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Abstract. A class of parabolic-elliptic Keller–Segel–Stokes systems generalizing the prototype

⎧
⎪⎪⎨

⎪⎪⎩

nt + u · ∇n = Δn − CS∇ · (n(1 + n)−α∇c), x ∈ Ω, t > 0,
u · ∇c = Δc − c + n, x ∈ Ω, t > 0,
ut + ∇P = Δu + n∇φ, x ∈ Ω, t > 0,
∇ · u = 0, x ∈ Ω, t > 0

(KSF )

is considered under boundary conditions of homogeneous Neumann type for n (the density of the cell population) and c (the
chemical concentration), and Dirichlet type for u (the velocity field), in a bounded domain Ω ⊆ R

2 with smooth boundary,
where CS > 0 and φ is a given sufficiently smooth function. The model is proposed to describe chemotaxis-fluid interaction
in cases when the evolution of the chemoattractant is essentially dominated by production through cells. Moreover, the
chemical diffuses much faster than the cells move. It is shown that under the condition that

α > 0,

for any sufficiently smooth initial data (n0, u0) satisfying some compatibility conditions, the associated initial-boundary-
value problem (KSF ) possesses a global bounded classical solution. In comparison to the result for the corresponding
fluid-free system, it is easy to see that the restriction on α here is optimal. Building on this boundedness property, it can
finally even be proved that the corresponding solution of the system decays to (n̄0, n̄0, 0) exponentially if CS is smaller,

where n̄0 = 1
|Ω|

∫

Ω n0. Our main tool is consideration of the energy functional

∫

Ω
n1+α,

which is a new energy-like functional.
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1. Introduction

We consider the following parabolic-elliptic Keller–Segel–Stokes system
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

nt + u · ∇n = Δn − ∇ · (nS(n)∇c), x ∈ Ω, t > 0,
τct + u · ∇c = Δc − c + n, x ∈ Ω, t > 0,
ut + ∇P = Δu + n∇φ, x ∈ Ω, t > 0,
∇ · u = 0, x ∈ Ω, t > 0,
(∇n − nS(n)∇c) · ν = ∇c · ν = 0, u = 0, x ∈ ∂Ω, t > 0,
n(x, 0) = n0(x), u(x, 0) = u0(x), x ∈ Ω

(1.1)

in a bounded domain Ω ⊆ R
2 with smooth boundary, where τ = 0 reflects the assumption that the

considered chemical diffuses much faster than cells and fluid particles, as having formed technically
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essential fundamentals already in numerous precedents from the chemotaxis(-fluid) literature (cf., e.g.,
[18,22] for two representative examples). Herein, the unknown function n denotes the population density
of cells, c is the chemical concentration, and u, P and φ represent the fluid velocity, the pressure of the
fluid, and the potential of the gravitational field, respectively. Moreover, the chemotactic sensitivity S
here is assumed to be a given scalar function satisfying

S ∈ C2(Ω̄) and S(n) ≥ 0 for all n ≥ 0 (1.2)

and

|S(n)| ≤ CS(1 + n)−α for all n ≥ 0 (1.3)

with some CS > 0 and α ≥ 0. The model (1.1) is proposed to describe chemotaxis-fluid interaction in
cases when the evolution of the chemoattractant is essentially dominated by production through cells
(see [1,12,32,46]). This kind of model can also be used to the studies of coral broadcast spawning (see
[6,7,18]).

Before going into our mathematical analysis, we recall some important progresses on system (1.1)
and its variants. If all effects of fluid flow are ignored by letting u ≡ 0, model (1.1) can be reduced to
quasilinear chemotaxis model

⎧
⎪⎪⎨

⎪⎪⎩

nt = Δn − ∇ · (nS(n)∇c), x ∈ Ω, t > 0,
τct = Δc − c + n, x ∈ Ω, t > 0,
(∇n − nS(n)∇c) · ν = ∇c · ν = 0, x ∈ ∂Ω, t > 0,
n(x, 0) = n0(x), τc(x, 0) = τc0(x), x ∈ Ω,

(1.4)

which as an important variant of the classical chemotaxis Keller–Segel model (see [17] and also [1]). This
model was first introduced in 1970 by Keller and Segel [17] to model chemotaxis of cell populations. Since
1970, there have been considerably plentiful results about the behavior (boundedness and blow-up) of the
solutions to the Keller–Segel model and its corresponding variants (see [3,4,11,13,23,35] and references
therein for detailed results). For instance, if S(n) ≡ 1, for the parabolic-elliptic classical Keller–Segel
model (τ = 0) [4,11,23], it was shown that in dimension 2, there exists a critical mass M∗, such that
if M < M∗, the solution exists globally; while if M > M∗, the solution may blow up in finite time,
where M∗ :=

∫

Ω
n0(x)dx =

∫

Ω
n(x, t)dx. Whereas in space dimension N = 1, all solutions are global and

bounded, blow-up occurs for some initial data if N ≥ 3 [3]. More generally, when S = S(n) is a non-
constant scalar function, then its asymptotic behavior decides whether or not the explosion phenomena
may occur. Indeed, when S(n) := (1 + n)−α, there is a critical exponent

α∗ = 1 − 2
N

(1.5)

which is related to the presence of a so-called volume-filling effect, where N is the space dimension. In
particular, all solutions are global and uniformly bounded if α > α∗ [13], while the solution may blow up
if Ω ⊆ R

N (N ≥ 2) is a ball and α < α∗ under some technical assumptions [13,35]. Besides the above
works, recent studies have shown that the solution behavior for system (1.4) can be also impacted by the
prevention of overcrowding (see [2,12]), the nonlinear diffusion (see [3,47]) and the logistic damping (see
[29,36]).

In various situations, however, the migration of cells may be more complex because it can be effected
by the changes in their living environment. In order to describe the dynamics of bacterial swimming and
oxygen transport near contact lines, Tuval et al. [30] proposed the following chemotaxis-(Navier–)Stokes
system

⎧
⎪⎪⎨

⎪⎪⎩

nt + u · ∇n = Δn − ∇ · (nS(c)∇c), x ∈ Ω, t > 0,
ct + u · ∇c = Δc − nf(c), x ∈ Ω, t > 0,
ut + κ(u · ∇)u + ∇P = Δu + n∇φ, x ∈ Ω, t > 0,
∇ · u = 0, x ∈ Ω, t > 0,

(1.6)
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where κ ∈ R and f(c) denote the strength of nonlinear fluid convection and the per-capita oxygen
consumption rate, respectively. When the fixed number κ ∈ R in (1.6) is nonzero, the fluid motion is
governed by the full Navier–Stokes equations involving nonlinear convection, whereas if κ = 0 we consider
the simplified Stokes evolution for u which appears to be justified if the fluid flow remains small [21].
The coupled chemotaxis-fluid model is first introduced by Tuval et al. [30] in 2005. After this, this kind
of models have been studied by many researchers. In fact, by making use of energy-type functionals,
some local and global solvability of corresponding initial value problem for (1.6) in either bounded or
unbounded domains have been obtained in the past years (see Duan and Xiang [5], Di Francesco et al.
[8], Ishida [14], Tao and Winkler [27,28], Winkler Winkler61215,Winklerdddsss51215 and the references
therein for details). For example, for the case of bounded domain Ω ⊆ R

N , Winkler [37] proved that the
initial-boundary value problem of (1.6) admits a unique global classical solution for N = 2 and possesses
at least one global weak solution for N = 3 under the assumption that κ = 0. Besides these works focused
on the well-posedness theory, Winkler [38] (see also [41]) further investigated the qualitative behavior of
such solutions. Indeed, he [38] showed that the global classical solutions obtained in [37] stabilize to the
spatially uniform equilibrium (n̄0, 0, 0) with n̄0 := 1

|Ω|
∫

Ω
n0 as t → ∞. While in three-dimensional case,

global weak solutions have been constructed in [40], and in [41] it has recently been shown that any such
solution becomes eventually smooth and stabilize to the spatially uniform equilibrium (n̄0, 0, 0) (see [41]).
For more literature related to the variant of model (1.6) with nonlinear diffusion or the rotational flux
term, one can refer to [19,27,28,39,42] and the references therein.

If the signal is dominated by production of the signal substance (by cells), the corresponding chemotaxis-
fluid should be written as

⎧
⎪⎪⎨

⎪⎪⎩

nt + u · ∇n = Δn − ∇ · (nS(x, n, c)∇c), x ∈ Ω, t > 0,
τct + u · ∇c = Δc − c + n, x ∈ Ω, t > 0,
ut + κ(u · ∇)u + ∇P = Δu + n∇φ, x ∈ Ω, t > 0,
∇ · u = 0, x ∈ Ω, t > 0,

(1.7)

where τ ∈ {0, 1} and the chemotactic sensitivity S(x, n, c) is a tensor-valued function or a scalar function
which satisfies

S ∈ C2(Ω̄ × [0,∞)2;RN×N ) (1.8)

and

|S(x, n, c)| ≤ CS(1 + n)−α for all (x, n, c) ∈ Ω × [0,∞)2 (1.9)

with some CS > 0 and α ≥ 0. Here N = {2, 3} denotes the space dimension and τ = 0 denotes the
chemical diffuses much faster than the cells move (see e.g. [15]).

Due to the signal production (If the signal is consumed, one can immediately obtain uniform bounds
on c from the second equation, which led to it being studied more heavily than the framework with signal
production by the cells) and the lower regularity for n and c (

∫

Ω
n =

∫

Ω
n0 and

∫

Ω
c ≤ max{∫

Ω
n0, τ

∫

Ω
c0},

as the only apparent a priori information available), the mathematical analysis of (1.7) regarding global
as well as bounded solutions and stabilization is far from trivial (see Peng and Xiang [25], Wang and
Xiang [33,34], Wang [31], Winkler [46], Ke and Zheng [16] and Zheng [48,49,51,54]). Let us briefly
summarize some of the results available for (1.7) with parabolic-parabolic version (τ = 1 in the second
equation of (1.7)). In fact, when S(x, n, c) ≡ 1 and the initial data satisfy certain smallness condition
(e.g.

