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1. Introduction

The Oberbeck-Boussinesq approximation [1,20] is a very popular model, used to describe convection in a
horizontal layer of fluid heated from below [14]. As is well known, the basic assumption is that the fluid is
incompressible, namely, the velocity field v satisfies ∇·v = 0 at all points and times, whereas the density
depends solely on the temperature T , and its contribution becomes relevant only in the buoyancy term.

However, as noticed for instance in [10,11,18,21], thermodynamic variables such as energy and density
cannot be a function of T only, but should also depend on the pressure p since, otherwise, Gibbs law would
be unattended and stability in waves propagation not allowed. It turns out that, for these more general
models, one has necessarily to relax the solenoidal condition on v [6,17] to enlarge the region of the
non-dimensional parameter space in which formal limits lead to reliable approximations for compressible
fluids.

Motivated by this important issues, the author jointly with D. Grandi rigorously derived, by pertur-
bative methods from the full set of balance laws, new models where the density, ρ, may depend on both
T and p [12,13], while for related ones, the authors addressed well-posedness and stability questions, in
[2,4,5]. In particular, in [13], we proposed a new model for thermal convection in a horizontal layer of
fluid heated from below with ρ = ρ(T, p). In such a case, the original full compressible system allows for
an elementary solution se := (Te, pe) with corresponding ρe = ρ(Te, pe); see (2.2), (2.4), and (2.5). The
relevant equation are then obtained from the full system by a perturbation expansions around se, by us-
ing as non-dimensional small parameter αδT , where α is the thermal expansion coefficient and δT is the
temperature difference between the two horizontal planes confining the fluid. The limiting equations thus
derived (see (OB)β) fall, in the isothermal case, in the category of the so called anelastic approximations
of the Navier–Stokes equations; see (2.9), where the velocity field is no longer solenoidal but, instead,
satisfies ∇ · (ρv) = 0. It is just the latter that makes the new model interesting from the point of view of
well-posedness of the corresponding initial-boundary value problem, which constitutes the focus of this
article.
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In this regard, in the recent paper [15] the authors investigate tha above questions for a general class
of anelastic models. However, they assume, among other things, that the density can be extended to the
whole space to a smooth periodic function in the coordinate orthogonal to the layer. Unfortunately, this
assumption is not satisfied in our case, since ρe assumes different values on the planes confining the layer;
see (2.5).

As a result, we use a different strategy that, in our opinion, is the natural extension of classical methods
used for the Navier–Stokes equations, at least when, as in the case at hand, the density is strictly positive.
More precisely, we study our problem in the functional framework where

∇ · (ρev) = 0. (1)

The crucial points are the proof of a Helmholtz-like decomposition of the Lebesgue space L2 (Lemma
4.2) and maximal L2-regularity for a Stokes-like operator (Lemma 4.3) where, in both cases, the classical
solenoidality condition on v is replaced by the request (1). With thse results in hand, we can then
suitably modify the standard Galerkin method as employed in [19] and show different existence and
uniqueness results. Precisely, under the assumption of stress–free boundary condition and periodicity in
the horizontal coordinates, we first prove existence of weak solutions in both two- and three-dimensional
cases (Theorem 3.1). Successively, if the initial data are more regular but arbitrary in “size”, we prove
existence and uniqueness of strong solutions (in the sense of Prodi) in two dimensions (Theorem 3.2).
However, in dimension three, as expected, the same conclusion holds only for “small” time intervals or
for arbitrary times, but “small” initial data (Theorem 3.3).

The plan of the paper is as follows. After formulating the problem in Sect. 2, in the following Sect. 3
we give the definition of weak solution and state the existence and uniqueness theorems. In Sect. 4, we
prove a Helmholtz-like decomposition involving vector fields satisfying (1) and introduce a Stokes-like
operator for which we prove maximal L2 regularity. In the remaining two sections we give a proof of our
theorems: for weak solutions, in Sect. 5, and strong solutions, in Sect. 6.

2. Formulation of the Problem

Assume the fluid occupies a horizontal layer comprised between the unmovable planes placed at z = 0
and z = h, subject to the gravity force ρg. The planes are kept at constant, not necessarily equal,
temperatures namely, T = Td at z = 0 and T = Td − δT , δT ∈ R, at z = h. Under isothermal conditions
δT = 0, the constitutive equation ρ = ρ0 = constant allows for the fluid to be at rest (v ≡ 0) with
corresponding hydrostatic pressure p = −ρgz. On the other hand, if δT �= 0, then the fluid is still at rest
while the “classical” Boussinesq constitutive equation

ρ = ρd[1 − α(T − Td)], (2.1)

implies the well-known linear profile for the temperature

Te(z) = Td − δT

h
z . (2.2)

The latter, in turn, furnishes the following expression for the pressure field [1]

pe(z) = pd − ρdg

(
z +

αδT

2h
z2

)
.

In [18], the author jointly with T. Ruggeri have introduced a constitutive equation more general than
(2.1) to include also pressure variations:

ρ = ρd[1 − α(T − Td) + β(p − pd)], β �= 0 . (2.3)

In such a case, while the stratified temperature field remains unchanged, the pressure distribution becomes
[18]:

pe(z)= pd+
e−ρdgβz−1

β
+

αδT

β

(
1−e−ρdgβz

ρdghβ
− z

h

)
. (2.4)
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Notice that in the isothermal case δT = 0, combining (2.4) and (2.3), we find

ρe = ρde
−βρdgz, (2.5)

which provides the compatible stratification of the fluid.
The main accomplishment of [13] was to derive, as formal limit from the full compressible model,

an approximate set of equations for the perturbation (τ, P,v) to the basic solution (Te, pe,v ≡ 0), that
generalizes the classical O-B system by taking into account the compressibility of the fluid (anelastic O-B
system). More precisely, setting

τ := T − Te, P := p − pe, v = (vx, vy, vz) := v − 0,

in [13] it is shown that (τ, P,v) must satisfy the following nondimensional equations 1

(OB)β

⎧⎪⎨
⎪⎩

∇ · v = βvz,

e−βz (vt + v · ∇v) − Pr (βγ∇vz + Δv) = −∇P +
(√

Ra Pr τ − βP
)
k,

e−βz(τt + v · ∇τ + ξ
√

Ra vz) − Δτ = 0,

where τ, P,v and β are meant now to be nondimensional quantities. Moreover,

Pr :=
μ

ρdκ
, Ra :=

α|δT |ρdgh3

μκ
, γ :=

ζ

μ
+

1
3
, (2.6)

with μ, ζ and κ being, respectively, shear and bulk viscosities and thermal conductivity of the fluid.
Finally, ξ = ±1, according to whether δT ≶ 0.

