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1. Introduction

In this paper we deal with the existence of classical solutions for the first order boundary value problem{
div u = F in Ω,
u = 0 on ∂Ω.

(1)

We look for solutions u : Ω → Rn, belonging at least to C1(Ω) ∩ C0(Ω) but, actually, we will prove a
sharper result of regularity at the boundary (see Theorem 1). Here, Ω is a smooth, bounded, open subset
of Rn, n ≥ 2, while F is a given continuous function (as expected, F will be required to fulfill a condition
slightly stronger than the bare continuity), satisfying the compatibility condition

∫
Ω

F (x) dx = 0. This is
a classical problem in mathematical fluid mechanics, strictly connected with the Helmholtz decomposition
and the div–curl lemma (see Kozono and Yanagisawa [20]). We recall that, if the boundary condition
is dropped, a solution of the divergence equation can be readily obtained by taking the gradient of the
Newtonian potential of F , provided it is in C2(Ω). These aspects are extensively covered in Galdi [15,
Ch. III], with special attention to the work of Bogovskĭı [7], where the problem (1) is solved in the
setting of the Sobolev spaces H1,p

0 (Ω). Further developments may also be found in Borchers and Sohr [8].
For different approaches and results, the reader should consider the books by Ladyzhenskaya [21] and
Tartar [26], which especially cover the Hilbert case, while Amrouche and Girault [1] devised an approach
based on the negative norm theory developed in Nečas [23].

Our approach follows closely the Bogovskĭı’s one, where the representation formula (2) below, in
analogy with the Sobolev’s “cubature” formulae, provides explicitly a special solution of the problem (1).
We recall that, per se, problem (1) has infinitely many solutions. The representation formula (2) turns
out to be extremely flexible in the applications to many different settings as, for instance, in the recent
results for weighted and Lp(x)-spaces (see Huber [17]). Classical results in Hölder spaces have been shown
in Kapitansk̆ı and Piletskas [18], as corollaries of a more general result, which seems to be obtained in
a way different from ours. We point out that our methods, which can be considered as classical, can
be also easily modified to obtain the corresponding results in Hölder spaces, for which we also mention
the recent review in Csató et al. [11]. In addition, we also note that the non-uniqueness feature of the
first order system (1) allows some existence results with more regularity than expected from the usual
Sobolev machinery, as the striking results of Bourgain and Brezis [9], which come from a non-linear
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selection principle (see also the extensions to the Dirichlet problem and Triebel–Lizorkin spaces setting
in Bousquet et al. [10]).

Our interest in the problem is twofold: on one side, we want to investigate the results close to the
limiting case F ∈ L∞(Ω) ∩ C0(Ω), where counterexamples to the existence of a solution are known (see
Bourgain and Brezis [9], Dacorogna et al. [12], Maremonti [22], from the point of view of Hydrodynamics);
on the other side, we are interested in relaxing as much as possible the assumptions needed to prove the
existence of classical solutions, with the aim of finding weaker assumptions allowing to construct classical
solutions to fluid mechanics problems.

Since the bare continuity of F is not enough to that purpose, we went back to the pioneering results
by Dini [14] and Petrini [24] about the Poisson equation, and consider the problem with the additional
hypothesis that F is Dini continuous, which we denote in the following by F ∈ CD(Ω) (see Sect. 2.2
for a formal definition). The main tool will be to combine the formula (2) with a modification of an
argument used by Korn to obtain a similar regularity result for the second order derivatives of the
Newtonian potential (see Gilbarg and Trudinger [16, Ch. 4]). In fact, for the Poisson equation, these
tools allow to exploit the property of the Dini continuity to “mitigate” the singularity of the integrand
in the formula representing the second order derivatives of the potential, without the need to apply the
Calderòn–Zygmund theory for singular integral operators.

About the homogeneous boundary condition present in (1), our proof is based on some new insight
on the formula (2), in the sense that we made some simple observations on the Bogovskĭı formula that
we cannot find stated explicitly elsewhere in literature (see Theorem 2). These observations allow us to
consider the case when the datum F cannot be approximated by compactly supported smooth functions.
Such an approximation seems to play a fundamental role for the previous results in Sobolev or Orlicz
spaces, and hence the argument used in [7,8,15] does not apply immediately to our setting, unless
F|∂Ω = 0, which is an unnecessary assumption (see also Remark 5).

For the sake of completeness and to put the present work into a wider perspective, we also wish
to mention that the link between Dini continuity and existence of classical solutions in fluid mechanics
started with the work of Shapiro [25] in the steady-state case and found a very interesting application
in the paper of Beirão da Veiga [2], where the 2D Euler equations for incompressible fluids are solved in
the “critical” space of vorticity C0(0, T ;CD(Ω)). This is also very close (if one thinks about scaling) to
the Besov spaces used by Vishik [27]. More recently, the same results with Dini continuous vorticity have
also been employed in Koch [19] and in [5] to study the fine properties of the long-time behavior of the
2D Euler equations. In addition, the interest for classical solutions of the Stokes system has been revived
in the recent papers of Beirão da Veiga [3,4], and provided a further motivation to our analysis of the
divergence and curl operator, since they are among the basic building blocks of the theory. Finally, the
“inversion” of the divergence operator in the continuous setting is also one of the tools giving rise to the
celebrated series of results of De Lellis and Székelyhidi (see, for instance, [13, Sect. 4]) on the Onsager
conjecture.

The main result of this paper is the following theorem of classical regularity up to the boundary (see
Sects. 2.1 and 2.2 below for the definition of C2-boundary and CD(Ω) respectively, and Remark 23 for
the dependencies of the constant c).

Theorem 1. Let Ω be a bounded open subset of Rn with a C2-boundary. Then, there exists a constant
c such that, for any F ∈ CD(Ω) satisfying

∫
Ω

F (x) dx = 0, there exists a solution u ∈ C1(Ω) of the
problem (1) verifying

‖u‖C1(Ω) ≤ c ‖F‖CD(Ω) .

We also want to point out that, since the system (1) is not elliptic, the well-known results for elliptic
equations (and systems) do not apply directly. While the interior regularity (see Theorem 16) can be
obtained by adapting standard results (see Sects. 2 and 3), the regularity up to the boundary requires
an ad hoc treatment (see Sect. 4).

To conclude the introduction, we also mention that the problem of the existence of a C1(Ω) ∩ C0(Ω)
solution for the curl equation (with homogeneous Dirichlet boundary condition) is treated elsewhere (see
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[6]), following the same method, by using the similar (but more complicated) representation formula valid
in that case.

2. Basic Concepts, Notations, and Preliminary Results

In this section we recall the main definitions we will use, as well as some basic facts about the represen-
tation formula developed by Bogovskĭı. Most of the results of this section are well-known. However, some
of them about the behaviour at the boundary (that will be crucial in order to fulfill the homogeneous
boundary conditions) are, as far as we know, not explicitly available in the literature.

In the following we denote by B(x,R) = {y ∈ Rn : |y −x| < R}, the open ball of radius R centered at
x, by Sn−1 = {y ∈ Rn : |y| = 1} the unit sphere of Rn, and by |Sn−1| its (n − 1)-dimensional measure.

2.1. Definition of a Ck,λ -Boundary

By following Nečas [23], we say that ∂Ω is of class Ck,λ (and write ∂Ω ∈ Ck,λ) if, for any P ∈ ∂Ω,
there exist a rotation AP , positive numbers δP and ΔP , and hP : [−δP , δP ]n−1 → (−ΔP ,ΔP ) verifying
hP ∈ Ck,λ([−δP , δP ]n−1) such that:

• (x′, xn) ∈ AP (Ω − P ) ⇐⇒ xn > hP (x′),
• (x′, xn) ∈ AP (∂Ω − P ) ⇐⇒ xn = hP (x′),

for any x′ ∈ [−δP , δP ]n−1 and any xn ∈ (−ΔP ,ΔP ).
Here Ω − P := {A − P : A ∈ Ω} and ∂Ω − P := {A − P : A ∈ ∂Ω}.
The hypothesis that ∂Ω ∈ C0,1 will be used in Sect. 3, to obtain a more general inner-regularity result.