∫

Ω
n0 < 2π), Winkler [46] proved that 2-D Keller–Segel–Navier–Stokes system (1.7) admits a global

generalized solution which may eventually become smooth and stabilizes toward a spatially homogeneous
equilibrium. If κ = 0 and the tensor-valued chemotaxis sensitivity satisfies (1.8), the classical solution
in two-dimensional and three-dimensional bounded domain are proved in [32] (when α > 0) and [34]
(when α > 1

2 ), respectively. Recently, Wang et al. [32] extended the above result [33] to the full Navier–
Stokes version (κ 
= 0 in the first equation of (1.1)) with convex domain. More recently, we dropped the
hypothesis of convex domain by using a new functional (see [50]), which is different from [32]. In the
three dimensional case, Wang and Liu [20] proved that the full Navier–Stokes (κ 
= 0 in the first equation
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of (1.7)) system (1.7) obtains a global weak solution for tensor-valued sensitivity S(x, n, c) satisfying
(1.8) and (1.3) with α > 3

7 . This result was improved in [16] (see also [31]) to the case of α > 1
3 very

recently. In [43], Winkler further proved that the initial-boundary value problem (1.7) possesses a global
bounded classical solution under the assumption that κ = 0 and S(x, n, c) = (1 + n)−α with α > 1

3 . In
comparison to the result for the corresponding fluid-free system, it is easy to see that the restriction on
α in literature [16,31–33,43] is optimal. We should point that the above results are all about parabolic-
parabolic version. Compared with parabolic-parabolic (τ = 1 in the second equation of (1.7)) version,
the coupled parabolic-elliptic (τ = 0 in the second equation of (1.7)) version of system (1.7) is much less
understood. Moreover, the question of identifying an optimal condition on α ensuring global boundedness
in the parabolic-elliptic version of system (1.1) remains an open challenge. To the best of our knowledge,
this is the first global existence and boundedness result addressing the parabolic-elliptic version of system
(1.7).

Motivated by the above works and analysis, in the present paper, one purpose is try to establish the
global solvability and boundedness of (1.1) under an optimal condition on the key parameter α. Although
the L1 -norm of n and c (see Lemma 3.1) is easy to be obtained, the parabolic-elliptic version still cause
essential difficulty due to the deficiency of regularity for c. In fact, for the parabolic-parabolic version
(τ = 1 in the first equation of (1.1)), one can establish a L2-estimate for c and L2α-estimate for n, and
thus may easily obtain Lp-estimate of c for any large p > 1 (see the proof Lemma 5.1 and Lemma 6.1
of [32]). And thus, one can establish the boundedness of the functional

∫

Ω
ln n(·, t)n(·, t) + a

∫

Ω
|∇c(·, t)|2

(see Lemma 6.2 of [32]) or
∫

Ω
n1+α(x, t)dx + b

∫

Ω
|∇c(x, t)|2dx (see Lemma 6.2 of [50]) for some suitable

positive constants a and b, where n and c are components of the solutions to (1.1) (see Lemma 6.2 of
[32]). And therefore, one can further obtain the upper bound of the functional

1
p

∫

Ω

np(x, t)dx +
2
q

∫

Ω

|∇c(x, t)|2qdx (1.10)

(see Lemma 7.1 of [32]). Consequently, one could derive the global existence and boundedness by a
straightforward manner. When τ = 0, although, we could find the L2α-estimate for n and L1-estimate
for c just like [32]. Unfortunately, the deficiency of regularity for c can not be used to estimate the term
u · ∇c and then conclude the higher estimates for n by using the second equation of (1.1). To overcome
this difficulty, we use Lemma 3.4 and 3.1, which makes the regularity of c become less important in
the process of energy estimates. Using this, one could conclude that there exists a positive constant ρ∗
independent of CS such that

∫

Ω

n1+α(x, t) ≤ ρ∗Υ(CS) for all t > 0,

where

Υ(CS) = [(1 + 2αCS)
1+α

α + (1 + 2αCS) + (1 + 2αCS)4 + 1], (1.11)

so that, with the help of the Gagliardo–Nirenberg inequality and a well-known arguments from the elliptic
regularity theory enables us to derive

‖∇c(·, t)‖2
L2(Ω) + ‖c(·, t)‖2

L2(Ω) ≤ ρ∗∗Υ2(CS) for all t > 0

with some positive constant ρ∗∗ independent of CS . And thus, by virtue of the smoothing estimates of the
Neumann heat semigroup and the standard elliptic regularity arguments, we can successively establish
the boundeness of the solution to the system. We should point that the upper bounds ρ∗∗Υ2(CS) and
ρ∗Υ(CS) play a key role in obtaining the large time behavior of the solutions. Additionally, recent studies
have shown that the solution behavior can be also impacted by the nonlinear diffusion (see [52]) and
tensor-valued sensitivity (see [53]).

Throughout this paper, we assume that

φ ∈ W 2,∞(Ω) (1.12)
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and the initial data (n0, u0) fulfills
{

n0 ∈ W 1,∞(Ω) with n0 > 0 in Ω,

u0 ∈ D(Aγ
r ) for some γ ∈ (

1
2
, 1) and all r ∈ (1,∞)

(1.13)

with Ar denoting the Stokes operator with domain D(Ar) := W 2,r(Ω;R2) ∩ W 1,r
0 (Ω;R2) ∩ Lr

σ(Ω), where
Lr

σ(Ω) := {ϕ ∈ Lr(Ω;R2)|∇ · ϕ = 0} for all r ∈ (1,∞) [26].
In the context of these assumptions, the first of our main results asserts global existence of a bounded

solution in the following sense.

Theorem 1.1. Let Ω ⊆ R
2 be a bounded domain with smooth boundary, (1.12) and (1.13) hold. Moreover,

suppose that S satisfies (1.2) and (1.3) with some

α > 0. (1.14)

Then for any choice of n0 and u0 fulfilling (1.13), the problem (1.1) possesses a global classical solution
(n, c, u, P ) which satisfies

⎧
⎪⎪⎨

⎪⎪⎩

n ∈ C0(Ω̄ × [0,∞)) ∩ C2,1(Ω̄ × (0,∞)),
c ∈ C0(Ω̄ × [0,∞)) ∩ C2,0(Ω̄ × (0,∞)),
u ∈ C0(Ω̄ × [0,∞);R2) ∩ C2,1(Ω̄ × (0,∞);R2),
P ∈ C1,0(Ω̄ × (0,∞))

(1.15)

as well as n and c are nonnegative in Ω × (0,∞). Moreover, this solution is uniformly bounded in the
sense that

‖n(·, t)‖L∞(Ω) + ‖c(·, t)‖W 1,∞(Ω) + ‖u(·, t)‖L∞(Ω) ≤ C for all t > 0 (1.16)

with some positive constant C independent of t.

Remark 1.1. (i) If u ≡ 0, Theorem 1.1 is coincides with Theorem 2.4 of [3], which is optimal according
to the fact that the 2D fluid-free system admits a global bounded classical solution for α > 0 as
mentioned before.

(ii) One way to relax the restriction on α is to replace the linear diffusion Δn by the porous medium
diffusion Δnm with m suitably large. Using the idea and method of this paper, one can prove
that system (1.1) with nonlinear diffusion (Δn is replaced by Δnm) admits a global existence and
boundedness of weak solutions for any m > 1, which is also optimal according to [35].

(iii) As far as we know, this seems to be the first rigorous mathematical result on a small-chemotaxis limit
in a chemotaxis-fluid system, which connects the existence of solutions and large time asymptotic
properties.

To the best of our knowledge, for parabolic-elliptic Keller–Segel–Stokes system, there is few rigorous
mathematical results on large time behavior of the solutions. From this point of view, our results can be
referred as an enrichment in this respect. In [44], Winkler proved that in the three-dimensional bounded
convex domains, Keller–Segel–Navier–Stokes system with logistic source ρn − μn2 possesses at least one
globally generalized solution, moreover, if μ >

χ
√

ρ+

4 , then this solution converge to the homogeneous
steady state with respect to the topology of L1(Ω) × Lp(Ω) × L2(Ω) for p ∈ [1, 6). However, leaving open
the question of whether the solution of Keller–Segel–Navier–Stokes system without logistic source stabilize
or not. Motivated by the arguments in [44], we will also investigate asymptotic stability and convergence
rates of model (1.1). In fact, by constructing a Lyapunov functional, we can moreover show that all the
above solutions approach the spatially homogeneous equilibrium ( 1

|Ω|
∫

Ω
n0,

1
|Ω|

∫

Ω
n0, 0) provided that

the condition CS is appropriately small, where CS is given by (1.3). Our main results with regard to
stabilization can be formulated as follows.
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Theorem 1.2. Assume the hypothesis of Theorem 1.1 holds. Moreover, there exists χ0 > 0 with the prop-
erty that if

CS

CN
< χ0,

one can find γ > 0 and C > 0 such that the global classical solution (n, c, u) of (1.1) satisfies

‖n(·, t) − n̄0‖L∞(Ω) ≤ Ce−γt, for all t > 0 (1.17)

as well as

‖c(·, t) − n̄0‖L∞(Ω) ≤ Ce−γt, for all t > 0 (1.18)

and

‖u(·, t)‖L∞(Ω) ≤ Ce−γt, for all t > 0, (1.19)

where n̄0 = 1
|Ω|

∫

Ω
n0 and CN is the best Poincaré constant.

We sketch here the main ideas and methods used in this article. Our approach underlying the derivation
of Theorem 1.1 will be based on an entropy-like estimate involving the functional

∫

Ω

n1+α (1.20)

for solutions of (1.1) (see Lemma 3.3), which is a new estimate of parabolic-elliptic Keller–Segel–Stokes
system. Once this crucial step has been accomplished, one can finally derive the global boundedness of
solution to (1.1) by using the standard regularity theory of partial differential equations and the Stokes
system (see Lemmas 3.4–3.6).

2. Preliminaries

Let us recall a result on local solvability of (1.1), which has been established in Lemma 2.2 of [45] (see
also Bellomo et al. [1] and [37]) by means of a suitable extensibility criterion and a slight modification of
the well-established fixed-point arguments (see Lemma 2.1 of [40], [39] and Lemma 2.1 of [24]).

