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Abstract. The equations governing the flow of a viscous incompressible fluid around a rigid body that performs a prescribed
time-periodic motion with constant axes of translation and rotation are investigated. Under the assumption that the period
and the angular velocity of the prescribed rigid-body motion are compatible, and that the mean translational velocity is
non-zero, existence of a time-periodic solution is established. The proof is based on an appropriate linearization, which is
examined within a setting of absolutely convergent Fourier series. Since the corresponding resolvent problem is ill-posed in
classical Sobolev spaces, a linear theory is developed in a framework of homogeneous Sobolev spaces.
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1. Introduction

We investigate the fluid flow past a rigid body B that moves through an infinite three-dimensional liquid
reservoir with prescribed velocity

V (t, x) = ξ(t) + η ∧ (x − xC(t))

with respect to its center of mass xC. Here t ∈ R and x ∈ R
3 denote time and spatial variable, respectively,

ξ := d
dtxC is the translation velocity and η the angular velocity of B with respect to its center of mass.

We only consider the case where the angular velocity η is constant, but the translation velocity ξ may
depend on time. In a frame attached to the body, with origin at its center of mass xC, the motion of
an incompressible Navier–Stokes fluid around B that adheres to B at the boundary is described by the
equations

⎧
⎪⎪⎨

⎪⎪⎩

ρ
(
∂tu + η ∧ u − η ∧ x · ∇u − ξ · ∇u + u · ∇u

)
= f + μΔu − ∇p in R × Ω,

div u = 0 in R × Ω,
u = ξ + η ∧ x on R × ∂Ω,

lim|x|→∞ u(t, x) = 0 for t ∈ R;

(1.1)

see [12, Section 1]. Here Ω := R
3 \ B is the exterior domain surrounding B, and R represents the time

axis. The functions u : R × Ω → R
3 and p : R × Ω → R describe velocity and pressure fields of the fluid.

The constants ρ > 0 and μ > 0 denote density and viscosity, respectively. For the sake of generality, we
additionally consider an external body force f : R × Ω → R

3.
In this paper, we investigate a configuration where the rigid body B translates periodically with some

prescribed time period T > 0. More precisely, we assume the data

ξ(t + T ) = ξ(t), f(t + T , x) = f(t, x)

to be T -time-periodic As the main theorem we show existence of a solution (u, p) to (1.1) that shares
this time periodicity.
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We consider a prescribed motion of B where the axes of translation and rotation do not vary over
time and are parallel. Without loss of generality, both are directed along the x1-axis such that

ξ(t) = α(t) e1, η = ω e1

for some T -periodic function α : R → R and a constant ω ∈ R. Note that, at least in the case where ξ is
time-independent, this assumption can be made without loss of generality as long as ξ · η �= 0 due to the
Mozzi–Chasles theorem.

We assume that the mean translational velocity of the body over one time period is non-zero:

λ :=
1
T

∫ T

0

α(t) dt �= 0. (1.2)

The case of vanishing mean translational velocity shall not be treated here. Not only does the fluid flow
exhibit different physical properties when (1.2) is not satisfied, due to the absence of a wake region in
this case, but also the mathematical properties of the linearization of (1.1) differ significantly. If (1.2)
is satisfied, the linearization of (1.1) is a time-periodic generalized Oseen system, for which we shall
establish suitable Lq estimates in order to show existence of a solution to (1.1). If (1.2) is not satisfied,
the linearization of (1.1) is a time-periodic generalized Stokes system, for which similar estimates cannot
be derived. In this case, problem (1.1) thus has to be approached in a different way, which has recently
been done by Galdi [15].

Since the case η = 0 was treated in [18], we only consider the case η �= 0 in the following. Observe
that then η ∧ x · ∇ is a differential operator with unbounded coefficient. Therefore, the linearization of
(1.1) cannot be treated as a lower-order perturbation of the time-periodic Oseen problem, even if η is
“small”. In particular, as we will see below, the corresponding resolvent problem also requires an analysis
in a different functional setting. This observation reflects the properties of the corresponding stationary
problem (see [13, Chapter VIII]), which can be regarded as a special case of the time-periodic problem.
In order to find a framework in which the time-periodic generalized Oseen problem is well posed, we
employ the idea from [16,17], where the steady-state problem corresponding to (1.1) was considered, and
the rotation term η ∧ u − η ∧ x · ∇u was handled by a change of coordinates into a non-rotating frame.
This procedure only yields suitable estimates for time-periodic solutions when the change of coordinates
maintains the time periodicity of the involved functions. This is the case if the angular velocity ω is an
integer multiple of the angular frequency 2π/T of the time-periodic data. For simplicity, we assume

ω = 2π/T . (1.3)

This condition means that during one period the rigid body completes one full revolution. In other words,
the rotation and the time-periodic data, which may be regarded as two different sources of time-periodic
forcing, have to be compatible.

The equations governing the fluid flow around a rigid body that performs a prescribed rigid mo-
tion have been studied by many researchers during the last decades. The first successful attempts of
a rigorous mathematical treatment date back to the fundamental works of Oseen [44], Leray [36,37]
and Ladyžhenskaya [34,35]. The study of time-periodic Navier–Stokes flows was proposed in a short
note by Serrin [47], which induced Prodi [45], Yudovich [56] and Prouse [46] to initiate the examination
in bounded domains. Through the years, this investigation has been continued and extended to other
types of domains and fluid-flow configurations by several authors; see for example [5,10,11,14,18,21–
23,28–31,33,38–43,49,51–55]. We refer to [19] for a more detailed overview. Concerning in particular
time-periodic Navier–Stokes flows around rigid bodies, more specifically the three-dimensional exterior-
domain configuration, we emphasize the fundamental work of Yamazaki [55], who introduced a setting of
L3,∞(Ω) spaces to obtain time-periodic solutions in the case ξ = η = 0. The main estimates in [55] are
based on well-known Lp-Lq estimates of the Stokes semigroup. If one replaces these estimates with the
Lp-Lq estimates obtained by Shibata [48] for an Oseen semigroup with rotational effects, the approach in
[55] also seems to yield existence of time-periodic solutions to (1.1) in an L3,∞(Ω) framework in the case
of constant non-zero parameters ξ �= 0, η �= 0. This analysis was recently carried out by Geissert, Hieber
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and Nguyen [23], who introduced a general semigroup-based approach to show existence of mild solu-
tions to time-periodic problems. Using a recent result by Hishida [27], who established Lp-Lq estimates
for an evolution operator corresponding to a linearization of the Navier–Stokes equations in the case of
time-dependent ξ(t) and η(t), the approach of Yamazaki [55] even leads to time-periodic solutions in an
L3,∞(Ω) framework for general time-periodic ξ(t) and η(t). In this general case, Galdi and Silvestre [21]
already established the existence of time-periodic solutions in an L2(Ω) setting via a Galerkin approach.

As the main novelty of the present paper, we establish existence of strong solutions to (1.1) in an
Lq(Ω) setting for a certain range of exponents q ∈ (1,∞). In this setting, better information on the
spatial decay of the solutions can be derived compared to the L3,∞(Ω) and L2(Ω) frameworks described
above. Our approach is based on an analysis of the linearization of (1.1) and the associated resolvent
problem

⎧
⎨

⎩

isv + ω(e1 ∧v − e1 ∧x · ∇v) − Δv − λ∂1v + ∇p = F in Ω,
div v = 0 in Ω,

v = 0 on ∂Ω
(1.4)

for suitable s ∈ R and F ∈ Lq(Ω)3, 1 < q < ∞. At first glance, it seems reasonable to regard (1.4) as a
resolvent problem (is−A)v = F for a closed operator A on the space of solenoidal vector fields in Lq(Ω)3.
However, the spectral analysis in this setting, which was carried out by Farwig and Neustupa [7,8], reveals
that is, s ∈ R, belongs to the spectrum of A when s ∈ ωZ, whereas well-posedness of the time-periodic
problem requires invertibility of (1.4) for s ∈ ωZ. Therefore, we propose to investigate the problem in
homogeneous Sobolev spaces instead. Although it is merely possible to derive the non-classical resolvent
estimate (2.4) in this setting (see Theorem 2.1 below), we are nevertheless able to conclude a suitable
solution theory for the linearization of (1.1). To this end, we shall employ a framework of functions with
absolutely convergent Fourier series. Finally, a fixed-point argument yields the existence of a solution to
the nonlinear problem (1.1) when the data f , ξ and η are “sufficiently small”.

2. Main Results

In virtue of (1.2) we may assume λ > 0 without loss of generality, and by (1.3) we have ω = 2π/T > 0.
To reformulate (1.1) in a non-dimensional way, we let the diameter d > 0 of B serve as a characteristic
length scale. We introduce the Reynolds number λ′ := λρd/μ, the Taylor number ω′ := ωρd2/μ, and
the non-dimensional time and spatial variables t′ = ωt and x′ = x/d. In particular, Ω is transformed to
Ω′ := {x/d | x ∈ Ω}. We define α′(t′) := α(t)ρd/μ and the non-dimensional functions

u′(t′, x′) :=
ρd

μ
u(t, x), p′(t′, x′) :=

ρd2

μ2
p(t, x), f ′(t′, x′) :=

ρd3

μ2
f(t, x),

which are time-periodic with period T ′ = 2π and can thus be identified with functions on the torus group
T = R/2πZ with respect to time. Expressing (1.1) in these new quantities and omitting the primes, we
obtain the non-dimensional formulation

⎧
⎪⎪⎨

⎪⎪⎩

ω(∂tu + e1 ∧u − e1 ∧x · ∇u) − α∂1u + u · ∇u = f + Δu − ∇p in T × Ω,
div u = 0 in T × Ω,

u = α e1 +ω e1 ∧x on T × ∂Ω,
lim|x|→∞ u(t, x) = 0 for t ∈ T.