For the oncoming results of Sect. 4.2, let us remark explicitly that, if ∂Ω is of class C2 as in Theorem 1
(but it is enough that hP is at least differentiable in P for any P ∈ ∂Ω), in the previous definition it is
possible to choose AP so that it maps the normal to ∂Ω at P onto the xn axis, ΔP ≤ δP /2 and to have,
for some 0 < RP ≤ δP , that the following properties hold true

•
{

P + A−1
P

(
(−RP , RP )n

)
, P ∈ ∂Ω

}
is an open covering of ∂Ω,

• ΩP :=P + A−1
P

({
x′ ∈ (−RP , RP )n−1, h(x′) < xn < h(x′) + RP

})⊆ Ω.
If, in addition, Ω is bounded, it follows immediately that there exist a finite number of boundary points
P1, . . . , Pk such that ∂Ω ⊆ ∪k

i=1ΩPi
, and then Ω\ ∪k

i=1 ΩPi
⊂⊂ Ω, and it may be covered by a finite

number of open balls contained in Ω. This feature, together with a localization argument, will allow to
treat the problem of the regularity at the boundary (see Sect. 4).

2.2. The Dini Continuous Functions

We denote by CD(Ω) the space of the Dini continuous functions F, i.e. the functions F ∈ C0(Ω) such
that, if one introduces the (uniform) modulus of continuity

ω(F, ρ) := sup
x,y∈Ω

|x−y|<ρ

|F (x) − F (y)|,

then the function ω(F, ρ)/ρ is integrable around 0+. The space so defined may be equipped with the
following norm

‖F‖CD(Ω) := max
x∈Ω

|F (x)| +
∫ diam(Ω)

0

ω(F, ρ)
ρ

dρ,

and turns out to be a Banach space. In the literature, the space CD(Ω) is often referred to as the space
of uniformly Dini continuous functions. We remark that, by uniform continuity, any function in CD(Ω)
may be extended up to the boundary of Ω with the same modulus of continuity. We also observe that
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C0,α(Ω) ⊂ CD(Ω) for any α ∈]0, 1], and recall that the relevance of Dini continuity in partial differential
equations theory comes from the result stating that, if f ∈ CD(Ω), then the solution of the Poisson
equation

Δu = f,

with zero Dirichlet conditions satisfies D2u ∈ C0(Ω) (see, e.g., Gilbarg and Trudinger [16, Pb. 4.2]; see
also Dini [14] and Petrini [24]).

As usual, we denote by C1(Ω) the space of the functions in C0(Ω) whose first order derivatives are
uniformly continuous in Ω, and so they may be continuously extended to the closure Ω. We do not
distinguish between scalar and vector valued functions, since the meaning is clear from the context.

2.3. Bogovskĭı’s Formula and its Variants

Unless differently specified (namely, in the last two sections), the following notation and hypotheses are
tacitly assumed throughout all the paper:

• The symbol B denotes the open unit ball of Rn, n ≥ 2, centered at the origin;
• The symbol ψ denotes a non-identically vanishing scalar function verifying ψ ∈ C∞

0 (Rn) and
suppψ ⊆ B;

• By ∂jψ we denote the partial derivative of ψ with respect to its j-th argument;
• The domain Ω is a bounded open subset of Rn, star-shaped with respect to any point of B (This

strong geometric restriction on Ω will be relaxed in the last two sections).
The aim of this section is to recall the representation formula for a solution of the divergence problem,
due to Bogovskĭı [7], as well as several useful variants and consequences. We start with a theorem, which
recalls the integral formula and gives a first uniform estimate.

Theorem 2. Let q > n and let F ∈ Lq(Ω). Then:
(i) The Bogovskĭı’s formula

v(x) :=
∫

Ω

F (y)

[
x − y

|x − y|n
∫ +∞

|x−y|
ψ

(
y + ξ

x − y

|x − y|
)

ξn−1dξ

]
dy, (2)

defines for any x ∈ Rn (and not only almost everywhere) a vector-valued function v : Rn → Rn;
(ii) The vector field verifies v(x) = 0 for all x ∈ Rn\Ω;
(iii) For any q > n

|v(x)| ≤ c ‖F‖Lq(Ω) ∀x ∈ Rn,

where the constant c depends only on n, ψ, diam Ω, and q;
Formula (2) can be also rewritten in the following three equivalent ways

(iv) v(x) =
∫
Ω

F (y)
[
(x − y)

∫∞
1

ψ (y + α(x − y))αn−1dα
]

dy;

(v) v(x) =
∫
Ω

F (y)
[

x−y
|x−y|n

∫∞
0

ψ
(
x + r x−y

|x−y|
)

(|x − y| + r)n−1dr
]
dy;

(vi) v(x) =
∫

x−Ω
F (x − z) z

|z|n
∫∞
0

ψ
(
x + r z

|z|
)

(|z| + r)n−1 dr dz,
where x − Ω = {z ∈ Rn : ∃ y ∈ Ω such that z = x − y}.

Definition 3. (Bogovskĭı’s kernel) For x, y ∈ Rn with x �= y, we define the Bogovskĭı’s kernel (associated
to ψ) by

N(x, y) :=
x − y

|x − y|n
∫ +∞

|x−y|
ψ

(
y + ξ

x − y

|x − y|
)

ξn−1dξ,

and remark that we can rewrite the Bogovskĭı’s formula as follows

v(x) =
∫

Ω

N(x, y)F (y) dy.
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Occasionally, we refer to the vector field v as the Bogovskĭı’s potential, in analogy with the classical
theory of Newtonian potentials (see [16]). Equivalent expressions for the Bogovskĭı’s potential can be
written by using the formulae (iv), (v), and (vi) from Theorem 2.

The proof of Theorem 2 requires some preliminary results, we will use extensively later on.

Lemma 4. The following properties of the Bogovskĭı’s kernel hold true:
(i) The kernel N(x, y) verifies

N(x, y) ≡ 0 ∀x /∈ Ω and ∀ y ∈ Ω;

(ii) There exists a constant c > 0, depending only on n, ψ, and diam Ω, such that

|N(x, y)| ≤ c |x − y|1−n ∀x, y ∈ Rn : x �= y.

The proof of Theorem 2 follows immediately from the direct inspection of the kernel and by observing
that if x /∈ Ω and ψ

(
y + ξ x−y

|x−y|
)

�= 0 holds true for some ξ > |x − y|, then y /∈ Ω. By using the above
lemma, Theorem 2 follows by some straightforward arguments, left to the reader. We just point out that
since Ω is bounded, it turns out that N(x, ·) ∈ Lq′

(Ω) for all x ∈ Ω and for all q′ ∈ [1, n
n−1 [.

Remark 5. It is useful to point out explicitly that the Bogovskĭı’s potential v(x) is well-defined and
vanishes at the boundary ∂Ω for any F ∈ Lq(Ω), with q > n, without any other assumption but those
made on Ω and ψ in Theorem 2. Next, the property v|∂Ω = 0 does not come by approximating F by
C∞

0 (Ω) functions and by taking limits, but it descends directly from the formula (2) for a large class of
data. This will be crucial in the rest of the paper, since a function in CD(Ω) cannot be approximated
uniformly by regular functions with compact support, unless it vanishes at the boundary.

Very relevant consequences of the properties of N(x, y) and of Theorem 2 are the two interior and
boundary regularity results for the potential v of a smooth, compactly supported F .

Theorem 6. Under the same hypotheses of Theorem 2, if in addition F ∈ C∞
0 (Ω) then v ∈ C∞

0 (Ω).

Theorem 7. Under the same assumptions of Theorem 2, it follows that v ∈ C0(Rn) and, by restriction,
v ∈ C0(Ω).

Theorem 6 is classical and the proof of may be found, e.g., in Galdi [15, Lemma III.3.1], while the
short proof of Theorem 7, which is based on Theorem 2, is original and given below.