Lemma 2.1. Let Ω ⊆ R
2 be a bounded domain with smooth boundary. Assume that φ ∈ W 2,∞(Ω) and the

initial data (n0, u0) fulfills (1.13). Moreover, let S ∈ C2(Ω̄ × [0,∞)) satisfy (1.3) for some CS ≥ 0 and
α ≥ 0. Then there exist Tmax ∈ (0,∞] and a classical solution (n, c, u, P ) of (1.1) in Ω × (0, Tmax) such
that

⎧
⎪⎪⎨

⎪⎪⎩

n ∈ C0(Ω̄ × [0, Tmax)) ∩ C2,1(Ω̄ × (0, Tmax)),
c ∈ C0(Ω̄ × [0, Tmax)) ∩ C2,0(Ω̄ × (0, Tmax)),
u ∈ C0(Ω̄ × [0, Tmax);R2) ∩ C2,1(Ω̄ × (0, Tmax);R2),
P ∈ C1,0(Ω̄ × (0, Tmax))

(2.1)

classically solving (1.1) in Ω × [0, Tmax). Moreover, n and c are nonnegative in Ω × (0, Tmax), and

if Tmax < +∞, then lim sup
t↗Tmax

[‖n(·, t)‖L∞(Ω) + ‖c(·, t)‖W 1,∞(Ω) + ‖u(·, t)‖L∞(Ω)] = ∞. (2.2)

Lemma 2.2. ([13]) If m ∈ {0, 1}, p ∈ [1,∞] and q ∈ (1,∞) then with some constant c1 > 0, for all
ϕ ∈ D((−Δ + 1)θ) we have

‖ϕ‖W m,p(Ω) ≤ c1‖(−Δ + 1)θϕ‖Lq(Ω) provided that m − N

p
< 2θ − N

q
.

Moreover, for p < ∞ the associated heat semigroup(etΔ)t≥0 maps Lp(Ω) into D((−Δ + 1)θ) in any of
the spaces Lq(Ω) for q ≥ p, and there exist c > 0 and λ > 0 such that the Lp-Lq estimates

‖(−Δ + 1)θet(Δ−1)ϕ‖Lq(Ω) ≤ c(1 + t−θ− N
2 ( 1

p − 1
q ))e−λt‖ϕ‖Lp(Ω) for all ϕ ∈ Lp(Ω) and t > 0
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and
‖(−Δ + 1)θetΔϕ‖Lq(Ω)

≤ c(1 + t−θ− N
2 ( 1

p − 1
q ))e−λt‖ϕ‖Lp(Ω) for all t > 0 and ϕ ∈ Lp(Ω) satisfying

∫

Ω

w = 0.

In addition, given p ∈ (1,∞), for any ε > 0, there exists c(ε) > 0 such that for all RN -valued ϕ ∈ Lp(Ω),

‖(−Δ + 1)θetΔ∇ · ϕ‖Lp(Ω) ≤c(ε)(1 + t−θ− 1
2−ε)e−λt‖ϕ‖Lp(Ω) for all t > 0.

Next, we plan to deduce some Lp bound for Du with p suitably large from the low integrability of n,
which plays an important role in the arguments of establishing the desired estimates of (1.1). To this end,
we first give some notations, which will be used throughout this paper. For any r ∈ (1,∞), the Helmholtz
projection acts as a bounded linear operator Pr from Lr(Ω) onto its subspace Lr

σ(Ω) := {ϕ ∈ Lr(Ω)|∇·ϕ =
0} (see also our hypothesis (1.13) on Sect. 1) of all solenoidal vector fields. Furthermore, the realization
Ar of the Stokes operator A in Lr

σ(Ω) with domain D(Ar) := W 2,r(Ω;R2) ∩ W 1,r
0 (Ω;R2) ∩ Lr

σ(Ω) is
sectorial in Lr

σ(Ω). And therefore, for each γ ∈ R, Ar possesses closed fractional powers Aγ
r with dense

domains D(Aγ
r ) (see e.g. [9,10]), and Ar generates an analytic semigroup (e−tAr )t≥0 in Lr

σ(Ω). Due to
Pr, Aγ

r and (e−tAr )t≥0 are all actually independent of r ∈ (1,∞) whenever applied to smooth functions,
so that, in the following, we may omit an explicit index r whenever there is no danger of confusion.

Lemma 2.3. Let (n, c, u) be the solution of (2.1). Moreover, assume that p ∈ [1,∞) and r ∈ [1,∞] satisfies
that

{
r < 2p

2−p if p ≤ 2,

r ≤ ∞ if p > 2.
(2.3)

If there exists K > 0 such that

‖n(·, t)‖Lp(Ω) ≤ K for all t ∈ (0, Tmax), (2.4)

then there exists C := C(p, r,K) such that

‖Du(·, t)‖Lr(Ω) ≤ C for all t ∈ (0, Tmax). (2.5)

Proof. Without loss of generality, we may assume that r > p, since r ≤ p, can be proved similarly and
easily. Next, let β > 1

2 . Next, we fix r0 ∈ (p, r) and

β >
1
2

+
1
r0

− 1
r
. (2.6)

Notice that
(

1
2

+
1
r0

− 1
r

)

−
{

1 − 1
p

+
1
r0

}

< 0 (2.7)

by using (2.3). Hence, we can choose β0 ∈ ( 1
2 , β) and δ ∈ (0, 1) satisfying

1
2

+
1
r0

− 1
r

< β0 <

{

1 − 1
p

+
1
r0

}

(2.8)

and

β0 + δ < 1 −
(

1
p

− 1
r0

)

. (2.9)

Now, we fix some p0 > p sufficiently close to p such that

δ >
1
p

− 1
p0

. (2.10)

We apply the fractional power Aγ to the variation-of-constant formula

u(·, t) = e−tAu0 +
∫ t

0

e−(t−τ)AP(n(·, τ)∇φ)dτ for all t ∈ (0, Tmax), (2.11)
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where A := Ar0 and P = Pr0 . Now, employing Aβ0 on both sides of (2.11) and using (1.13) and (1.12),
we derive that there exist positive constants λ > 0, κ0,∗, κ0,∗∗ as well as κ0,∗∗∗ and κ0,∗∗∗∗ such that

‖Du(·, t)‖Lr(Ω)

≤ κ0,∗‖Aβ0u(·, t)‖Lr0 (Ω)

≤ κ0,∗∗‖Aβ0e−tAu0‖Lr0 (Ω) + κ0,∗∗
∫ t

0

‖Aβ0+δe−(t−τ)AA−δP[n(·, τ)∇φ]‖Lr0 (Ω)dτ

= κ0,∗∗‖e−tAAβ0u0‖Lr0 (Ω) + κ0,∗∗
∫ t

0

‖Aβ0+δe−(t−τ)AA−δP[n(·, τ)∇φ]‖Lr0 (Ω)dτ

≤ κ0,∗∗‖Aγe−tAu0‖Lr0 (Ω) + κ0,∗∗∗
∫ t

0

(t − τ)−β0−δ−( 1
p0

− 1
r0

)e−λ(t−τ)‖A−δP[n(·, τ)∇φ]‖Lp0 (Ω)dτ

≤ κ0,∗∗∗∗ + κ0,∗∗∗∗
∫ t

0

(t − τ)−β0−δ−( 1
p0

− 1
r0

)e−λ(t−τ)‖n(·, τ)‖Lp(Ω)dτ

(2.12)

for all t ∈ (0, Tmax). Noticing that (2.9) entails that
∫ ∞

0

τ−β0−δ−( 1
p0

− 1
r0

)e−λτdτ < +∞, (2.13)

so that, from (2.12) and (2.4) we can deduce the desired result.
�

3. A Priori Estimates

In this section, in order to establish the global solvability of system (1.1), we proceed to derive some
estimates for the solutions. As the first step, we need to establish some important a priori estimates for
n, c and u, where throughout this paper, (n, c, u, P ) is the global solution of problem (1.1).

The following two basic properties immediately result from an integration of the first and second
equation in (1.1) over Ω.

Lemma 3.1. The solution of (1.1) satisfies
∫

Ω

n =
∫

Ω

n0 for all t > 0 (3.1)

as well as
∫

Ω

c =
∫

Ω

n0 for all t > 0. (3.2)

Proof. On integrating the first and the second equation in (1.1) over Ω and using that ∇ · u = 0, we
obtain the identities

d

dt

∫

Ω

n = 0 and
∫

Ω

n =
∫

Ω

c for all t > 0,

which directly imply both (3.1) and (3.2). �
With the L1 estimate of n in hand (see Lemma 3.1), one can invoke the Lp-Lq estimates for the

Neumann heat semigroup to obtain regularity of u in arbitrary Lp spaces, which is presented below for
the sake of completeness and easy reference (see also [33]).

Lemma 3.2. Suppose that (1.2)–(1.3) and (1.12)–(1.13) hold. For any given p ∈ (1,∞), there exists a
positive constant θ∗ which depends only on p,Ω, u0 as well as n0 and φ such that

∫

Ω

|u(x, t)|p ≤ θ∗ for all t > 0. (3.3)
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Proof. First of all, in view of the variation-of-constants representation

u(·, t) = e−tAu0 +
∫ t

0

e−(t−τ)AP(n(·, τ)∇φ)dτ for all t ∈ (0, Tmax),

where A and P are the same as Lemma 2.3. For any p > 1, one can fix β such that β ∈ (1 − 1
p , 1). Now,

relying on (1.12) as well as (1.13) and (3.1), we my employ the Lp-Lq estimates for the Neumann heat
semigroup to find λ∗ > 0, l0,∗ > 0, l0,∗∗ > 0 as well as l0,∗∗∗ > 0 and l0,∗∗∗∗ > 0 with the property that
for any for all t ∈ (0, Tmax)

‖u(·, t)‖Lp(Ω) ≤ l0,∗‖e−tAu0‖Lp(Ω) + l0,∗
∫ t

0

‖Aβe−(t−τ)AA−βP[n(·, τ)∇φ]‖Lp(Ω)dτ

≤ l0,∗∗ + l0,∗∗
∫ t

0

(t − τ)−βe−λ∗(t−τ)‖A−βP[n(·, τ)∇φ]‖Lp(Ω)dτ

≤ l0,∗∗ + l0,∗∗∗
∫ t

0

(t − τ)−βe−λ∗(t−τ)‖n(·, τ)∇φ‖L1(Ω)dτ

≤ l0,∗∗∗∗,

(3.4)

and thereby precisely arrive at (3.3). �

With the estimates obtained so far, we have already prepared all tools to obtain an Lp(Ω)-estimate
for n, for some p > 1, which plays a key role in obtaining the L∞(Ω)-estimate for n.