In what follows, we are interested in the isothermal case δT = 0 (i.e. Ra = 0), in which case, by (2.2)
and (2.3), the basic state reduces to

Te = Td, pe(z) = pd +
e−ρdgβz − 1

β
, v ≡ 0,

while (OB)β decouples into the following two sets of equations{∇ · v = βvz

e−βz (vt + v · ∇v) − Pr (βγ∇vz + Δv) = −∇P − βPk.
(2.7)

and
e−βz(τt + v · ∇τ) − Δτ = 0 . (2.8)

Introducing the new variable

Π := eβz
(

1
PrP − γβvz

)
,

it is easy to see that (2.7) can be rewritten as follows{∇ · (e−βzv) = 0
1
Pr (vt + v · ∇v) − eβzΔv = −∇Π − eβzγβ2vzk,

(2.9)

We shall study (2.9) in the space-time domain Ω0 × (0,∞), where

Ω0 = {(x′, z) ∈ R
n : x′ ∈ T

n−1, z ∈ (0, 1)}, n = 2, 3,

and x′ = (x, y) if n = 3 and x′ = x if n = 2. Moreover, we shall adopt stress-free boundary condition,
namely,

vz = 0, ∂zv
x′

= 0 at z = 0, 1, (2.10)

where vx′
= (vx, vy) if n = 3 and vx′

= vx, if n = 2. Finally, to exclude rigid motions, we assume that
the mean value of vx′

is zero at all times:∫
Ω0

vx′
(x′, z, t) dV = 0.

1We shall use the following notation:(·)t ≡ ∂(·)/∂t, and ∂ξ(·) ≡ ∂(·)/∂ξ, where ξ denotes any spatial variable.
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Before stating our main results, we need to introduce some notation. By Lq(Ω0) and Wm,q(Ω0)
q ∈ [1,∞],m ∈ N, we denote the usual Lebesgue and Sobolev spaces with associated norm ‖ · ‖q and
‖ · ‖m,q, respectively. If q = 2, we indicate the associated scalar product in L2 by (·, ·). L̂2(Ω0) stands for
the subspace of L2(Ω0) of those vector fields v satisfying (2.10)1 and (2.9)1 in a weak form, namely,

(e−βzv,∇ϕ) = 0, for all ϕ ∈ W 1,2(Ω0) . (2.11)

Furthermore, by Ŵ 2,q(Ω0) we denote the subspace of W 2,q(Ω0) of functions satisfying (2.10), and by
Ŵ 1,2(Ω0) the subspace of W 1,2(Ω0) of functions satisfying (2.10)1. We also set Ŵ1,2(Ω0) := L̂2(Ω0) ∩
Ŵ 1,2(Ω0), and denote by Ŵ−1,2(Ω0) its dual, with corresponding norm ‖ · ‖−1,2. Finally, for r ∈ [1,∞],
let Lr(0, T ;Wm,q(Ω0)), T > 0, be the space of functions w such that

|w|r,m,q :=

⎧⎪⎪⎨
⎪⎪⎩

(∫ T

0

‖w(t)‖r
m,q dt

) 1
r

< ∞, if r ∈ [1,∞)

ess sup
t∈[0,T ]

‖w(t)‖m,q < ∞, if r = ∞

The subscript m is omitted in case m = 0.

3. Statement of the Main Results

Our main goal is the investigation of the well posedeness of the initial-boundary value problem associated
to (2.9). As in the case of the classical Navier–Stokes model, the result may depend on the Euclidean
dimension. We begin to give the definition of weak solution.

Definition 3.1. A vector field v ∈ L∞(0, T ; L̂2(Ω0))∩L2(0, T ;W 1,2(Ω0)) is a weak solution to the problem
(2.9)–(2.10) corresponding to the initial data v0 ∈ L̂2(Ω0) if, for all Ψ ∈ Ŵ1,2(Ω0) and all t ∈ (0, T ) it
satisfies the following integral equation

1
Pr

(e
−βz

v(t),Ψ) +
∫ t

0

[
(∇v(s),∇Ψ) +

( 1
Pr

e
−βz

v · ∇v(s) + β
2
γvz(s),Ψ

)]
ds =

1
Pr

(e
−βz

v0,Ψ). (3.1)

Formally, (3.1) is obtained by multiplying (2.9)2 with e−βzΨ, integrating by parts over Ω0 × (0, t) and
using (2.9)1.

We now collect the main results proved in this paper in the form of as many theorems. We begin with
the following one.

Theorem 3.1. Let n = 2, 3 and let Pr, γ and β be given. Then, for any initial data v0 ∈ L̂2(Ω0), there
exists at least one weak solution for all T > 0. Moreover, such a solution satisfies the following decay
property

‖v(t)‖2,β ≤ ‖v0‖2,β e−γP Pr t, t ≥ 0 . (3.2)

We also prove existence and uniqueness of more regular solutions, in the form stated in the following
theorems.

Theorem 3.2. Let Ω0 ⊂ R
2. Then, given arbitrary positive Pr, γ and β, and arbitrary initial data in

Ŵ1,2(Ω0), there exists a unique corresponding weak solution v to (2.7) which, in addition, is in the
class C([0,∞);W 1,2(Ω0)) ∩ L2((0,∞);W 2,2(Ω0)) with vt ∈ L2((0,∞);L2(Ω0)). Moreover, there is Π ∈
L2(0,∞;L2(Ω0)) with ∇Π ∈ L2(0,∞;L2(Ω0)), such that (v,Π) satisfies (2.7) for a.a. (x, t) ∈ Ω0×(0,∞).

