ε(‖f‖Lp(0,T ;Lq(F)) + ‖h‖Lp(0,T ;Lq(S))). (5.27)

From (5.14) and from the above estimates, we obtain for all i, j, k,
∣

∣

∣

∣

∣

∂a
(1)
ik

∂xj
(X(1)) − ∂a

(2)
ik

∂xj
(X(2))

∣

∣

∣

∣

∣

� C|∇2
sη| + CT ε(‖f‖Lp(0,T ;Lq(F)) + ‖h‖Lp(0,T ;Lq(S)))

(

|∇2
sη

(1)| + |∇2
sη

(2)|
)

,

(5.28)
∣

∣

∣

∣

∣

∂2a
(1)
ik

∂x2
j

(X(1)) − ∂2a
(2)
ik

∂x2
j

(X(2))

∣

∣

∣

∣

∣

� C
((

|∇2
sη

(1)| + |∇2
sη

(2)|
)

|∇2
sη| + |∇3

sη|
)

,

+ CT ε(‖f‖Lp(0,T ;Lq(F)) + ‖h‖Lp(0,T ;Lq(S)))
(

1 + |∇2
sη

(1)|2 + |∇3
sη

(1)| + |∇2
sη

(2)|2 + |∇3
sη

(2)|
)

, (5.29)
∣

∣

∣∂ta
(1)(X(1)) − ∂ta

(2)(X(2))
∣

∣

∣ � C
(

|∇2
sη| + |∇s∂tη|

)

+ CT ε(‖f‖Lp(0,T ;Lq(F)) + ‖h‖Lp(0,T ;Lq(S)))
(

1 + |∇2
sη

(1)| + |∇s∂tη
(1)|

)

, (5.30)
∣

∣

∣∂tY
(1)(X(1)) − ∂tY

(2)(X(2))
∣

∣

∣ � C|∂tη| + CT ε(‖f‖Lp(0,T ;Lq(F)) + ‖h‖Lp(0,T ;Lq(S)))
(

|∂tη
(1)| + |∂tη

(2)|
)

,

(5.31)
∣

∣

∣

∣

∣

∂2Y
(1)
�

∂x2
j

(X(1)) − ∂2Y
(2)
�

∂x2
j

(X(2))

∣

∣

∣

∣

∣

� C|∇2
sη|

+ CT ε(‖f‖Lp(0,T ;Lq(F)) + ‖h‖Lp(0,T ;Lq(S)))
(

1 + |∇2
sη

(1)| + |∇2
sη

(2)|
)

. (5.32)

Combining the above estimates with (5.11)–(5.19), with (5.8)–(5.10) and with (5.25)–(5.26), we deduce
that

∥

∥

∥NT,R(f (1), h(1)) − NT,R(f (2), h(2))
∥

∥

∥

Lp(0,T ;Lq(F))×Lp(0,T ;Lq(S))

� CT ε(‖f‖Lp(0,T ;Lq(F)) + ‖h‖Lp(0,T ;Lq(S))). (5.33)

Thus for T small enough, we deduce the result. �

6. Global in Time Existence

The aim of this section is to prove Theorem 1.2 and Theorem 2.3. The proof is similar to the proof of
Theorem 1.1 and Theorem 2.2 given in Sect. 5. Throughout this section we assume the following

Assumption 6.1. (p, q) ∈ (1,∞) satisfies (1.15) and (η0
1 , η0

2 , v0) satisfies (2.18), (2.19), (2.20).
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Let us fix β ∈ [0, β0], where β0 is introduced in Corollary 4.7 and for R > 0, we define SR as follows

SR :=
{

(f, h) ∈ Lp
β(0,∞;Lq(F)) × Lp

β(0,∞;Lq(S)) ; ‖f‖Lp
β(0,∞;Lq(F)) + ‖h‖Lp

β(0,∞;Lq(S)) � R
}

. (6.1)

We take in what follows

R := ‖v0‖
B

2(1−1/p)
q,p (F)

+ ‖η0
2‖

B
2(1−1/p)
q,p (S)

+ ‖η0
1‖

B
2(2−1/p)
q,p (S)

and to simplify the computation, we assume that R ∈ (0, 1).
In order to prove Theorem 2.3, we show that for R small, we can define the map

NR : SR −→ SR (f, h) −→ (F (v, π, η),H(v, π, η)), (6.2)

where (v, π, η) is the solution to the system (4.2) in (0,∞) × F (see Corollary 4.7) and where F and H
are given by (2.13)–(2.14). Then we show that for R small enough NR(SR) ⊂ SR (see Proposition 6.2
below) and that, NR|SR

is a strict contraction (see Proposition 6.3 below). This shows that NR admits a
unique fixed point and allows us to deduce Theorem 2.3.

