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Abstract. We consider a family of weights which permit to generalize the Leray procedure to obtain weak suitable solutions
of the 3D incompressible Navier–Stokes equations with initial data in weighted L2 spaces. Our principal result concerns the
existence of regular global solutions when the initial velocity is an axisymmetric vector field without swirl such that both

the initial velocity and its vorticity belong to L2((1 + r2)−
γ
2 dx), with r =

√
x2
1 + x2

2 and γ ∈ (0, 2).
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1. Introduction

In 1934, Leray [20] proved global existence of weak solutions for the 3D incompressible Navier–Stokes
equations

(NS)

⎧
⎨
⎩

∂tu = Δu − (u · ∇)u − ∇p

∇ · u = 0, u(0, .) = u0

in the case of a fluid filling the whole space whose initial velocity u0 is in L2. Leray’s strategy is to
regularize the initial value and to mollify the non-linearity through convolution with a bump function: let
θε(x) = 1

ε3 θ(x
ε ), where θ ∈ D(R3), θ is non-negative and radially decreasing and

∫
θ dx = 1; the mollified

equations are then

(NSε)

⎧⎨
⎩

∂tuε = Δuε − ((θε ∗ uε) · ∇)uε − ∇pε

∇ · uε = 0, uε(0, .) = θε ∗ u0.

Standard methods give existence of a smooth solution on an interval [0, Tε] where Tε ≈ ε3‖θε ∗ u0‖−2
2 .

Then, the energy equality

‖uε(t, .)‖2
2 + 2

∫ t

0

‖∇ ⊗ uε‖2
2 ds = ‖θε ∗ u0‖2

2

allows one to extend the existence time and to get a global solution uε; moreover, the same energy equality
allows one to use a compactness argument and to get a subsequence uεk

that converges to a solution u
of the Navier–Stokes equations (NS) which satisfies the energy inequality

‖u(t, .)‖2
2 + 2

∫ t

0

‖∇ ⊗ u‖2
2 ds ≤ ‖u0‖2

2.

Weak solutions of equations (NS) that satisfy this energy inequality are called Leray solutions.
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There are many ways to extend Leray’s results to settings where u0 has infinite energy. A natural one
is based on a splitting u = v + w where v satisfies an equation

∂tv = Δv + F (v), where ∇ · F (v) = 0,

that is easy to solve and w satisfies perturbed Navier–Stokes equations

∂tw + w · ∇w = Δw − ∇q − v · ∇w − w · ∇v − v · ∇v − F (v)

for which Leray’s formalism still holds. For instance, if u0 ∈ Lp with 2 ≤ p < 3, Calderón [5,16] splits u0

into v0 +w0 where v0 is a divergence-free vector field which is small in L3 and w0 belongs to L2. Then, v
is the mild solution of the Navier–Stokes problem with v0 as initial value. Another recent example is the
way Seregin and Šverák [21] deal with global weak solutions for large initial values in L3, by splitting u
into v + w, where v = etΔu0 and w which has a finite energy.

Another way to extend Leray’s method is to consider weighted energy inequalities in L2(Φ dx), or
similarly energy inequalities for

√
Φu.

√
Φu is solution of⎧⎨

⎩
∂t(

√
Φu) =

√
ΦΔu − √

Φ(u · ∇)u − √
Φ∇p

∇ · u = 0,
√

Φu(0, .) =
√

Φu0

The problem is that the non-linear part of the equation −√
Φ(u · ∇)u − √

Φ∇p will then contribute to
the energy balance, in contrast to the case of the Leray method. More precisely, we may write

−
√

Φ(u · ∇)u = −u · ∇(
√

Φu) −
√

Φu · (
√

Φu · ∇ 1√
Φ

).

The advection term u · ∇(
√

Φu) corresponds to a transport by a divergence-free vector field and will not
contribute to the energy; in order to control the impact of

√
Φu · (

√
Φu · ∇ 1√

Φ
) on

√
Φu, it is natural to

assume that ∇ 1√
Φ

is bounded; assuming that Φ is positive, we find that 1√
Φ( λx

|x| )
≤ 1√

Φ(0)
+Cλ, and thus

that 1
1+|x|2 ≤ CΦ(x).

Recently, Bradshaw et al. [3] and Fernández-Dalgo and Lemarié-Rieusset [10] used Leray’s procedure
to find a global weak solution to the equations (NS) when u0 is no longer assumed to have finite energy
but only to satisfy the weaker assumption∫

|u0(x)|2 dx

1 + |x|2 < +∞.

The solutions then satisfy, for every finite positive T ,

sup
0≤t≤T

∫
|u(t, x)|2 dx

1 + |x|2 +
∫ T

0

∫
|∇ ⊗ u(t, x)|2 dx

1 + |x|2 < +∞.

For the proof, a precise description of the presssure is needed, as it interfers as well in the energy
balance; this point has been discussed in [4,11]. The scheme of proof of existence of such weak solutions
can easily be generalized to equations which behave like the Navier–Stokes equations, for instance the
magneto-hydrodynamic equations [8,9].

An application of solutions in L2( 1
1+|x|2 dx) is given in [10]: a simple proof of existence of discretely

self-similar solutions to the Navier–Stokes problem when the initial value is locally square integrable
(and discretely homogeneous: λu0(λx) = u0(x) for some λ > 1). This existence was first proved by Chae
and Wolf [6], and Bradshaw and Tsai [2], as a generalization of the result of Jia and Šverák [14] for a
regular homogeneous initial value (λu0(λx) = u0(x) for every λ > 1), see [18] for the case of locally
square-integrable homogeneous initial value. If u0 is homogeneous and locally square-integrable, then it
belongs to L2

uloc; thus, the proof of Jia and Šverák relied on the control of weak solutions in the space
L2

uloc of uniformly locally square integrable vector fields, following the theory developed in [17]. If u0 is
discretely homogeneous and locally square-integrable, then it may fail to belong to L2

uloc, but it belongs
to L2( 1

1+|x|γ dx) for γ > 1.
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Whereas the cases of finite energy and of infinite energy sound very similar, this similarity breaks
down when we consider higher regularity.

When we consider solutions in function spaces with decaying weights, the growth of solutions can be
amplified by the non-linearities. The authors in [3,10] used the transport structure of the non-linearity
(u · ∇)u to get good controls for the velocity in some weighted spaces. When dealing with derivatives of
the velocity, one loses the transport structure of non-linearities. The problem comes from the stretching
term ω · ∇u in the equations for the vorticity

∂tω = Δω + (ω · ∇)u − (u · ∇)ω.

In the case when u0 belongs to the classical Sobolev space H1, for which local existence of a unique
mild solution is known, this stretching term may potentially lead to blow-up in finite time, since it has
a non-linear impact on the growth of ‖ω‖2. There are two cases when this impact can be controlled: the
case of 2D fluids (as the stretching term is equal to 0) and the case of axisymmetric vector fields with
no swirl [15,19]. In the case of weighted estimates, one cannot even get local control of the size of the
vorticity in L2(Φ dx) in general, but we shall show that we have global existence of a weak solution such
that ‖√Φω(t, .)‖2 remains bounded on every bounded interval of times, when we work in 2D or when we
consider axisymmetric vector fields with no swirl and weights that depend only on the distance to the
symmetry axis.

2. Main Results

We shall first prove global existence in the weighted L2 setting, in dimension d with 2 ≤ d ≤ 4 when the
weight Φ satisfies some basic assumptions that allow the use of Leray’s projection operator and of energy
estimates:

Definition 2.1 An adapted weight function Φ on R
d (2 ≤ d ≤ 4) is a continuous Lipschitz function Φ

such that:
• (H1) 0 < Φ ≤ 1.
• (H2) There exists C1 > 0 such that |∇Φ| ≤ C1Φ

3
2

• (H3) There exists r ∈ (1, 2] such that Φr ∈ Ar (where Ar is the Muckenhoupt class of weights). In
the case d = 4, we require r < 2 as well.

• (H4) There exists C2 > 0 such that Φ(x) ≤ Φ(x
λ ) ≤ C2λ

2Φ(x), for all λ ≥ 1.