Theorem 3.3. Let Ω0 ⊂ R
3 and let Pr, γ, β be arbitrary positive numbers. Then, for all ‖v0‖1,2 <

∞ there exist a T > 0 and a unique corresponding weak solution v to (2.7) which, in addition, is
in the class C([0, T );W 1,2(Ω0)) ∩ L2((0, T );W 2,2(Ω0)) with vt ∈ L2((0, T );L2(Ω0)). Moreover, there
is Π ∈ L2(0, T ;L2(Ω0)) with ∇Π ∈ L2(0, T ;L2(Ω0)), such that (v,Π) satisfies (2.7) for a.a. (x, t) ∈
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Ω0 × (0, T ). Finally, there exists a constant C0 depending only on the above physical parameters, such
that if ‖v0‖2

2‖∇v0‖2
2 ≤ 2/C0 we can take T = ∞.

Remark 3.1. The proofs of existence are based on the Galerkin method, in the way suggested by Prodi
[19]. However, Prodi’s approach must be suitably modified, in that, in our case, the velocity field is no
longer solenoidal. This requires the study of full regularity of solutions to a new Stokes problem derived
in connection with problem (2.9); see (4.11). The latter, in turn, requires the study of an appropriate
Helmholtz-like decomposition of the type L2(Ω0) = L̂2(Ω0)⊕Gβ(Ω0), dictated by the the non-solenoidality
of the velocity field (see (4.9)). All these results are contained in Sect. 3, which, in fact, constitutes the
heart of the matter of the paper.

Remark 3.2. In the case of three-dimensional weak solutions (Theorem 3.1), following [3] and [16], one can
proves a result of strong convergence of the Galerkin approximation (the first known for weak solutions)
in Lq(0, T ;W 1,2(Ω0)) for all q ∈ [1, 2). Actually, in [3] it is stated that such a convergence occurs along
the Galerkin approximation with aspecial base. For the sake of the brevity we do not give the details. The
interest of this convergence consists in the fact that one can show a sort of energy equality, or equivalently,
an evaluation of the possible gap in the inequality see [3].

4. Preliminary Results

We start by proving some formal properties of solutions to (2.9)–(2.10). To this end, we observe that, in
view of (2.9)1, the vector field u := e−βzv is solenoidal, in fact

∇ · u = −βe−βzk · v + e−βz∇ · v = 0. (4.1)

As a consequence, since the factor e−βz can be associated to the first term of the bilinear form as well,
by integrating by parts and using (2.10) and (4.1), one shows that∫

Ω0

v · ∇v · u dV =
∫

Ω0

u · ∇v · v dV = 0 . (4.2)

Set

‖v‖2,β :=
(∫

Ω0

e−βz|v|2dV

) 1
2

.

Since ∫
Ω0

e−βz|v|2 dV ≤
∫

Ω0

|v|2 dV ≤ eβ

∫
Ω0

e−βz|v|2 dV, (4.3)

the norms ‖v‖2,β and ‖v‖2 are equivalent. Property (4.3) will be used throughout, even without explicitly
mentioning it. Now, if we formally dot-multiply both sides of (2.9)1 by the solenoidal field u, integrate
by parts over Ω0 and use (4.2) and (2.10), we deduce the following important relation, for all β ≥ 0

1
2Pr

d

dt
‖v‖2

2,β + ‖∇v‖2
2 + γβ2‖vz‖2

2 = 0 . (4.4)

We also notice that, using (4.1) and assuming, without loss that the (constant) equal temperatures on
the bounding planes are 0, (formally) multiplying both sides of (2.8) by τ and integrating over Ω0, we
get

1
2

d

dt
‖τ‖2

2 = −‖∇τ‖2
2.

Employing on the right hand side of this equation the scalar version of (4.25) in conjunction with Gron-
wall’s lemma, we obtain, as expected, an exponential decay to the boundary temperature.

Now, we derive some results that will play an important role for the existence results developed in the
next section.
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We begin to prove the unique solvability of the following Neumann problem:

Δq − α ∂zq = F, in Ω0, ∂zq(x′, 0) = ∂zq(x′, 1) = 0, α ∈ R, (4.5)

in a suitable function class. In order to reach this goal, we observe that (4.5) is (formally) equivalent to
the following one

∇ · (e−α z ∇q) = e−αzF := G, in Ω0, ∂zq(x′, 0) = ∂zq(x′, 1) = 0, (4.6)

Let

H := {q ∈ W 1,2(Ω0) : (q, 1) = 0} .

In view of Wirtinger inequality, H becomes a Hilbert space with respect to the norm induced by the
scalar product

(e−αz∇q1,∇q2), qi ∈ H .

We shall say that q ∈ H is a weak solution to (4.6) if

(e−α z ∇q,∇ϕ) = −(G,ϕ), for all ϕ ∈ H . (4.7)

Let us denote by H−1 the dual space of H. We show the following lemma that in the case α < 2π was
proved in [2,4] by different arguments.

Lemma 4.1. Let α ∈ R. For any G ∈ H−1, problem (4.6) admits one and only one corresponding weak
solution q. Moreover, if G ∈ L2(Ω0), then q ∈ W 2,2(Ω0) and satisfies (4.5). Finally, there exists C = C(α)
such that

‖q‖2,2 ≤ C ‖F‖2 .

Proof. Existence of a unique weak solution q is an immediate consequence of the assumption on G and
of Riesz representation theorem. Moreover, setting φ ≡ q in (4.7) we deduce the existence of a positive
constant C such that

‖q‖1,2 ≤ C‖G‖H−1 . (4.8)

Next, assume G ∈ L2(Ω0) and set ψ := e−αzϕ. From (4.7) we thus get

(∇q,∇ψ) = (M,ψ), M := −α∂zq + F .

Since F ∈ L2(Ω0), by classical elliptic regularity we get that q ∈ W 2,2(Ω0), and that it satisfies (4.5)
along with ‖q‖2,2 ≤ C ‖M‖2. The latter, combined with (4.8) completes the proof of the lemma. �

An important consequence of the previous result is given in the following lemma.

Lemma 4.2. Let β ∈ R. Then, the space L2(Ω0) admits the following orthogonal decomposition

L2(Ω0) = L̂2(Ω0) ⊕ Gβ(Ω0) (4.9)

where

Gβ(Ω0) := {h ∈ L2(Ω0) : h = e−βz∇Q, Q ∈ W 1,2(Ω0)} .