Lemma 3.3. If

α > 0, (3.5)

then there exists a positive constant ρ∗ independent of CS such that the solution of (1.1) from Lemma 2.1
satisfies

∫

Ω

n1+α(x, t) ≤ ρ∗Υ(CS) for all t ∈ (0, Tmax), (3.6)

where Υ(CS) is the same as (1.11).

Proof. In the following, we let κi, γi and ρi(i ∈ N) denote some different constants, which are independent
of t and CS , and if no special explanation, they depend at most on Ω, φ, α, n0 and u0. Taking nα as the
test function for the first equation of (1.1) and using ∇ · u = 0, we derive that

1
1 + α

d

dt
‖n‖1+α

L1+α(Ω) + α

∫

Ω

nα−1|∇n|2 = −
∫

Ω

nα∇ · (nS(n)∇c)

= α

∫

Ω

nαS(n)∇n · ∇c

= α

∫

Ω

∇
∫ n

0

ταS(τ)dτ · ∇c

= −α

∫

Ω

∫ n

0

ταS(τ)dτΔc

= α

∫

Ω

∫ n

0

ταS(τ)dτ(n − c − u · ∇c)

≤ αCS

∫

Ω

(n2+n|u · ∇c|) for all t ∈ (0, Tmax)

(3.7)
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by using (1.3) and the second equation of (1.1). In the following, we will estimate the right-hand side of
(3.7). To this end, in view of (3.2), the Gagliardo–Nirenberg inequality entails that there exists C1 > 0
such that

∫

Ω

|∇c| 8
3 ≤ ρ0

(
‖Δc‖2

L2(Ω)‖c‖ 2
3
L1(Ω) + ‖c‖ 8

3
L1(Ω)

)

≤ ρ1‖Δc‖2
L2(Ω) + ρ0‖c‖ 8

3
L1(Ω)

= ρ1‖Δc‖2
L2(Ω) + ρ0‖n0‖

8
3
L1(Ω) for all t ∈ (0, Tmax)

(3.8)

with

ρ1 = ρ0

(∫

Ω

n0

) 2
3

.

Now, by using the Young inequality twice, abbreviating κ1 = 27ρ3
1α

512 we thereby deduce that

αCS

∫

Ω

(n2 − n|u · ∇c|) ≤ 2αCS

∫

Ω

(

n2 +
1
4
|u|2|∇c|2

)

≤ 2αCS

∫

Ω

(

n2 +
1

1024
(ε1 × 4

3
)−3|u|8 + ε1|∇c| 8

3

)

= 2αCS

∫

Ω

(
n2 + ε1|∇c| 8

3

)
+ κ1CS(1 + 2αCS)3

∫

Ω

|u|8 for all t ∈ (0, Tmax),

(3.9)

where

ε1 =
1

4ρ1(1 + 2αCS)
. (3.10)

To estimate the term Δc in (3.8), taking −Δc as the test function for the second equation of (1.1), we
conclude from the Young inequality that for the above ε1 > 0,
∫

Ω

|Δc|2 +
∫

Ω

|∇c|2 = −
∫

Ω

nΔc +
∫

Ω

(u · ∇c)Δc

≤ 1
2

∫

Ω

|Δc|2 +
∫

Ω

n2 +
∫

Ω

|u|2|∇c|2

≤ 1
2

∫

Ω

|Δc|2 +
∫

Ω

n2 +
1
4

(

ε1 × 4
3

)−3 ∫

Ω

|u|8 + ε1

∫

Ω

|∇c| 8
3

=
1
2

∫

Ω

|Δc|2 +
∫

Ω

n2 +
27
4

ρ3
1(1 + 2αCS)3

∫

Ω

|u|8 + ε1

∫

Ω

|∇c| 8
3 for all t ∈ (0, Tmax),

which implies that

1
2

∫

Ω

|Δc|2 +
∫

Ω

|∇c|2 ≤
∫

Ω

n2 + ε1

∫

Ω

|∇c| 8
3 + κ2(1 + 2αCS)3

∫

Ω

|u|8 for all t ∈ (0, Tmax) (3.11)

with

κ2 =
27
4

ρ3
1.

Combining (3.8) with (3.10), we thus infer that

(1 + 2αCS)ε1

∫

Ω

|∇c| 8
3 =

1 + 2αCS

4ρ1(1 + 2αCS)

∫

Ω

|∇c| 8
3

≤1
4
‖Δc‖2

L2(Ω) + κ3‖n0‖
8
3
L1(Ω) for all t ∈ (0, Tmax),

(3.12)
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where

κ3 =
ρ0

4ρ1
.

Recalling α > 0, we can see that 2
1+α < 4

1+α < +∞, which warrants the embedding W 1,2(Ω) ↪→
L

4
1+α (Ω) ↪→ L

2
1+α (Ω), whence another application of the Gagliardo–Nirenberg inequality together with

Lemma 3.2 and the Young inequality that provides positive constant γ0 such that

(1 + 2αCS)
∫

Ω

n2 = (1 + 2αCS)‖n
1+α
2 ‖

4
1+α

L
4

1+α (Ω)

≤ (1 + 2αCS)γ0(‖∇n
1+α
2 ‖

2
1+α

L2(Ω)‖n
1+α
2 ‖

2
1+α

L
2

1+α (Ω)
+ ‖n

1+α
2 ‖

4
1+α

L
2

1+α (Ω)
)

= γ0(1 + 2αCS)(‖∇n
1+α
2 ‖

2
1+α

L2(Ω)‖n0‖L1(Ω) + ‖n0‖2
L1(Ω))

≤ ε2‖∇n
1+α
2 ‖2

L2(Ω) +
α

1 + α
(ε2(1 + α))− 1

α γ
1+α

α
0 (1 + 2αCS)

1+α
α ‖n0‖

1+α
α

L1(Ω)

+ γ0(1 + 2αCS)‖n0‖2
L1(Ω)

=
α

2

∫

Ω

nα−1|∇n|2 + κ4(1 + 2αCS)
1+α

α ‖n0‖
1+α

α

L1(Ω)

+ γ0(1 + 2αCS)‖n0‖2
L1(Ω) for all t ∈ (0, Tmax)

(3.13)

with

ε2 =
2α

(1 + α)2

and

κ4 =
α

1 + α
(ε2(1 + α))− 1

α γ
1+α

α
0 =

α

1 + α

(
2α

1 + α

)− 1
α

γ
1+α

α
0 .

Collecting (3.7) and (3.11)–(3.13), we achieve

1
1 + α

d

dt
‖n‖1+α

L1+α(Ω) + α

∫

Ω

nα−1|∇n|2 +
1
2

∫

Ω

|Δc|2 +
∫

Ω

|∇c|2

≤ (1 + 2αCS)
∫

Ω

n2 + (1 + 2αCS)ε1

∫

Ω

|∇c| 8
3 + [κ1CS + κ2](1 + 2αCS)3

∫

Ω

|u|8

≤ α

2

∫

Ω

nα−1|∇n|2 + κ4(1 + 2αCS)
1+α

α ‖n0‖
1+α

α

L1(Ω) + γ0(1 + 2αCS)‖n0‖2
L1(Ω)

+
1
4
‖Δc‖2

L2(Ω) + κ3‖n0‖
8
3
L1(Ω) + [κ1CS + κ2](1 + 2αCS)3

∫

Ω

|u|8 for all t ∈ (0, Tmax).

(3.14)

Therefore, namely,

1
1 + α

d

dt
‖n‖1+α

L1+α(Ω) +
α

2

∫

Ω

nα−1|∇n|2 +
1
4

∫

Ω

|Δc|2 +
∫

Ω

|∇c|2

≤ κ4(1 + 2αCS)
1+α

α ‖n0‖
1+α

α

L1(Ω) + γ0(1 + 2αCS)‖n0‖2
L1(Ω)

+ κ3‖n0‖
8
3
L1(Ω) + [κ1CS + κ2](1 + 2αCS)3

∫

Ω

|u|8 for all t ∈ (0, Tmax).

(3.15)
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Next, in view of (3.1), we invoke the Gagliardo–Nirenberg inequality to fix γ1 > 0 such that

‖n‖1+α
L1+α(Ω)

= ‖n
1+α
2 ‖2

L2(Ω)

≤ γ1(‖∇n
1+α
2 ‖

2α
1+α

L2(Ω)‖n
1+α
2 ‖

2
1+α

L
2

1+α (Ω)
+ ‖n

1+α
2 ‖2

L
2

1+α (Ω)
)

= γ1(‖∇n
1+α
2 ‖

2α
1+α

L2(Ω)‖n0‖L1(Ω) + ‖n0‖2
L1(Ω)) for all t ∈ (0, Tmax).

Upon an application of the Young inequality, the above inequality therefore entails that

‖n‖1+α
L1+α(Ω) ≤ ‖∇n

1+α
2 ‖2

L2(Ω) +
1

1 + α

(
1 + α

α

)−α

‖n0‖1+α
L1(Ω)γ

1+α
1 + γ1‖n0‖2

L1(Ω)

≤ (1 + α)2

4

∫

Ω

nα−1|∇n|2

+
1

1 + α

(
1 + α

α

)−α

‖n0‖1+α
L1(Ω)γ

1+α
1 + γ1‖n0‖2

L1(Ω) for all t ∈ (0, Tmax).

