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Abstract. We consider the large time behavior of the Navier–Stokes flow past a rigid body in R
n with n ≥ 3. We first

construct a small stationary solution possessing the optimal summability at spatial infinity, which is the same as that of
the Oseen fundamental solution. When the translational velocity of the body gradually increases and is maintained after
a certain finite time, we then show that the nonstationary fluid motion converges to the stationary solution corresponding
to a small terminal velocity of the body as time t → ∞ in Lq with q ∈ [n,∞]. This is called Finn’s starting problem
and the three-dimensional case was affirmatively solved by Galdi et al. (Arch Ration Mech Anal 138: 307–318, 1997). The
present paper extends Galdi et al. (1997) to the case of higher dimensions. Even for the three-dimensional case, our theorem
provides new convergence rate, that is determined by the summability of the stationary solution at infinity and seems to
be sharp.
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1. Introduction and Main Results

We consider a viscous incompressible flow past a rigid body O ⊂ R
n (n ≥ 3). We suppose that O is

translating with a velocity −ψ(t)ae1, where a > 0, e1 = (1, 0, · · · , 0)� and ψ is a function on R describing
the transition of the translational velocity in such a way that

ψ ∈ C1(R;R), |ψ(t)| ≤ 1 for t ∈ R, ψ(t) = 0 for t ≤ 0, ψ(t) = 1 for t ≥ 1. (1.1)

Here and hereafter, (·)� denotes the transpose. We take the frame attached to the body, then the fluid
motion which occupies the exterior domain D = R

n\O with C2 boundary ∂D and is started from rest
obeys

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u

∂t
+ u · ∇u = Δu − ψ(t)a

∂u

∂x1
− ∇p, x ∈ D, t > 0,

∇ · u = 0, x ∈ D, t ≥ 0,
u|∂D = −ψ(t)ae1, t > 0,

u → 0 as |x| → ∞,
u(x, 0) = 0, x ∈ D.

(1.2)

Here, u = (u1(x, t), · · · , un(x, t))� and p = p(x, t) denote unknown velocity and pressure of the fluid,
respectively. Since ψ(t) = 1 for t ≥ 1, the large time behavior of solutions is related to the stationary
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problem
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

us · ∇us = Δus − a
∂us

∂x1
− ∇ps, x ∈ D,

∇ · us = 0, x ∈ D,
us|∂D = −ae1,

us → 0 as |x| → ∞.

(1.3)

When n = 3, the pioneering work due to Leray [27] provided the existence theorem for weak solution to
problem (1.3), what is called D-solution, having finite Dirichlet integral without smallness assumption
on data. From the physical point of view, solutions of (1.3) should reflect the anisotropic decay structure
caused by the translation, but his solution had little information about the behavior at large distances.
To fill this gap, Finn [11–14] introduced the class of solutions with pointwise decay property

us(x) = O(|x|− 1
2−ε) as |x| → ∞ (1.4)

for some ε > 0 and proved that if a is small enough, (1.3) admits a unique solution satisfying (1.4) and
exhibiting paraboloidal wake region behind the body O. He called the Navier–Stokes flows satisfying (1.4)
physically reasonable solutions. It is remarkable that D-solutions become physically reasonable solutions
no matter how large a would be, see Babenko [2], Galdi [18] and Farwig and Sohr [10]. Galdi developed
the Lq-theory of the linearized system, that we call the Oseen system, to prove that every D-solution has
the same summability as the one of the Oseen fundamental solution without any smallness assumption,
see [19, Theorem X.6.4]. It is not straightforward to generalize his result to the case of higher dimensions
and it remains open whether the same result holds true for n ≥ 4. We also refer to Farwig [9] who gave
another outlook on Finn’s results by using anisotropically weighted Sobolev spaces, and to Shibata [31]
who developed the estimates of physically reasonable solutions and then proved their stability in the L3

framework when a is small. There is less literature concerning the problem (1.3) for the case n ≥ 4. When
n ≥ 3, Shibata and Yamazaki [32] constructed a solution us, which is uniformly bounded with respect to
small a ≥ 0 in the Lorentz space Ln,∞, and investigated the behavior of us as a → 0. If, in particular,
n ≥ 4 and if a ≥ 0 is sufficiently small, they also derived

us ∈ L
n

1+ρ1 (D) ∩ L
n

1−ρ2 (D), ∇us ∈ L
n

2+ρ1 (D) ∩ L
n

2−ρ2 (D) (1.5)

for some 0 < ρ1, ρ2 < 1, see [32, Remark 4.2].
Let us turn to the initial value problem. Finn [12] conjectured that (1.2) admits a solution which

tends to a physically reasonable solution as t → ∞ if a is small enough. This is called Finn’s starting
problem. It was first studied by Heywood [21], in which a stationary solution is said to be attainable if
the fluid motion converges to this solution as t → ∞. Later on, by using Kato’s approach [24] (see also
Fujita and Kato [15]) together with the Lq-Lr estimates for the Oseen initial value problem established
by Kobayashi and Shibata [26], Finn’s starting problem was affirmatively solved by Galdi et al. [20]. After
that, Hishida and Maremonti [23] constructed a sort of weak solution u that enjoys

‖u(t) − us‖∞ = O(t−
1
2 ) as t → ∞ (1.6)

if a is small, but u(·, 0) ∈ L3(D) can be large. Here and hereafter, ‖ · ‖q denotes the norm of Lq(D).
Although we concentrate ourselves on attainability in this paper, stability of stationary solutions was
also studied by Shibata [31], Enomoto and Shibata [8] and Koba [25] in the Lq framework. Those work
except [8] studied the three-dimensional exterior problem, while [8] showed the stability of a stationary
solution satisfying (1.5) for some 0 < ρ1, ρ2 < 1 in n-dimensional exterior domains with n ≥ 3. Stability
of physically reasonable solutions in 2D is much more involved for several reasons and it has been recently
proved by Maekawa [29].