First, we deduce from Corollary 4.7 that

‖v‖W 1,2
p,q,β((0,∞);F) + ‖π‖Lp

β(0,∞;W 1,q
m (F)) + ‖η‖W 2,4

p,q,β((0,∞);S) � CR. (6.3)

By using [44, (7), p.196] and the Sobolev embeddings, we deduce from the above estimate

‖η‖L∞
β (0,∞;C1(S)) � CR. (6.4)

Therefore, for R small enough, η(t, ·) satisfies (2.1) for all t ∈ [0,∞) where c0 is defined in (2.5). We
can thus construct X by (2.6) so that X(t, ·) is a C1-diffeomorphism from F onto F(η(t)). We can also
consider F (v, π, η) and H(v, π, η)) given by (2.13)–(2.14).

As in the previous section, we use (real or complex) interpolation results ([43, Theorem 2, p. 317]) to
deduce that

‖v(t, ·)‖W s2,q(F) � C‖v(t, ·)‖2/3
W s1,q(F)‖v(t, ·)‖1/3

W 2,q(F),

for any s2 < 2(1 + s1)/3. Using (1.15), there exists s1 ∈ (0, 2(1 − 1/p)) such that s2 � 2/q so that by
Sobolev embeddings,

‖v‖L3p
β (0,∞;L3q(F)) � C‖v‖2/3

L∞
β (0,∞;W s1,q(F))‖v‖1/3

Lp
β(0,∞;W 2,q(F))

� CR. (6.5)

and similarly,
‖∇2

sη‖L3p
β (0,∞;L3q(S)) + ‖∂tη‖L3p

β (0,∞;L3q(S)) � CR (6.6)

and
‖∇v‖

L
3p/2
β (0,∞;L3q/2(F))

+ ‖∇3
sη‖

L
3p/2
β (0,∞;L3q/2(S))

+ ‖∇s∂tη‖
L

3p/2
β (0,∞;L3q/2(S))

� CR. (6.7)

Using trace theorems, we deduce from (6.3) and from (6.7) that

‖∇v‖Lp
β(0,∞;Lq(∂F)) � CR, ‖v‖

L
3p/2
β (0,∞;L3q/2(∂F))

� CR. (6.8)

We are now in position to prove the following result:

Proposition 6.2. With the above assumptions (in particular Assumption 6.1), there exists R > 0 small
enough such that the map NR (see (6.2)) is well-defined and satisfies NR(SR) ⊂ SR.

Proof. From (2.4) and (6.4), we deduce that for T > 0 small enough

‖∇X − I3‖L∞
β (0,∞;C0(F)) + ‖∇Y (X) − I3‖L∞

β (0,∞;C0(F))

+ ‖a(X) − I3‖L∞
β (0,∞;C0(F)) + ‖b − I3‖L∞

β (0,∞;C0(F)) � CR, (6.9)

‖det(∇X) − 1‖L∞
β (0,∞;C0(F)) � CR,

1
2

� ‖det ∇X‖L∞
β (0,∞;C0(F)) � 3

2
, (6.10)

‖∇X‖L∞
β (0,∞;C0(F)) + ‖∇Y (X)‖L∞

β (0,∞;C0(F)) + ‖a(X)‖L∞
β (0,∞;C0(F)) + ‖b‖L∞

β (0,∞;C0(F)) � C. (6.11)
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We recall that a and b are defined by (2.11).
Using the above estimates, relations (5.15)–(5.19), (6.3), (6.5), (6.6), (6.7) and (6.8) we deduce that

F and H defined by (2.13), (2.14) satisfy

‖F (v, π, η)‖Lp
β(0,∞;Lq(F)) + ‖H(v, π, η)‖Lp

β(0,∞;Lq(S)) � CR2, (6.12)

which yields that NR(SR) ⊂ SR for R small enough. �

We can also prove the following result by following the method used to prove Proposition 5.3 (we omit
the proof).

Proposition 6.3. With the above assumptions (in particular Assumption 6.1), there exists R > 0 small
enough such that the map NR (see (6.2)) is a strict contraction on SR.

By combining Propositions 6.2 and 6.3, we deduce Theorem 2.3.
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