(3.16)

Plugging (3.16) into (3.15) and combining with (3.3) therefore implies that

1
1 + α

d

dt
‖n‖1+α

L1+α(Ω) +
α

2
× 4

(1 + α)2

∫

Ω

n1+α +
1
4

∫

Ω

|Δc|2 +
∫

Ω

|∇c|2

≤ κ4(1 + 2αCS)
1+α

α ‖n0‖
1+α

α

L1(Ω) + γ0(1 + 2αCS)‖n0‖2
L1(Ω)

+κ3‖n0‖
8
3
L1(Ω) + [κ1CS + κ2](1 + 2αCS)3

∫

Ω

|u|8

+
2
α

× 4
(1 + α)2

[
1

1 + α

(
1 + α

α

)−α

‖n0‖1+α
L1(Ω)γ

1+α
1 + γ1‖n0‖2

L1(Ω)]

≤ κ4(1 + 2αCS)
1+α

α ‖n0‖
1+α

α

L1(Ω) + γ0(1 + 2αCS)‖n0‖2
L1(Ω)

+κ3‖n0‖
8
3
L1(Ω) + (

κ1

2α
+ κ2)(1 + 2αCS)4 sup

t∈(0,Tmax)

∫

Ω

|u(x, t)|8

+
2
α

× 4
(1 + α)2

[
1

1 + α

(
1 + α

α

)−α

‖n0‖1+α
L1(Ω)γ

1+α
1 + γ1‖n0‖2

L1(Ω)

]

≤ κ5[(1 + 2αCS)
1+α

α + (1 + 2αCS) + (1 + 2αCS)4] + κ6 for all t ∈ (0, Tmax),

(3.17)

where

κ5 = max{κ4‖n0‖
1+α

α

L1(Ω), γ0‖n0‖2
L1(Ω),

( κ1

2α
+ κ2

)
θ∗}

as well as

κ6 = κ3‖n0‖
8
3
L1(Ω) +

2
α

× 4
(1 + α)2

[
1

1 + α

(
1 + α

α

)−α

‖n0‖1+α
L1(Ω)γ

1+α
1 + γ1‖n0‖2

L1(Ω)

]

and θ∗ is the same as (3.3). Moreover, writing

y(t) = ‖n(·, t)‖1+α
L1+α(Ω) for all t ∈ (0, Tmax),
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whereas (3.17) guarantees that

y′(·, t) +
2α

1 + α
y(·, t)

≤ (1 + α)[κ5[(1 + 2αCS)
1+α

α + (1 + 2αCS) + (1 + 2αCS)4] + κ6] for all t ∈ (0, Tmax)
(3.18)

by dropping the non-negative terms 1
4

∫

Ω
|Δc|2 and

∫

Ω

|∇c|2. Applying the Gronwall Lemma, (3.18) entails

that

y(·, t) ≤ e− 2α
1+α ty0 +

(1 + α)2

2α

(
1 − e− 2α

1+α t
)

κ5[(1 + 2αCS)
1+α

α + (1 + 2αCS) + (1 + 2αCS)4]

+
(1 + α)2

2α

(
1 − e− 2α

1+α t
)

κ6 for all t ∈ (0, Tmax),
(3.19)

where invoking the fact that t > 0, we deduce from (3.19) that

y(·, t) ≤y0 +
(1 + α)2

2α
{κ5[(1 + 2αCS)

1+α
α + (1 + 2αCS) + (1 + 2αCS)4] + κ6} (3.20)

for all t ∈ (0, Tmax). As a consequence of (3.20), (3.6) is valid by a choice of ρ∗ = max{y0 +κ6,
(1+α)2

2α κ5}.
And the proof of this Lemma is thus completed. �
With the higher regularity for n obtained in Lemma 3.3, one can give some estimates for c which can

be proved by using the Gagliardo–Nirenberg inequality and an application of well-known arguments from
the elliptic regularity theory.

Lemma 3.4. If α > 0, then there exists a positive constant ρ∗∗ independent of CS such that the solution
of (1.1) from Lemma 2.1 satisfies

‖∇c(·, t)‖2
L2(Ω) + ‖c(·, t)‖2

L2(Ω) ≤ ρ∗∗Υ2(CS) for all t ∈ (0, Tmax), (3.21)

where Υ(CS) is given by (1.11).

Proof. Testing the second equation of (1.1) by c and combining with the second equation and using
∇ · u = 0, we have, using the integration by parts, that

∫

Ω

|∇c|2 +
∫

Ω

c2 =
∫

Ω

cn

≤ ‖n‖L1+α(Ω)‖c‖
L

1+α
α (Ω)

≤ ρ
1

1+α∗ Υ
1

1+α (CS)‖c‖
L

1+α
α (Ω)

for all t ∈ (0, Tmax)

(3.22)

by using the Hölder inequality and Lemma 3.3. Here ρ∗ and Υ(CS) are the same as Lemma 3.3. Now com-
bining the Gagliardo–Nirenberg inequality with the fact that

∫

Ω
c =

∫

Ω
n0 by (3.2), we can furthermore

find μ0 > 0 independent of CS such that

‖c‖
L

1+α
α (Ω)

≤μ0

(

‖∇c‖
1

1+α

L2(Ω)‖c‖
α

1+α

L1(Ω) + ‖c‖L1(Ω)

)

=μ0

(

‖∇c‖
1

1+α

L2(Ω)‖n0‖
α

1+α

L1(Ω) + ‖n0‖L1(Ω)

)

for all t ∈ (0, Tmax),
(3.23)

where in the last inequality we have used (3.2). Together with (3.22), an application of the Young
inequality yields

1
2

∫

Ω

|∇c|2 +
∫

Ω

c2 ≤ 1 + 2α
2 + 2α

(1 + α)− 1
1+2α ρ

2
1+2α∗ Υ

2
1+2α (CS)‖n0‖L1(Ω)

+ μ0‖n0‖L1(Ω)ρ
1

1+α∗ Υ
1

1+α (CS) for all t ∈ (0, Tmax),
(3.24)

which together with 2
1+2α < 2 implies that (3.21) is valid and thereby completes the proof. �
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With Lemma 3.3 at hand, one can improve the estimates of u by virtue of the well-established argu-
ments based on the regularization features of the Stokes semigroup.

Lemma 3.5. Let α > 0 and γ ∈ ( 1
2 , 1). Then one can find a positive constant ρ∗∗∗ independent of CS such

that the solution of (1.1) from Lemma 2.1 satisfies

‖u(·, t)‖L∞(Ω) ≤ ρ∗∗∗Υ(CS) for all t ∈ (0, Tmax) (3.25)

and

‖Aγu(·, t)‖L2(Ω) ≤ ρ∗∗∗Υ(CS) for all t ∈ (0, Tmax), (3.26)

where Υ(CS) is given by (1.11).

Proof. Firstly, in light of (3.6), there exists a positive constant κ∗,1 independent of CS such that the
solution of (1.1) from Lemma 2.1 satisfies

‖n(·, t)‖L1+α(Ω) ≤κ∗,1Υ
1

1+α (CS)

≤κ∗,1Υ(CS) for all t ∈ (0, Tmax)
(3.27)

by using α > 0 and Υ(CS) > 1, where Υ(CS) is the same as (1.11).
On the basis of the variation-of-constants formula for the projected version of the third equation in

(1.1), that is of the identity ut + Au = P[n(·, τ)∇φ], recalling (3.27) and (1.13), according to standard
smoothing properties of the Stokes semigroup we see that there exists positive constants κ∗,2, κ∗,3, κ∗,4

as well as κ∗,5 and λ > 0 such that for all t ∈ (0, Tmax) and γ ∈ ( 1
2 , 1),

‖Aγu(·, t)‖L2(Ω) ≤ κ∗,2‖Aγe−tAu0‖L2(Ω) + κ∗,2

∫ t

0

‖Aγe−(t−τ)Ah(·, τ)dτ‖L2(Ω)dτ

≤ ‖Aγu0‖L2(Ω) + κ∗,3

∫ t

0

(t − τ)−γ− 2
2 ( 1

1+α − 1
2 )e−λ(t−τ)‖h(·, τ)‖L1+α(Ω)dτ

≤ κ∗,4 + κ∗,3

∫ t

0

(t − τ)−γ− 2
2 ( 1

1+α − 1
2 )e−λ(t−τ)‖h(·, τ)‖L1+α(Ω)dτ

≤ κ∗,5Υ(CS) for all t ∈ (0, Tmax)

(3.28)

with h = P[n(·, t)∇φ], where we have used the fact that Υ(CS) > 1 and
∫ t

0

(t − τ)−γ− 2
2 ( 1

1+α − 1
2 )e−λ(t−τ)ds ≤

∫ ∞

0

σ−γ− 2
2 ( 1

1+α − 1
2 )e−λσdσ < +∞

by using 1 + α > 1. As our assumption γ > 1
2 warrants that D(Aγ) ↪→ L∞(Ω) (see e.g. [10]), so that,

(3.28) also entails

‖u(·, t)‖L∞(Ω) ≤ κ∗,6Υ(CS) for all t ∈ (0, Tmax) (3.29)

with some positive constant κ∗,6 independent of CS . The proof of Lemma 3.5 is thus completed. �

In conjunction with the estimate for c in W 1,2(Ω) provided by Lemma 3.5 and the estimate for n in
L1+α(Ω) provided by Lemma 3.3, the latter entails boundedness of n and ∇c in L∞(Ω).

Lemma 3.6. Let α > 0 and γ ∈ (1
2 , 1). Then one can find ρ∗∗∗∗ > 1 independent of CS such that the

solution of (1.1) from Lemma 2.1 satisfies

‖n(·, t)‖L∞(Ω) ≤ ρ∗∗∗∗
[
Υ(CS) + Υ2(CS) + Υ1+3α(CS))

] 1
(1+α)(1−b) for all t ∈ (0, Tmax) (3.30)

and

‖c(·, t)‖W 1,∞(Ω) ≤ ρ∗∗∗∗
[
Υ(CS) + Υ2(CS) + Υ1+3α(CS))

] 1
(1+α)(1−b) for all t ∈ (0, Tmax), (3.31)



JMFM Global Classical Solutions and Stabilization Page 15 of 25 75

where

b :=
pq0 − q0 + p

pq0
∈ (0, 1) (3.32)

as well as

q0 = min{ 2(1+α)
(1−α)+

, 4} (3.33)

and

p = min{ 2
(1−α)+

, 3}. (3.34)

Here Υ(CS) is the same as (1.11).