Examples of adapted weights can easily be given by radial slowly decaying functions:
• d = 2, Φ(x) = 1

(1+|x|)γ where 0 ≤ γ < 2
• d = 3 or d = 4, Φ(x) = 1

(1+|x|)γ where 0 ≤ γ ≤ 2

• d = 3, Φ(x) = 1
(1+r)γ where r =

√
x2

1 + x2
2 and 0 ≤ γ < 2.

The following result concerns the existence of weak solutions belonging to a weighted L2 space, where
the weight permits to consider initial data with a weak decay at infinity.

Theorem 1. Let d ∈ {2, 3, 4}. Consider a weight Φ satisfying (H1)−(H4). Let u0 be a divergence free
vector field, such that u0 belongs to L2(Φ dx,Rd). Then, there exists a global solution u of the problem

(NS)

⎧
⎨
⎩

∂tu = Δu − (u · ∇)u − ∇p

∇ · u = 0, u(0, .) = u0

such that
• u belongs to L∞((0, T ), L2(Φdx)) and ∇ ⊗ u belongs to L2((0, T ), L2(Φdx)), for all T > 0,
• p =

∑
1≤i,j≤d RiRj(uiuj),
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• the map t ∈ [0,+∞) �→ u(t, .) is weakly continuous from [0,+∞) to L2(Φ dx), and strongly contin-
uous at t = 0,

• For d ∈ {2, 3}, u satisfies the local energy inequality: there exists a locally finite non-negative measure
μ such that

∂t

( |u|2
2

)
= Δ

( |u|2
2

)
− |∇ ⊗ u|2 − ∇ ·

( |u|2
2

u

)
− ∇ · (pu) − μ,

and we have μ = 0 when d = 2.

We observe that we do not prove the local energy inequality for the solutions in dimension 4. We refer
the papers [7,22,23] for more information on suitable solutions in dimension 4.

If we consider the problem of higher regularity, the case of dimension d = 2 is easy, while, in the case
d = 3, one must restrict the study to the case of axisymmetric flows with no swirl (to circumvent the
stretching effect in the evolution of the vorticity).

Theorem 2 (Case d = 2). Let Φ be a weight satisfying (H1)−(H4). Let u0 be a divergence free vector
field, such that u0,∇ ⊗ u0 belong to L2(Φdx). Then there exists a global solution u of the problem

(NS)

⎧⎨
⎩

∂tu = Δu − (u · ∇)u − ∇p

∇ · u = 0, u(0, .) = u0

such that
• u and ∇ ⊗ u belong to L∞((0, T ), L2(Φ dx)) and Δu belongs to L2((0, T ), L2(Φ dx)), for all T > 0,
• the maps t ∈ [0,+∞) �→ u(t, .) and t ∈ [0,+∞) �→ ∇ ⊗ u(t, .) are weakly continuous from [0,+∞)
to L2(Φdx), and are strongly continuous at t = 0.

Theorem 3 (Case d = 3). Let Φ be a weight satisfying (H1)−(H4). Let u0 be a divergence free axisymmet-
ric vector field without swirl, such that u0,∇ ⊗ u0 belong to L2(Φ dx). Assume moreover that Φ depends
only on r =

√
x2

1 + x2
2. Then there exists a time T > 0, and a local solution u on (0, T ) of the problem

(NS)

⎧
⎨
⎩

∂tu = Δu − (u · ∇)u − ∇p

∇ · u = 0, u(0, .) = u0

such that
• u is axisymmetric without swirl, u and ∇ ⊗ u belong to L∞((0, T ), L2(Φ dx)) and Δu belongs to

L2((0, T ), L2(Φ dx)),
• the maps t �→ u(t, .) and t �→ ∇u(t, .) are weakly continuous from [0, T ) to L2(Φ dx), and are strongly
continuous at t = 0.

An extra condition on the weight permits to obtain a global existence result. Moreover, if the vorticity
is more integrable at time t = 0, it will remain so in positive times. The next theorem precise these
conditions on the weight.

Theorem 4 (Case d = 3). Let Φ be a weight satisfying (H1)−(H4). Assume moreover that Φ depends only
on r =

√
x2

1 + x2
2. Let Ψ be another continuous weight (that depends only on r) such that Φ ≤ Ψ ≤ 1,

Ψ ∈ A2 and there exists C1 > 0 such that

|∇Ψ| ≤ C1

√
ΦΨ and |ΔΨ| ≤ C1ΦΨ.

Let u0 be a divergence free axisymmetric vector field without swirl, such that u0, belongs to L2(Φdx)
and ∇ ⊗ u0 belongs to L2(Ψdx). Then there exists a global solution u of the problem

(NS)

⎧
⎨
⎩

∂tu = Δu − (u · ∇)u − ∇p

∇ · u = 0, u(0, .) = u0

such that
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• u is axisymmetric without swirl, u belongs to L∞((0, T ), L2(Φ dx)), ∇⊗u belong to L∞((0, T ), L2(Ψ dx))
and Δu belongs to L2((0, T ), L2(Ψ dx)), for all T > 0,

• the maps t ∈ [0,+∞) �→ u(t, .) and t ∈ [0,+∞) �→ ∇ ⊗ u(t, .) are weakly continuous from [0,+∞)
to L2(Φ dx) and to L2(Ψ dx) respectively, and are strongly continuous at t = 0.

Example: we can take Φ(x) = 1
(1+r)γ and Ψ(x) = 1

(1+r2)δ/2 with 0 ≤ δ ≤ γ < 2. Of course, Φ ≈
1

(1+r2)γ/2 . The case δ < γ means that, if ω has a better decay at initial time, it will keep this better decay
at all times.

3. Some Lemmas on Weights

Let us first recall the definition of Muckenhoupt weights: for 1 < q < +∞, a positive weight Φ belongs
to Aq(Rd) if and only if

sup
x∈Rd,ρ>0

(
1

|B(x, ρ)|
∫

B(x,ρ)

Φ dx

) 1
q

(
1

|B(x, ρ)|
∫

B(x,ρ)

Φ− 1
q−1 dx

)1− 1
q

< +∞. (1)

We refer to the Chapter 9 in [13].
Due to the Hölder inequality, we have Aq(Rd) ⊂ Ar(Rd) if q ≤ r.
One easily cheks that wγ = 1

(1+|x|)γ belongs to Aq(Rd) if and only if

−d(q − 1) < γ < d.

Thus, Φ = wγ is an adapted weight if and only if 0 ≤ γ ≤ 2 and γ < d.
One may of course replace in inequality (1) the balls B(x, ρ) by the cubes Q(x, ρ) =]x1 − ρ, x1 +

ρ[× · · · ×]xd −ρ, xd +ρ[. Thus, we can see that, if Φ(x) = Ψ(x1, x2) and 1 < q < +∞, then Φ ∈ Aq(R3) if
and only if Ψ ∈ Aq(R2). In particular, Φ(x) = 1

(1+r)γ is an adapted weight on R
3 if and only if 0 ≤ γ < 2.

Lemma 3.1 Let Φ satisfy (H1) and (H2) and let 1 ≤ r < +∞. Then:
(a)

√
Φf ∈ H1 if and only if f ∈ L2(Φ dx) and ∇f ∈ L2(Φ dx); moreover we have

‖
√

Φf‖H1 ≈
(∫

Φ(|f |2 + |∇f |2) dx

)1/2

(b) Φf ∈ W 1,r if and only if f ∈ Lr(Φr dx) and ∇f ∈ Lr(Φr dx); moreover we have

‖Φf‖W 1,r ≈
(∫

Φr(|f |r + |∇f |r) dx

)1/r

Proof. This is obvious since |∇Φ| ≤ C1Φ3/2 ≤ C1Φ and |∇(
√

Φ)| = 1
2

|∇Φ|
Φ

√
Φ ≤ 1

2C1

√
Φ. �

Lemma 3.2 If Φ ∈ As then we have for all θ ∈ (0, 1), Φθ ∈ Ap with θ = p−1
s−1 . In particular, if a weight Φ

satisfies (H3), we obtain Φ ∈ Ap with p = 1 + r−1
r = 2 − 1

r < 2, and so Φ ∈ A2.