Proof of Theorem 7. Let {Fk} ⊂ C∞
0 (Ω) be such that Fk → F in Lq(Ω) for some q > n, and assume

that Fk is extended by zero outside Ω. Let vk and v be the corresponding Bogovskĭı’s potentials. By
Theorem 2(ii) and (iii), it follows that vk converge uniformly to v in Rn. Since, by Theorem 6, {vk} ⊂
C∞

0 (Rn), the theorem follows immediately. �

We also recall some further properties of the Bogovskĭı’s kernel, which will turn out to be useful in the
following (see again Galdi [15, Ch. III.3]). First, we have an identity about the derivatives of the kernel
in Theorem 2(iv), which can be obtained by observing that differentiating under the sign of integral is
completely justified also in the sense of Riemann integrals (Note that this is the expression of N(x, y) for
which derivatives are better handled). Next, we have the fundamental estimates for ∂xj

Ni(x, y) (which
allowed to exploit the Calderòn–Zygmund theory to obtain the original Bogovskĭı’s results about the
H1,p

0 (Ω) regularity of v), which will be essential for our results in the setting of Dini continuous functions.

Lemma 8. For any fixed x, y ∈ Ω, such that x �= y let, for i = 1, . . . , n

Ni(x, y) = (xi − yi)
∫ ∞

1

ψ(y + α(x − y))αn−1 dα.
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Then, it follows that for all i, j = 1, . . . , n

∂xj
Ni(x, y) = (xi − yi)

∫ ∞

1

∂jψ(y + α(x − y))αn−1 dα − ∂yj
Ni(x, y).

Moreover, ∂xj
Ni(x, y) = Kij(x, x − y) + Gij(x, y), where Kij(x, ·) is a Calderòn–Zygmund singular

kernel and Gij is a weakly singular kernel, hence it holds

|∂xj
Ni(x, y)| ≤ M |x − y|−n ∀x, y ∈ Rn : x �= y,

for some constant M = M(ψ, n, diam Ω).

2.4. The Representation Formula for Derivatives of the Bogovskĭı’s Potential

The main tool we take advantage of in this paper is an old aged argument exploited by Korn (see, e.g.,
Gilbarg and Trudinger [16, Ch. 4]) in the study of the existence of classical solutions of the Poisson
equation, based on a suitable smoothing of the singularity present in the representation formula for the
second order derivatives of the Newtonian potential. A similar argument provides us a way to approximate
the Bogovskĭı’s potential by regular functions. It will be presented here in full details because the need
of using the theorem of uniform convergence of sequences of continuous functions prevents us to apply
the technique based on truncation, which is effective in the Lebesgue spaces setting. To this purpose, we
fix a function η ∈ C∞(R+) such that η(t) ≡ 0 on [0, 1], η(t) ≡ 1 if t ≥ 2, and |η′(t)| ≤ 2 for all t ∈ R+.

Definition 9. For any F ∈ Lp(Ω), with p ≥ 1, and ε > 0 let us set

vε(x) :=
∫

Ω

F (y) (x − y)
[∫ ∞

1

ψ(y + α(x − y)) αn−1dα

]
η

( |x − y|
ε

)
dy

=
∫

Ω

F (y) N(x, y) η

( |x − y|
ε

)
dy.

We remark that

N(x, y) η

( |x − y|
ε

)
≡ 0 for |x − y| < ε,

and therefore the above truncated kernel belongs to C∞(Rn ×Rn) and is bounded by Lemma 4. On the
other hand, if |x − y| ≥ ε the set of α such that |y + α(x − y)| ≤ 1, where ψ could be non vanishing, is
bounded as well. It follows immediately that vε is well-defined for all x ∈ Rn and it belongs to C∞(Rn).
Moreover, under the same hypotheses of Theorem 6 and following the same argument, one proves that it
actually belongs to C∞

0 (Ω). The following theorem is the cornerstone of the resolution of the divergence
equation.

Theorem 10. Assume the same hypotheses of Theorem 2, and let η and vε be as above.

(i) If F ∈ L∞(Ω), then

lim
ε→0+

vε(x) = v(x) uniformly in Rn.

(ii) If, in addition,
∫
Rn ψ(x) dx = 1 and F ∈ C0(Ω), then

lim
ε→0+

div vε(x) = F (x) − ψ(x)
∫

Ω

F (y) dy ∀x ∈ Ω,

and consequently, if
∫
Ω

F (x) dx = 0, then

lim
ε→0+

div vε(x) = F (x) ∀x ∈ Ω.
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Proof. The fact that the Bogovskĭı’s potential is a right inverse of the divergence is a classical result.
Nevertheless we report the proof here since it is slightly different from that in Lebesgue spaces (cf. [15,
Lemma III.3.1]), where the truncation is not smooth and a surface integral (not present here) has to be
studied. To prove (i), let us fix any x ∈ Ω. We remark that, by Lemma 4, for any ε < dist(x, ∂Ω)/2

|vε
i (x) − vi(x)| ≤

∫
Ω

|F (y)Ni(x, y)|
∣∣∣∣η
( |x − y|

ε

)
− 1

∣∣∣∣ dy

≤ c‖F‖L∞(Ω)

∫
|x−y|<2ε

1
|x − y|n−1

dy ≤ c‖F‖L∞(Ω)

∫
|z|<2ε

|z|1−n dz,

and by the absolute continuity of the Lebesgue integral, it follows that the last integral tends to zero,
independently of x ∈ Ω. To complete the proof of (i) it is enough to remark that, again by Lemma 4,
vε(x) = v(x) = 0 for all x /∈ Ω.

To prove (ii), by differentiating vε
i at any x ∈ Ω it follows that

∂xj
vε

i (x) =
∫

Ω

F (y) δij

[∫ ∞

1

ψ(y + α(x − y))αn−1dα

]
η

( |x − y|
ε

)
dy

+
∫

Ω

F (y)(xi − yi)
[∫ ∞

1

(∂jψ(y + α(x − y))αndα

]
η

( |x − y|
ε

)
dy

+
∫

Ω

F (y)(xi − yi)
[∫ ∞

1

ψ(y + α(x − y))αn−1dα

]
η′
( |x − y|

ε

)
xj − yj

|x − y|
dy

ε

=
∫

Ω

F (y) δij

[∫ ∞

1

ψ(y + α(x − y))αn−1dα

]
η

( |x − y|
ε

)
dy

+
∫

Ω

F (y)(xi − yi)
[∫ ∞

1

(∂jψ(y + α(x − y))αndα

]
η

( |x − y|
ε

)
dy

+
∫

Ω

F (y)
(xi − yi)(xj − yj)

|x − y|
[∫ ∞

1

ψ(y + α(x − y))αn−1dα

]
η′
( |x − y|

ε

)dy

ε
,

and therefore we have

div vε(x) = n

∫
Ω

F (y)
[∫ ∞

1

ψ(y + α(x − y))αn−1dα

]
η

( |x − y|
ε

)
dy

+
n∑

i=1

∫
Ω

F (y)(xi − yi)
[∫ ∞

1

(∂iψ(y + α(x − y))αndα

]
η

( |x − y|
ε

)
dy

+
∫

Ω

F (y)|x − y|
[∫ ∞

1

ψ(y + α(x − y))αn−1dα

]
η′
( |x − y|

ε

)
dy

ε

= : I1 + I2 + I3.