Proof. In the following, we let κ∗∗,i(i ∈ N) denote some different constants, which are independent of CS ,
and if no special explanation, they depend at most on Ω, φ, α, n0 and u0.

Now since W 1,2(Ω) ↪→ Lp(Ω) for any p > 1, therefore, this combined with the boundedness of
‖c(·, t)‖W 1,2(Ω) (see (3.21)) provides κ∗∗,1 > 0 fulfilling

∫

Ω

|c(x, t)|pdx ≤ κ∗∗,1Υ2(CS) for all t ∈ (0, Tmax) (3.35)

by using the Poincaré inequality, where Υ(CS) is given by (1.11).
Now, applying the Lp estimate for the second equation of (1.1), we easily infer that there exist positive

constants κ∗∗,2 as well as κ∗∗,3 and κ∗∗,4 independent of CS such that

‖Δc(·, t)‖1+α
L1+α(Ω) ≤ κ∗∗,2‖n(·, t) − c(·, t) − u(·, t) · ∇c(·, t)‖1+α

L1+α(Ω)

≤ κ∗∗,3(‖n(·, t)‖1+α
L1+α(Ω) + ‖c(·, t)‖1+α

L1+α(Ω) + ‖u(·, t)‖L∞(Ω)‖∇c(·, t)‖1+α
L1+α(Ω))

≤ κ∗∗,4[Υ(CS) + Υ2(CS) + Υ(CS)‖∇c(·, t)‖1+α
L1+α(Ω)]

(3.36)

for all t ∈ (0, Tmax). To estimate the third term on the right hand of (3.36), we notice that by Lemma 3.1
and the Gagliardo–Nirenberg inequality, there exist positive constants κ∗∗,5 and κ∗∗,6 such that

‖∇c(·, t)‖1+α
L1+α(Ω) ≤ κ∗∗,5(‖Δc(·, t)‖

3
2 (1+α)−1

2− 1
1+α

L1+α(Ω) ‖c(·, t)‖
1+α−

3
2 (1+α)−1

2− 1
1+α

L1(Ω) + ‖c(·, t)‖1+α
L1(Ω))

≤ κ∗∗,6(‖Δc(·, t)‖
3
2 (1+α)−1

2− 1
1+α

L1+α(Ω) + 1) for all t ∈ (0, Tmax).

(3.37)

For any α > 0, we deduce from an elementary computation that
3
2 (1 + α) − 1

2 − 1
1+α

< 1 + α,

which enables us to make use of the Young inequality to gain

κ∗∗,4Υ(CS)‖∇c(·, t)‖1+α
L1+α(Ω) ≤ 1

2
‖Δc(·, t)‖1+α

L1+α(Ω) + κ∗∗,7Υ1+3α(CS) for all t ∈ (0, Tmax)

with some κ∗∗,7 > 0 independent of CS . Inserting the above inequality into (3.36), we moreover find that
there exists κ∗∗,8 > 0 such that

‖Δc(·, t)‖L1+α(Ω) ≤ κ∗∗,8(Υ(CS) + Υ2(CS) + Υ1+3α(CS))
1

1+α for all t ∈ (0, Tmax). (3.38)

Now, applying the Sobolev embedding theorems, we derive

W 2,1+α(Ω) ↪→ W
1, 2(1+α)

(1−α)+ (Ω),
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so that, by virtue of 2(1+α)
(1−α)+

≥ q0 (see (3.33)), we further deduce from (3.35) and (3.38) that there is
κ∗∗,9 > 0 independent of CS such that

‖c(·, t)‖W 1,q0 (Ω) ≤ κ∗∗,9{Υ(CS) + Υ2(CS) + Υ1+3α(CS)} 1
1+α for all t ∈ (0, Tmax). (3.39)

Given T∈(0, Tmax), in order to prepare an estimation of the finite number M(T ):= supt∈(0,T ) ‖n(·, t)‖L∞(Ω)

we write h̃ := S(n)∇c+u and then obtain from (3.39) as well as (1.3) and (3.35) that there exists κ∗∗,10 > 0
fulfilling

‖h̃(·, t)‖Lq0 (Ω) ≤ κ∗∗,10{Υ(CS) + Υ2(CS) + Υ1+3α(CS)} 1
1+α for all t ∈ (0, Tmax). (3.40)

Since nt = Δn−∇· (nh̃) in Ω× (0, Tmax) due to the fact that ∇·u = 0, so that, by virtue of an associate
variation-of-constants formula we can represent n(·, t) for each t ∈ (0, T ) according to

n(·, t) = e(t−t0)Δn(·, t0) −
∫ t

t0

e(t−s)Δ∇ · (n(·, s)h̃(·, s))ds, t ∈ (t0, T ) (3.41)

with t0 := (t − 1)+. In the case of t ∈ (0, 1], the maximum principle warrants that

‖e(t−t0)Δn(·, t0)‖L∞(Ω) ≤ ‖n0‖L∞(Ω), (3.42)

whereas for t > 1 it can be derived from Lemma 3.1 and the standard Lp-Lq estimates for Neumann heat
semigroup that

‖e(t−t0)Δn(·, t0)‖L∞(Ω) ≤ κ∗∗,11(t − t0)− 2
2 ‖n(·, t0)‖L1(Ω) ≤ κ∗∗,12 for all t ∈ (t0, T ) (3.43)

with some positive constants κ∗∗,11 and κ∗∗,12 indeppendent of CS . The last term on the right-hand
side of (3.41) is estimated as follows. Let p and b be the same as (3.34) and (3.32), respectively. Then
p = 2+q0

2 ∈ (2, q0) by using α > 0. And then once more invoking the known smoothing properties of the
Stokes semigroup and the Hölder inequality to find κ∗∗,13 > 0 and κ∗∗,14 > 0 independent of CS such
that

∫ t

t0

‖e(t−s)Δ∇ · (n(·, s)h̃(·, s)‖L∞(Ω)ds

≤ κ∗∗,13

∫ t

t0

(t − s)− 1
2− 2

2p ‖n(·, s)h̃(·, s)‖Lp(Ω)ds

≤ κ∗∗,13

∫ t

t0

(t − s)− 1
2− 2

2p ‖n(·, s)‖
L

pq0
q0−p (Ω)

‖h̃(·, s)‖Lq0 (Ω)ds

≤ κ∗∗,14

∫ t

t0

(t − s)− 1
2− 2

2p ‖n(·, s)‖b
L∞(Ω)‖n(·, s)‖|1−b

L1(Ω)‖h̃(·, s)‖Lq0 (Ω)ds

≤ κ∗∗,14M
b(T ){Υ(CS) + Υ2(CS) + Υ1+3α(CS)} 1

1+α for all t ∈ (0, T )

(3.44)

by using (3.1) and (4.28), where b is given by (3.32). Since p > 2, we conclude that − 1
2 − 2

2p > −1.
Collecting (3.41)–(3.44) and using the definition of M(T ), one has a κ∗∗,15 > 1

2 > 0 independet of CS

such that

M(T ) ≤ κ∗∗,15 + κ∗∗,15M
b(T ){Υ(CS) + Υ2(CS) + Υ1+3α(CS)} 1

1+α for all T ∈ (0, Tmax), (3.45)

which in light of b < 1 particularly entails that

‖n(·, t)‖L∞(Ω) ≤ max{1,
[
2κ∗∗,15(Υ(CS) + Υ2(CS) + Υ1+3α(CS))

] 1
(1+α)(1−b) }

≤ [
2κ∗∗,15(Υ(CS) + Υ2(CS) + Υ3(CS) + Υ1+3α(CS))

] 1
(1+α)(1−b) for all t ∈ (0, Tmax)

(3.46)

by using κ∗∗,15 > 1
2 and T ∈ (0, Tmax) was arbitrary.
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In the following, we will derive the boundedness of ‖c(·, t)‖W 1,∞(Ω) for all t ∈ (0, Tmax). In fact, in
light of (3.25) and (3.46), we may apply the elliptic regularity theory to the second equation in (1.1) to
obtain a positive constant κ∗∗,16 > 0 indepentdent of CS such that

sup
t∈(0,Tmax)

‖c(·, t)‖W 2,p(Ω)

≤ κ∗∗,16

[
2κ∗∗,15(Υ(CS) + Υ2(CS) + Υ3(CS) + Υ1+3α(CS))

] 1
(1+α)(1−b)

(3.47)

for all p ∈ (1,+∞). Thus, choosing p > 2, we infer from the Sobolev embedding theorem that there is
κ∗∗,17 > 0 indepentdent of CS fulfilling

sup
t∈(0,Tmax)

‖c(·, t)‖W 1,∞(Ω)

≤ κ∗∗,17

[
2κ∗∗,15(Υ(CS) + Υ2(CS) + Υ3(CS) + Υ1+3α(CS))

] 1
(1+α)(1−b)

(3.48)

and thereby completes the proof.
�

By virtue of (2.2) and Lemma 3.5, the local-in-time solution can be extended to the global-intime
solution.

Proposition 3.1. Let

�(CS) = max{Υ(CS),
[
Υ(CS) + Υ2(CS) + Υ1+3α(CS))

] 1
(1+α)(1−b) }, (3.49)

where q0, b are the same as Lemma 3.6 and Υ(CS) is given by (1.11). Then the solution of (1.1) is global
on [0,∞). Moreover, one can find

λ∗ > 0 independent of CS such that the solution of (1.1) satisfies

‖n(·, t)‖L∞(Ω) ≤ λ∗�(CS) for all t ∈ (0,∞) (3.50)

as well as

‖c(·, t)‖W 1,∞(Ω) ≤ λ∗�(CS) for all t ∈ (0,∞) (3.51)

and

‖u(·, t)‖L∞(Ω) ≤ λ∗�(CS) for all t ∈ (0,∞). (3.52)

Moreover, for all γ ∈ (1
2 , 1), we also have

‖Aγu(·, t)‖L2(Ω) ≤ λ∗�(CS) for all t ∈ (0,∞). (3.53)

Proof. Firstly, relying on Lemmas 3.5–3.6, we my find λ1,∗ > 0 independent of CS with the property that
for all t ∈ (0, Tmax),

‖u(·, t)‖L∞(Ω) + ‖Aγu(·, t)‖L2(Ω) + ‖n(·, t)‖L∞(Ω) + ‖c(·, t)‖W 1,∞(Ω) ≤ λ1,∗�(CS) (3.54)

with �(CS) is the same as (3.49). In view of the extensibility criterion (2.2), we thus infer that Tmax = ∞,
i.e., the solution (n, c, u, P ) is global in time. Moreover, again based on Lemmas 3.5–3.6, we can deduce
that (3.50)–(3.53) hold. This completes the proof of Proposition 3.1. �

The combination of the previous results now immediately establishes Theorem 1.1.