Proof. By (2.11) L̂2(Ω0) and Gβ(Ω0) are orthogonal. For a given w ∈ L2(Ω0) consider the problem of
finding Q ∈ H such that

(e−βzw,∇ψ) = (e−2βz∇Q,∇ψ), for all ψ ∈ H . (4.10)

Since the left hand side defines a bounded linear functional in H, the existence of a unique Q ∈ H is
guaranteed by Lemma 4.1. Therefore, setting v := w − e−βz∇Q, we at once show that v ∈ L̂2(Ω0). The
lemma is thus proved. �
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Let

P : L2(Ω0) → L̂2(Ω0)

be the orthogonal projection operator defined by Lemma 4.2, and introduce the operator

A : v ∈ L̂2(Ω0) ∩ Ŵ 2,2(Ω0) ⊂ L̂2(Ω0) �→ PΔv ∈ L̂2(Ω0) .

The following result holds.

Lemma 4.3. For any f ∈ L2(Ω0) there exist unique v ∈ W 2,2(Ω0) and Q ∈ W 1,2(Ω0) with (Q, 1) = 0
such that

Δv = e−βz∇Q + f
∇ · (e−βzv) = 0

}
in Ω0

∂zv
x′

= vz = 0 at z = 0, 1 .

(4.11)

Moreover,
‖v‖2,2 + ‖Q‖1,2 ≤ C ‖f‖2 . (4.12)

Thus, in particular,
‖Δv‖2 ≤ C ‖PΔv‖2 . (4.13)

Proof. We begin to look for a weak solution to (4.11). In view of Poincaré inequality, we can choose as
norm in Ŵ 1,2(Ω0) the one associated to the scalar product

(∇v1,∇v2), v1,v2 ∈ Ŵ1,2(Ω0) .

Let us multiply both sides of (4.11)1 by ϕ ∈ Ŵ1,2(Ω0) and integrate by parts over Ω0. Taking into
account (4.11)3,4 we show

(∇v,∇ϕ) = −(f ,ϕ) . (4.14)

Now, by assumption, the right hand side of (4.14) defines a bounded linear functional on Ŵ1,2(Ω0),
namely, an element of Ŵ−1,2(Ω0), and so, by Riesz theorem, there is one and only one v ∈ Ŵ1,2(Ω0)
satisfying (4.14). Moreover, by replacing ϕ with v in (4.14), we obtain

‖∇v‖2 ≤ ‖f‖−1,2 . (4.15)

Following a classical procedure, we can now associate to the weak solution v a “pressure” field Q ∈ L2(Ω0)
such that

(∇v,∇ψ) = −(f ,ψ) + (Q,∇ · (e−βzψ)), for all ψ ∈ W 1,2(Ω0) . (4.16)
Actually, following [9, Theorem III.5.3], to show (4.16) it is enough to show that for any f ∈ L2(Ω0) with
(f, 1) = 0, the problem

∇ · (e−βzψ) = f, ψ ∈ Ŵ 1,2(Ω0), ‖∇ψ‖2 ≤ C ‖f‖2, (4.17)

has at least one solution. In order to solve (4.17), we take ψ = ∇ψ where ψ solves the following Neumann
problem

Δψ − β∂zψ = eβzf in Ω0, ∂zψ = 0 at z = 0, 1 . (4.18)
The existence of ψ with the required properties is then secured by Lemma 4.1. We next notice that, by
choosing in (4.17) f = Q − (Q, 1), from (4.16), (4.15) and (4.17) it follows that

‖Q‖2 ≤ C‖f‖−1,2 . (4.19)

Now, the difference quotient of ϕ in any of the horizontal directions e, δ−�ϕ(x) := (ϕ(x) − ϕ(x − �e))/�,
is also an element of Ŵ1,2(Ω0) and, as such, can be replaced in (4.14). Thus, by a standard argument
and by (4.15) we show

‖∇δ�v‖2 ≤ ‖δ�f‖−1,2 ≤ C ‖f‖2,

which, in turn, by the properties of the difference quotient, implies

∇∇′v ∈ L2(Ω0), ‖∇∇′v‖2 ≤ C ‖f‖2, (4.20)
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where ∇′ is the restriction of ∇ to the x′-variables. Using a similar argument on (4.16) and employing
(4.19), (4.20) we show

∇′Q ∈ L2(Ω0), ‖∇′Q‖2 ≤ C ‖f‖2 . (4.21)

From (4.20) and (4.11)2 it also follows

∂2
zvz ∈ L2(Ω0), ‖∂2

zvz‖2 ≤ C ‖f‖2,

which, once combined with (4.20) gives

Δvz ∈ L2(Ω0), ‖Δvz‖2 ≤ C‖f‖2 . (4.22)

We now choose in (4.16) ψ = ψ k, ψ ∈ C∞
0 (Ω0. Integrating by parts, and employing (4.22) it then follows

∂zQ ∈ L2(Ω0), ‖∂zQ‖2 ≤ C ‖f‖2,

which combined with (4.21) gives, in particular,

∇Q ∈ L2(Ω0), ‖∇Q‖2 ≤ C ‖f‖2 .

Inserting this information back into equation (4.16) with ψ ∈ C∞
0 (Ω0) and integrating by parts, we finally

conclude v ∈ W 2,2(Ω0), along with the validity of (4.12). �

The next result is a corollary to Lemma 4.3.

Lemma 4.4. There exists an orthogonal basis {Ψj} ⊂ L̂2(Ω0)∩Ŵ 2,2 of L̂2(Ω0) constituted by eigenfuctions
of the operator A, namely:

ΔΨj = −λ(j)Ψj + e−βz∇Qj , λ(j) > 0
∇ · (e−βzΨj) = 0

}
in Ω0,

∂zΨx′
j = 0, Ψz

j = 0 at z = 0, 1,
(4.23)

Proof. The previous lemma shows that the operator A is surjective with a compact inverse. Since A
is symmetric, this implies that A is selfadjoint with a purely discrete spectrum. The lemma is then a
consequence of classical results. �

We also have to generalize the Friedrichs inequality as follows.