Now,

I1 + I2 =
∫

Ω

F (y) η

( |x − y|
ε

)

×
∫ ∞

1

[
ψ(y + α(x − y))nαn−1 + αn

n∑
i=1

∂iψ(y + α(x − y))(xi − yi)
]
dαdy

=
∫

Ω

F (y) η

( |x − y|
ε

)∫ ∞

1

d

dα

[
ψ(y + α(x − y))αn

]
dα dy

= −ψ(x)
∫

Ω

F (y) η

( |x − y|
ε

)
dy −→ −ψ(x)

∫
Ω

F (y) dy,

as ε tends to zero.
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Moreover, introducing in I3 first the change of variables α := ξ/|x − y|, next ξ := r + |x − y|, and
finally z := ε−1(x − y) one obtains

I3 =
∫

Ω

F (y)
|x − y|n−1

η′
( |x − y|

ε

)
1
ε

[∫ ∞

|x−y|
ψ

(
y + ξ

x − y

|x − y|
)

ξn−1 dξ

]
dy

=
∫

ε<|x−y|<2ε

F (y)
|x − y|n−1

η′
( |x − y|

ε

)
1
ε

×
[∫ ∞

0

ψ

(
x + r

x − y

|x − y|
)

(r + |x − y|)n−1 dr

]
dy

=
∫

1<|z|<2

F (x − εz)
|z|n−1

η′(|z|)
[∫ ∞

0

ψ

(
x + r

z

|z|
)

(r + ε|z|)n−1 dr

]
dz.

We now claim that, as ε goes to 0, the latter converges to

F (x)
∫

1<|z|<2

1
|z|n−1

η′(|z|)
[∫ ∞

0

ψ

(
x + r

z

|z|
)

rn−1 dr

]
dz. (3)

In fact, since ψ
(
x + r z

|z|
)

vanishes when r > 1 + diam Ω, then∣∣∣∣
∫ ∞

0

ψ

(
x + r

z

|z|
)

(r + ε|z|)n−1 dr

∣∣∣∣ ≤ max |ψ| (1 + 2diam Ω)n =: M.

Hence, we get∣∣∣∣∣
∫

1<|z|<2

F (x − ε z) − F (x)
|z|n−1

η′(|z|)
[∫ ∞

0

ψ

(
x + r

z

|z|
)

(r + ε|z|)n−1 dr

]
dz

∣∣∣∣∣
≤ 2M

∫
1<|z|<2

|F (x − ε z) − F (x)|
|z|n−1

dz ≤ 2M

∫
1<|z|<2

ω(F, ε |z|)
|z|n−1

dz,

where we recall that ω(F, · ) is the modulus of continuity of F . By the uniform continuity of F on Ω
and the Lebesgue theorem on dominated convergence, the last integral vanishes as ε goes to zero and
therefore the claim is proved.

Finally, by introducing in (3) the radial and angular coordinates ρ := |z| and u := z/|z|, one gets∫ 2

1

η′(ρ) dρ

∫
Sn−1

∫ ∞

0

ψ(x + r u) rn−1 dr du = (η(2) − η(1))
∫
Rn

ψ(w) dw = 1.

Therefore, I3 → F (x) as ε goes to 0, and the lemma follows. �

The next lemma will be useful in proving the representation formula in Theorem 12.

Lemma 11.

∂xj

[
Ni(x, y) η

( |x − y|
ε

)]
= −∂yj

[
Ni(x, y) η

( |x − y|
ε

)]

+ η

( |x − y|
ε

)
(xi − yi)

∫ ∞

1

∂jψ(y + α(x − y)) αn−1dα.

Proof. It is an immediate consequence of Lemma 8 and the opposite sign in the derivatives of η(|x−y|/ε).
�

As usual in potential theory, getting a representation formula for the derivatives of the function vi is
a crucial goal. We will obtain it by taking the limit of the derivatives of its “regular approximation” vε

i .
Thus, let us start by differentiating its components

vε
i (x) =

∫
Ω

F (y)Ni(x, y) η

( |x − y|
ε

)
dy =

∫
BΛ

F (y)Ni(x, y) η

( |x − y|
ε

)
dy,
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where F ∈ L∞(Ω) is extended by zero outside Ω and BΛ := B(0, 2 diam Ω) is a ball of radius large enough
to have Ω ⊂⊂ BΛ. By the previous lemma and Bogovskĭı’s formula in Theorem 2(iv) it follows that, for
any x ∈ Ω,

∂xj
vε

i (x) =
∫

BΛ

F (y) ∂xj

[
Ni(x, y) η

( |x − y|
ε

)]
dy

=
∫

BΛ

[F (y) − F (x)] ∂xj

[
Ni(x, y) η

( |x − y|
ε

)]
dy

+F (x)
∫

BΛ

∂xj

[
Ni(x, y) η

( |x − y|
ε

)]
dy

=
∫

BΛ

[F (y) − F (x)] ∂xj

[
Ni(x, y) η

( |x − y|
ε

)]
dy

+F (x)
∫

BΛ

η

( |x − y|
ε

)
(xi − yi)

∫ ∞

1

∂jψ(y + α(x − y))αn−1dα dy

−F (x)
∫

BΛ

∂yj

[
Ni(x, y) η

( |x − y|
ε

)]
dy.

Since η
(

|x−y|
ε

)
≡ 1 for any x ∈ Ω, any y ∈ ∂BΛ and ε < diam Ω/2, by the Gauss–Green formula the

last integral is equal to
∫

∂BΛ
Ni(x, y) νj(y) dσy, where νj(y) is the j-th component of the outward unit

normal vector at the point y ∈ ∂BΛ.
The previous computations suggest to put forward a conjecture about the limit as ε goes to zero: it

will be proved in the next theorem, which is the main original result of this section.

Theorem 12 (Representation formula and estimate for the derivatives of the potential). Assume all the
hypotheses of Theorem 2, and let η, vε, and BΛ be as above. Furthermore, let

∫
Rn ψ(x) dx = 1 and let

F ∈ CD(Ω). For all i, j = 1, . . . , n define

V j
i (x) :=

∫
BΛ

[F (y) − F (x)] ∂xj
Ni(x, y) dy

+ F (x)
∫

BΛ

(xi − yi)
∫ ∞

1

∂jψ(y + α(x − y))αn−1 dα dy

− F (x)
∫

∂BΛ

Ni(x, y) νj(y) dσy.

Then, for all i, j = 1, . . . , n, we have:
(i) The function V j

i (x) is well-defined for all x ∈ Ω;
(ii) As ε → 0, the partial derivative ∂xj

vε
i converges uniformly to V j

i on any K ⊂⊂ Ω;
(iii) It holds ∂xj

vi(x) = V j
i (x) for all x ∈ Ω;

(iv) The potential v ∈ C1(Ω);
(v) For any K ⊂⊂ Ω there exists a constant c, depending only on n, ψ, diam Ω, and d(K, ∂Ω), such

that

‖v‖C1(K) ≤ c‖F‖CD(Ω).

Proof. To prove (i), fix any x ∈ Ω. Remark that, after its extension by zero outside Ω, F ∈ L∞(Rn). Fix
any ζ, with dist(x, ∂ Ω)/2 < ζ < dist(x, ∂ Ω). One has∫

BΛ

|F (y) − F (x)| ∣∣∂xj
Ni(x, y)

∣∣ dy =
∫

B(x,ζ)

|F (y) − F (x)| ∣∣∂xj
Ni(x, y)

∣∣ dy

+
∫

{|x−y|≥ζ}∩BΛ

|F (y) − F (x)| ∣∣∂xj
Ni(x, y)

∣∣ dy

= : I4 + I5.
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Since B(x, ζ) ⊂ Ω, by Lemma 8 it follows that

I4 ≤
∫

B(x,ζ)

|F (y) − F (x)|
|y − x| |y − x| |∂xj

Ni(x, y)| dy

≤
∫

B(x,ζ)

ω(F, |y − x|)
|y − x|

M

|y − x|n−1
dy,

where ω(F, ·) is the modulus of continuity of F in Ω. By introducing the radial and angular coordinates
it follows that

I4 ≤ M |Sn−1|
∫ ζ

0

ω(F, ρ)
ρ

dρ,

and, therefore, it is bounded by M |Sn−1| ‖F‖CD(Ω).
Furthermore, since both F and ∂xj

Ni(x, y) are bounded on {|x − y| ≥ ζ}, the term I5 is bounded as
well by M ′ ‖F‖∞, where M ′ depends only on n, ψ,diam Ω, and dist(x, ∂Ω).