Theorem 1.1. We can merge the results of Proposition 3.1 to immediately arrive at the conclusion. �
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4. Large Time Behavior. Proof of Theorem 1.2

Having dealt with issues of boundedness so far, in this section, we next turn our attention to the claimed
asymptotic behavior of solutions in (1.1). To this end, we will show that in the large time limit, the
classical global solution of (1.1) converges to (n̄0, n̄0, 0) exponentially if CS is smaller.

Lemma 4.1. Let λ∗ and �(CS) be the same as Proposition 3.1 as well as CN be the best Poincaré constant
and CS be given by (1.3). Suppose that

CSλ∗�(CS) < 2
√

CN . (4.1)

Then there exists B > 0 such that
B

2
d

dt
‖n(·, t) − n̄0‖2

L2(Ω) +
(

BCN

2
− 1

4

) ∫

Ω

|n − n̄|2

+

⎛

⎝1 − BC2
Sρ2

∗∗∗∗
[
Υ(CS) + Υ2(CS) + Υ1+3α(CS)

] 2
(1+α)(1−b)

2

⎞

⎠

∫

Ω

|∇c|2

≤ 0 for all t > 0,

(4.2)

where

n̄0 =
1

|Ω|
∫

Ω

n0. (4.3)

Proof. Testing the first equation in (1.1) by n(·, t) − n̄0 and using the fact that ∇ · u = 0, we make use
of the Young inequality to have

1
2

d

dt
‖n(·, t) − n̄0‖2

L2(Ω) =
∫

Ω

(n − n̄0)[Δn − u · ∇n − ∇ · (nF (n)S(x, n, c)∇c)]

≤ −
∫

Ω

|∇n|2 +
∫

Ω

|n||S(x, n, c)||∇n||∇c|

≤ −1
2

∫

Ω

|∇n|2 +
C2

S

2

∫

Ω

n2

(1 + n)2α
|∇c|2

≤ −1
2

∫

Ω

|∇n|2 +
C2

S supt>0 ‖n(·, t)‖2
L∞(Ω)

2

∫

Ω

|∇c|2

≤ −1
2

∫

Ω

|∇n|2 +
C2

Sλ2
∗�

2(CS)
2

∫

Ω

|∇c|2 for all t > 0

(4.4)

by using (3.30) as well as (1.3) and α ≥ 0, where

n̄0 =
1

|Ω|
∫

Ω

n0 (4.5)

and CS is given by (1.3). Here λ∗ and �(CS) are the same as Proposition 3.1. We note from the Poincaré
inequality that there is CN > 0 such tha

‖ϕ − 1
|Ω|

∫

Ω

ϕ‖2
L2(Ω) ≤ CN

∫

Ω

|∇ϕ|2 for all ϕ ∈ W 1,2(Ω). (4.6)

This combined with (4.4) yields to for all t > 0,

1
2

d

dt
‖n(·, t) − n̄0‖2

L2(Ω) ≤ −CN

2

∫

Ω

|n − n̄0|2 +
C2

Sλ2
∗�

2(CS)
2

∫

Ω

|∇c|2, (4.7)

which in light of (3.1) entails that

1
2

d

dt
‖n(·, t) − n̄0‖2

L2(Ω) ≤ −CN

2

∫

Ω

|n − n̄0|2 +
C2

Sλ2
∗�

2(CS)
2

∫

Ω

|∇c|2 (4.8)
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for all t > 0. Next, by means of the testing procedure, an application of the Young inequality warrants
that

0 =
∫

Ω

(c − n̄0)[Δc − u · ∇c − (c − n̄0) + (n − n̄0)]

=
∫

Ω

(c − n̄0)(Δc − u · ∇c) −
∫

Ω

(c − n̄0)2 +
∫

Ω

(c − n̄0)(n − n̄0)

≤ −
∫

Ω

|∇c|2 +
1
4

∫

Ω

(n − n̄0)2 for all t > 0,

(4.9)

where we have used the fact that ∇ · u = 0 and u|∂Ω = 0.
In view of (4.1), we can choose B > 0 such that

1 − B
C2

Sλ2
∗�

2(CS)
2

> 0 (4.10)

and
B

2
CN − 1

4
> 0. (4.11)

Collecting (4.8)–(4.11), we thus infer that

B

2
d

dt
‖n(·, t) − n̄0‖2

L2(Ω) +
(

BCN

2
− 1

4

) ∫

Ω

|n − n̄0|2+
(

1 − BC2
Sλ2

∗�
2(CS)

2

) ∫

Ω

|∇c|2

≤ 0 for all t > 0,

(4.12)

which completes the proof. �

With the previous result at hand, we can derive the following stabilization property of n, which will
be used in Lemma 4.2 below.

Corollary 4.1. Under the assumptions of Lemma 4.1, then for any t > 0, there exists ρ1,∗ > 0 such that

‖n(·, t) − n̄0‖2
L2(Ω) ≤e−ρ1,∗t[‖n0(·, t) − n̄0‖2

L2(Ω), (4.13)

and there exists C1,∗ > 0 such that
∫ ∞

0

∫

Ω

|∇c|2 +
∫ ∞

0

∫

Ω

|n − n̄0|2 +
∫ ∞

0

∫

Ω

|∇n|2 ≤ C1,∗, (4.14)

where n̄0 is given by (4.3).

Proof. Let y(t) =
B

2
‖n(·, t) − n̄0‖2

L2(Ω). Consequently, (4.2) can be turned into the inequality

y′(t) + (CN − 1
2B

)y(t) ≤ 0,

and thereby integrate in time to obtain (4.13) by applying the definition of y(t) and (4.1), whereafter
(4.14) follows by integrating (4.2) in time and using (4.4). �

Thanks to the decay property of ‖n(·, t) − n̄0‖2
L2(Ω) provided by Corollary 4.1, we can now obtain

convergence with respect to the norm in L2(Ω) also of the crucial quantity c.

Lemma 4.2. Under the assumptions of Lemma 4.1, then for any t > 0, there exists ρ2,∗ > 0 such that

‖c(·, t) − n̄0‖2
L2(Ω) ≤e−ρ2,∗t‖n0(·, t) − n̄0‖2

L2(Ω), (4.15)

where n̄0 is given by (4.3).
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Proof. First, in view of the testing procedure, and using the fact that ∇ · u = 0 and u|∂Ω = 0 we may
derive from the Young inequality that

0 =
∫

Ω

(c − n̄0)[Δc − u · ∇c − (c − n̄0) + (n − n̄0)]

=
∫

Ω

(c − n̄0)(Δc − u · ∇c) −
∫

Ω

(c − n̄0)2 +
∫

Ω

(c − n̄0)(n − n̄0)

≤ −
∫

Ω

|∇c|2 − 1
2

∫

Ω

(c − n̄0)2 +
∫

Ω

(n − n̄0)2 for all t > 0.

(4.16)

This together with (4.13) warrants
∫

Ω

|∇c|2 +
1
2

∫

Ω

(c − n̄0)2 ≤
∫

Ω

(n − n̄0)2

≤ e−ρ1,∗t‖n0(·, t) − n̄0‖2
L2(Ω) for all t > 0,

(4.17)

where ρ1,∗ and n̄0 are given by (4.13) and (4.3), respectively. Hence, (4.15) holds. �

In the following, we are now prepared to prove the claimed asymptotic behavior of u. To begin with,
some uniform decay properties for the solution of (1.1) are given in the following lemma.

Lemma 4.3. Under the assumptions of Lemma 4.1, there are positive constants C∗,3 and ρ∗,3 such that
for any t > 0,

‖u(·, t)‖L2(Ω) ≤ C∗,3e
−ρ∗,3t. (4.18)

Proof. From straightforward calculations, while relying on (1.12), we derive the third equation in (1.1)
that

1
2

d

dt
‖u(·, t)‖2

L2(Ω) = −
∫

Ω

|∇u|2 +
∫

Ω

n∇φ · u −
∫

Ω

∇P · u

= −
∫

Ω

|∇u|2 +
∫

Ω

(n − n̄0)∇φ · u

≤ −
∫

Ω

|∇u|2 + ‖∇φ‖L∞(Ω)

(∫

Ω

|n − n̄0|2
) 1

2
(∫

Ω

|u|2
) 1

2

for all t > 0,

(4.19)

where we have used the fact that ∇ · u = 0 and u|∂Ω = 0. Recalling the Poincaré inequality, one can find
a constant ηN > 0 fulfilling

ηN

∫

Ω

|u|2 ≤
∫

Ω

|∇u|2,

therefore, collecting Corollary 4.1 and (4.19), we can find κ1,∗∗∗ > 0 and �1,∗∗∗ > 0 such that
∫

Ω

|u(x, t)|2dx ≤ κ1,∗∗∗e−�1,∗∗∗t for all t > 0, (4.20)

which directly yields our conclusion. �

Again due to the regularity properties asserted by Proposition 3.1, we can thereby improve our knowl-
edge on spatial regularity of c as follows.