(2.1)

Our analysis of (2.1) is based on the study of the linear time-periodic problem
⎧
⎨

⎩

ω(∂tu + e1 ∧u − e1 ∧x · ∇u) − Δu − λ∂1u + ∇p = f in T × Ω,
div u = 0 in T × Ω,

u = 0 on T × ∂Ω,
(2.2)
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and of the corresponding resolvent problem
⎧
⎨

⎩

ω(ikv + e1 ∧v − e1 ∧x · ∇v) − Δv − λ∂1v + ∇p = F in Ω,
div v = 0 in Ω,

v = 0 on ∂Ω
(2.3)

for k ∈ Z. For the latter we shall derive the following well-posedness result.

Theorem 2.1. Let Ω ⊂ R
3 be an exterior domain of class C3. Let q ∈ (1, 2), k ∈ Z and λ, ω, θ, B > 0

with λ2 ≤ θω ≤ B. For every F ∈ Lq(Ω)3 there exists a solution (v, p) ∈ W2,q
loc(Ω)3 × W1,q

loc(Ω) to (2.3)
subject to the estimate

ω‖ikv + e1 ∧v − e1 ∧x · ∇v‖q + ‖∇2v‖q + λ‖∂1v‖q

+ λ1/2‖v‖s1 + λ1/4‖∇v‖s2 + ‖∇p‖q ≤ C1‖F‖q

(2.4)

for a constant C1 = C1(Ω, q, λ, ω) > 0 and s1 = 2q/(2 − q), s2 = 4q/(4 − q). Additionally, if (w, q) is
another solution to (2.3) in the function class defined by the norms on the left-hand side of (2.4), then
v = w, and p− q is a constant. Moreover, if q ∈ (1, 3

2 ), then the constant C1 can be chosen independently
of λ and ω such that C1 = C1(Ω, q, θ, B).

Note that for k = 0 we recover the well-known Lq theory for the corresponding stationary problem;
see [13, Theorem VIII.8.1].

In order to transfer estimate (2.4) to the time-periodic setting without losing information on the
dependencies of the constant C1, we work within spaces A(T;X) of absolutely convergent X-valued
Fourier series for suitable Banach spaces X; see (3.1) below. We establish the following solution theory
for the time-periodic problem (2.2).

Theorem 2.2. Let Ω ⊂ R
3 be an exterior domain of class C3. Let q ∈ (1, 2) and λ, ω, θ, B > 0 with

λ2 ≤ θω ≤ B. For every f ∈ A(T; Lq(Ω))3 there exists a solution (u, p) to (2.2) subject to the estimate

ω‖∂tu + e1 ∧u − e1 ∧x · ∇u‖A(T;Lq(Ω)) + ‖∇2u‖A(T;Lq(Ω)) + λ‖∂1u‖A(T;Lq(Ω))

+λ1/2‖u‖A(T;Ls1 (Ω)) + λ1/4‖∇u‖A(T;Ls2 (Ω)) + ‖∇p‖A(T;Lq(Ω))

≤ C1‖f‖A(T;Lq(Ω)) (2.5)

for the constant C1 from Theorem 2.1, and s1 = 2q/(2 − q), s2 = 4q/(4 − q). Additionally, if (w, q) is
another solution to (2.2) in the function class defined by the norms on the left-hand side of (2.5), then
u = w and p = q + q0 for some (spatially constant) function q0 : T → R.

In Sect. 6, we finally prove the following existence result on solutions to the nonlinear system (2.1).

Theorem 2.3. Let Ω ⊂ R
3 be an exterior domain of class C3, and let q ∈

[
12
11 , 4

3

]
, ρ ∈

(
3q−3

q , 1
)
and θ > 0.

Then there are constants κ > 0 and λ0 > 0 such that for all

λ ∈ (0, λ0), ω ∈
(λ2

θ
,∞

)
(2.6)

there exists ε > 0 such that for all f ∈ A(T; Lq(Ω))3 and α ∈ A(T;R) with d
dtα ∈ A(T;R) and

λ =
1
2π

∫ 2π

0

α(t) dt, ω‖ d
dtα‖A(T;R) ≤ κλρ, ‖α − λ‖A(T;R) + ‖f‖A(T;Lq(Ω)) ≤ ε

there is a solution (u, p) to (2.1) with

u ∈ A(T; L2q/(2−q)(Ω))3, ∇u ∈ A(T; L4q/(4−q)(Ω))3×3,

∇2u ∈ A(T; Lq(Ω))3×3×3,

∂tu + e1 ∧u − e1 ∧x · ∇u, ∂1u, ∇p ∈ A(T; Lq(Ω))3.
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Remark 2.4. The lower bound λ2

θ ≤ ω on the angular velocity in (2.6) may seem strange in light of
the underlying physics of the problem since from a physical point of view, the limit ω → 0 towards
the case of a non-rotating body seems uncritical. The lower bound on ω in (2.6) is an artifact of the
change of coordinates into the rotating frame of reference employed in the mathematical analysis of the
problem, which leads to a priori estimates with constants exhibiting a singular behavior as ω → 0. As
a consequence, a lower bound on ω is required in Theorem 2.3 to obtain existence of a solution via a
fixed-point iteration. A similar observation was made in the investigation of a steady flow past a rotating
and translating obstacle carried out in [6]. Therefore, it is not surprising to see the same effect appearing
in the more general time-periodic case investigated here.

3. Preliminaries

We use capital letters to denote global constants, while constants in small letters are local to the respective
proof. When we want to emphasize that a constant C depends on the quantities α, β, γ, . . . , we write
C(α, β, γ, . . . ).

We denote points in T × R
3 by (t, x), where t and x = (x1, x2, x3) are referred to as time and

spatial variable. The symbol Ω always denotes an exterior domain, that is, Ω ⊂ R
3 is connected and the

complement of a non-empty compact set. We always assume that the origin is not contained in Ω.
Inner and outer product of two vectors a, b ∈ R

3 are denoted by a · b and a ∧ b, respectively. For any
radius R > 0 we set BR :=

{
x ∈ R

3
∣
∣ |x| < R

}
, BR :=

{
x ∈ R

3
∣
∣ |x| > R

}
, and for a domain D ⊂ R

3 we
define DR := D ∩ BR and DR := D ∩ BR.

For q ∈ [1,∞] and k ∈ N0, the symbols Lq(D) and Wk,q(D) denote usual Lebesgue and Sobolev spaces
with associated norms ‖·‖q = ‖·‖q;D and ‖·‖k,q = ‖·‖k,q;D, respectively. Furthermore, W1,q

0 (D) denotes
the subset of functions in W1,q(D) with vanishing boundary trace, and W−1,q(D) (with norm ‖·‖−1,q;D)
is the dual space of W1,q′

0 (D) where 1/q+1/q′ = 1 with the usual convention 1/∞ := 0. Moreover, L2
σ(D)

denotes the set of solenoidal vector fields in L2(D)3, that is,

L2
σ(D) :=

{
ϕ ∈ C∞

0 (D)3
∣
∣ div ϕ = 0

}‖·‖2
,

and PH is the corresponding Helmholtz projection that maps L2(D)3 onto L2
σ(D).

We always identify 2π-periodic functions with functions on the torus group T := R/2πZ, which is
usually represented by the set [0, 2π). We consider T and G := T×R

3 as locally compact abelian groups.
The (normalized) Haar measure on T is given by

∀f ∈ C(T) :
∫

T

f dt :=
1
2π

∫ 2π

0

f(t) dt,

and G is equipped with the corresponding product measure. Recall that the dual group of T can be
identified with T̂ = Z and that of G with Ĝ := Z × R

3.
For H = T or H = G, the space S (H) is the Schwartz–Bruhat space of generalized Schwartz functions

on H, and S ′(H) denotes the corresponding dual space of tempered distributions; see [1,4] for precise
definitions. The Fourier transform on T and G and the respective inverses are given by

FT : S (T) → S (Z), FT[u](k) :=
∫

T

u(t) e−ikt dt,

F−1
T

: S (Z) → S (T), F−1
T

[w](t) :=
∑

k∈Z

w(k) eikt,

and

FG : S (G) → S (Ĝ), FG[u](k, ξ) :=
∫

T

∫

Rn

u(t, x) e −ix·ξ−ikt dxdt,
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F−1
G : S (Ĝ) → S (G), F−1

G [w](t, x) :=
∑

k∈Z

∫

Rn

w(k, ξ) e ix·ξ+ikt dξ,

provided the Lebesgue measure dξ is correctly normalized. By duality, FT and FG extend to homeomor-
phisms FT : S ′(T) → S ′(Z) and FG : S ′(G) → S ′(Ĝ), respectively.

Furthermore, we introduce the Sobolev space

W1,2,q(T × D) := C∞
0 (T × D)

‖·‖1,2,q

, ‖f‖1,2,q :=
(

‖∂tf‖q
q +

2∑

k=0

‖∇kf‖q
q

) 1
q

,

where C∞
0 (T × D) denotes the space of smooth functions of compact support on T × D .