Finally, since ∂jψ ∈ C∞
0 (Rn) and supp ∂jψ ⊂ B, it follows that

∫
Ω

(xi − yi)
∫ ∞

1

∂jψ(y + α(x − y))αn−1dα dy,

is the Bogovskĭı’s potential (2) associated to ∂jψ instead of ψ, and corresponding to the smooth and
bounded function F ≡ 1. By Theorem 2(iii), it is globally bounded by some constant M ′′, depending
only on n, ψ, and diam Ω. Since x ∈ Ω and |y| = 2diam Ω, then Ni(x, y) is bounded on ∂BΛ and therefore
the surface integral is finite as well. Thus (i) follows.

Moreover, we remark explicitly that the previous computations imply immediately that, for any x ∈ Ω,

|V j
i (x)| ≤ M |Sn−1| ‖F‖CD(Ω) + (M ′ + M ′′)‖F‖∞ ≤ c‖F‖CD(Ω) (4)

where c depends only on n, ψ,diam Ω and dist(x, ∂Ω).
To prove (ii), fix any K ⊂⊂ Ω. Thus, for any x ∈ K and ε > 0 such that ε < dist(K, ∂Ω)/2, it follows

that

|∂xj
vε

i (x) − V j
i (x)| ≤

∣∣∣∣
∫

BΛ

[F (y) − F (x)] ∂xj

{
Ni(x, y)

[
η

( |x − y|
ε

)
− 1

]}
dy

∣∣∣∣
+
∣∣∣∣F (x)

∫
BΛ

(xi − yi)
∫ ∞

1

∂xj
ψ(y + α(x − y))

[
η

( |x − y|
ε

)
− 1

]
αn−1dαdy

∣∣∣∣
≤

∫
B(x,2ε)

|F (x) − F (y)| |∂xj
Ni(x, y)| dy

+
∫

B(x,2ε)

|F (y) − F (x)| |Ni(x, y)|
∣∣∣∣η′

( |x − y|
ε

)
xj − yj

|x − y|
1
ε

∣∣∣∣ dy

+
∫

B(x,2ε)

|F (x)| |xi − yi|
∫ ∞

1

|∂xj
ψ(y + α(x − y)) |αn−1dα dy

= : I6 + I7 + I8.

As above, by Lemma 8 it follows that

I6 ≤ M

∫
B(x,2ε)

|F (x) − F (y)|
|y − x|n dy ≤ M |Sn−1|

∫
ρ<2ε

ω(F, ρ)
ρ

dρ.

By the Dini continuity of F and the consequent absolute continuity of the integral, the last term vanishes
as ε goes to zero, independently of x ∈ K.
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In order to estimate the second term I7 remark that, by Theorem 2(v) and the hypothesis on η′

I7 ≤
∫

ε≤|x−y|≤2ε

|F (x) − F (y)|
∣∣∣∣η′

( |x − y|
ε

)∣∣∣∣ |xj − yj |
|x − y|

1
ε

× |xi − yi|
|x − y|n

∫ ∞

0

∣∣∣∣ψ
(

x + r
x − y

|x − y|
)∣∣∣∣ (|x − y| + r)n−1dr dy

≤ 4
∫

ε≤|x−y|≤2ε

|F (x) − F (y)| 1
|x − y|n

×
∫ ∞

0

∣∣∣∣ψ
(

x + r
x − y

|x − y|
)∣∣∣∣ (|x − y| + r)n−1dr dy.

By introducing the variable y := x + ρ u, since∫ ∞

0

|ψ(x + ru)|(ρ + r)n−1 dr =
∫ 1+|x|

0

|ψ(x + ru)| (ρ + r)n−1 dr

≤ max
Rn

|ψ| (1 + diam Ω + 2ε)n−1,

it follows as above that the last term is bounded by a multiple of
∫ 2ε

ε
ω(F,ρ)

ρ dρ and, again by the absolute
continuity of the Lebesgue integral, the term I7 vanishes as ε goes to zero, independently of x ∈ K.

Finally, by using ∂jψ instead of ψ, as in the proof of the previous (i) from Theorem 2(iii), it follows
that for any fixed q > n and suitable constants c′, c′′

|I8| ≤ c′ max
Ω

|F (x)|
∥∥∥∥η

( |x − y|
ε

)
− 1

∥∥∥∥
Lq(Ω)

≤ c′′
∥∥∥∥η

( |x − y|
ε

)
− 1

∥∥∥∥
Lq(B(x, diam Ω))

.

Since the last norm vanishes as ε goes to zero, for any q > n and independently of x ∈ Ω, (ii) follows.
From (ii), by the classical theorem on a converging sequences of functions whose derivatives converge

uniformly, it follows (iii), while (iv) follows immediately from (ii), (iii), due to the fact that vε ∈ C∞(Rn).
Finally, the estimate (v) follows immediately from (iii), the above bound for V j

i in (4), and the bound
for the potential in Theorem 2 (iii). �

By using a well-known argument based on translation and rescaling, as in Galdi [15, Lemma III.3.1]
with x �→ x−x0

R , the previous results lead to the following theorem.

Theorem 13 (Interior regularity for bounded star-shaped domains). Let B(x0, R) be an open ball in
Rn, n ≥ 2, and let Ω be a bounded open subset of Rn, star-shaped with respect to every point of B(x0, R).
Then, for any F ∈ CD(Ω) verifying

∫
Ω

F (x) dx = 0, there exists a solution u ∈ C1(Ω) ∩ C0(Rn) of the
problem {

div u(x) = F (x) in Ω,
u ≡ 0 on �Ω,

verifying, for any K ⊂⊂ Ω,

‖v‖C1(K) ≤ c‖F‖CD(Ω),

where the constant c depends only on n, ψ,diam Ω, R, and dist(K, ∂Ω).

3. Classical Solutions for the Divergence Problem in the Interior of Lipschitz Domains

The aim of this brief section is to relax the very strong geometric restrictions on the domain Ω requested
in the previous results, although at the price to renounce the simplicity of the solution in the form of a
single Bogovskĭı’s potential.
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The next lemma (which follows strictly the one proved in Galdi [15, Lemma III.3.4]) provides the
localization apparatus we will use to prove the existence of a classical solution in a wider class of bounded
domains including, for instance, those with a smooth boundary. We start with a suitable “partition of
unity” lemma.

Lemma 14. Let Ω ⊂ Rn be a bounded open set and G = {G1, . . . , Gm+p} be an open covering of Ω.
Assume that, if Ωi := Ω ∩ Gi, then:
(a) ∂Ω ⊂ ∪m

i=1Gi ;
(b) Gi ⊂ Ω, for any i = m + 1, . . . ,m + p;
(c) Ω = ∪m+p

i=1 Ωi.
Next, for each i = 1, . . . ,m + p, there exist ζi ∈ C∞

0 (Gi), mi ∈ N and, for k = 1, . . . ,mi, θk ∈ C∞
0 (Ωi)

and φk ∈ C∞
0 (Ω) such that, if one sets

Fi(x) := ζi(x)F (x) +
mi∑
k=1

θk(x)
∫

Ω

φk(y)F (y) dy,

for any F ∈ CD(Ω) with
∫
Ω

F (x) dx = 0, then

(i) Fi ≡ 0 in Ω\Ωi, for all i = 1, . . . , m + p;
(ii) ‖Fi‖CD(Ωi) ≤ c ‖F‖CD(Ω), where c is a constant depending only on Ω;
(iii)

∫
Ω

Fi(x) dx = 0, for all i = 1, . . . , m + p;
(iv) F (x) =

∑m+p
i=1 Fi(x), for all x ∈ Ω.