Proof. As 1
p = 1

s + s−p
ps , we find by the Hölder inequality
(∫

Q

Φ
p−1
s−1 dx

) 1
p

(∫

Q

Φ−( p−1
s−1 )( 1

p−1 )dx

)1− 1
p

=

(∫

Q

(
Φ

1
s

(
Φ− 1

s−1

) s−p
ps

)p

dx

) 1
p (∫

Q

Φ−( p−1
s−1 )( 1

p−1 )dx

)1− 1
p

≤
(∫

Q

Φ dx

) 1
s

(∫

Q

Φ− 1
s−1 dx

) 1
p − 1

s +1− 1
p

�
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Let us recall that for a weight w ∈ Aq (1 < q < +∞), the Riesz transforms and the Hardy–Littlewood
maximal function are bounded on Lq(w dx). We thus have the following inequalities:

Lemma 3.3 Let Φ satisfy (H1), (H2) and (H3). Then:
(a) for j = 1, . . . , d, the Riesz transforms Rj satisfy that ‖√ΦRjf‖2 ≤ C‖√Φf‖2 and ‖√ΦRjf‖H1 ≤

C‖√
Φf‖H1 ;

(b) for j = 1, . . . , d, the Riesz transforms Rj satisfy that ‖ΦRjf‖r ≤ C‖Φf‖r and ‖ΦRjf‖W 1,r ≤
C‖Φf‖W 1,r ;

(c) if P is the Leray projection operator on divergence-free vector fields, then for a vector field u we have
‖√

ΦPu‖2 ≤ C‖√Φu‖2 and ‖√ΦPu‖H1 ≤ C‖√Φu‖H1 ;
(d) if d ∈ {2, 3, 4}, then for a vector field u we have

‖
√

Φu‖H1 ≈ ‖
√

Φu‖2 + ‖
√

Φ∇ · u‖2 + ‖
√

Φ∇ ∧ u‖2.

(e) Let θε(x) = 1
εd θ(x

ε ), where θ ∈ D(Rd), θ is non-negative and radially decreasing and
∫

θ dx = 1.
Then we have ‖√Φ (θε ∗ f)‖2 ≤ C‖√Φ f‖2 and ‖√Φ (θε ∗ f)‖H1 ≤ C(‖√Φ f‖L2 + ‖√

Φ ∇f‖L2)
(where the constant C does not depend on ε nor f).

Proof. (a) is a consequence of Φ ∈ A2 and of Lemma 3.1 (since ∂k(Rjf) = Rj(∂kf)). Similarly, (b) is a
consequence of Φr ∈ Ar and of Lemma 3.1.

(c) is a consequence of (a): if v = Pu, then vj =
∑d

k=1 RjRk(uk).
(d) is a consequence of (a): if R = (R1, . . . , Rd), we have the identity

−Δu = ∇ ∧ (∇ ∧ u) − ∇(∇ · u)

so that

∂ku = RkR ∧ (∇ ∧ u) − RkR(∇ · u).

(e) is a consequence of Φ ∈ A2 and of Lemma 3.1: Theorem 2.1.10 in Chapter 2 of [12] states that
we have |θε ∗ f | ≤ Mf (where Mf is the Hardy–Littlewood maximal function of f) and, similarly,
|∂k(θε ∗ f)| ≤ M∂kf . �

A final lemma states that Φ is slowly decaying at infinity:

Lemma 3.4 Let Φ satisfy (H1) and (H2). Then there exists a constant C3 such that
1

(1 + |x|)2 ≤ C3Φ.

If d = 3 and Φ depends only on r =
√

x2
1 + x2

2, then
1

(1 + |r|)2 ≤ C3Φ.

Proof. We define x0 = 1
|x|x and g(λ) = Φ(λx0). We have

g′(λ) = x0 · ∇Φ(λx0) ≥ −C1(Φ(λx0))3/2 = −C1g(λ)3/2.

Thus

C1λ ≥ −
∫ λ

0

g′(μ)g(μ)−3/2 dμ = 2(g(λ)−1/2 − g(0)−1/2)

and we get

Φ(x)−1/2 ≤ Φ(0) +
C1

2
|x| ≤

√
C3(1 + |x|).

If Φ depends only on r, we find that
1

(1 + |r|)2 ≤ C3Φ(x1, x2, 0) = C3Φ(x).

�
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4. Proof of Theorem 1 (The Case of L2(Φ dx))

4.1. A Priori Controls

Let φ ∈ D(Rd) be a real-valued test function which is equal to 1 in a neighborhood of 0 and let φε(x) =
φ(εx). Let

u0,ε = P(φεu0).

Thus, u0,ε is divergence free and converges to u0 in L2(Φ dx) since Φ ∈ A2.
Let θε(x) = 1

εd θ(x
ε ), where θ ∈ D(Rd), θ is non-negative and radially decreasing and

∫
θ dx = 1. We

denote bε = uε ∗ θε. Let uε be the unique global solution of the problem

(NSε)

⎧⎨
⎩

∂tuε = Δuε − (bε · ∇)uε − ∇pε

∇ · uε = 0, uε(0, .) = u0,ε

which belongs to C([0,+∞), L2(Rd)) ∩ L2((0,+∞), Ḣ1(Rd)).
We want to demonstrate that

‖
√

Φuε(t)‖2
L2 +

∫ t

0

‖
√

Φ∇ ⊗ uε‖2
L2 ds ≤ ‖

√
Φu0,ε‖2

L2 + CΦ

∫ t

0

‖
√

Φuε‖2
L2 + ‖

√
Φuε‖2d

L2 ds, (2)

where CΦ does not depend on ε nor on u0. (When d = 4, the inequality will hold only if ‖√Φuε(t)‖L2

remains small enough).
Since

√
Φ,∇√

Φ ∈ L∞, pointwise multiplication by
√

Φ maps boundedly H1 to H1 and H−1 to H−1.
Thus,

√
Φuε ∈ L2H1 and

√
Φ∂tuε ∈ L2H−1, we can calculate

∫
∂tuε · uεΦ dx and obtain:

∫ |uε(t, x)|2
2

Φ dx +
∫ t

0

∫
|∇ ⊗ uε|2 Φdx ds

=
∫ |u0,ε(x)|2

2
Φ dx −

∫ t

0

∫
(∇ ⊗ uε) · (∇Φ ⊗ uε) dx ds

+
∫ t

0

∫ ( |uε|2
2

bε + pεuε

)
· ∇Φ dx ds.

(3)

We use the fact that |∇Φ| ≤ C0Φ
3
2 ≤ C0Φ, in order to control the following term

∣∣∣∣−
∫ t

0

∫
(∇ ⊗ uε) · (∇Φ ⊗ uε)dx ds

∣∣∣∣ ≤ 1
8

∫ t

0

‖
√

Φ ∇ ⊗ uε‖2
L2 + C

∫ t

0

‖
√

Φ uε‖2
L2 .

Now, we analyze the integrals containing the pressure term. We distinguish two cases:

• Case 1: d = 2 and r ∈ (1, 2], or d = 3 and r ∈ [65 , 2], or d = 4 and r ∈ [43 , 2). For those values of d
and r we have

0 ≤ d

2
− d

2r
≤ 1 and Ḣ

d
2 − d

2r ⊂ L2r

and

0 ≤ d

r
− d

2
≤ 1 and Ḣ

d
r − d

2 ⊂ L
r

r−1 .

Using the continuity of the Riesz transforms on Lr(Φrdx),
∫ t

0

∫
(
|uε|2|bε|

2
+ |pε||uε|) |∇Φ| dx ds ≤

∫ t

0

‖Φ(|uε| |bε| + |pε|)‖r‖
√

Φuε‖ r
r−1

≤ C

∫ t

0

‖
√

Φuε‖2r‖
√

Φbε‖2r‖
√

Φuε‖ r
r−1

ds
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Using the Sobolev embedding Ḣ
d
2 − d

2r ⊂ L2r, the fact that |∇√
Φ| ≤ C

√
Φ, and the continuity of

the maximal function operator on L2(Φdx), we have

‖
√

Φbε‖2r

≤ C‖
√

Φbε‖1−( d
2 − d

2r )
2 ‖∇ ⊗ (

√
Φbε)‖

d
2 − d

2r
2

≤ C ′‖
√

Φbε‖1−( d
2 − d

2r )
2 (‖

√
Φbε‖2 + ‖

√
Φ∇ ⊗ bε‖2)

d
2 − d

2r

≤ C ′′‖
√

Φuε‖1−( d
2 − d

2r )
2 (‖

√
Φuε‖2 + ‖

√
Φ∇ ⊗ uε‖2)

d
2 − d

2r ,

and

‖
√

Φuε‖2r

≤ C‖
√

Φuε‖1−( d
2 − d

2r )
2 (‖

√
Φuε‖2 + ‖

√
Φ∇ ⊗ uε‖2)

d
2 − d

2r .