Let X be a Banach space. We introduce the projections P and P⊥ by

Pu :=
∫

T

u(t) dt, P⊥ := Id−P

for u ∈ L1(T;X). Note that Pu ∈ X is time-independent, and we have the decomposition u = Pu + P⊥u
into the steady-state part Pu and the purely periodic part P⊥u of u.

Our analysis of the time-periodic problems (2.1) and (2.2) will be carried out within spaces of functions
with absolutely convergent Fourier series defined by

A(T;X) :=
{

f : T → X

∣
∣
∣
∣ f(t) =

∑

k∈Z

fk eikt, fk ∈ X,
∑

k∈Z

‖fk‖X < ∞
}

,

‖f‖A(T;X) :=
∑

k∈Z

‖fk‖X .
(3.1)

Observe that A(T;X) is the Banach space that coincides with F−1
T

[
�1(Z;X)

]
, which embeds into the

X-valued continuous functions on T. It is well known that the scalar-valued space A(T;R) is an algebra
with respect to pointwise multiplication, the so-called Wiener algebra. One can exploit this property to
derive estimates in the X-valued case. For example, one readily shows the following correspondences of
Hölder’s inequality and interpolation inequalities.

Proposition 3.1. Let D ⊂ R
n, n ∈ N, be an open set and p, q, r ∈ [1,∞] such that 1/p + 1/q = 1/r.

Moreover, let f ∈ A(T; Lp(D)) and g ∈ A(T; Lq(D)). Then fg ∈ A(T; Lr(D)) and

‖fg‖A(T;Lr(D)) ≤ ‖f‖A(T;Lp(D))‖g‖A(T;Lq(D)). (3.2)

Proof. By assumption we have f = F−1
T

[(fk)] and g = F−1
T

[(gk)] for elements (fk) ∈ �1(Z; Lp(D)) and
(gk) ∈ �1(Z; Lq(D)). Then fg = F−1

T

[
(fk) ∗Z (gk)

]
and

‖fg‖A(T;Lr(D)) =
∑

k∈Z

∥
∥
∥
∑

�∈Z

f�gk−�

∥
∥
∥

Lr(D)
≤

∑

k∈Z

∑

�∈Z

‖f�gk−�‖Lr(D)

≤
∑

k∈Z

∑

�∈Z

‖f�‖Lp(D)‖gk−�‖Lq(D) = ‖f‖A(T;Lp(D))‖g‖A(T;Lq(D)),

where the last estimate is due to Hölder’s inequality. �
Proposition 3.2. Let D ⊂ R

n, n ∈ N, be an open set and p, q, r ∈ [1,∞] such that (1 − θ)/p + θ/q = 1/r
for some θ ∈ [0, 1], and let f ∈ A(T; Lp(D)) ∩ A(T; Lq(D)). Then f ∈ A(T; Lr(D)) and

‖f‖A(T;Lr(D)) ≤ ‖f‖1−θ
A(T;Lp(D))‖f‖θ

A(T;Lq(D)). (3.3)

Proof. We have f = F−1
T

[(fk)] for an element (fk) ∈ �1(Z; Lp(D) ∩ Lq(D)). The classical interpolation
inequality for Lebesgue spaces yields

‖f‖A(T;Lr(D)) =
∑

k∈Z

‖fk‖Lr(D) ≤
∑

k∈Z

‖fk‖1−θ
Lp(D)‖fk‖θ

Lq(D)

≤ ‖f‖1−θ
A(T;Lp(D))‖f‖θ

A(T;Lq(D)),



JMFM Viscous Flow Around a Rigid Body Performing a Time-Periodic Motion Page 7 of 23 28

where the last estimate follows from Hölder’s inequality on Z. �

4. Embedding Theorem

This section deals with embedding properties of Sobolev spaces of time-periodic functions. The embedding
theorem below is a refinement of [18, Theorem 4.1] adapted to the time-scaling employed in (2.1). Clearly,
embeddings of the steady-state part Pu are independent of the actual period. Therefore, we only consider
the case of purely periodic functions. For the sake of generality, we establish the following theorem in
arbitrary dimension n ≥ 2.

Theorem 4.1. Let n ≥ 2, ω > 0 and q ∈ (1,∞). For α ∈ [0, 2] with αq < 2 and (2 − α)q < n let

r0 :=
2q

2 − αq
, p0 :=

nq

n − (2 − α)q
,

and for β ∈ [0, 1] with βq < 2 and (1 − β)q < n let

r1 :=
2q

2 − βq
, p1 :=

nq

n − (1 − β)q
.

Then the inequality

ωα/2‖u‖Lr0 (T;Lp0 (Rn)) + ωβ/2‖∇u‖Lr1 (T;Lp1 (Rn)) ≤ C2

(
ω‖∂tu‖q + ‖∇2u‖q

)
(4.1)

holds for all u ∈ P⊥W1,2,q(T × R
n) and a constant C2 = C2(n, q, α, β) > 0.

Proof. Since the proof is analogue to [18, Proof of Theorem 4.1], we merely give a brief sketch here.
Without restriction we may assume u ∈ S (G). Due to the assumption u = P⊥u, we have FG[u] =
(1 − δZ)FG[u], where δZ is the delta distribution on Z. Utilizing the Fourier transform, we thus derive
the identity

u = F−1
G

[
1 − δZ(k)
|ξ|2 + iωk

FG

[
ω∂tu − Δu

]
]

= ω−α/2F−1
Rn

[
|ξ|α−2] ∗Rn F−1

T

[
(1 − δZ)|k|−α/2] ∗T F,

(4.2)

where

F := F−1
G

[

Mω(k, ξ)FG

[
ω∂tu − Δu

]
]

, Mω(k, ξ) :=
|ωk|α/2|ξ|2−α(1 − δZ(k))

|ξ|2 + iωk
.

Employing the so-called transference principle for Fourier multipliers (see [3,4]) together with the
Marcinkiewicz multiplier theorem, one readily verifies that Mω is an Lq(G) multiplier for any q ∈ (1,∞)
such that

‖F‖q ≤ c0‖ω∂tu − Δu‖q ≤ c0

(
ω‖∂tu‖q + ‖∇2u‖q

)

with c0 independent of ω. Moreover, when we choose [−π, π) as a realization of T, we obtain

γα(t) := F−1
T

[
(1 − δZ)|k|−α/2](t) = c1t

−1+α/2 + h(t),

for some h ∈ C∞(T); see for example [24, Example 3.1.19]. In particular, this yields γα ∈ L
1

1−α/2 ,∞(T),
so that Young’s inequality implies that the mapping ϕ �→ γα ∗ϕ extends to a bounded operator Lq(T) →
Lr0(T). Moreover, it is well known that the mapping ϕ �→ F−1

Rn

[
|ξ|α−2]∗ϕ extends to a bounded operator

Lq(Rn) → Lp0(Rn); see [25, Theorem 6.1.13]. Recalling (4.2), we thus have

ωα/2‖u‖Lr0 (T;Lp0 (Rn)) =
( ∫

T

∥
∥
∥F−1

Rn

[
|ξ|α−2] ∗Rn γα ∗T F (t, ·)

∥
∥
∥

r0

p0

dt

) 1
r0

≤ c2

(∫

T

‖γα ∗T F (t, ·)‖r0
q dt

) 1
r0

≤ c3

(∫

Rn

‖γα ∗T F (·, x)‖q
r0

dx

) 1
q
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≤ c4‖F‖q ≤ c5

(
ω‖∂tu‖q + ‖∇2u‖q

)
,

where Minkowski’s integral inequality is used in the second estimate. This is the asserted inequality for
u. The estimate of ∇u follows in the same way. �

Remark 4.2. Note that the term on the right-hand side of (4.1) defines a norm equivalent to ‖·‖1,2,q on
P⊥W1,2,q(T × Ω) due to Poincaré’s inequality on T.

Remark 4.3. Theorem 4.1 can be generalized to the setting of an exterior domain Ω ⊂ R
n by means

of Sobolev extensions. However, to maintain estimate (4.1), one has to construct a specific extension
operator that respects the homogeneous second-order Sobolev norm. To this end, one can make use of
results from [2].

5. Linear Theory

This section is dedicated to the investigation of the resolvent problem (2.3) and the linear time-periodic
problem (2.2). After having shown Theorem 2.1, we establish Theorem 2.2 as an immediate consequence
hereof.

5.1. The Whole Space

To study the problems (2.2) and (2.3) in an exterior domain, we first consider the case Ω = R
3. In

this whole-space setting one can namely change coordinates back to the non-rotating inertial frame and
thereby reduce the study of (2.2) to an investigation of the time-periodic Oseen problem without rotation
terms, which was analyzed in [18,32]. In this section, we set

s1 :=
2q

2 − q
, s2 :=

4q

4 − q
, s3 :=

8q

8 − q
.

for appropriately fixed q.

Theorem 5.1. Let q ∈ (1, 2) and λ, ω, θ > 0 with λ2 ≤ θω. For every f ∈ Lq(T × R
3)3 there exists a

solution (u, p) ∈ S ′(T × R
3)3+1 to

{
ω∂tu − Δu − λ∂1u + ∇p = f in T × R

3,

div u = 0 in T × R
3,

(5.1)

with ∂tu,∇2u, ∇p ∈ Lq(T × R
3). Moreover, there exist constants C3 = C3(q) > 0 and C4 = C4(q, θ) > 0

such that

‖∇2Pu‖q + λ‖∂1Pu‖q + λ1/2‖Pu‖s1 + λ1/4‖∇Pu‖s2 + ‖∇Pp‖q ≤ C3‖Pf‖q, (5.2)

ω‖∂tP⊥u‖q + ‖∇2P⊥u‖q + λ‖∂1P⊥u‖q + ‖∇P⊥p‖q ≤ C4‖P⊥f‖q. (5.3)

Additionally, if (w, q) ∈ S ′(T × R
3)3+1 is another solution to (5.1), then P⊥u = P⊥w, and Pu − Pw is

a polynomial in each component, and p − q = p0, where p0(t, ·) is a polynomial for each t ∈ T.