Lemma 4.5. Let {Ψi} be a basis of L̂2(Ω0), and let v ∈ L̂2(Ω0) ∩ W 1,2(Ω0). Then, for any ε > 0 there is
n = n(ε) ∈ N such that

‖v‖2
2 ≤ ε ‖∇v‖2

2 + C(n, ε)
n∑

i=1

|(e−βzv,Ψi)|2 . (4.24)

Proof. By [9, Lemma II.5.3], for any ε > 0 there is n = n(ε) ∈ N such that

‖v‖2
2 ≤ ε ‖∇v‖2

2 + C(n, ε)
n∑

i=1

|�i(v)|2,

where {�i} is a complete family of functionals on L̂2(Ω0) ∩ W 1,2(Ω0), namely, �i(v) = 0 for all i ∈ N

implies v ≡ 0. If we choose

�i : v ∈ L̂2(Ω0) ∩ W 1,2(Ω0) �→ �i(v) := (e−βzv,Ψi) ∈ R,

by Lemma 4.2 it follows that e−βzv = e−βz∇Q, for some Q ∈ W 1,2(Ω0). However, by (2.11), this implies
(e−βz∇Q,∇Q) = 0, namely, v = 0, which completes the proof of the lemma. �

We end this section by recalling a number of classical inequalities that will be frequently employed and
valid for a vector function v : Ω0 → R

n, n = 2, 3, satisfying (2.10). First of all, the Poincaré inequality

‖v‖2 ≤ γP ‖∇v‖2, (4.25)
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where γP is a (positive) numerical constant. In what follows, we denote by the same symbol C different
constants depending, at most, on the domain Ω0. Integrating by parts over Ω0 one gets

‖∇v‖2
2 = −(Δv,v),

and so, by Poincaré and Schwarz inequalities, we deduce

‖∇v‖2 ≤ C ‖Δv‖2 = C‖D2v‖2, (4.26)

since the norm of the Laplacian and that of all second derivatives coincide (see, e.g., [7, Lemma A.1]):

‖Δv‖2 = ‖D2v‖2 (4.27)

Furthermore, in three dimensions, we have the Sobolev-Poincaré inequality

‖v‖6 ≤ C ‖∇v‖2, (4.28)

and also
‖∇v‖6 ≤ C‖Δv‖2, (4.29)

whereas, by (4.25)–(4.27), in both two- and three-dimensional cases the Morrey inequality holds [7,
Lemma A.3]:

‖v‖∞ ≤ C‖Δv‖2. (4.30)

We recall Ladyzhenskaya’s inequality (see [9]):

r ∈ [2, 4], ‖v‖r ≤ C‖v‖1−a
2 ‖∇v‖a

2 , n = 2, a = r−2
2r ,

r ∈ [2, 6], ‖v‖r ≤ C‖v‖1−b
2 ‖∇v‖b

2, n = 3, b = 3
2

r−2
2r .

(4.31)

Combining the latter with Poincaré inequality, we infer, in particular,

‖v‖4 ≤ C‖∇v‖2, n = 2, 3. (4.32)

Utilizing classical Sobolev’s embedding in conjunction with (4.27), (4.26) and Poincaré inequality we can
also show

r ∈ [2, 4], ‖∇v‖r ≤ C‖∇v‖1−a
2 ‖Δv‖a

2 , n = 2, a = 2−r
2r ,

r ∈ [2, 6], ‖∇v‖r ≤ C‖∇v‖1−b
2 ‖Δv‖b

2, n = 3, b = 3
2

r−2
2r .

(4.33)

5. Proof of Theorem 3.1

We shall employ Galerkin method with the special basis {Ψj} introduced in Lemma 4.4. For each N ∈ N,
we look for an “approximate solution” defined by

vN (x, t) =
N∑

j=1

CN
j (t)Ψj(x)

where the coefficients CN
j (t) are searched as solutions to the the following system of ODE’s:

N∑
j=1

(
1
Pr

ĊN
j (t)Bjk + CN

j (t)Djk + β2γCN
j (t)(Ψz

j ,Ψ
z
k)

)
+

N∑
j,l=1

CN
j (t)CN

l (t)Λjlk = 0 , (5.1)

where

Bjk := (e−βzΨj ,Ψk), Djk := (∇Ψj ,∇Ψk), Λjlk := (e−βzΨj · ∇Ψl,Ψk),

and CN
j (t) = Cj(0), for all j,N ∈ N, where

v0(x) =
∞∑

j=1

Cj(0)Ψj(x).
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Since the matrix Bij is symmetric and, in view of (4.3), positive definite, the system of differential
equations (5.1) can be put in normal form. Notice that (5.1) can be equivalently rewritten as

1
Pr

(e−βz(vN )t, Ψj)+
1
Pr

(e−βzvN · ∇vN ,Ψj)+(∇vN ,∇Ψj)+β2γ(vz
N ,Ψz

j ) = 0, (5.2)

Because the involved nonlinear terms are quadratic, it follows that for all N ∈ N, (5.1) has one and only
one solution CN := (CN

1 , . . . , CN
N ) in some time interval (0, TN ). Clearly, TN = ∞ if we can show that

|CN (t)| is uniformly bounded. To this end, we multiply each side of the equation in (5.2) by CN
j , sum

over j and argue as in (4.1) to get (since the basis function are regular)

1
2Pr

d

dt
‖vN (t)‖2

2,β + ‖∇vN (t)‖2
2 + γβ2‖vz

N (t)‖2
2 = 0 . (5.3)

Integrating both sides of (5.3) from 0 to TN and observing that ‖v0
N‖2,β ≤ C‖v0‖2, it follows at once the

desired property for CN . Moreover, also with the help of (4.25), we also infer that the sequence {vN}
satisfies the following estimate

sup
t∈(0,∞)

‖vN (t)‖2
2 + C

∫ ∞

0

‖vN (t)‖2
1,2dt ≤ C(Pr) ‖v0‖2

2 . (5.4)

In particular, the latter implies the existence of

v ∈ L∞(0, T ; L̂2(Ω0)) ∩ L2(0, T ;W 1,2(Ω0)), all T > 0, (5.5)

and of a subsequence {vNk
} such that

vNk
→ v, weakly in L2(0, T ;W 1,2(Ω0)) and weak∗in L∞(0, T ; L̂2(Ω0)) . (5.6)