Using the embedding Ḣ
d
r − d

2 ⊂ L
r

r−1 , we also have

‖
√

Φuε‖ r
r−1

≤ C‖
√

Φuε‖1−( d
r − d

2 )
2 ‖∇ ⊗ (

√
Φuε)‖

d
r − d

2
L2

≤ C‖
√

Φuε‖1−( d
r − d

2 )
2 (‖

√
Φuε‖2 + ‖

√
Φ∇ ⊗ uε‖L2)

d
r − d

2 .

Hence, we find
∫ t

0

∫ ( |uε|2|bε|
2

+ |pε||uε|
)

|�∇Φ| dx ds

≤C

∫ t

0

‖
√

Φuε‖3− d
2

2 (‖
√

Φuε‖2 + ‖
√

Φ�∇ ⊗ uε‖L2)
d
2 ds.

Using the Young inequality, we then find for d = 2 or d = 3
∫ t

0

∫ ( |uε|2|bε|
2

+ |pε||uε|
)

|�∇Φ| dx ds

≤ 1
8

∫ t

0

‖
√

Φ�∇ ⊗ uε‖2
L2 ds + CΦ

∫ t

0

‖
√

Φuε‖2
L2 + ‖

√
Φuε‖

12−2d
4−d

L2 ds,

where, as d ∈ {2, 3}, we have 12−2d
4−d = 2d.

When d = 4, provided that ‖√Φ uε‖2 < ε0 with Cε0 < 1
8 we find

∫ t

0

∫ ( |uε|2|bε|
2

+ |pε||uε|
)

|∇Φ| dx ds ≤ 1
8

∫ t

0

‖
√

Φ∇ ⊗ uε‖2
L2 ds +

1
8

∫ t

0

‖
√

Φuε‖2
L2 ds,

• Case 2: d = 3 and r ∈ (1, 6
5 ), or d = 4 and r ∈ (1, 4

3 ). Let q = dr
d−r ; for those values of d, r and q, we

have

W 1,r ⊂ Lq0 ≤ d − d

r
≤ 1 and Ḣd(1− 1

r ) ⊂ L
2r

2−r .

and

0 ≤ d

r
− d

2
− 1 ≤ 1 and Ḣ

d
r − d

2 −1 ⊂ L
q

q−1 .
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Using the continuity of the Riesz transforms on Lr(Φrdx), we have
∫ t

0

∫ ( |uε|2|bε|
2

+ |pε||uε|
)

|∇Φ| dx ds

≤
∫ t

0

‖Φ|uε|2‖q‖
√

Φbε‖ q
q−1

ds +
∫ t

0

‖Φpε‖q‖
√

Φuε‖ q
q−1

ds

≤ C

∫ t

0

‖Φ|uε|2‖W 1,r‖
√

Φbε‖ q
q−1

ds +
∑
ij

∫ t

0

‖Φbε,iuε,j‖W 1,r‖
√

Φuε‖ q
q−1

ds.

We have
‖Φbε,iuε,j‖W 1,r

≤ ‖Φbε,iuε,j‖r +
∑

k

(‖bε,iuε,j ∂kΦ‖Lr + ‖Φ bε,i ∂kuε,j‖Lr + ‖Φuε,i ∂kbε,j‖Lr )

≤ C(‖
√

Φuε‖ 2r
2−r

‖
√

Φbε‖2 + ‖
√

Φbε‖ 2r
2−r

‖
√

Φ∇ ⊗ uε‖2 + ‖
√

Φuε‖ 2r
2−r

‖
√

Φ∇ ⊗ bε‖2),

≤ C ′(‖
√

Φuε‖L2 + ‖
√

Φ∇ ⊗ uε‖L2)(‖
√

Φuε‖
Ḣd(1− 1

r
) + ‖

√
Φbε‖

Ḣd(1− 1
r

)).

We have
‖
√

Φbε‖
Ḣd(1− 1

r
)

≤ C‖
√

Φbε‖1−(d− d
r )

2 ‖∇ ⊗ (
√

Φbε)‖d− d
r

2

≤ C ′‖
√

Φbε‖1−(d− d
r )

2 (‖
√

Φbε‖2 + ‖
√

Φ∇ ⊗ bε‖2)d− d
r

≤ C ′′‖
√

Φuε‖1−(d− d
r )

2 (‖
√

Φuε‖L2 + ‖
√

Φ∇ ⊗ uε‖L2)d− d
r ,

and finally we get
∑
i,j

‖Φbε,iuε,j‖W 1,r + ‖Φ|uε|2‖W 1,r ≤ C‖
√

Φuε‖1−(d− d
r )

2 (‖
√

Φuε‖L2 + ‖
√

Φ∇ ⊗ uε‖L2)1+d− d
r .

On the other hand, we have

‖
√

Φbε‖ q
q−1

≤ C‖
√

Φbε‖2−( d
r − d

2 )
2 ‖∇ ⊗ (

√
Φbε)‖

d
r − d

2 −1
2

≤ C ′‖
√

Φuε‖2−( d
r − d

2 )
2 (‖

√
Φuε‖L2 + ‖

√
Φ∇ ⊗ uε‖L2)

d
r − d

2 −1.

Hence, we find again∫ t

0

∫ ( |uε|2|bε|
2

+ |pε||uε|
)

|∇Φ| dx ds ≤ C

∫ t

0

‖
√

Φuε‖3− d
2

2 (‖
√

Φuε‖2 + ‖
√

Φ∇ ⊗ uε‖L2)
d
2 ds.

and we conclude in the same way as for the first case.
In the Case 1 and Case 2, we have found∫ t

0

∫ ( |uε|2|bε|
2

+ |pε||uε|
)

|∇Φ| dx ds ≤ 1
8
‖
√

Φuε‖2
L2 + CΦ

∫ t

0

‖
√

Φuε‖2
L2 + ‖

√
Φuε‖2d

L2 ds.

From these controls, we get inequality (3), and thus inequality (2). Inequality (2) gives us a control
on the size of ‖√Φ uε‖2 on an interval of time that does not depend on ε:

Lemma 4.1 If α is a continuous non-negative function on [0, T ) which satisfies, for three constants A,B ∈
(0,+∞) and b ∈ [1,∞),

α(t) ≤ A + B

∫ t

0

α(s) + α(s)b ds.

Let 0 < T1 < T and T0 = min(T1,
1

3b(Ab−1+(BT1)b−1)
). We have, for every t ∈ [0, T0], α(t) ≤ 3A.
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Proof. We try to estimate the first time T ∗ < T1 (if it exists) for which we have

α(T ∗) = 3A.

We have

α ≤ A

BT1
+ (

BT1

A
)b−1αb.

We thus find

α(T ∗) ≤ 2A + T ∗(3A)b(1 + (
BT1

A
)b−1)

and thus

T ∗3b(Ab−1 + (BT1)b−1) ≥ 1.