Proof. The proof of this result may be obtained by following that in [15, Lemma III.3.4], simply by
replacing C∞

0 with CD in any occurrence involving f , fi or gi (by assuming Ω as their domain of definition)
and by extending ψi and χi by zero outside their supports. �

Remark 15. In order to apply the regularity result in Theorem 13 to the divergence problem “localized”
in Ωi, we remark explicitly that:
(a) The compatibility condition for the “localized” datum Fi, i.e.∫

Ωi

Fi(x) dx = 0,

follows immediately from (i) and (iii) of Lemma 14.
(b) If ∂Ω ∈ C0,1 then, by following the proof of [15, Lemma III.3.4], it can be shown that any Ωi, i =

1, . . . , m+p, in the previous lemma may be chosen as star-shaped with respect to any point of some
closed ball contained in it.

(c) If ∂Ω ∈ C2, then the open sets Ωi, i = 1, . . . ,m, may be chosen as the sets ΩPi
in Sect. 2.1, while

the remaining ones are open balls.

The next result, which extends Theorem 13 to a considerably wider class of domains, will now be
obtained by a localization argument.

Theorem 16 (Interior regularity for Lipschitz domains). Let Ω be a bounded open subset of Rn, with
∂Ω ∈ C0,1. Then, for any F ∈ CD(Ω) with

∫
Ω

F (x) dx = 0, there exists a solution u ∈ C1(Ω) ∩ C0(Ω) of
the problem {

div u(x) = F (x) in Ω,
u = 0 on ∂Ω,

verifying for any K ⊂⊂ Ω,

‖v‖C1(K) ≤ c‖F‖CD(Ω),

where the constant c depends only on n, ψ,Ω and dist(K, ∂Ω).
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Proof. Let Ωi and Fi be defined as in Lemma 14 and Remark 15(b), and let ui be the solution in
C1(Ωi) ∩ C0(Rn) of the problem {

div ui(x) = Fi(x) in Ωi,
ui ≡ 0 on �Ωi,

whose existence is ensured by Theorem 13, Lemma 14, and Remark 15(a), (b). Thus, by setting

u(x) =
m+p∑
i=1

ui(x),

one obtains u ∈ C1(Ω) ∩ C0(Rn). Moreover, div u(x) = F (x) and, since ui vanishes on �Ωi, then u = 0
on ∂Ω. The norm estimate follows immediately from the one in Theorem 13, applied to each ui. �

Remark 17. The relevant point is the fact that Ω can be decomposed as a finite union of Ωi, each one
star-shaped with respect to some closed ball contained in it. The Lipschitz regularity of ∂Ω is only a
sufficient condition for it, without any direct relationship with the interior regularity.

Remark 18. The constant in the norm estimate from Theorem 16 does not depend only on diam Ω, but
also on its geometry. In fact, both the number of the star-shaped subsets of its decomposition and the
radii of the closed balls with respect to whose points they are star-shaped are to be taken into account
in the expression of the constant.

4. Classical Solutions Regular up to the Boundary

In this section we prove the main result of the paper, that is the existence of a solution of the divergence
equation regular up to the boundary and vanishing on it, as previously outlined in Theorem 1. Our
approach follows, as far as possible, the classical one for the Poisson equation, which is essentially based
on the following steps: first, a suitable localization, together with a change of variables to reduce the
domain of the problem to a special one, namely a half-ball or a half-cube, while the portion of boundary
under exam is mapped onto a subset of the hyperplane {x ∈ Rn : xn = 0}; next, a separate treatment
of the “tangential” derivatives, as opposed to the “normal” ones in the xn-direction; finally, a suitable
“reflection” of the solution across the hyperplane {x ∈ Rn : xn = 0}, in order to put the portion of
the boundary of interest in the interior and then to be able to take advantage of the already proved
result of regularity at the interior. A favourable feature of the Laplace operator is that the regularity of
any selected second order derivative (namely the “normal” one) may be deduced from those of the other
derivatives and of the datum, simply by using pointwise the equation. On the contrary the particular
structure of the divergence operator, which is non-elliptic, allows to employ a similar argument only for
the “normal” derivative of the “normal” component un of the unknown vector field, requiring an ad hoc
treatment for all the other partial derivatives in the normal direction.

In the former of the following sections it will be established a result of regularity at the boundary for a
half-cube; in the latter, the localization in Lemma 14 and Remark 15, and a standard “flattening” change
of variables are exploited to extend the previous result to the general domain with a C2-boundary.

4.1. The Case of a Half-Cube

Let us define, for a > 0, the cube Qa := (−a, a)n and the upper and lower half-cubes Q+
a := (−a, a)n−1 ×

(0, a) and Q−
a := (−a, a)n−1 × (−a, 0), respectively. Furthermore, we set x′ := (x1, . . . , xn−1).

The object of this section is to prove the following theorem.
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Theorem 19. For any F ∈ CD(Q+
a ) verifying

∫
Q+

a
F (x) dx = 0, and such that suppF ⊂ Q

+

a/2, there exists

a solution u ∈ C1(Q
+

a ) ∩ C0(Rn) of the problem{
div u(x) = F (x) in Q+

a ,
u ≡ 0 on �Q+

a ,

verifying

‖u‖
C1(Q

+
a )

≤ c‖F‖CD(Q+
a ),

where the constant c depends only on n, ψ, a.

The proof will be postponed until the end of the section, and requires several considerations and
lemmas. We immediately observe that, by (possibly) extending F by zero outside its support and rescaling
the variables as in Theorem 13, we can reduce ourselves to consider only the case where a = 1, and
supp F ⊆ Q

+

1/2.
To this aim, let us define

F ∗(x) :=

{
F (x) in Q

+

1 ,

F (x∗) in Q
−
1 ,

where, as usual, the starred variable x∗ := (x′, xn)∗ = (x′,−xn) denotes that one obtained by reflection
across the {xn = 0} hyperplane. We observe that∫

Q−
1

F ∗(x) dx =
∫

Q+
1

F (x) dx,

and, obviously, if F ∈ CD(Q+
1 ) then F ∗ ∈ CD(Q1), with the same norm.

By the previous Theorem 13, there exists W ∈ C0(Q1) ∩ C1(Q1), such that{
div W = F ∗ in Q1,
W = 0 on ∂Q1.

Thus, we define a vector field w : Q1 → Rn by setting

w(x) :=
(
w1(x), . . . , wn−1(x), wn(x)

)
=

1
2
(
W1(x) + W1(x∗), . . . ,Wn−1(x) + Wn−1(x∗),Wn(x) − Wn(x∗)

)
, (5)

and we observe that it satisfies⎧⎨
⎩

div w = F ∗ in Q1,
w = 0 on ∂Q1,
wn = 0 on

(
(−1, 1)n−1 × {0}),

and hence, by restriction to the upper cube Q+
1 ,⎧⎨

⎩
div w = F in Q+

1 ,
wα = 0 on ∂Q+

1 \((−1, 1)n−1 × {0}), for α = 1, . . . , n − 1,
wn = 0 on ∂Q+

1 .

Therefore, in order to show that there exists a C1(Q
+

1 ) solution of (1), it is enough to subtract from w

any divergence-free vector field φ ∈ C1(Q
+

1 ) such that φ|∂Q+
1

= w|∂Q+
1
. In particular, it is enough to find

a function φ vanishing on ∂Q+
1 \((−1, 1)n−1 × {0}) and verifying, for α = 1, . . . , n − 1,

φα(x′, 0) = wα(x, 0) ∈ C1((−1, 1)n−1) and φn(x′, 0) = 0.

Observe that, since suppwα(x′, 0) ⊂⊂ (−1, 1)n−1, then wα(x′, 0) can be extended by zero and considered
as it belongs to C1

0 (Rn−1).
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One may be tempted to set

Φ̃α(x) := xn(1 − xn)2wα(x′, 0) for α = 1, . . . , n − 1,

φ̃(x) :=

⎛
⎝∂Φ̃1

∂xn
, . . . ,

∂Φ̃n−1

∂xn
,−

n−1∑
β=1

∂Φ̃β

∂xβ

⎞
⎠ .