Lemma 4.4. Let α > 0. Then for any p > 2, there exists a positive constant C∗,4 > 0 such that

‖c(·, t)‖W 2,p(Ω) ≤ C∗,4 for all t > 0. (4.21)
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Proof. Applying the Lp estimate for the second equation of (1.1), we derive from Proposition 3.1 that
there exist positive constants κ∗∗∗,1 as well as κ∗∗∗,2 and κ∗∗∗,3 independent of CS such that

‖Δc(·, t)‖p
Lp(Ω) ≤κ∗∗∗,1‖n(·, t) − c(·, t) − u(·, t) · ∇c(·, t)‖p

Lp(Ω)

≤ κ∗∗∗,2(‖n(·, t)‖p
Lp(Ω) + ‖c(·, t)‖p

Lp(Ω) + ‖u(·, t)‖L∞(Ω)‖∇c(·, t)‖p
Lp(Ω))

≤ κ∗∗∗,3�(CS) for all t > 0,

(4.22)

which together with (3.51) as well as the Gagliardo–Nirenberg inequality implies (4.21) holds. Here �(CS)
is the same as Proposition 3.1. �

Lemma 4.5. Assume that the conditions in Theorem 1.1 are satisfied. Let (n, c, u) be a global classical
solution of (1.1). Then there exists a positive constant C∗,5 such that

‖n(·, t)‖W 1,∞(Ω) + ‖u(·, t)‖W 1,∞(Ω) ≤ C∗,5. (4.23)

Proof. Firstly, based on the regularity of n as well as c and u, one can readily get a constant κ∗∗∗∗,1 > 0
such that

‖c(·, t)‖W 2,p(Ω) + ‖n(·, t)‖L∞(Ω) + ‖u(·, t)‖L∞(Ω) + ‖c(·, t)‖W 1,∞(Ω) ≤ κ∗∗∗∗,1 for all t > 0. (4.24)

Next, we use Lemma 3.4 to obtain

‖Du(·, t)‖Lr(Ω) ≤ κ∗∗∗∗,2 for all t > 0 and 1 ≤ r ≤ ∞ and some κ∗∗∗∗,2 > 0, (4.25)

which together with Lemma 3.2 and the interpolation inequality yields the existence of κ∗∗∗∗,3 > 0
satisfying

‖u(·, t)‖W 1,∞(Ω) ≤ κ∗∗∗∗,3 for all t > 0. (4.26)

Next, we can rewrite the first equation of (1.1) as

nt − Δn + n = a(n, c, u), (4.27)

where
a(x, t) =a(n(x, t), c(x, t), u(x, t))

= − u · ∇n − ∇ · (nS(n)∇c) + n

= − u · ∇n − nS′(n)∇n · ∇c − S(n)∇n · ∇c − nS(n)Δc + n.

To prove the boundedness of ‖∇n(·, t)‖L∞(Ω) on t > 0, by Duhamels principle, we see that the solution
of (4.27) can be expressed as follows

n(x, t) = e−t(Δ−1)n0(x) +
∫ t

0

e−t(Δ−1)a(x, τ)dτ for all t > 0.

By (4.24) as well as (1.2) and (1.3), then for any p > 1, there exists κ∗∗∗∗,4 > 0 such that

‖a(·, t)‖Lp(Ω) ≤‖ − u · ∇n − nS′(n)∇n · ∇c − S(n)∇n · ∇c − nS(n)Δc + n‖Lp(Ω)

≤κ∗∗∗∗,4(‖∇n(·, t)‖Lp(Ω) + 1) for all t > 0.
(4.28)

On the other hand, multiplying (4.27) by −Δn, and integrating it over Ω, we derive from the Young
inequlity that there is κ∗∗∗∗,5 > 0 such that

1
2

d

dt

∫

Ω

|∇n|2 +
∫

Ω

|Δn|2 +
∫

Ω

|∇n|2 = −
∫

Ω

a(n, c, u)Δn

≤ 1
2

∫

Ω

|Δn|2 +
∫

Ω

|a(n, c, u)|2

≤ 1
2

∫

Ω

|Δn|2 + κ∗∗∗∗,5(‖∇n(·, t)‖2
L2(Ω) + 1) for all t > 0

(4.29)
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by using (4.28). Recalling (3.1), so that, the Gagliardo–Nirenberg inequality tells that there exist constants
κ∗∗∗∗,6 and κ∗∗∗∗,7 satisfying

‖∇n(·, t)‖2
L2(Ω) ≤κ∗∗∗∗,6(‖Δn(·, t)‖ 4

3
L2(Ω)‖n(·, t)‖ 2

3
L1(Ω) + ‖n(·, t)‖2

L1(Ω))

≤κ∗∗∗∗,7(‖Δn(·, t)‖ 4
3
L2(Ω) + 1) for all t > 0.

Inserting the above inequality into (4.29) and using the Young inequality, there exists a positive constant
κ∗∗∗∗,8 such that

1
2

d

dt

∫

Ω

|∇n|2 +
1
4

∫

Ω

|Δn|2 +
∫

Ω

|∇n|2 ≤κ∗∗∗∗,8 for all t > 0.

Thereupon, by means of an ODE comparison argument, we derive

‖∇n(·, t)‖L2(Ω) ≤κ∗∗∗∗,9 for all t > 0 (4.30)

with some κ∗∗∗∗,9 > 0. Now, in view of (4.28), by the Lp–Lq estimate for the Neumann heat semigroup,
there exist positive constants λ1, κ∗∗∗∗,10 as well as κ∗∗∗∗,11 and κ∗∗∗∗,12 fulfilling

‖n(·, t)‖W 1,4(Ω) ≤ κ∗∗∗∗,10‖∇e−t(Δ−1)n0(x) + ∇
∫ t

0

e−t(Δ−1)a(x, τ)dτ‖L4(Ω)

≤ κ∗∗∗∗,11‖n0‖L4(Ω) + κ∗∗∗∗,11

∫ t

0

(t − s)− 1
2− 2

2 ( 1
2− 1

4 )e−λ1(t−s)‖a(·, s)‖L2(Ω)ds

≤ κ∗∗∗∗,12 + κ∗∗∗∗,12

∫ t

0

(t − s)− 3
4 e−λ1(t−s)(‖∇n(·, s)‖L2(Ω) + 1)ds

≤ κ∗∗∗∗,12 for all t > 0

(4.31)

by using (4.30). Hence, using the Lp–Lq estimates associated with the heat semigroup as well as (4.28)
and (1.13), we derive that for some positive constants λ2, κ∗∗∗∗,13, κ∗∗∗∗,14 as well as κ∗∗∗∗,15 and κ∗∗∗∗,16,

‖n(·, t)‖W 1,∞(Ω) ≤ κ∗∗∗∗,13‖∇e−t(Δ−1)n0(x) + ∇
∫ t

0

e−t(Δ−1)a(x, τ)dτ‖L∞(Ω)

≤ κ∗∗∗∗,14e
−λ2t‖n0‖L∞(Ω)+κ∗∗∗∗,14

∫ t

0

(t − s)− 1
2− 2

2 ( 1
4− 1

∞ )e−λ2(t−s)‖a(·, s)‖L4(Ω)ds

≤ κ∗∗∗∗,15 + κ∗∗∗∗,15

∫ t

0

(t − s)− 3
4 e−λ(t−s)(‖∇n(·, s)‖L4(Ω) + 1)ds

≤ κ∗∗∗∗,16 for all t > 0

(4.32)

and thereby proves (4.23) by using (4.24) and (4.26). �

With the above preparation (see Corollary 4.1 and Lemmas 4.2–4.5), we can make use of the Gagliardo–
Nirenberg inequality as well as Corollary 4.1 and Lemmas 4.2–4.3 to achieve that the solution (n, c, u)
exponentially converges to the constant equilibria (n̄0, n̄0, 0) in the norm of L∞(Ω) as t → ∞, where
n̄0 = 1

|Ω|
∫

Ω
n0.

Lemma 4.6. Assume the hypothesis of Theorem 1.1 holds. Moreover, there exists χ0 > 0 with the property
that if

CS

CN
< χ0,

one can find γ > 0 and C > 0 such that the global classical solution (n, c, u) of (1.1) satisfies

‖n(·, t) − n̄0‖L∞(Ω) ≤ Ce−γt, for all t > 0 (4.33)
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as well as

‖c(·, t) − n̄0‖L∞(Ω) ≤ Ce−γt, for all t > 0 (4.34)

and

‖u(·, t)‖L∞(Ω) ≤ Ce−γt, for all t > 0, (4.35)

where n̄0 = 1
|Ω|

∫

Ω
n0 and CN is the best Poincaré constant.

Proof. Firstly, applying Corollary 4.1 and Lemmas 4.2–4.3, there exist positive constants C1 and γ1 such
that

‖n(·, t) − n̄0‖L2(Ω) ≤ C1e
−γ1t, for all t > 0 (4.36)

as well as

‖c(·, t) − n̄0‖L2(Ω) ≤ C1e
−γ1t, for all t > 0 (4.37)

and

‖u(·, t)‖L2(Ω) ≤ C1e
−γ1t, for all t > 0. (4.38)

Furthermore, we also derive from Proposition 3.1 as well as Lemma 4.5 and (1.13) that there is C2 > 0
fulfilling

‖n(·, t) − n̄0‖W 1,∞(Ω) + ‖c(·, t) − n̄0‖W 1,∞(Ω) + ‖u(·, t)‖W 1,∞(Ω) ≤ C2 for all t > 0, (4.39)

where by the Gagliardo–Nirenberg inequality and (4.36) with some C3 > 0 as well as C4 > 0 and C5 > 0
we have

‖n(·, t) − n̄0‖L∞(Ω) ≤C3(‖n(·, t) − n̄0‖
1
2
W 1,∞(Ω)‖n(·, t) − n̄0‖

1
2
L2(Ω) + ‖n(·, t) − n̄0‖L2(Ω))

≤C4‖n(·, t) − n̄0‖
1
2
L2(Ω)

≤C5e
−γt for all t > 0

(4.40)

with γ = γ1
2 . Similarly, using (4.36) together with the Gagliardo–Nirenberg inequality we can find positive

constants C6 and C7 fulfilling

‖c(·, t) − n̄0‖L∞(Ω) ≤C6e
−γt for all t > 0 (4.41)

and

‖u(·, t)‖L∞(Ω) ≤C7e
−γt for all t > 0. (4.42)

Finally, setting

C = max{C5, C6, C7},

we see that (4.33)–(4.35) follows by applying (4.40)–(4.42). �
The previous lemma at hand, we can conclude Theorem 1.2 in a straightforward manner.

Proof of Theorem 1.2. The statement is evidently implied by Lemma 4.6. �
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