Proof. We decompose (5.1) into two problems by splitting u = Pu+P⊥u =: us +up and p = Pp+P⊥p =:
ps + pp. For the steady-state part (us, ps) we obtain the system

{
−Δus − λ∂1us + ∇ps = Pf in R

3,

div us = 0 in R
3,
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which is the classical steady-state Oseen problem. The existence of a time-independent solution (us, ps)
satisfying estimate (5.2) is well known; see for example [13, Theorem VII.4.1]. The remaining purely
periodic part (up, pp) must solve (5.1), but with purely periodic right-hand side P⊥f . We define

U(t, x) := up(t, ω−1/2x),

P(t, x) := ω−1/2 pp(t, ω−1/2x),

F (t, x) := ω−1 P⊥f(t, ω−1/2x),

which leads to the system
{

∂tU − ΔU − λ̃∂1U + ∇P = F in T × R
3,

div U = 0 in T × R
3,

where λ̃ = λω−1/2. From [32, Theorem 2.1] we conclude the existence of a unique solution (U,P) that
satisfies the estimate

‖U‖1,2,q + ‖∇P‖q ≤ c0‖F‖q,

where c0 is a polynomial in λ̃ and can thus be bounded uniformly in λ̃ ∈ (0,
√

θ]. Estimate (5.3) with the
asserted dependency of the constant C4 follows after reversing the applied scaling.

The uniqueness statement is readily shown by means of the Fourier transform on G = T × R
3.

We consider (5.1) with f = 0 and apply the divergence operator to (5.1)1. This yields Δp = 0 and thus
|ξ|2FR3 [p(t, ·)] = 0 for all t ∈ T. Therefore, we obtain suppFR3 [p(t, ·)] ⊂ {0}, so that p(t, ·) is a polynomial
for all t ∈ T. Next we apply the Fourier transform to (5.1)1 to deduce (iωk+|ξ|2−iξ1)FG[u]+iξFG[p] = 0.
Multiplying with the symbol of the Helmholtz projection I − ξ ⊗ ξ/|ξ|2 and utilizing div u = 0, we obtain
(iωk + |ξ|2 − iξ1)FG[u] = 0, which yields suppFG[u] ⊂ {(0, 0)}. Since P⊥u = F−1

G

[
(1 − δZ)FG[u]

]
, it

follows that P⊥u = 0, and that each component of Pu is a polynomial. This completes the proof. �

Remark 5.2. In the setting of Theorem 5.1 we can write the estimate for the steady-state part (us, ps) =
(Pu,Pp) and the purely periodic part (up, pp) = (P⊥u,P⊥p) in a more condensed way: From the embed-
dings established in Theorem 4.1 we deduce

ω1/4‖up‖Ls2 (T;Ls1 (R3)) + ω1/8‖∇up‖Ls3 (T;Ls2 (R3))

≤ C5

(
ω‖∂tup‖Lq(T×R3) + ‖up‖Lq(T×R3)

)
.

Recalling Remark 4.2, we see that (5.2) and (5.3) can be formulated as

ω‖∂tu‖q + ‖∇2u‖q + λ‖∂1u‖q + λ1/2‖u‖Ls2 (T;Ls1 (R3))

+λ1/4‖∇u‖Ls3 (T;Ls2 (R3)) + ‖∇p‖q ≤ C6‖f‖q (5.4)

for a constant C6 = C6(q, θ) as long as λ2 ≤ θω.

With Theorem 5.1 we now solve the linear problem (2.2) for Ω = R
3 and f ∈ Lq(T × R

3)3.

Theorem 5.3. Let q ∈ (1, 2) and λ, ω, θ > 0 with λ2 ≤ θω. For every f ∈ Lq(T × R
3)3 there exists a

solution (u, p) ∈ S ′(T × R
3)3+1 to

{
ω(∂tu + e1 ∧u − e1 ∧x · ∇u) − Δu − λ∂1u + ∇p = f in T × R

3,

div u = 0 in T × R
3,

(5.5)

with ∇2u, ∂1u, ∇p ∈ Lq(T × R
3). Moreover, there exists a constant C7 = C7(q, θ) > 0 such that

ω‖∂tu + e1 ∧u − e1 ∧x · ∇u‖Lq(T×R3) + ‖∇2u‖Lq(T×R3) + λ‖∂1u‖Lq(T×R3)

+ λ1/2‖u‖Ls2 (T;Ls1 (R3)) + λ1/4‖∇u‖Ls3 (T;Ls2 (R3)) + ‖∇p‖Lq(T×R3)

≤ C7‖f‖Lq(T×R3).

(5.6)
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Additionally, if (w, q) ∈ S ′(T × R
3)3+1 is another solution to (5.5) with w ∈ Lr(T × R

3) for some
r ∈ [1,∞), then u = w, and p − q = q0 for some spatially constant function q0 : T → R.

Proof. Let

Q(t) :=

⎛

⎝
1 0 0
0 cos(t) − sin(t)
0 sin(t) cos(t)

⎞

⎠

be the matrix corresponding to the rotation with angular velocity e1. Define

U(t, y) := Q(t)u(t,Q(t)�y),

P(t, y) := p(t,Q(t)�y),

F (t, y) := Q(t)f(t,Q(t)�y)

with the new spatial variable y = Q(t)x. Due to

∂tU(t, y) = Q(t)(∂tu(t, x) + e1 ∧u(t, x) − e1 ∧x · ∇u(t, x)),

the functions u, p and f satisfy (5.5) if and only if
{

ω∂tU − ΔU − λ∂1U + ∇P = F in T × R
3,

div U = 0 in T × R
3.

The assertions in Theorem 5.3 are now a direct consequence of Theorem 5.1 and estimate (5.4). �

Remark 5.4. As for the corresponding steady-state problem (see for example [13, Theorem VIII.8.1]), one
can extend Theorem 5.3 to the case of an exterior domain Ω for f ∈ Lq(T× Ω), but it is not clear to the
authors whether or not the constant in the resulting a priori estimate can then be chosen independently
of λ and ω. Observe that such an independence is obtained in the functional setting of Theorem 2.2 where
f ∈ A(T; Lq(Ω)). Since we solve the nonlinear problem (2.1) via a fixed-point iteration which requires λ
and ω to be chosen sufficiently small, it crucial to obtain an estimate with the constant independent of
λ and ω.

From Theorem 5.3 we can extract a similar result for the resolvent problem (2.3) in the whole space.

Theorem 5.5. Let q ∈ (1, 2), k ∈ Z and λ, ω, θ > 0 with λ2 ≤ θω. For every F ∈ Lq(R3)3 there exists a
solution (v, p) ∈ S ′(R3)3+1 to

{
ω(ikv + e1 ∧v − e1 ∧x · ∇v) − Δv − λ∂1v + ∇p = F in R

3,

div v = 0 in R
3,

(5.7)

and a constant C8 = C8(q, θ) > 0 with

ω‖ikv + e1 ∧v − e1 ∧x · ∇v‖q + ‖∇2v‖q + λ‖∂1v‖q

+ λ1/2‖v‖s1 + λ1/4‖∇v‖s2 + ‖∇p‖q ≤ C8‖F‖q.
(5.8)

Additionally, if (w, q) ∈ S (R3)3+1 is another solution to (5.1) with w ∈ Lr(Ω) for some r ∈ [1,∞), then
v = w, and p − q is constant.

Proof. First consider a solution (v, p) in the described function class. Then the fields

u(t, x) := eikt v(x), p(t, x) := eikt p(x), f(t, x) := eikt F (x),

satisfy (5.5). Therefore, uniqueness of (v,∇p) follows from the uniqueness statement in Theorem 5.3. To
show existence, let F ∈ Lq(R3) and define f ∈ Lq(T × R

3) as above. Theorem 5.3 yields the existence
of a pair (u, p) that solves (5.5). Then the k-th Fourier coefficients v(x) := FT[u(·, x)](k) and p(x) :=
FT[p(·, x)](k) satisfy (5.7), and estimate (5.8) is a direct consequence of (5.6). �
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5.2. Uniqueness

Next we show a uniqueness result for the resolvent problem (2.3).

Lemma 5.6. Let λ ≥ 0, ω > 0, k ∈ Z, and let (v, p) be a distributional solution to (2.3) with F = 0 and
∇2v, ∂1v, ∇p ∈ Lq(Ω) for some q ∈ (1,∞) and v ∈ Ls(Ω) for some s ∈ (1,∞). Then v = 0 and p is
constant.