�
By Lemma 4.1 and (2), we thus find that there exists a constant CΦ ≥ 1 such that if T0 satisfies

• if d = 2, CΦ

(
1 + ‖u0‖2

L2(Φdx)

)
T0 ≤ 1

• if d = 3, CΦ

(
1 + ‖u0‖2

L2(Φdx)

)2

T0 ≤ 1

• if d = 4 and ‖u0‖L2(Φ dx) ≤ 1
CΦ

, CΦ T0 ≤ 1
then

sup
0≤t≤T0

‖ uε(t, .)‖2
L2(Φdx) +

∫ T0

0

‖∇ ⊗ uε‖2
L2(Φ dx) ds ≤ CΦ(1 + ‖u0‖2

L2(Φ dx)). (4)

4.2. Passage to the Limit and Local Existence

We know that uε is bounded in L∞((0, T0), L2(Φ dx)) and ∇ ⊗ uε is bounded in L2((0, T0), L2(Φ dx)).
This will alow us to use a simple variant of the Aubin–Lions theorem:

Lemma 4.2 (Aubin–Lions theorem). Let s > 0, 1 < q and σ < 0. Let (fn) be a sequence of functions on
(0, T ) × R

d such that, for all T0 ∈ (0, T ) and all ϕ ∈ D(Rd),
• ϕfn is bounded in L2((0, T0),Hs)
• ϕ∂tfn is bounded in Lq((0, T0),Hσ) .
Then, there exists a subsequence (fnk

) such that fnk
is strongly convergent in L2

loc([0, T ) ×R
d). More

precisely: if we denote f∞ the limit, then for all T0 ∈ (0, T ) and all R0 > 0,

lim
nk→+∞

∫ T0

0

∫

|x|≤R0

|fnk
− f∞|2 dx dt = 0.

For a proof of the Lemma, see [1,18].
We want to verify that ϕ∂tuε is bounded in Lα((0, T0),H−s) for some s ∈ (−∞, 0) and some α > 1.
In Case 1, we have that Φbε⊗uε and Φpε =

∑3
i=1

∑3
j=1 RiRj(bε,iuε,j) are bounded in Lα1((0, T0), Lr),

where α1 = 2r
dr−d , so that α1 ∈ [2,∞) if d = 2, α1 ∈ [ 43 , 4] if d = 3 and α1 ∈ (1, 2] if d = 4.

In Case 2, we have that Φbε ⊗ uε and Φpε are bounded in Lα2((0, T0),W 1,r), where α2 = 2r
r+dr−d and

thus it is bounded in Lα2Lq, with q = dr
d−r . We have α2 ∈ ( 4

3 , 2) if d = 3 and α2 ∈ (1, 2) if d = 4.
Let ϕ ∈ D(Rd). We have that ϕuε is bounded in L2((0, T0),H1); moreover, writing

∂tuε = Δuε −
⎛
⎝

3∑
j=1

∂j(bε,juε) + ∇pε

⎞
⎠

and using the embeddings Lr ⊂ Ḣ
d
2 − d

r ⊂ H−1 (in Case 1) or L
dr

d−r ⊂ H−( d
r − d

2 −1) ⊂ H−1 (in Case 2)
we see that ϕ∂tuε is bounded in Lαi((0, T0),H−2).
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Thus, by the Aubin–Lions theorem, there exist u and a sequence (εk)k∈N converging to 0 such that
uεk

converges strongly to u in L2
loc([0, T0) × R

3): for every T̃ ∈ (0, T0) and every R > 0, we have

lim
k→+∞

∫ T̃

0

∫

|y|<R

|uεk
− u|2 dx ds = 0.

Then, we have that uεk
converge *-weakly to u in L∞((0, T0), L2(Φdx)), ∇ ⊗ uεk

converges weakly to
∇ ⊗ u in L2((0, T0), L2(Φdx)), and uεk

converges weakly to u in L3((0, T0), L3(Φ
3
2 dx)). We deduce that

bεk
⊗ uεk

is weakly convergent in (L6/5L6/5)loc to b ⊗ u and thus in D′((0, T0) × R
d); as in Case 1, it is

bounded in Lα1((0, T0), Lr), and in Case 2 it is bounded in Lα2((0, T0),W 1,r), it is weakly convergent in
these spaces respectively (as D is dense in their dual spaces).

By the continuity of the Riesz transforms on Lr(Φrdx) and on W 1,r(Φrdx), we find that in the Case
1 and Case 2, pεk

is convergent to the distribution p =
∑3

i=1

∑3
j=1 RiRj(uiuj). We have obtained

∂tu = Δu + (u · ∇)u − ∇p.

Moreover, we have seen that ∂tu is locally in L1H−2, and thus u has representative such that t �→ u(t, .)
is continuous from [0, T0) to D′(Rd) and coincides with u(0, .) +

∫ t

0
∂tu ds.

In the sense of distributions, we have

u(0, .) +
∫ t

0

∂tu ds = u = lim
k→+∞

uεk
= lim

k→+∞
u0,εk

+
∫ t

0

∂tunk
ds = u0 +

∫ t

0

∂tu ds,

hence, u(0, .) = u0, and u is a solution of (NS).
Now, we want to prove the energy balance. In the case of dimension 2, we remark that, since

√
Φu ∈

L∞L2 ∩ L2H1, we have by interpolation that
√

Φu ∈ L4L4, and then we can define ((u · ∇)u) · u. The
equality

∂t

( |u|2
2

)
= Δ

( |u|2
2

)
− |∇u|2 − ∇ ·

( |u|2
2

u

)
− ∇ · (pu)

is then easy to prove.
Let us consider the case d = 3. We define

Aε = −∂t

( |uε|2
2

)
+ Δ

( |uε|2
2

)
− ∇ ·

( |uε|2
2

uε

)
− ∇ · (pεuε) = |∇ ⊗ uε|2.

As uεk
is locally strongly convergent in L2L2; and locally bounded in L∞L2, it is then locally strongly

convergent in Lp′
L2, with p′ < ∞. Then, as

√
Φ∇ ⊗ uε is bounded in L2((0, T ), L2), by the Gagliardo-

Nirenberg interpolation inequalities we obtain uεk
is locally strongly convergent in Lp′

Lq′
with 2

p′ + 3
q′ > d

2 .
In Case 1, we know that pεk

is locally weakly convergent in Lα1Lr and by the remark above, uεk
is

locally strongly convergent in L
α1

α1−1 L
r

r−1 , and hence pεk
uεk

converges in the sense of distributions.
In Case 2, we know that pεk

is locally weakly convergent in Lα2Lq and and by the remark above, uεk

is locally strongly convergent in L
α2

α2−1 L
q

q−1 , and hence pεk
uεk

converges in the sense of distributions.
Thus, Aεk

is convergent in D′((0, T ) × R
3) to

A = −∂t

( |u|2
2

)
+ Δ

( |u|2
2

)
− ∇ ·

( |u|2
2

u

)
− ∇ · (pu),

and A = limk→+∞ |∇ ⊗ uεk
|2. If θ ∈ D((0, T ) × R

d) is non-negative, we have that
√

θ∇ ⊗ uεk
is weakly

convergent in L2L2 to
√

θ∇ ⊗ u, so that∫∫
Aθ dx ds = lim

εk→+∞

∫∫
Aεk

θ dx ds = lim
k→+∞

∫∫
|∇ ⊗ uεk

|2θ dx ds ≥
∫∫

|∇ ⊗ u|2θ dx ds.

Hence, there exists a non-negative locally finite measure μ on (0, T ) × R
3 such that A = |∇u|2 + μ, i.e.

such that

∂t(
|u|2
2

) = Δ(
|u|2
2

) − |∇u|2 − ∇ ·
( |u|2

2
u

)
− ∇ · (pu) − μ.
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4.3. Strong Convergence to the Initial Data

We use again inequalities (2) and (4). We know that on (0, T0) we have a control of ‖uε‖L2(Φ dx) that
holds uniformly in ε and t. Thus, inequality (2) gives us

‖uε(t, .)‖L2(Φ dx) ≤ ‖u0,ε‖L2(Φ dx) + CΦt(1 + ‖u0‖2
L2(Φ dx) + ‖u0‖2d

L2(Φ dx)).

Since uεk
= u0,εk

+
∫ t

0
∂tuεk

ds, we see that uεk
(t, .) is convergent to u(t, .) in D′(Rd), hence is weakly

convergent in L2(Φ dx) (as it is bounded in L2(Φdx)); on the other hand, u0,εk
is strongly convergent to

u0 in L2(Φ dx). Thus, we have

‖u(t, .)‖L2(Φ dx) ≤ ‖u0‖L2(Φ dx) + CΦt(1 + ‖u0‖2
L2(Φ dx) + ‖u0‖2d

L2(Φ dx)).