It is easy to show that the latter, combined with (5.3), (4.25) and Gronwall’s lemma, leads to (3.2). Next,
by following more or less classical arguments in conjunction with Lemma 4.5, we shall show that

vNk
→ v strongly in L2(0, T ;L2(Ω0)) . (5.7)

Actually, from (5.2) and (4.30) we easily get with arbitrary t1 and t2, and Φj := e−βzΨj

1
Pr

|(v
Nk

(t2),Φj) − (v
Nk

(t1),Φj)|

≤ |
∫ t2

t1

(e−βzv
Nk

· ∇v
Nk

(t),Ψj) dt|+|
∫ t2

t1

(∇v
Nk

(t),∇Ψj) dt|+β2γ|
∫ t2

t1

(vz
Nk

(t),Ψz
j ) dt|

≤ ‖Ψj‖∞
∫ t2

t1

‖v
Nk

‖2‖∇v
Nk

‖2dt+
∫ t2

t1

‖∇v
Nk

(t)‖2‖∇Ψj‖2dt+β2γ

∫ t2

t1

‖v
Nk

(t)‖2‖Ψj‖2dt

≤ C‖Ψj‖2,2‖v(0)‖2

(
|t2 − t1| + (‖v(0)‖2 + 1)|t2 − t1| 1

2

)
(5.8)

From (5.8), by Cantor’s diagonalization process one can show by standard methods (e.g. [8]) that

(e−βzv
Nk

(t),Ψi) → (e−βzv(t),Ψi), uniformly in t, forall i ∈ N . (5.9)

If we now apply (4.24) to vNk
− v, integrate both sides of the resulting equation from 0 to T and use

(5.3), we get
∫ T

0

‖vNk
− v‖2

2dt ≤ εC(Pr)‖v0‖2
2 + C(ε, n)

n∑
i=1

∫ T

0

|(e−βz(vNk
− v),Ψi)|2dt .

Thus, letting Nk → ∞ in this relation and employing (5.9), by the arbitrariness of ε we arrive at (5.7).
From now on the procedure to prove that v is in fact the weak solution is fully standard: we first observe
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that from (5.2) it follows that

1
Pr

(vNk
(t),Φj) +

∫ t

0

(e−βzvNk
· ∇vNk

(s),Ψj) ds+
∫ t

0

(∇vNk
(s),∇Ψj) ds

+β2γ

∫ t

0

(vz
Nk

(s),Ψz
j ) ds =

1
Pr

(v0
Nk

,Φj) .

(5.10)

If we let Nk → ∞ in (5.10) we can show, in view of (5.6), that the limit function v satisfies (3.1) with
Ψ ≡ Ψj , provided we also prove∫ t

0

(v
Nk

· ∇v
Nk

,Φj) →
∫ t

0

(v · ∇v,Φj), (5.11)

or, equivalently,

lim
Nk→∞

(∫ t

0

((v
Nk

− v) · ∇v
Nk

(s),Φj) ds +
∫ t

0

(v · ∇(v
Nk

− v)(s),Φj) ds

)
= 0.

In view of (5.6), it follows that the second term on the left hand side goes to zero. Concerning the fisrst
one, we notice that by Hölder and Sobolev inequalities, we deduce∣∣∣∣

∫ t

0

((v
Nk

− v) · ∇v
Nk

,Φj)
∣∣∣∣ ≤

∫ t

0

‖v
Nk

− v‖4‖∇v
Nk

‖2‖Φj‖4 ≤ ‖Φj‖1,2

∫ t

0

‖v
Nk

− v‖4‖∇v
Nk

‖2.

Next, from (4.31)1 and (4.31)2 we infer that the right hand side in this inequality can be increased by

C‖Φj‖1,2

∫ t

0

‖v
Nk

− v‖
1
2
2 ‖∇v

Nk
− ∇v‖

1
2
2 ‖∇v

Nk
‖2, n = 2,

C‖Φj‖1,2

∫ t

0

‖v
Nk

− v‖
1
4
2 ‖∇v

Nk
− ∇v‖

3
4
2 ‖∇v

Nk
‖2, n = 3.

Thus, employing with Hölder inequality with exponents (4, 4, 2) for n = 2 and (8, 8
3 , 2) for n = 3, with

the help of (5.4) we obtain

∣∣∣∣
∫ t

0

((v
Nk

− v) · ∇v
Nk

,Φj)
∣∣∣∣ ≤ C ‖Φj‖1,2

(∫ t

0

‖v
Nk

− v‖2
2

) 1
4 (∫ t

0

‖∇v
Nk

− ∇v‖2
2

) 1
4 (∫ t

0

‖∇v
Nk

‖2
2

) 1
2

≤ C ‖Φ‖1,2

(∫ t

0

‖v
Nk

− v‖2
2

) 1
4

‖v(0)‖
5
4
2 n = 2,

∣∣∣∣
∫ t

0

((v
Nk

− v) · ∇v
Nk

,Φj)
∣∣∣∣ ≤ C ‖Φj‖1,2

(∫ t

0

‖v
Nk

− v‖2
2

) 1
8 (∫ t

0

‖∇v
Nk

− ∇v‖2
2

) 3
8 (∫ t

0

‖∇v
Nk

‖2
2

) 1
2

≤ C ‖Φj‖1,2

(∫ t

0

‖v
Nk

− v‖2
2

) 1
8

‖v(0)‖
7
4
2 n = 3.