Proof. We only consider the case λ > 0 here. The proof for λ = 0 can be shown in exactly the same way.
Fix a radius R > 0 such that ∂BR ⊂ Ω, and define a “cut-off” function χ0 ∈ C∞

0 (R3) with χ0(x) = 1 for
|x| ≤ 2R and χ0(x) = 0 for |x| ≥ 4R. Set

w := χ0v − B(v · ∇χ0), q := χ0p (5.9)

where B denotes the Bogovskĭı operator; see for example [13, Section III.3]. Then
⎧
⎨

⎩

−Δw + ∇q = h in Ω4R,
div w = 0 in Ω4R,

w = 0 on ∂Ω4R,

with

h :=
(

− ω(ikv + e1 ∧v − e1 ∧x · ∇v) − λ∂1v
)
χ0

− 2∇χ0 · ∇v − Δχ0v + ∇χ0p + ΔB(∇χ0 · v).

From the assumptions, we obtain v ∈ W2,q(Ω4R) and p ∈ W1,q(Ω4R). Standard Sobolev embeddings imply
v,∇v, p ∈ L

3
2 q(Ω4R). Therefore, we also have h ∈ Lr(Ω4R) for all 1 < r ≤ 3

2q. From well-known regularity
results for the Stokes problem in bounded domains (see [13, Theorem IV.6.1]) we obtain w ∈ W2,r(Ω4R)
and ∇q ∈ Lr(Ω4R). Since v = w and p = q on Ω2R, this yields

(v, p) ∈ W2,r(Ω2R) × W1,r(Ω2R) (5.10)

for all 1 < r ≤ 3
2q.

Next consider another “cut-off” function χ1 ∈ C∞(R3) with χ1(x) = 1 for |x| ≥ 2R and χ1(x) = 0 for
|x| ≤ R. As above, we define

u := χ1v − B(v · ∇χ1), p := χ1p, (5.11)

which satisfy the system
{

ω(iku + e1 ∧u − e1 ∧x · ∇u) − Δu − λ∂1u + ∇p = f in R
3,

div u = 0 in R
3,

(5.12)

with

f := ω(e1 ∧x · ∇χ1)v − 2∇χ1 · ∇v − Δχ1v + λ∂1χ1v + ∇χ1p − ΔB(v · ∇χ1)

+ λ∂1B(v · ∇χ1) + ω(ikB(v · ∇χ1) + e1 ∧B(v · ∇χ1) − e1 ∧x · ∇B(v · ∇χ1)).

As above, we see f ∈ Lr(R3) for all 1 < r ≤ 3
2q. Since we also have u ∈ Ls(R3), Theorem 5.5 implies

iku + e1 ∧u − e1 ∧x · ∇u, ∇2u, ∂1u, ∇p ∈ Lr(R3)

if additionally r < 2. Due to v = u and p = p on B2R, we have

ikv + e1 ∧v − e1 ∧x · ∇v, ∇2v, ∂1v, ∇p ∈ Lr(B2R) (5.13)

for 1 < r ≤ 3
2q with r < 2.

We combine (5.10) and (5.13) to deduce

ikv + e1 ∧v − e1 ∧x · ∇v, ∇2v, ∂1v, ∇p ∈ Lr(Ω) (5.14)
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for 1 < r ≤ 3
2q with r < 2. After repeating the above argument a sufficient number of times, we obtain

(5.14) for all r ∈ (1, 2). Since v ∈ Ls(Ω), the Sobolev inequality further yields

∀r ∈
(3
2
, 6

)
: ∇v ∈ Lr(Ω), ∀r ∈ (3,∞) : v ∈ Lr(Ω).

In particular, we can employ the divergence theorem to compute
∫

ΩR

div
[
(e1 ∧x)|v|2

]
dx =

∫

∂ΩR

(e1 ∧x) · n|v|2 dS =
∫

∂BR

(e1 ∧x) · xR−1|v|2 dS = 0

for any R > 0 with ∂BR ⊂ Ω. Passing to the limit R → ∞, we obtain
∫

Ω

div
[
(e1 ∧x)|v|2

]
dx = 0. (5.15)

By the above integrability properties, we can further multiply (2.3)1 by v and integrate over Ω. By
utilizing (5.15) and integration by parts, we conclude

0 =
∫

Ω

(
ω(ikv + e1 ∧v − e1 ∧x · ∇v) − Δv + λ∂1v + ∇p

)
· v dx

=
∫

Ω

ωik |v|2 +
1
2
ω div

[
(e1 ∧x)|v|2

]
− Δv · v +

1
2
λ∂1|v|2 + ∇p · v dx

= ωik

∫

Ω

|v|2 dx +
∫

Ω

|∇v|2 dx.

This implies ∇v = 0. The imposed boundary conditions thus yield v = 0. Finally, (2.3)1 leads to ∇p = 0,
and the proof is complete. �

5.3. A Priori Estimate

Next we establish an a priori estimate for the solution to the resolvent problem (2.3).

Lemma 5.7. Let q ∈ (1, 2), k ∈ Z and λ, ω, θ > 0 with λ2 ≤ θω. Moreover, let F ∈ Lq(Ω) and R > 0
such that ∂BR ⊂ Ω. Let (v, p) ∈ L1

loc(Ω) with

ikv + e1 ∧v − e1 ∧x · ∇v,∇2v, ∂1v, ∇p ∈ Lq(Ω),

v ∈ Ls1(Ω), ∇v ∈ Ls2(Ω)
(5.16)

be a solution to (2.3). Then there exists a constant C9 = C9(Ω, q, θ, R) > 0 such that

ω‖ikv + e1 ∧v − e1 ∧x · ∇v‖q + ‖∇2v‖q

+ λ‖∂1v‖q + λ1/2‖v‖s1 + λ1/4‖∇v‖s2 + ‖∇p‖q

≤ C9

(
‖F‖q + (1 + λ + ω)‖v‖1,q;Ω4R

+ ω|k| ‖v‖−1,q;Ω4R
+ ‖p‖q;Ω4R

)
.

(5.17)

Proof. Let χ0, χ1 be the “cut-off” functions from the proof of Lemma 5.6. Define w ∈ W2,q(Ω) and
q ∈ W1,q(Ω) as in (5.9). Then

⎧
⎨

⎩

ikω w − Δw + ∇q = h in Ω4R,
div w = 0 in Ω4R,

w = 0 on ∂Ω4R,

with

h :=
(
F − ω(e1 ∧v − e1 ∧x · ∇v) − λ∂1v

)
χ0

− 2∇χ0 · ∇v − Δχ0v + ∇χ0p − (ikω − Δ)B(v · ∇χ0).
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Well-known theory for the Stokes resolvent problem (see for example [9]) yields

‖v‖2,q;Ω2R
+ ‖∇p‖q;Ω2R

≤ ‖w‖2,q;Ω4R
+ ‖∇q‖q;Ω4R

≤ c0‖h‖q;Ω4R

≤ c1

(
‖F‖q + (1 + λ + ω)‖v‖1,q;Ω4R

+ ‖p‖q;Ω4R
+ ω|k| |v · ∇χ0|∗−1,q;Ω4R

)
.

(5.18)

In the last estimate we used mapping properties of the Bogovskĭı operator (see [13, Section III.3]), namely

‖∇Bh‖m,q;Ω4R
≤ c2‖h‖m,q;Ω4R

, ‖Bh‖q;Ω4R
≤ c3|h|∗−1,q;Ω4R

for m ∈ N0, where

|h|∗−1,q;D := sup
{

∣
∣
∫

D

hψ dx
∣
∣

∣
∣
∣
∣ ψ ∈ C∞

0 (R3), ‖∇ψ‖q/(q−1);D = 1
}

.

To estimate the last term in (5.18), we introduce the notation

ψ := ψ − 1
∣
∣Ω4R

∣
∣

∫

Ω4R

ψ dx

for ψ ∈ C∞
0 (R3), and we employ that div v = 0 in Ω and v = 0 on ∂Ω to deduce the identity

∫

Ω4R

v · ∇χ0ψ dx =
∫

Ω4R

div(vχ0)ψ dx = −
∫

Ω4R

χ0v · ∇ψ dx

=
∫

Ω4R

div(vχ0)ψ dx =
∫

Ω4R

v · ∇χ0ψ dx.

Since Poincaré’s inequality yields

‖ψ∇χ0‖1,q′;Ω4R
≤ c4‖ψ‖1,q′;Ω4R

≤ c5‖∇ψ‖q′;Ω4R
,

we have

|v · ∇χ0|∗−1,q;Ω4R

≤ sup
{
‖v‖−1,q;Ω4R

‖ψ∇χ0‖1,q′;Ω4R

∣
∣ ψ ∈ C∞

0 (R3), ‖∇ψ‖q′;Ω4R
= 1

}

≤ c6‖v‖−1,q;Ω4R
.

Applying this estimate to the last term in (5.18), we obtain

‖v‖2,q;Ω2R
+ ‖∇p‖q;Ω2R

≤ c7

(
‖F‖q + (1 + λ + ω)‖v‖1,q;Ω4R

+ ‖p‖q;Ω4R
+ ω|k| ‖v‖−1,q;Ω4R

)
.

(5.19)

Next define (u, p) as in (5.11), which satisfies the system
{

ω(iku + e1 ∧u − e1 ∧x · ∇u) − Δu − λ∂1u + ∇p = f in R
3,

div u = 0 in R
3,

with

f := χ1F − ω(e1 ∧x · ∇χ1)v − 2∇χ1 · ∇u − Δχ1v

+ λ∂1χ1v + ∇χ1p − ΔB(v · ∇χ1) + λ∂1B(v · ∇χ1)

+ ω(ikB(v · ∇χ1) + e1 ∧B(v · ∇χ1) − e1 ∧x · ∇B(v · ∇χ1)).