In particular,

lim sup
t→0

‖u(t, .)‖L2(Φ dx) ≤ ‖u0‖L2(Φ dx).

Moreover, we have u = u0 +
∫ t

0
∂tu ds, so that u(t, .) is convergent to u0 in D′(Rd), hence is weakly

convergent in L2(Φ dx). Thus, we have

‖u0‖L2(Φ dx) ≤ lim inf
t→0

‖u(t, .)‖L2(Φ dx).

This gives ‖u0‖2
L2(Φdx) = limt→0 ‖u(t, .)‖2

L2(Φdx), which allows to turn the weak convergence into a
strong convergence. �

4.4. Global Existence Using a Scaling Argument

Let λ > 0, then uε is a solution of the Cauchy initial value problem for the approximated Navier–Stokes
equations (NSε) on (0, T ) with initial value u0,ε if and only if uε,λ(t, x) = λuε(λ2t, λx) is a solution for
the approximated Navier–Stokes equations (NSλε) on (0, T/λ2) with initial value u0,ε,λ(x) = λu0,ε(λx).
We shall write u0,λ = λu0(λx).

We have seen that

‖
√

Φuε,λ(t)‖2
L2 +

∫ t

0

‖
√

Φ∇ ⊗ uε,λ‖2
L2 ≤ ‖

√
Φu0,ε,λ‖2

L2 + CΦ

∫ t

0

‖
√

Φuε,λ‖2
L2 + ‖

√
Φuε,λ‖2d

L2 ds

(under the extra condition, when d = 4, that ‖√Φuε,λ(t)‖L2 remains smaller than ε0).
By Lemma 4.1, we thus found that there exists a constant CΦ ≥ 1 such that if Tλ satisfies

• if d = 2, CΦ

(
1 + ‖u0,λ‖2

L2(Φdx)

)
Tλ = 1

• if d = 3, CΦ

(
1 + ‖u0,λ‖2

L2(Φdx)

)2

Tλ = 1

• if d = 4 and ‖u0,λ‖L2(Φ dx) ≤ 1
CΦ

, CΦ Tλ = 1

then

sup
0≤t≤Tλ

‖ uε,λ(t, .)‖2
L2(Φdx) +

∫ Tλ

0

‖∇ ⊗ uε,λ‖2
L2(Φ dx) ds ≤ CΦ(1 + ‖u0,λ‖2

L2(Φ dx)). (5)

It gives that the solutions uε are controlled, uniformly in ε, on (0, λ2Tλ) since for t ∈ (0, Tλ),
∫

|uε,λ(t, x)|2Φ(x) dx =
∫

|uε(λ2t, y)|2Φ(
y

λ
)λ2−d dy ≥ λ2−d

∫
|uε(λ2t, x)|2Φ(x) dx
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and ∫ Tλ

0

∫
|∇ ⊗ uε,λ(t, x)|2Φ(x) dx dt =

∫ λ2Tλ

0

∫
|∇ ⊗ uε,λ(s, y)|2Φ(

y

λ
)λ2−d dy ds

≥λ2−d

∫ λ2Tλ

0

∫
|∇ ⊗ uε(t, x)|2Φ(x) dx dt

∫ Tλ

0

∫
|∇ ⊗ uε,λ(t, x)|2Φ(x) dx dt ≥Cλ

∫ λ2Tλ

0

‖∇ ⊗ uε‖2
L2(Φdx) ds.

Moreover, we have limλ→+∞ ‖u0,λ‖L2(Φ dx) = 0 when d = 4 and limλ→+∞ λ2Tλ = +∞ when 2 ≤ d ≤ 4.
Indeed, we have

∫
λ2|u0(λx)|2Φ(x) dx = λ2−d

∫
|u0(x)|2Φ(

x

λ
) dx = λ4−d

∫
|u0(x)|2 Φ(x

λ )
λ2Φ(x)

Φ(x) dx

Since Φ( x
λ )

λ2Φ(x) ≤ min{C2,
1

λ2Φ(x)} by hypothesis (H4), we find by dominated convergence that ‖u0,λ‖L2(Φ dx) =

o(λ
4−d
2 ) and thus limλ→+∞ λ2Tλ = +∞ .

Thus, if we consider a finite time T and a sequence εk, we may choose λ such that λ2Tλ > T (and
such that ‖u0,λ‖L2(Φ dx) < ε0 if d = 4); we have a uniform control of uε,λ and of ∇ ⊗ uε,λ on (0, Tλ),
hence a uniform control of uε and of ∇ ⊗ uε on (0, T ). We may exhibit a solution on (0, T ) using the
Rellich–Lions theorem by extracting a subsequence εkn

. A diagonal argument permits then to obtain a
global solution.

Theorem 1 is proved. �

5. Proof of Theorem 2 (The Case d = 2)

In the case of dimension d = 2, the Navier–Stokes equations are well-posed in H1 and we don’t need to
mollify the equations. Thus, we may approximate the Navier–Stokes equations with

(NSε)

⎧⎨
⎩

∂tuε = Δuε − (uε · ∇)uε − ∇pε

∇ · uε = 0, uε(0, .) = u0,ε

with
u0,ε = P(φεu0).

Then the vorticity ωε is solution of⎧⎨
⎩

∂tωε = Δωε − (uε · ∇)ωε

∇ · ωε = 0, ωε(0, .) = ω0,ε

with
ω0,ε = ∇ ∧ (φεu0).

u0,ε belongs to H1, so we know that we have a global solution uε. We then just have to prove that, for ev-
ery finite time T0, we have a uniform control of the norms ‖ωε‖L∞((0,T0),L2(Φ dx)) and ‖∇ωε‖L2((0,T0),L2(Φ dx)).

We can calculate
∫

∂tωε · ωεΦ dx so that
∫ |ωε(t, x)|2

2
Φ dx +

∫ t

0

∫
|∇ωε|2 Φdx ds

=
∫ |ω0,ε(x)|2

2
Φ dx −

∫ t

0

∫
∇(

|ωε|2
2

) · ∇Φdx ds

+
∫ t

0

∫ |ωε|2
2

uε · ∇Φ dx ds.
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As ∫ t

0

∫ |ωε|2
2

uε · ∇Φ dx ds ≤
∫ t

0

‖
√

Φωε‖2

L
8
3
‖
√

Φuε‖L4

≤
∫ t

0

(‖
√

Φωε‖3/4
L2 ‖∇(

√
Φωε)‖1/4

L2 )2‖
√

Φuε‖L4

we obtain

‖
√

Φωε(t)‖2
L2 +

∫ t

0

‖
√

Φ∇ωε‖2
L2 ≤ ‖

√
Φω0,ε‖2

L2 + CΦ

∫ t

0

‖
√

Φωε‖2
L2(1 + ‖

√
Φuε‖

4
3
L4) ds

We can conclude that, for all T > 0 and for all t ∈ (0, T ),

‖
√

Φωε(t)‖2
L2 +

∫ t

0

‖
√

Φ∇ωε‖2
L2 ≤ ‖

√
Φω0,ε‖2

L2eCΦ supε>0
∫ t
0 (1+‖√

Φuε‖L4 )
4
3 ds

Thus, we have uniform controls on (0, T ). �

6. Proof of Theorems 3 and 4 (The Axisymmetric Case)

6.1. Axisymmetry

In R
3, we consider the usual coordinates (x1, x2, x3) and the cylindrical coordinates (r, θ, z) given by the

formulas x1 = r cos θ, x2 = r sin θ and x3 = z.
We denote (e1, e2, e3) the usual canonical basis

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

We attach to the point x (with r �= 0) another orthonormal basis

er =
∂x

∂r
= cos θ e1 + sin θ e2, eθ =

1
r

∂x

∂θ
= − sin θ e1 + cos θ e2, ez =

∂x

∂z
= e3.

For a vector field u = (u1, u2, u3) = u1e1 + u2e2 + u3e3, we can see that

u = (u1 cos θ + u2 sin θ) er + (−u1 sin θ + u2 cos θ) eθ + u3 ez.

We will denote (ur, uθ, uz)p the coordinates of u in the basis (er, eθ, ez). We will consider axially
symmetric (axisymmetric) vector fields u without swirl and axisymmetric scalar functions a, which means
that

u = ur(r, z) er + uz(r, z) ez and a = a(r, z).