The last bounds, combined with (5.7), imply (5.11). We may thus conclude that the field v satisfies (3.1)
with Ψ ≡ Ψj , for all j ∈ N. Since {Ψj} is complete in Ŵ1,2(Ω0) then, by a standard argument, one
shows that (3.1) is, in fact, satisfied for all Ψ ∈ Ŵ1,2(Ω0), which completes the proof. �

6. Proofs of Theorems 3.2 and 3.3

In this section we shall show that, provided the initial data are more regular, the corresponding Galerkin
approximation vN belongs, uniformly in N , to a better regularity class (the so-called “Prodi class”). This
will be achieved through suitable “energy estimates” that will eventually lead to the proofs of Theorems
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3.2 and 3.3. In this regard, we need some preliminary results. By multiplying both sides of (5.2) by ĊN
j ,

sum over j from 1 to N and integrate by parts as necessary to infer

1
2

d

dt

(‖∇vN (t)‖2
2 + γβ2‖vz

N (t)‖2
2

)
+

1
Pr

‖(vN )t(t)‖2
2,β = − 1

Pr
(
e−βzvN · ∇vN , (vN )t

)
. (6.1)

Likewise, multiplying both sides of (5.2) by −λ(j)C
N
j , summing over j from 1 to N the resulting equation

is
1
Pr

(e−βz(vN )t, PΔvN ) − ‖PΔvN‖2
2 − β2γ(vN ,k · PΔvN ) = − 1

Pr
(e−βzvN · ∇vN , PΔvN ) . (6.2)

Our next task is to give a suitable estimate of the terms on the right hand side of (6.1) and (6.2). To this
end, we observe that, by Lemma 4.3, we have

‖ΔvN‖2 ≥ ‖PΔvN‖2 ≥ C0‖ΔvN‖2 . (6.3)

with C independent of N .

Lemma 6.1. Let vN be a Galerkin solution (3.1), for arbitrary εi > 0, i = 1, 2, if n = 2, then∣∣(e−βzvN · ∇vN , (vN )t

)∣∣ ≤ Cε1,ε2‖vN‖2
2‖∇vN‖4

2 + ε2‖ΔvN‖2
2 + ε1‖(vN )t‖2

2,β , (6.4)

while if n = 3, then∣∣(e−βzvN · ∇vN , (vN )t

)∣∣ ≤ Cε1,ε2 ‖∇vN‖3
2 + ε2‖ΔvN‖2 + ε1 ‖(vN )t‖2

2. (6.5)

Proof. By using Hölder inequality, (4.31)1, (4.33)1 and Young inequality, for n = 2 one deduces for
arbitrary ε1, ε2 > 0∣∣(e−βzvN · ∇vN , (vN )t

)∣∣ ≤ C ‖vN‖4‖∇vN‖4‖(vN )t‖2

≤ Cε1‖vN‖2
4‖∇vN‖2

4 + ε1‖(vN )t‖2
2 ≤ Cε1‖vN‖2‖∇vN‖2

2‖ΔvN‖2 + ε1‖(vN )t‖2
2

≤ Cε1,ε2‖vN‖2
2‖∇vN‖4

2 + ε2‖ΔvN‖2
2 + ε1‖(vN )t‖2

2,β .

For n = 3, by (4.28), (4.33)2, , and Young inequalities, we show∣∣(e−βzvN · ∇vN , (vN )t

)∣∣ ≤ ‖vN‖6‖∇vN‖3‖(vN )t‖2

≤ C‖∇vN‖ 3
2
2 ‖ΔvN‖

1
2
2 ‖(vN )t‖2

≤ Cε1,ε2‖∇vN‖6
2 + ε2‖ΔvN‖2

2 + ε1 ‖(vN )t‖2
2

�

Lemma 6.2. Uniformly in N and in t > 0 we get

d

dt
‖∇vN (t)‖2

2 + c1‖(vN )t‖2
2 + c2‖PΔvN‖2

2

c
∣∣(e−βzvN · ∇vN , (vN )t

)∣∣ + c
∣∣(e−βzvN · ∇vN , PΔvN )

∣∣ .
(6.6)

Proof. From formula (6.2), via Hölder’s and Young inequality we easily get

‖PΔvN‖2
2 ≤ 2‖(vN )t‖2 + 2(β2γ)2‖vN ,k‖2 + c0

∣∣∣∣ 1
Pr

(e−βzvN · ∇vN , PΔvN )
∣∣∣∣ . (6.7)

Multiplying (6.7) by a suitable constant and summing to (6.1), we arrive at (6.6). �

Lemma 6.3. Let vN be a Galerkin solution (3.1), for arbitrary ε3 > 0, if n = 2, then∣∣(e−βz vN · ∇vN , PΔvN

)∣∣ ≤ Cε3‖vN‖2
2‖∇vN‖4

2 + ε3‖ΔvN‖2
2, (6.8)

while if n = 3, then ∣∣(vN · ∇vN , e−βzΔvN

)∣∣ ≤ Cε3‖∇vN‖6
2 + ε3‖ΔvN‖2

2; (6.9)
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Proof. As is done above, and with the help of (6.3), for any ε3 > 0 we show∣∣(e−βz vN · ∇vN , PΔvN

)∣∣ ≤ C ‖vN‖4‖∇vN‖4‖ΔvN‖2

≤ C‖vN‖1/2
2 ‖∇vN‖2‖ΔvN‖3/2

2 ≤ Cε3‖vN‖2
2‖∇vN‖4

2 + ε3‖ΔvN‖2
2.

For n = 3, by (4.28), (4.33)2, and Young inequalities, we show∣∣(vN · ∇vN , e−βzΔvN

)∣∣ ≤ ‖vN‖6‖∇vN‖3‖ΔvN‖2

≤ Cε3‖vN‖6
2‖∇vN‖6

2 + ε3‖ΔvN‖2
2.

�

Proof of Theorem 3.2. For λ1, λ2 > 0, let us set

E :=
λ1

2Pr
‖vN‖2

2 +
λ2

2Pr
‖∇vN‖2

2 +
β2γ

2
‖vz

N‖2
2,

and perform λ(5.3)+(6.1) – (6.2). Taking into account (6.3)– (6.4), and choosing ε2 + 2ε3 = (1/2)C0, we
show

dE

dt
≤−(λ1 − Cε3)‖∇vN‖2

2−
( λ2

2Pr
− ε1 − Cε3

)
‖(vN )t‖2

2 (6.10)

−C0

2
‖ΔvN‖2

2−β2γ‖∇vz
N‖2

2+C(1 + ‖vN‖2
2)‖∇vN‖4

2.

If we take λ1 > Cε3 and λ2 > 2Pr(ε1 + Cε3), from (6.10) by Gronwall’s lemma we infer, in particular,

E(t) ≤ E(0)exp
(∫ t

0

(1 + ‖vN (s)‖2
2)‖∇vN (s)‖2

2 ds

)
.

We now observe that ‖∇v0
N‖2 ≤ ‖∇v0‖2 because {Ψj} is orthogonal in L̂2(Ω0) and, by (4.23)

v0
N =

N∑
j=1

(v0,Ψj)Ψj =
N∑

j=1

1
‖∇Ψj‖2

2

(∇v0,∇Ψj)Ψj .