Theorem 5.5 implies

ω‖ikv + e1 ∧v − e1 ∧x · ∇v‖q;Ω2R + ‖∇2v‖q;Ω2R + λ‖∂1v‖q;Ω2R

+ λ1/4‖∇v‖s2;Ω2R + λ1/2‖v‖s1;Ω2R + ‖∇p‖q;Ω2R

≤ ω‖iku + e1 ∧u − e1 ∧x · ∇u‖q + ‖∇2u‖q + λ‖∂1u‖q

+ λ1/4‖∇u‖s2 + λ1/2‖u‖s1 + ‖∇p‖q

≤ c8

(
‖F‖q + (1 + λ + ω)‖v‖1,q;Ω2R

+ ‖p‖q;Ω2R
+ ω|k|‖v‖−1,q;Ω2R

)
,
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where we estimated the terms containing the Bogovskĭı operator as above. Combining this estimate with
(5.19), we conclude (5.17). �

In the next step we improve estimate (5.17) by showing that the lower-order terms on the right-
hand side can be omitted. This leads to the desired estimate (2.4) with the asserted dependencies of the
constant C1.

Lemma 5.8. Let q ∈ (1, 2), k ∈ Z and λ, ω > 0, and let F ∈ Lq(Ω). Let (v, p) ∈ L1
loc(Ω) be a solution to

(2.3) in the class (5.16). Then estimate (2.4) holds for a constant C1 = C1(Ω, q, λ, ω) > 0. If q ∈ (1, 3
2 ) and

λ2 ≤ θω ≤ B, then this constant can be chosen independently of λ and ω such that C1 = C1(Ω, q, θ, B).

Proof. We employ a contradiction argument. At first, consider the case q ∈ (1, 3
2 ) and assume that (2.4)

is not valid for a constant C1 = C1(Ω, q, θ, B). Then there exist sequences of numbers (λj) ⊂ (0,
√

B],
(ωj) ⊂ (0, B/θ] with λ2

j ≤ θωj , and (kj) ⊂ Z, and of functions (vj), (pj), (Fj) that satisfy

ωj‖ikjvj + e1 ∧vj − e1 ∧x · ∇vj‖q + ‖∇2vj‖q

+ λj‖∂1vj‖q + λ
1/2
j ‖vj‖s1 + λ

1/4
j ‖∇vj‖s2 + ‖∇pj‖q = 1,

(5.20)

‖Fj‖q → 0 as j → ∞, and
⎧
⎨

⎩

ωj(ikjvj + e1 ∧vj − e1 ∧x · ∇vj) − Δvj − λj∂1vj + ∇pj = Fj in Ω,
div vj = 0 in Ω,

vj = 0 on ∂Ω,
(5.21)

for all j ∈ N. Furthermore, without loss of generality, we assume
∫

ΩR
pj dx = 0 for R > 0 as in Lemma

5.7. Then, (λj), (ωj) and (kj) contain (improper) convergent subsequences with limits λ ∈ [0,
√

B],
ω ∈ [0, B/θ] and k ∈ Z ∪ {±∞}, respectively, and we have λ2 ≤ θω. For simplicity, we identify selected
subsequences with the actual sequences. Moreover, (5.20) implies that Uj := (iωjkjvj , vj , pj) is bounded
in Lq(Ωρ) × W2,q(Ωρ) × W1,q(Ωρ) for any ρ > R. Hence, by a Cantor diagonalization argument, there
exists a subsequence that converges weakly in Lq(Ωρ) × W2,q(Ωρ) × W1,q(Ωρ) to some U := (w, v, p) for
each ρ > R. Consequently, passing to the limit j → ∞ in (5.21), we obtain

⎧
⎪⎨

⎪⎩

w + ω(e1 ∧v − e1 ∧x · ∇v) − Δv − λ∂1v + ∇p = 0 in Ω,

div v = 0 in Ω,

v = 0 on ∂Ω.

(5.22)

Moreover, by the compact embeddings

W2,q(Ω4R) ↪→ W1,q(Ω4R) ↪→ Lq(Ω4R) ↪→ W−1,q(Ω4R),

we deduce that U is the strong limit of (Uj) in the topology of W−1,q(Ω4R) × W1,q(Ω4R) × Lq(Ω4R). By
Lemma 5.7,

ωj‖ikjvj + e1 ∧vj − e1 ∧x · ∇vj‖q + ‖∇2vj‖q

+ λj‖∂1vj‖q + λ
1/2
j ‖vj‖s1 + λ

1/4
j ‖∇vj‖s2 + ‖∇pj‖q

≤ C9

(
‖Fj‖q + (1 + λj + ωj)‖vj‖1,q;Ω4R

+ ω|kj | ‖vj‖−1,q;Ω4R
+ ‖pj‖q;Ω4R

)
.

Passing to the limit j → ∞ in this estimate, we conclude in virtue of (5.20) that

1 ≤ C9

(
(1 + λ + ω)‖v‖1,q;Ω4R

+ ‖w‖−1,q;Ω4R
+ ‖p‖q;Ω4R

)
. (5.23)

Moreover,

‖w + ω(e1 ∧v − e1 ∧x · ∇v)‖q + ‖∇2v‖q + λ‖∂1v‖q

+λ1/2‖v‖s1 + λ1/4‖∇v‖s2 + ‖∇p‖q < ∞. (5.24)

Now we distinguish between several cases:
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i. If ωjkj → s ∈ R and ω = 0, then λ = 0 and w = isv, so that (5.22) reduces to a Stokes resolvent
problem. If s �= 0, we also have v ∈ Lq(Ω) and we conclude v = ∇p = 0 from a well-known uniqueness
result; see for example [9]. If s = 0, we utilize that q < 3

2 and vj ∈ Ls1(Ω), ∇vj ∈ Ls2(Ω), so that
Sobolev’s inequality implies

‖vj‖3q/(3−2q) ≤ c0‖∇vj‖3q/(3−q) ≤ c1‖∇2vj‖q,

and thus v ∈ L3q/(3−2q)(Ω). Now v = ∇p = 0 follows from classical uniqueness properties of the
steady-state Stokes problem, see for example [13, Theorem V.4.6].

ii. If ωjkj → s ∈ R and ω �= 0 but λ = 0, then kj → k ∈ Z and w = iωkv, so that (5.22) reduces to
(2.3) with λ = 0. As above, we deduce v ∈ L3q/(3−2q)(Ω). From Lemma 5.6 we conclude v = ∇p = 0.

iii. If ωjkj → s ∈ R and ω �= 0 and λ �= 0, then kj → k ∈ Z and w = iωkv, so that (v, p) satisfies (2.3).
Since λ �= 0, it follows from (5.24) that v ∈ Ls1(Ω). Lemma 5.6 thus implies v = ∇p = 0.

iv. If ωj |kj | → ∞, we recall (5.20) and estimate

ωj |kj |‖vj‖q;Ωρ
≤ ωj‖ikjvj + e1 ∧vj − e1 ∧x · ∇vj‖q;Ωρ

+ c2(ρ)‖vj‖1,q;Ωρ
≤ c3(ρ)

for any ρ > R. Passing to the limit j → ∞, we thus obtain v = 0 on Ωρ for each ρ > R, whence v = 0
on Ω. Hence, (5.22)1 reduces to w + ∇p = 0. Clearly, we also have div w = 0 and w

∣
∣
∂Ω

= 0, so that
w + ∇p = 0 corresponds to the Helmholtz decomposition of 0 in Lq(Ω). Since this decomposition is
unique, we conclude w = ∇p = 0.

Consequently, all four cases lead to w = v = ∇p = 0, which contradicts (5.23). This completes the proof
in the case 1 < q < 3

2 .
In the more general case q ∈ (1, 2), where we do not assert the constant C1 to be independent of λ

and ω, these parameters remain fixed in the contradiction argument above. Consequently, only the last
two cases above have to be considered. The conclusion in both of these cases is valid for all q ∈ (1, 2),
and we thus conclude the lemma. �

5.4. Existence

To complete the proof of Theorem 2.1, it remains to show existence of a solution. For this purpose, recall
the following property of the Stokes operator.

Lemma 5.9. Let D ⊂ R
3 be a bounded domain with C3-boundary. Every u ∈ L2

σ(D)∩W1,2
0 (D)∩W2,2(D)

satisfies

‖∇2u‖2 ≤ C10

(
‖PHΔu‖2 + ‖∇u‖2

)

for a constant C10 = C10(D) > 0 that does not depend on the “size” of D but solely on its “regularity”.
In particular, if D = ΩR for an exterior domain Ω with ∂Ω ⊂ BR, the constant C10 is independent of R
and solely depends on Ω.

Proof. See [26, Lemma 1]. �

We further need the following identity from [20].

Lemma 5.10. Let u ∈ L2
σ(ΩR)∩W1,2

0 (ΩR)∩W2,2(ΩR) with complex conjugate u∗. Then e1 ∧u−e1 ∧x·∇u ∈
L2

σ(ΩR) and
∫

ΩR

(e1 ∧u − e1 ∧x · ∇u) · PHΔu∗ dx

=
∫

∂Ω

1
2
|∇u|2(e1 ∧x) · n − n · ∇u∗ · (e1 ∧x · ∇u) dS −

∫

ΩR

∇(e1 ∧u) : ∇u∗ dx.

Proof. See [20, Lemma 3]. �
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Existence of a solution to the resolvent problem (2.3) can be shown via a Galerkin approach combined
with an “invading domains” technique.