6.2. The H1 Case

We will use the following well known results of Ladyzhenskaya [15,18].

Proposition 6.1. Let u0 be a divergence free axisymmetric vector field without swirl, such that u0 belongs
to H1. Then, the following problem

(NS)

⎧⎨
⎩

∂tu = Δu − (u · ∇)u − ∇p

∇ · u = 0, u(0, .) = u0

has a unique solution u ∈ C([0,+∞),H1). This solution is axisymmetric without swirl. Moreover, u,∇⊗u
belong to L∞((0,+∞), L2), and ∇ ⊗ u,Δu belong to L2((0,+∞), L2).

If u0 ∈ H2, we have the inequality∫ |ω(t)|2
r2

dx ≤
∫ |ω0|2

r2
≤ ‖∇ ⊗ ω0‖2

2.
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6.3. A Priori Controls

Let φ ∈ D(R2) be a real-valued radial function which is equal to 1 in a neighborhood of 0 and let
φε(x) = φ(ε(x1, x2)). For ε ∈ (0, 1], let

u0,ε = P(φεu0).
Thus, u0,ε is a divergence free axisymmetric without swirl vector field which belongs to H1. As we have

ω0,ε = ∇ ∧ u0,ε = ∇ ∧ (φεu0) = φεω0 + ε(∇φ)(εx) ∧ u0,

using Φ ∈ A2 and |ε∇φ(εx)| ≤ C 1
r1r≥ 1

Cε
≤ C ′1r≥ 1

Cε

√
Φ, we can see that

lim
ε→0

‖u0 − u0,ε‖L2(Φ dx) + ‖ω0 − ω0,ε‖L2(Ψ dx) = 0.

Let uε be the global solution of the problem

(NSε)

⎧⎨
⎩

∂tuε = Δuε − (uε · ∇)uε − ∇pε

∇ · uε = 0, uε(0, .) = u0,ε

given by the Proposition 6.1. We denote ωε = ∇ ∧ uε, then

∂tuε = Δuε + (uε · ∇)uε − ∇pε (6)

and
∂tωε = Δωε + (ωε · ∇)uε − (uε · ∇)ωε (7)

As
√

Ψωε ∈ L2H1 (because
√

Ψ,∇√
Ψ ∈ L∞) and

√
Ψ∂tωε ∈ L2H−1, we can calculate

∫
∂tωε ·ωεΨ dx

using (7) so that
∫ |ωε(t, x)|2

2
Ψ dx +

∫ t

0

∫
|∇ ⊗ ωε|2 Ψdx ds

=
∫ |ω0,ε(x)|2

2
Ψ dx −

∫ t

0

∫
∇(

|ωε|2
2

) · ∇Ψdx ds

+
∫ t

0

∫ |ωε|2
2

uε · ∇Ψ − (ωε · uε)ωε · ∇Ψ dx

−
∫ t

0

∫
((ωε · ∇)ωε) · uε Ψ dx ds

≤
∫ |ω0,ε(x)|2

2
Ψ dx +

1
8

∫ t

0

∫
|∇ ⊗ ωε|2 Ψdx ds + C

∫ t

0

‖
√

Ψωε‖2
2 ds

+ C

∫ t

0

‖
√

Ψ ωε‖2‖
√

Ψ ωε‖6‖
√

Φuε‖3 ds

−
∫ t

0

∫
((ωε · ∇)ωε) · uε Ψ dx ds

≤
∫ |ω0,ε(x)|2

2
Ψ dx +

1
4

∫ t

0

∫
|∇ ⊗ ωε|2 Ψdx ds + C

∫ t

0

‖
√

Ψωε‖2
2 ds

+ C ′
∫ t

0

‖
√

Ψωε‖2
2(‖

√
Φuε‖3 + (‖

√
Φuε‖4/3

3 ) ds

−
∫ t

0

∫
((ωε · ∇)ωε) · uε Ψ dx ds

As ωε = ωε,θ eθ, we have

ωε · ∇ωε = −ω2
ε,θ

r
er.
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In order to control uε · (ωε · ∇ωε), we split the domain of integration in a domain where r is small
and a domain where r is large. The support of φ1 is contained in {x / r < R} for some R > 0}, and the
support of 1 − φ1 is contained in {x / r > R0} for some R0 > 0}. We have

inf
r<R

Φ(x) = inf√
x2
1+x2

2<R

Φ(x1, x2, 0) > 0

and similarly

inf
r<R

Ψ(x) = inf√
x2
1+x2

2<R

Ψ(x1, x2, 0) > 0.

On the other hand, we have

inf
r>R0

r2Φ(x) = inf√
x2
1+x2

2>R0

(x2
1 + x2

2)Φ(x1, x2, 0) ≥ inf
|x|>R0

|x|2Φ(x) > 0.

We then write:

−
∫ t

0

∫
((ωε · ∇)ωε) · uε Ψ dx ds

=
∫ t

0

∫
φ1( (ωε · ∇)uε) · ωε )Ψ dx ds +

∫ t

0

∫
(ωε · uε)(ωε · ∇φ1)Ψ dx ds

+
∫ t

0

∫
φ1(ωε · uε)ωε · ∇Ψdx ds

−
∫ t

0

∫
(1 − φ1)(uε · (ωε · ∇ωε))Ψdx ds

≤ C

∫ t

0

∫
|ωε|2|∇ ⊗ uε|Ψ3/2 dx ds + C

∫ t

0

∫
|ωε|2|uε|

√
Φ Ψ dx ds.

As Ψ ∈ A2, we have ‖√Ψ∇ ⊗ uε‖2 ≈ ‖√Ψωε‖2; moreover,

‖∇ ⊗ (
√

Φuε)‖2 ≤ C(‖
√

Φuε‖2 + ‖
√

Ψωε‖2)

and

‖∇ ⊗ (
√

Ψωε)‖2 ≤ C(‖
√

Ψωε‖2 + ‖
√

Ψ∇ ⊗ ωε‖2),

and thus we get

−
∫ t

0

∫
((ωε · ∇)ωε) · uε Ψ dx ds

≤ C

∫ t

0

‖
√

Ψ∇ ⊗ uε‖L2‖
√

Ψωε‖L3‖
√

Ψωε‖L6 ds

+ C

∫ t

0

‖
√

Φuε‖L6‖
√

Ψωε‖L3‖
√

Ψωε‖L2 ds

≤ C ′
∫ t

0

‖
√

Ψωε‖
3
2
L2(‖

√
Ψωε‖L2 + ‖

√
Ψ∇ ⊗ ωε‖L2)

3
2 ds

+ C ′
∫ t

0

‖
√

Φuε‖L2‖
√

Ψωε‖
3
2
L2(‖

√
Ψωε‖L2 + ‖

√
Ψ∇ ⊗ ωε‖L2)

1
2 ds

≤ C ′′
∫ t

0

(‖
√

Φuε‖2 + ‖
√

Φuε‖4/3
2 )‖

√
Ψωε‖2

2 + ‖
√

Ψωε‖3
2 + ‖

√
Ψωε‖6

2 ds

+
1
8

∫ t

0

‖
√

Ψ∇ ⊗ ωε‖2
2 ds
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We finally find that

‖
√

Ψωε(t)‖2
L2 +

∫ t

0

‖
√

Ψ∇ ⊗ ωε‖2
L2 ds

≤ ‖
√

Ψω0,ε‖2
L2 + C

∫
(1 + ‖

√
Φuε‖3 + (‖

√
Φuε‖4/3

3 )‖
√

Ψωε‖2
2 ds

+ C

∫ t

0

(‖
√

Φuε‖2 + ‖
√

Φuε‖4/3
2 )‖

√
Ψωε‖2

2 + ‖
√

Ψωε‖3
2 + ‖

√
Ψωε‖6

2 ds

≤ ‖
√

Ψω0,ε‖2
L2

+ C ′
∫ t

0

(1 + ‖
√

Φuε‖2 + ‖
√

Φuε‖4/3
2 )‖

√
Ψωε‖2

2 + ‖
√

Ψωε‖6
2 ds

(8)

We already know that ‖√Φuε(t)‖L2 remains bounded (independently of ε) on every bounded interval,
so that we may again use Lemma 4.1 and control sup0≤t≤T0

‖ ωε(t, .)‖2
L2(Ψdx) +

∫ T0

0
‖∇ωε‖2

L2(Ψdx) ds for
some T0, where both T0 and the control don’t depend on ε. The control is then transferred to the limit
ω since ω = lim ωεk

= lim ∇ ∧ uεk
. This proves local existence of a regular solution and Theorem 3 is

proved.