Observe that Φ̃α vanishes on ∂Q+
1 , for any α = 1, . . . , n − 1. A direct computation shows that φ̃ assumes

the requested value on ∂Q+
1 . Moreover, by the already proved inner regularity of w in Q1, it follows

that ∂xα
∂xn

Φ̃α is continuous and thus, by the Schwarz theorem on mixed derivatives, φ̃ turns out to be
divergence-free. Nevertheless, it is not evident as to whether φ̃ ∈ C1(Q

+

1 ), because the function Φ̃α(x) can
be differentiated, in principle, only one time with respect to x′. To overcome this difficulty, we regularized
each component Φ̃α, for α = 1, . . . , n−1, in such a way that the trace of its normal derivative on {xn = 0}
is equal to wα(x′, 0), by adapting some classical mollification tools as those used in Nečas [23] for the
extension of traces; see also [9,10] for related results about Sobolev spaces.

As above, by applying the rescaling already used in Theorem 13 after a possible extension of wα(x′, 0)
by zero to the whole subspace {xn = 0}, we can reduce ourselves to the case where supp wα(x′, 0) ⊆
(−1/2, 1/2)n−1.

Definition 20 (A compactly supported regular extension to the upper half-plane). Let ρ ∈ C∞
0 (Rn−1) be

such that
∫
Rn−1 ρ(x′) dx′ = 1 and supp ρ ⊂ B(0, 1). Moreover, let θ ∈ C2(R) be such that θ(0) = 1 and

θ(t) = 0 for t ≥ 1
2 . We define Φα : Rn−1 × [0,+∞) → R by setting

Φα(x′, xn) :=

{
θ(xn)

xn−2
n

∫
Rn−1 wα(y′, 0) ρ

(
x′−y′

xn

)
dy′ for xn > 0,

0 for xn = 0.

We observe that

Φα(x) = xn θ(xn) (wα(·, 0) ∗ ρxn
(·))(x′) for xn > 0,

where the symbol “∗” denotes the convolution operator in Rn−1 and, for any function g defined on Rn−1

and any ε > 0, we use the standard notation gε(x′) := 1
εn−1 g

(
x′
ε

)
. We recall the following elementary

result on convolutions, which we will use extensively.

Lemma 21. Let f ∈ C0
0 (Rn−1) and g ∈ C∞

0 (Rn−1). Then:

supp(f ∗ g) ⊆ supp f + supp g,

lim
ε→0+

(f ∗ gε)(x′) = f(x′)
∫
Rn−1

g(y′) dy′ uniformly on Rn−1,

|(f ∗ gε)(x′)| ≤ c ‖f‖∞ and | lim
ε→0+

(f ∗ gε)(x′)| ≤ c ‖f‖∞ ∀x′ ∈ Rn−1,

where c = ‖g‖1.

The next lemma provides the required regular extension of the boundary data and a bound for its
norm.

Lemma 22. For α = 1, . . . , n − 1 it holds Φα ∈ C2(Rn−1 × [0,+∞)), supp Φα ⊂ Q
+

1 , and the vector field

φ :=

⎛
⎝∂Φ1

∂xn
, . . . ,

∂Φn−1

∂xn
,−

n−1∑
β=1

∂Φβ

∂xβ

⎞
⎠ ,
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verifies

φ ∈ C1(Q
+

1 ), (6)

div φ = 0 in Q+
1 , (7)

φα(x′, 0) = wα(x′, 0) for α = 1, . . . , n − 1, (8)

φn(x′, 0) = 0, (9)

‖φ‖
C1
(
Q

+
1

) ≤ c ‖w‖C1(Q+
1 ∩{xn=0}), (10)

where w is defined as in Theorem 19, and c is a constant depending only on n, θ, and ρ.

Proof. We observe that, by the standard properties of the mollifiers, it follows that Φα ∈ C∞(Rn−1 ×
(0,+∞)), but the relevant fact is how it behaves as xn → 0+.

From Lemma 21 it follows immediately that Φα ∈ C0(Rn−1 × [0,+∞)), and that supp Φα ⊂ Q+
1 ,

while the fact that div φ vanishes in the interior follows (formally) from direct computation, but it will
be justified only after it will be proved that Φα ∈ C2(Q+

1 ), for α = 1, . . . , n − 1.
First, we consider the tangential derivatives and we have, for xn > 0,

∂xβ
Φα(x′, xn) =

θ(xn)
xn−1

n

∫
Rn−1

wα(y′, 0) ∂xβ
ρ
(x′ − y′

xn

)
dy′

= θ(xn) (wα(·, 0) ∗ ηβ
xn

(·))(x′),
(11)

with ηβ(x′) := ∂xβ
ρ(x′). Since

∫
Rn−1 ηβ(x′) dx′ = 0, by Lemma 21, it follows that

lim
xn→0+

∂xβ
Φα(x′, xn) = 0 = ∂xβ

Φα(x′, 0),

and therefore ∂xβ
Φα(x′, xn) ∈ C0(Rn−1 × [0,+∞)), for α, β = 1, . . . , n − 1, and moreover (9) is satisfied.

For xn > 0, we have by direct computation that

∂xn
Φα(x′, xn) =

θ′(xn)
xn−2

n

∫
Rn−1

wα(y′, 0) ρ
(x′ − y′

xn

)
dy′

+ (2 − n)
θ(xn)
xn−1

n

∫
Rn−1

wα(y′, 0) ρ
(x′ − y′

xn

)
dy′

− θ(xn)
xn−1

n

∫
Rn−1

wα(y′, 0)
n−1∑
β=1

(xβ − yβ

xn

)
∂xβ

ρ
(x′ − y′

xn

)
dy′.

By defining

Ψ(x′) :=
n−1∑
β=1

xβ∂xβ
ρ(x′) =

n−1∑
β=1

xβ ηβ(x′),

we can rewrite the normal derivative as follows

∂xn
Φα(x′, xn) =

[
xnθ′(xn) + (2 − n)θ(xn)

]
(wα(·, 0) ∗ ρxn

(·))(x′)

− θ(xn) (wα(·, 0) ∗ Ψxn
(·))(x′).

(12)

Since, integrating by parts, one gets∫
Rn−1

Ψ(x′) dx′ = −(n − 1)
∫
Rn−1

ρ(x′) dx′ = −(n − 1),

we obtain by Lemma 21 that

lim
xn→0+

∂xn
Φα(x′, xn) =

[
(2 − n)θ(0) − (1 − n)θ(0)

]
wα(x′, 0) = wα(x′, 0),

and then Φ ∈ C1(Rn−1 × [0,+∞)) and (8) holds true.
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Next, we need to prove the continuity of the second order derivatives of Φ to show (6). First, we
consider the second order derivatives different from ∂2

∂x2
n

and, for xn > 0, by using the commutativity of
the convolution operator, we have for all α, β, γ = 1, . . . , n − 1

∂xγ
∂xβ

Φα(x′, xn) =
θ(xn)
xn−1

n

∫
Rn−1

∂xγ
wα(x′ − y′, 0) ∂xβ

ρ
( y′

xn

)
dy′

= θ(xn) (∂xγ
wα(·, 0) ∗ ηβ

xn
(·))(x′), (13)

∂xγ
∂xn

Φα(x′, xn) =
xnθ′(xn)+(2 − n)θ(xn)

xn

∫
Rn−1

∂xγ
wα(x′− y′, 0)ρ

( y′

xn

)
dy′

−θ(xn)
xn−1

n

∫
Rn−1

∂xγ
wα(x′ − y′, 0)Ψ

( y′

xn

)
dy′

=
[
xnθ′(xn) + (2 − n)θ(xn)

]
(∂xγ

wα(·, 0) ∗ ρxn
(·))(x′)

−θ(xn) (∂xγ
wα(·, 0) ∗ Ψxn

(·))(x′), (14)

and they are all continuous up to {xn = 0}, by the C1-regularity of wα(x′, 0). The analogous result about
∂xn

∂xγ
Φα(x′, xn) follows immediately from the Schwarz theorem on mixed derivatives.