Lemma 5.11. Let Ω ⊂ R
3 be an exterior domain of class C3. Let λ, ω > 0, k ∈ Z, and let F ∈ C∞

0 (Ω).
Then there exists a solution (v, p) to (2.3) with

ikv + e1 ∧v − e1 ∧x · ∇v, ∇2v, ∂1v, ∇p ∈ Lq(Ω),

v ∈ L2q/(2−q)(Ω), ∇v ∈ L4q/(4−q)(Ω)

for all q ∈ (1, 2).

Proof. Let R > 0 such that ∂BR ⊂ Ω, and take m ∈ N with m > 2R. Since the Stokes operator in the
bounded domain Ωm is a positive self-adjoint invertible operator (see [50, Chapter III, Theorem 2.1.1]),
there exist sequences (ψj)j∈N of (real-valued) eigenfunctions and (μj)j∈N ⊂ (0,∞) of eigenvalues, that
is,

−PHΔψj = μjψj , ψj ∈ L2
σ(Ωm) ∩ W1,2

0 (Ωm) ∩ W2,2(Ωm),

normalized such that
∫

Ωm

ψj · ψ� dx =
1
μj

δj�.

We show the existence of a function u = um
n ∈ Xm

n := span
C

{
ψj

∣
∣ j = 1, . . . , n

}
satisfying

∫

Ωm

[
ω(iku + e1 ∧u − e1 ∧x · ∇u) − Δu − λ∂1u

]
· ψj dx =

∫

Ωm

F · ψj dx (5.25)

for all j ∈ {1, . . . , n}. Since

u =
n∑

�=1

ξ�ψ�

for some ξ1, . . . , ξn ∈ C, this is equivalent to solving the algebraic equation

(I + M)ξ = c (5.26)

with ξ = (ξ1, . . . , ξn) ∈ C
n and M = (M�j) ∈ C

n×n, c = (cj) ∈ C
n with

M�j :=
∫

Ωm

(
ω(ikψ� + e1 ∧ψ� − e1 ∧x · ∇ψ�) − λ∂1ψ�

)
· ψj dx,

cj :=
∫

Ωm

F · ψj dx.

Note that (5.26) is a resolvent problem for the skew-Hermitian matrix M , which is uniquely solvable.
Existence of a unique solution u = um

n ∈ Xm
n to (5.25) thus follows.

Next we need suitable estimates for u = um
n . Multiplication of both sides of (5.25) by the complex

conjugate coefficient ξ∗
j and summation over j = 1, . . . , n yields

‖∇u‖2
2 +

∫

Ωm

(
ω(iku + e1 ∧u − e1 ∧x · ∇u) − λ∂1u

)
· u∗ dx =

∫

Ωm

F · u∗ dx.

Because the integral term on the left-hand side is purely imaginary, taking the real part of this equation
leads to the estimate

‖∇u‖2
2 ≤ ‖F‖6/5‖u‖6.

Recalling the Sobolev inequality ‖u‖6 ≤ c0‖∇u‖2, we obtain

‖u‖6 + ‖∇u‖2 ≤ c1‖F‖6/5, (5.27)
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where c1 is independent of m. If we multiply both sides of (5.25) by μjξ
∗
j and sum over j = 1, . . . , n, we

obtain

‖PHΔu‖2
2 =

∫

Ωm

[
F − ω(iku + e1 ∧u − e1 ∧x · ∇u) + λ∂1u

]
· PHΔu∗ dx.

Taking real part of both sides and observing that

Re
∫

Ωm

iku · PHΔu∗ dx = −Re
(
ik‖∇u‖2

2

)
= 0,

we conclude, using Hölder’s inequality, the estimate

‖PHΔu‖2
2 ≤

(
‖F‖2 + λ‖∂1u‖2

)
‖PHΔu‖2

+ Re
∫

Ωm

ω(e1 ∧u − e1 ∧x · ∇u) · PHΔu∗ dx.
(5.28)

Using Lemma 5.10, we estimate the remaining integral on the right-hand side to conclude

Re
∫

Ωm

ω(e1 ∧u − e1 ∧x · ∇u) · PHΔu∗ dx ≤ c2ω
(
‖∇u‖2

2;∂Ω + ‖∇u‖2
2;Ωm

)

with c2 independent of m. Employing the trace inequality [13, Theorem II.4.1] on the domain ΩR, we
further estimate

Re
∫

Ωm

ω(e1 ∧u − e1 ∧x · ∇u) · PHΔu∗ dx

≤ c3ω
(
‖∇u‖2;ΩR

‖∇u‖1,2;ΩR
+ ‖∇u‖2

2;Ωm

)

≤ c4(ε)(ω + ω2)‖∇u‖2
2;Ωm

+ ε‖∇2u‖2
2;Ωm

for small ε > 0. From Lemma 5.9 we deduce

Re
∫

Ωm

ω(e1 ∧u − e1 ∧x · ∇u) · PHΔu∗ dx

≤ c5(ε)(ω + ω2)‖∇u‖2
2;Ωm

+ εc6‖PHΔu‖2
2;Ωm

with a constant c6 > 0 independent of m. Combining this estimate with (5.28), choosing ε sufficiently
small and employing estimate (5.27), we arrive at

‖PHΔu‖2;Ωm
≤ c7

(
1 + λ +

√
ω + ω2

)(
‖F‖2 + ‖F‖6/5

)
.

Using Lemma 5.9 and estimate (5.27) once again and restoring the original notation, we end up with

‖∇2um
n ‖2;Ωm

≤ c8

(
‖PHΔum

n ‖2;Ωm
+ ‖∇um

n ‖2;Ωm

)
≤ c9

(
‖F‖2 + ‖F‖6/5

)
(5.29)

with c9 independent of m.
In particular, we see from (5.27), (5.29) and Poincaré’s inequality that (um

n ) is uniformly bounded
in W2,2(Ωm) and thus contains a subsequence that converges weakly to some function vm ∈ L2

σ(Ωm) ∩
W1,2

0 (Ωm) ∩ W2,2(Ωm), which obeys the estimate

‖vm‖6;Ωm
+ ‖∇vm‖1,2;Ωm

≤ c10

(
‖F‖6/5 + ‖F‖2

)
(5.30)

with c10 independent of m. Moreover, vm satisfies (5.25) for all j ∈ N, whence there exists pm ∈ W1,2(Ωm)
such that

⎧
⎨

⎩

ω(ikvm + e1 ∧vm − e1 ∧x · ∇vm) − Δvm − λ∂1v
m + ∇pm = F in Ωm,

div vm = 0 in Ωm,
vm = 0 on ∂Ωm;

(5.31)

see [13, Corollary III.5.1]. Since e1 ∧vm − e1 ∧x · ∇vm ∈ L2
σ(Ωm) by Lemma 5.10, we deduce from (5.31)

and (5.30) the estimate

ω‖ikvm + e1 ∧vm − e1 ∧x · ∇vm‖2 = ω
∥
∥PH(ikvm + e1 ∧vm − e1 ∧x · ∇vm)

∥
∥

2
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≤ ‖PHF‖2 + ‖PHΔvm‖2 + λ‖PH∂1v
m‖2 ≤ c11

(
‖F‖6/5 + ‖F‖2

)
.

Combining the estimate above with (5.30), we conclude

‖vm‖6;Ωm
+ ‖∇vm‖1,2;Ωm

+ ω‖ikvm + e1 ∧vm − e1 ∧x · ∇vm‖2;Ωm

≤ c12

(
‖F‖6/5 + ‖F‖2

) (5.32)

with c12 independent of m.
Now we introduce a sequence of rotationally symmetric “cut-off” functions (χm) ⊂ C∞

0 (R3) satisfying

χm(x) = 1 for |x| ≤ m

2
, |∇χm| ≤ c13

m
,

χm(x) = 0 for |x| ≥ 3m

4
, |∇2χm| ≤ c14

m2
,

and we set wm := χmvm. Then wm is an element of W2,2(Ω). Moreover, the rotational symmetry of χm

implies e1 ∧x · ∇χm = 0. Therefore, from (5.32) and the properties of χm, we deduce the estimate

‖wm‖6 + ‖∇wm‖1,2 + ω‖ikwm + e1 ∧wm − e1 ∧x · ∇wm‖2 ≤ c15

(
‖F‖6/5 + ‖F‖2

)

with c15 independent of m. This implies the existence of a subsequence, still denoted by (wm), that
converges in the sense of distributions to some function v ∈ W2,2

loc(Ω) that satisfies

‖v‖6 + ‖∇v‖1,2 + ω‖ikv + e1 ∧v − e1 ∧x · ∇v‖2 ≤ c12

(
‖F‖6/5 + ‖F‖2

)
. (5.33)

Moreover, v
∣
∣
∂Ω

= 0. Let ϕ ∈ C∞
0 (Ω). We choose m0 ∈ N such that suppϕ is contained in Ωm0/2. For

m ≥ m0 we have wm = vm on Ωm0/2 and thus
∫

Ω

wm · ∇ϕ dx =
∫

Ω

vm · ∇ϕ dx = 0

by (5.31)2. Passing to the limit m → ∞, we conclude div v = 0. Now let ψ ∈ C∞
0,σ(Ω) and choose m0 such

that suppψ ⊂ Ωm0/2. With the same argument as above, for m ≥ m0 we obtain from (5.31)1 that
∫

Ω

(
ω(ikwm + e1 ∧wm − e1 ∧x · ∇wm) − Δwm − λ∂1w

m − F
)

· ψ dx

=
∫

Ω

(
ω(ikvm + e1 ∧vm − e1 ∧x · ∇vm) − Δvm − λ∂1v

m + ∇pm − F
)

· ψ dx = 0.