6.4. The Case of a Very Regular Initial Value

We present a result apparently more restrictive that our main Theorem (Theorem 4), but we will see
that it implies almost directly our main Theorem.

Proposition 6.2 Let Φ be a weight satisfying (H1)−(H4). Assume moreover that Φ depends only on
r =

√
x2

1 + x2
2. Let Ψ be another continuous weight (that depends only on r) such that Φ ≤ Ψ ≤ 1,

Ψ ∈ A2 and there exists C1 > 0 such that

|∇Ψ| ≤ C1

√
ΦΨ and |ΔΨ| ≤ C1ΦΨ.

Let u0 be a divergence free axisymmetric vector field without swirl, such that u0, belongs to L2(Φdx),
∇ ⊗ u0 and Δu0 belong to L2(Ψdx). Then there exists a global solution u of the problem

(NS)

⎧⎨
⎩

∂tu = Δu − (u · ∇)u − ∇p

∇ · u = 0, u(0, .) = u0

such that

• u is axisymmetric without swirl, u belongs to L∞((0, T ), L2(Φ dx)), ∇⊗u belong to L∞((0, T ), L2(Ψ dx))
and Δu belongs to L2((0, T ), L2(Ψ dx)), for all T > 0,

• the maps t ∈ [0,+∞) �→ u(t, .) and t ∈ [0,+∞) �→ ∇ ⊗ u(t, .) are weakly continuous from [0,+∞)
to L2(Φ dx) and to L2(Ψ dx) respectively, and are strongly continuous at t = 0.

Proof. Ladyzhenskaya’s inequality for axisymmetric fields with no swirl (Proposition 6.1) gives
∫ |ωε(t)|2

r2
dx ≤

∫ |ω0,ε|2
r2

dx. (9)

As we have

∂iω0,ε = φε∂iω0 + ε∂iφ(εx)ω0 + ε(∇φ)(εx) ∧ ∂iu0 + ε2(∇∂iφ)(εx) ∧ u0,

we can see that
lim
ε→0

‖∇ ⊗ ω0,ε − ∇ ⊗ ω0‖L2(Ψ dx) = 0.
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As ∫ |ω0,ε − ω0|2
r2

dx ≤ C(
∫

0<r<1

|∇ ⊗ ω0,ε − ∇ ⊗ ω0|2Ψ dx +
∫

1<r<+∞
|ω0,ε − ω0|2Ψ dx),

we also have

lim
ε→0

∫ |ω0,ε − ω0|2
r2

dx = 0.

We know that ∫ |ωε(t, x)|2
2

Ψ dx +
∫ t

0

∫
|∇ ⊗ ωε|2 Ψdx ds

=
∫ |ω0,ε(x)|2

2
Ψ dx −

∫ t

0

∫
∇(

|ωε|2
2

) · ∇Ψdx ds

+
∫ t

0

∫ |ωε|2
2

uε · ∇Ψ dx ds

−
∫ t

0

∫
(ωε · uε)ωε · ∇Ψ dx ds −

∫ t

0

∫
uε(ωε · ∇ωε)Ψ dx ds

which implies

‖
√

Ψωε(t)‖2
L2 + 2

∫ t

0

‖
√

Ψ∇ωε‖2
L2

≤ ‖
√

Ψω0,ε‖2
L2 + 2

∫ t

0

‖
√

Ψωε‖L2‖
√

Ψ∇ωε‖L2

+
∫ t

0

‖
√

Φuε‖L3‖
√

Ψωε‖2
L3

+
∫ t

0

1
r
|ur,ε||ωε|2Ψ dx ds

Furthermore, we have
∫ t

0

∫
1 − φ1(x)

r
|ur,ε||ωε|2Ψ dx ds ≤

∫ t

0

‖
√

Φuε‖L3‖
√

Ψωε‖2
L3

and ∫ t

0

∫
φ1(x)

r
|uε,r||ωε|2dx ds ≤ C

∫ t

0

‖ωε

r
‖L2‖

√
Ψuε‖L∞‖

√
Ψωε‖L2 ,

where
‖ωε

r
‖L2 ≤ C‖ω0,ε

r
‖L2 ≤ C(‖

√
Ψω0,ε‖L2 + ‖

√
Ψ∇ ⊗ ω0,ε‖L2)

≤ C ′(‖
√

Φu0‖L2 + ‖
√

Ψω0‖L2 + ‖
√

Ψ∇ ⊗ ω0‖L2)

and
‖
√

Ψuε‖2
L∞ ≤ C‖∇ ⊗ (

√
Ψuε)‖2‖Δ(

√
Ψuε)‖2

≤ C ′(‖
√

Φuε‖L2 + ‖
√

Ψωε‖L2 + ‖
√

Ψ∇ ⊗ ωε‖L2)2.

Then, if we denote A0 = ‖√
Φu0‖L2 + ‖√

Ψω0‖L2 + ‖√
Ψ∇ ⊗ ω0‖L2 , we get

‖
√

Ψωε(t)‖2
L2 +

∫ t

0

‖
√

Ψ∇ ⊗ ωε‖2
L2

≤ ‖
√

Ψω0,ε‖2
L2 + C

∫ t

0

‖
√

Φuε‖2
L2

+ CΦ

∫ t

0

‖
√

Ψωε‖2
L2(1 + A0 + A2

0 + ‖
√

Φuε‖L3 + ‖
√

Φuε‖2
L3) ds
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So, we conclude that, for all T > 0 and for all t ∈ (0, T ),

‖
√

Ψωε(t)‖2
L2 +

∫ t

0

‖
√

Ψ∇ ⊗ ωε‖2
L2

≤
(

‖
√

Ψω0,ε‖2
L2 + CΦ sup

ε>0

∫ T

0

‖
√

Φuε‖2
L2

)
eCΦ supε>0

∫ t
0 (1+A2

0+‖√
Φuε‖L3+‖√

Φuε‖2
L3) ds

Thus, we can obtain a solution on (0, T ) using the Aubin–Lions Theorem and finish with a diagonal
argument to get a global solution. �

6.5. End of the Proof

We begin by consider a local solution v on (0, T0) with initial value u0 given by Theorem 3, which is
continuous from (0, T0) to D′. We take T1 ∈ (0, T0) such that ∇ ⊗ (∇ ∧ v)(T1, .) ∈ L2(Φdx). We consider
a solution w on (T1,+∞) and initial value v(T1) given by Proposition 6.2. Our global solution is defined
as u = v on (0, T1) and u = w on (T1,+∞). �
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[10] Fernández-Dalgo, P.G., Lemarié-Rieusset, P.G.: Weak solutions for Navier–Stokes equations with initial data in weighted

L2 spaces. Arch. Ration. Mech. Anal. 237, 347–382 (2020)
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Lemarié-Rieusset
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e-mail: pierregilles.lemarierieusset@univ-evry.fr

(accepted: June 18, 2021; published online: July 12, 2021)


	Weighted Energy Estimates for the Incompressible Navier–Stokes Equations and Applications to Axisymmetric Solutions Without Swirl
	Abstract
	1. Introduction
	2. Main Results
	3. Some Lemmas on Weights
	4. Proof of Theorem 1 (The Case of L2(Φ dx))
	4.1. A Priori Controls
	4.2. Passage to the Limit and Local Existence
	4.3. Strong Convergence to the Initial Data
	4.4. Global Existence Using a Scaling Argument

	5. Proof of Theorem 2 (The Case d=2)
	6. Proof of Theorems 3 and 4 (The Axisymmetric Case)
	6.1. Axisymmetry
	6.2. The H1 Case
	6.3. A Priori Controls
	6.4. The Case of a Very Regular Initial Value
	6.5. End of the Proof

	References