Next, by introducing the change of variables y′ = xnz′, we get

(wα(·, 0) ∗ Ψxn
(·))(x′) =

∫
Rn−1

wα(x′ − xn z′, 0)Ψ(z′) dz′,

and

∂xn
∂xn

Φα(x′, xn) =
[
θ′(xn) + xnθ′′(xn) + (2 − n)θ′(xn)

]
(wα(·, 0) ∗ ρxn

(·))(x′)

−θ′(xn) (wα(·, 0) ∗ Ψxn
(·))(x′) +

[
xnθ′(xn) + (2 − n)θ(xn)

]
(wα(·, 0) ∗ Ψxn

(·))(x′)

+θ(xn)
∫
Rn−1

n−1∑
β=1

zβ ∂xβ
wα(x′ − xnz′, 0)Ψxn

(z′) dz′. (15)

Therefore Φα(x′, xn) ∈ C2(Rn−1 × [0,+∞)) for α = 1, . . . , n−1, and thus (6) follows. By the Schwarz
theorem, also (7) follows.

Finally, the estimate (10) follows directly by applying the bounds from Lemma 21 to the expressions
for the first and second order derivatives of Φ in (11), (12), (13), (14), and (15). �

Now, we can get the result of regularity at the boundary for a half-cube as outlined at the beginning
of this section.

Proof of Theorem 19. By setting

u(x) = w(x) − φ(x),

where w is defined as in (5) and φ as in Lemma 22, it follows that u is the aimed classical (of class C1)
solution for the divergence equation vanishing at the boundary and regular up to it.

The estimate follows immediately from those of Theorem 13 and Lemma 22.

We observe that the solution provided by the last theorem is not simply a possibly scaled Bogovskĭı’s
potential for some B and ψ: in fact, it is the difference between a superposition of such a potential and
its “reflected” one, as in a sort of image-charge method in Electrostatics, and a suitable regular extension
of the boundary datum.
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4.2. The Proof of the Main Theorem in the General Case

In order to exploit the results in the previous sections and to prove the main theorem, we first introduce
the hypothesis ∂Ω ∈ C2 and apply Lemma 14 and Remark 15(a) and (c) to get an open covering of
Ω whose members are either balls contained in Ω or sets ΩP = ΩPi

, defined in Sect. 2.1, verifying
∪m

i=1ΩPi
⊇ ∂Ω. Hence, to build up a global solution from the “localized” ones (in the same way we

have obtained it in Sect. 3), it will be sufficient to apply to each of these sets ΩP a well-known regular
change of variables, boundary- and divergence-preserving. It transforms each ΩP into a half-cube where,
by Theorem 19, we have a regular solution, and then we transform it back to obtain the aimed “localized”
regular solution. The argument is well-known but some details in the classical setting are worth to be
emphasized, especially to deduce the requested regularity on the boundary of the domain.

To this purpose, fix Ξ := AP (ΩP − P ) as in Sect. 2.1. By the same divergence-preserving rescaling
used in Theorem 13 we may assume RP = 1. Now, let us define the smooth transformation T : Ξ → Q+

1

by setting

y = T (x) :=
(
x′, xn − h(x′)

)
,

where we have set h := hP . The map T is invertible, its inverse being

x = T−1(y) =
(
y′, yn + h(y′)

)
.

Observe that both T, T−1 have Jacobian determinant equal to 1 and therefore, for any given f : Ξ → R,
if one defines f̃ : Q+

1 → R by setting

f̃(y) := f(T−1(y)),

it follows immediately that ∫
Q+

1

f̃(y) dy =
∫

Ξ

f(x) dx.

Thus, given F ∈ CD(Ξ) such that
∫
Ξ

F (x) dx = 0, it follows immediately∫
Q+

1

F̃ (y) dy = 0,

while, to show that F̃ ∈ CD(Q+
1 ), it would be enough to prove that the mapping T−1 : Q+

1 → Ξ is
α-Hölder continuous for some α > 0 (see, for instance, [2, Lemma 4.1]). Since we are actually assuming
that ∂Ω ∈ C2, we have immediately that |∇h(x)| is bounded and therefore

ω(F̃ , ρ) ≤ ω(F, ‖∇h‖∞ ρ),

which proves that F̃ ∈ CD(Q+
1 ).

Hence, it is possible to apply Theorem 19, which provides a solution ũ ∈ C1(Q
+

1 ) ∩ C0(Rn) of the
problem {

divy ũ(y) = F̃ (y) in Q+
1 ,

ũ ≡ 0 on �Q+
1 ,

where we denote by divy the divergence operator with respect to the variables y = (y′, yn). Observe also
that supp ũ ⊂ Q

+

1 .
Now, we need to transform back the vector field ũ to find a solution in Ξ. Vector fields u : Ξ → Rn

are transformed in the “covariant” way into ũ : Q+
1 → Rn (where x = T−1(y)) as follows:{

ũα(y) := uα(x) for α = 1, . . . , n − 1,

ũn(y) := un(x) −∑n−1
β=1 uβ(x) ∂xβ

h(x′).
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Analogously, the inverse transformation (where y = T (x)) is given by{
uα(x) = ũα(y) for α = 1, . . . , n − 1,

un(x) = ũn(y) +
∑n−1

β=1 ũβ(y) ∂xβ
h(y′). (16)

We observe that

divx u(x) =
n∑

j=1

∂xj
uj(x)

=
n−1∑
α=1

∂xα
ũα(T (x)) + ∂xn

(
ũn(T (x)) +

n−1∑
β=1

ũβ(T (x)) ∂xβ
h(x′)

)

=
n−1∑
α=1

∂αũα(y) −
n−1∑
α=1

∂αh(y′) ∂nũα(y)

+ ∂nũn(y) +
n−1∑
β=1

∂βh(y′) ∂nũβ(y) =
n∑

j=1

∂yj
ũj(y)

= divy ũ(y),

where h(y′) = h(x′), since the transformation T is the identity on the first n − 1 variables.
Furthermore, the “lower boundary” of the domain Ξ, that is the set{

x = (x′, xn) ∈ Rn : x′ ∈ (−1, 1)n−1 and xn = h(x′)
}

,

is mapped on (−1, 1)n−1 × {0}, the lower face of the cube Q+
1 , and since

ũ(y′, 0) = 0 implies u(x′, xn − h(x′)) = 0,

then the vector u satisfies u|∂Ω = 0.
Thus, being u defined by (16), in order to get the regularity up to the boundary of u it will be sufficient

to recall that h ∈ C2
(
(−1, 1)n−1

)
.

Now, in order to pass from the local coordinates in each set ΩPi
, i = 1, . . . ,m, to the global ones

in the original domain Ω, one can apply to each of them the inverse of the rotation and the translation
introduced in Sect. 2.1, which preserve regularity, divergence, and boundary values. Finally, we observe
that, by (16), the C1-norm of u on ΩPi

is bounded by the C1-norm of ũ on [−RPi
, RPi

]n−1, multiplied
by a constant depending on the C2-norm of hPi

. Since, by (5), the C1-norm of ũ is bounded in turn by
the CD-norm of Fi it follows that

‖u‖C1(ΩPi
) ≤ c ‖Fi‖CD(Ω),

and Theorem 1 follows by localization.

Remark 23. The estimate in Theorem 1 is a consequence of those in all the previous regularity results.
It follows that the constant appearing there depends on the dimension n, the diameter and the geometry
of Ω and its boundary, and the functions ψ used to define the local Bogovskĭı’s potentials occurring in
the construction of the provided global solution.
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[24] Petrini, H.: Les dérivées premières et secondes du potential logarithmique. J. Math. Pures Appl. 6(6), 127–223 (1909)
[25] Shapiro, V.L.: Generalized and classical solutions of the nonlinear stationary Navier–Stokes equations. Trans. Am.

Math. Soc. 216, 61–79 (1976)
[26] Tartar, L.: Topics in nonlinear analysis. In: Publications Mathématiques d’Orsay 78, vol. 13. Université de Paris-Sud,
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