Therefore, by passing to the limit m → ∞, we see
∫

Ω

(
ω(ikv + e1 ∧v − e1 ∧x · ∇v) − Δv − λ∂1v − F

)
· ψ dx = 0

for all ψ ∈ C∞
0,σ(Ω). Consequently, by the Helmholtz decomposition, there exists a function p with

∇p ∈ L2(Ω) such that (v, p) is a solution to (2.3).
It remains to show that v and p belong to the correct function spaces. By Hölder’s inequality, we

directly find that

v ∈ W2,q(Ωρ), p ∈ W1,q(Ωρ) (5.34)

for any ρ > R and all q ∈ [1, 2]. Repeating the “cut-off” argument from (5.11), we obtain (u, p) which
satisfy (5.12) for some function f ∈ L2(R3) with compact support. In particular, this implies f ∈ Lq(R3)
for all q ∈ (1, 2). Theorem 5.5 yields existence of a solution to (5.12) satisfying (5.8). Since u ∈ L6(R3),
Theorem 5.5 further ensures that (u, p) coincides with this solution. We thus have

iku + e1 ∧u − e1 ∧x · ∇u, ∇2u, ∂1u, ∇p ∈ Lq(R3),

u ∈ L2q/(2−q)(R3), ∇u ∈ L4q/(4−q)(R3).

Since v = u and p = p on B2R, the integrability properties above in combination with (5.34) show that
v and p belong to the correct function spaces. �
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Combining Lemmas 5.6, 5.8 and 5.11, we can finally complete the proof of Theorem 2.1.

Proof of Theorem 2.1. The uniqueness statement is a direct consequence of Lemma 5.6. Estimate (2.4)
has been proved in Lemma 5.8. It thus remains to show existence of a solution for F ∈ Lq(Ω). Consider
a sequence (Fj) ⊂ C∞

0 (Ω) that converges to F in Lq(Ω). By Lemma 5.11, for each j ∈ N there exists a
solution (v, p) = (vj , pj) to (2.3) with F = Fj , which obeys estimate (2.4) by Lemma 5.8. Additionally,
this implies that (vj ,∇pj) is a Cauchy sequence in the function space defined by the norm on the left-hand
side of (2.4), and thus possesses a limit (v,∇p), which satisfies (2.3) and (2.4). �

5.5. The Time-Periodic Linear Problem

Proof of Theorem 2.2. An application of the Fourier transform FT on T to (2.2) reduces the uniqueness
statement to the corresponding uniqueness result for the resolvent problem established in Theorem 2.1.
To show existence, consider f ∈ A(T; Lq(Ω)). Then

f(t, x) =
∑

k∈Z

fk(x) eikt

with fk ∈ Lq(Ω). Let (uk, pk) = (v, p) be a solution to the resolvent problem (2.3) with F = fk that
exists due to Theorem 2.1. We define

u(t, x) :=
∑

k∈Z

uk(x) eikt, p(t, x) :=
∑

k∈Z

pk(x) eikt .

By (2.4), u and p are well defined and satisfy (2.2). We directly conclude estimate (2.5) from estimate
(2.4). �

6. The Nonlinear Problem

We return to the nonlinear problem (2.1). At first, we reformulate it as a problem with homogeneous
boundary conditions. To this end, fix R > 0 such that ∂BR ⊂ Ω. Let ϕ ∈ C∞

0 (R3) be a smooth function
satisfying ϕ(x) = 1 if |x| < R, and ϕ(x) = 0 if |x| > 2R, and define

U : T × R
3 → R

3, U(t, x) =
1
2

rot
[(

α(t) e1 ∧x − ω e1 |x|2
)
ϕ(x)

]
.

Then U(t, ·) ∈ C∞
0 (R3)3 for all t ∈ T, U ∈ C1(T × R

3), div U = 0, and a brief calculation shows
U(t, x) = α(t) e1 +ω e1 ∧x for (t, x) ∈ T× ∂Ω. Now define v := u − U and p := p. Then (u, p) solves (2.1)
if and only if (v, p) solves

⎧
⎪⎪⎨

⎪⎪⎩

ω(∂tv + e1 ∧v − e1 ∧x · ∇v) − Δv − λ∂1v + ∇p = f + N (v) in T × Ω,
div v = 0 in T × Ω,

v = 0 on T × ∂Ω,
lim|x|→∞ v(t, x) = 0 for t ∈ T,

(6.1)

where

N (v) := (P⊥α)∂1v − ω(∂tU + e1 ∧U − e1 ∧x · ∇U)
+ ΔU + α∂1U − v · ∇v − U · ∇v − v · ∇U − U · ∇U.

Recall that P⊥α = α − λ. It thus remains to show existence of a solution to the nonlinear system (6.1).

Proof of Theorem 2.3. We define the function space

X q :=
{
v ∈ L1

loc(T × Ω)
∣
∣ ‖v‖X q < ∞

}
,

‖v‖X q := ω‖∂tv + e1 ∧v − e1 ∧x · ∇v‖Aq + ‖∇2v‖Aq

+ λ‖∂1v‖Aq + λ1/2‖v‖As1 + λ1/4‖∇v‖As2 ,



28 Page 20 of 23 T. Eiter and M. Kyed JMFM

where s1 = 2q/(2 − q), s2 = 4q/(4 − q) and

‖h‖As := ‖h‖A(T;Ls(Ω)).

At first, we derive suitable estimates of N (v). For example, analogously to the proof of Proposition 3.1,
we have

‖(P⊥α)∂1v‖Aq ≤ ‖P⊥α‖A(T;R)‖∂1v‖Aq ≤ ε‖∂1v‖Aq ≤ ελ−1‖v‖X q .

Moreover, since 2q
2−q ≤ 4 ≤ 3q

3−2q , we can employ estimates (3.2) and (3.3) to obtain

‖v · ∇v‖Aq ≤ ‖v‖A4‖∇v‖A4q/(4−q) ≤ c0‖v‖1−θ
A2q/(2−q)‖v‖θ

A3q/(3−2q)‖∇v‖A4q/(4−q)

with θ = 12−9q
2q . By the Sobolev inequality we thus deduce

‖v · ∇v‖Aq ≤ c1λ
−1/4−(1−θ)/2‖v‖2−θ

X q ‖∇2v‖θ
Aq ≤ c2λ

−(3q−3)/q‖v‖2
X q .

The remaining terms in N (v) can be estimated in a similar fashion, which results in

‖N (v)‖Aq ≤ c3

(
ελ−1‖v‖X q + λ−(3q−3)/q‖v‖2

X q + ω‖ d
dtα‖A(T;R)

+ (λ + ω + ε)(1 + λ + ω + ε + ‖v‖X q )
)
.

(6.2)

Now consider the problem
⎧
⎨

⎩

ω(∂tw + e1 ∧w − e1 ∧x · ∇w) − Δw − λ∂1w + ∇q = f + N (v) in T × Ω,
div w = 0 in T × Ω,

w = 0 on T × ∂Ω,
(6.3)

for given v ∈ X q. Due to estimate (6.2) and Theorem 2.2 there exists a unique velocity field w ∈ X q and
a pressure field q with ∇q ∈ Aq that satisfy (6.3) and the estimate

‖w‖X q ≤ C1

(
‖f‖Aq + ‖N (v)‖Aq

)

≤ c4

(
ε + ελ−1‖v‖X q + λ−(3q−3)/q‖v‖2

X q + ω‖ d
dtα‖A(T;R)

+ (λ + ω + ε)(1 + λ + ω + ε + ‖v‖X q )
)
.

We thereby obtain a solution map S : X q → X q, v �→ w which is a self-mapping on the ball

X q
δ :=

{
v ∈ X q

∣
∣ ‖v‖X q ≤ δ

}

provided

c4

(
ε + ελ−1δ + λ−(3q−3)/qδ2 + ω‖ d

dtα‖A(T;R) + (λ + ω + ε)(1 + λ + ω + ε + δ)
)

≤ δ.

Recall that ρ ∈
(

3q−3
q , 1

)
. Choosing δ := λρ, one readily verifies that there is a constant κ > 0 depending

on c4 such the condition above is satisfied with ω‖ d
dtα‖A(T;R) ≤ κλρ, ε = λ2 and λ0 sufficiently small. In

the same way, one derives the estimate

‖N (v1) − N (v2)‖Aq ≤ c5

(
ελ−1 + λ + ω + ε + λ−(3q−3)/q(‖v1‖X q + ‖v2‖X q )

)
‖v1 − v2‖X q ,

which ensures that S is a contraction on X q
δ with a similar choice of parameters. Finally, the contraction

mapping principle yields the existence of a fixed point v ∈ X q of S, and hence of a solution (v, p) to (6.1).
Consequently, (u, p) := (v + U, p) is a solution to (2.1). �



JMFM Viscous Flow Around a Rigid Body Performing a Time-Periodic Motion Page 21 of 23 28

Funding Open Access funding enabled and organized by Projekt DEAL.

Compliance with Ethical Standards

Conflict of Interest On behalf of all authors, the corresponding author states that there is no conflict of
interest.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

[1] Bruhat, F.: Distributions sur un groupe localement compact et applications à l’étude des représentations des groupes
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