As a result, E(0) ≤ C‖v0‖2
1,2 and so, if the initial data are chosen in Ŵ1,2(Ω0), thanks to (5.4), from the

previous relation we deduce
sup
t≥0

‖vN (t)‖1,2 ≤ C0, (6.11)

where C0 depends only on the physical parameters and the norm of the initial data. If we replace this
information back into (6.10) and integrate over t ∈ (0,∞) we also infer∫ ∞

0

(‖(vN )t(t)‖2
2 + ‖ΔvN (t)‖2

2) dt ≤ C0 . (6.12)

we thus conclude that the limiting field v defined in (5.5) satisfies the further property

v ∈ C([0, T );W 1,2(Ω0)) ∩ L2(0, T ;W 2,2(Ω0)), vt ∈ L2(0, T ;L2(Ω0)) . (6.13)

Now, for the existence part, we only have to prove the statement about the “pressure” Π. Taking the
time derivative of both sides of (3.1), we show for a.a. t ∈ (0, T ), T > 0,(

1
Pr (e

−βzvt + e−βzv · ∇v) − Δv + γβ2vzk,Ψ
)

= 0,

for all Ψ ∈ Ŵ1,2(Ω0). From this relation and Lemma 4.2, it immediately follows the existence of a function
Π with the stated properties.
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Now, we show uniqueness: let (v,Π) and (v + w,Π + Q) be two solutions in the stated function
class corresponding to the same initial data. Then, the “difference solution” (w, Q) satisfies the following
equations {∇ · (e−βzw) = 0

e−βz

Pr (wt + w · ∇w + v · ∇w + w · ∇v) − Δw = −eβz∇Q − γβ2uzk,
(6.14)

Thus, dot-multiplying both sides by w, integrating by parts over Ω0 and using (6.14)1, and then inte-
grating the resulting equation over (0, t), t < T , we show

1
Pr

‖w(t)‖2
2,β +

∫ t

0

(‖∇w(s)‖2
2 + γβ2‖wz(s)‖2

2)ds = −
∫ t

0

(e−βzw(s) · ∇v(s),w(s))ds . (6.15)

From (4.31)1 and the property v ∈ C([0, T ];W 1,2(Ω0), it follows that

−
∫ t

0

(e−βzw(s) · ∇v(s),w(s))ds ≤ max
t∈[0,T ]

‖∇v(t)‖2

∫ t

0

‖w(s)‖2
4ds

≤ C max
t∈[0,T ]

‖∇v(t)‖2

∫ t

0

‖w(s)‖2‖∇w(s)‖2ds .

Therefore, applying Cauchy-Schwarz inequality on the last term of the latter and replacing the outcome
in (6.15) we get, in particular,

‖w(t)‖2
2 ≤ C max

t∈[0,T ]
‖∇v(t)‖2

2

∫ t

0

‖w(s)‖2
2ds, t ∈ [0, T ],

which, in turn, by Gronwall’s lemma, implies w ≡ 0. �

Proof of Theorem 3.3. We proceed in a slightly different way with respect to the previous two-dimensional
case. We consider (6.6) and increase the right hand side by means of (6.4) and (6.9), choosing suitably
εi, i = 1, 2, 3, we deduce the following differential inequality in DN (t) := ‖∇vN (t)‖2

2:

dDN

dt
+ κ1‖ΔvN (t)‖2

2 + κ2‖(vN )t(t)‖2
2 ≤ C1D

3
N , for all N and t > 0 . (6.16)

where the quantities κi, i = 1, 2, and C1 depend only on the physical parameters and εi, i = 1, 2, 3. We
integrate the differential inequality (6.16) two times. The former concerns simply a bound for D(t). This
bound is on some (0, T ) for arbitrary data. Instead the bound is global, that is (0,∞) for initial data
small in the sense indicated in the statement. Without considering the “dissipative terms”, by integrating
we obtain

− 1
D2

N (t)
+

1
D2

N (0)
≤ 2C0t ⇔ DN (t) ≤ DN (0)

[
1 − 2C0‖∇v(0)‖4

2t
]− 1

2
, t ∈ [0, T ), for all N, (6.17)

where we set T := 1/2C0‖∇v(0)‖2
2 . In the case of small data we modify the integration as follows:

− 1
DN (t)

+
1

DN (0)
≤ 2C1

∫ t

0

DN (s)ds

⇒ DN (t) ≤ DN (0)
[
1 − 2C0‖v(0)‖2

2‖∇v(0)‖2
2

]−1

, t ∈ [0,∞), for all N,

(6.18)

where we have taken into account (5.4) of the energy inequality. As a result, we have two uniform bounds
(one local and the other global in time) for the sequence {‖∇vN (t)‖}. Hence, integrating both sides of
(6.16) we get, in particular,

DN (t) + κ1

∫ t

0

‖ΔvN (s)‖2
2ds + κ2

∫ t

0

‖(vN (s))s‖2
2ds ≤ C1

∫ T

0

D3
N (s)ds, t ∈ [0, T ), for all N,

where T is finite or infinite depending on the “size” data. Proceeding exactly as in the case n = 2, one
can show that the approximating solutions {vN} satisfies (6.11) and (6.12), thus implying that the limit
field v is in the class (6.13).
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The existence of a “pressure field” Π satisfying the stated properties is proved exactly as in the proof
of Theorem 3.2. As for uniqueness, also in this case we derive (6.15). Concerning the estimate of the
nonlinear term, this time we use (4.31)2 in conjunction with Young inequality to get

− ∫ t

0
(e−βzw(s) · ∇v(s),w(s))ds ≤ C max

t∈[0,T ]
‖∇v(t)‖2

∫ t

0

‖w(s)‖ 1
2
2 ‖∇w(s)‖ 3

2
2 ds

≤ 1
2

∫ t

0

‖∇w(s)‖2
2ds + C max

t∈[0,T ]
‖∇v(t)‖4

2

∫ t

0

‖w(s)‖2
2ds .

As a result, replacing the latter into (6.15) we may argue exactly as in Theorem 3.2 to show w ≡ 0.
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