The aim of this paper is two-fold. The first one is to construct a small stationary solution possessing
the optimal summability at spatial infinity, which is the same as that of the Oseen fundamental solution
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E:

E ∈ Lq({x ∈ R
n | |x| > 1}), q >

n + 1
n − 1

, ∇E ∈ Lr({x ∈ R
n | |x| > 1}), r >

n + 1
n

, (1.7)

see Galdi [19, Section VII]. As already mentioned above, this result is well known in three-dimensional
case even for large a > 0, but it is not found in the literature for higher dimensional case n ≥ 4. Our
theorem covers the three-dimensional case as well and the proof is considerably shorter than the one
given by authors mentioned above since we focus our interest only on summability at infinity rather
than anisotropic pointwise estimates. The second aim is to give an affirmative answer to the starting
problem as long as a is small enough, that is, to show the attainability of the stationary solution obtained
above. The result extends Galdi, Heywood and Shibata [20] to the case of higher dimensions. Even for
the three-dimensional case, our theorem not only recovers [20] but also provides better decay properties,
for instance,

‖u(t) − us‖∞ = O(t−
1
2− ρ

2 ) as t → ∞ (1.8)

for some ρ > 0, that should be compared with (1.6). This is because the fluid is initially at rest and
because the three-dimensional stationary solution us belongs to Lq(D) with q < 3; to be precise, since
q can be close to 2, one can take ρ close to 1/2 in (1.8). Due to the Lq-Lr estimates of the Oseen
semigroup established by Kobayashi and Shibata [26], Enomoto and Shibata [7,8], see Proposition 3.1,
this decay rate is sharp in view of presence of us, see (1.19), in forcing terms of the Eq. (1.18) for the
perturbation. Our result can be also compared with [34] by the present author on the starting problem
in which translation is replaced by rotation of the body O ⊂ R

3. Under the circumstance of [34], the
optimal spatial decay of stationary solutions observed in general is the scale-critical rate O(|x|−1), so that
they cannot belong to Lq(D) with q ≤ 3 = n, and therefore, we have no chance to deduce (1.8). Another
remark is that, in comparison with stability theorem due to [8] for n ≥ 3, more properties of stationary
solutions are needed to establish the attainability theorem. Therefore, those properties must be deduced
in constructing a solution of (1.3).

Let us state the first main theorem on the existence and summability of stationary solutions.

Theorem 1.1. Let n ≥ 3. For every (α1, α2, β1, β2) satisfying

n + 1
n − 1

< α1 ≤ n + 1 ≤ α2 <
n(n + 1)

2
,

n + 1
n

< β1 ≤ n + 1
2

≤ β2 <
n(n + 1)

n + 2
, (1.9)

there exists a constant δ = δ(α1, α2, β1, β2, n,D) ∈ (0, 1) such that if

0 < a
n−2
n+1 < δ,

problem (1.3) admits a unique solution us along with

‖us‖α1 + ‖us‖α2 ≤ Ca
n−1
n+1 , ‖∇us‖β1 + ‖∇us‖β2 ≤ Ca

n
n+1 , (1.10)

where C > 0 is independent of a.

The upper bounds of α2 and β2 come from (2.2) with q < n/2 in Proposition 2.1 on the Lq-theory of
the Oseen system, whereas the lower bounds of α1 and β1 are just (1.7).

For the proof of Theorem 1.1, we define a certain closed ball N and a contraction map Ψ : N � v �→
u ∈ N which provides the solution to the problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δu − a
∂u

∂x1
= ∇p + v · ∇v, x ∈ D,

∇ · u = 0, x ∈ D,
u|∂D = −ae1,

u → 0 as |x| → ∞.

(1.11)

In doing so, we rely on the Lq-theory of the Oseen system developed by Galdi [19, Theorem VII.7.1], see
Proposition 2.1, which gives us sharp summability estimates of solutions at infinity together with explicit
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dependence on a > 0. As long as we only use Proposition 2.1, the only space in which estimates of Ψ are
closed is

{u ∈ Ln+1(D) | ∇u ∈ L
n+1
2 (D)}.

From this, we can capture neither the optimal summability at infinity nor regularity required in the study
of the starting problem. We thus use at least two spaces Lαi(D) (i = 1, 2) for u and Lβi(D) (i = 1, 2) for
∇u, and intend to find a solution within a closed ball N of

{u ∈ Lα1(D) ∩ Lα2(D) | ∇u ∈ Lβ1(D) ∩ Lβ2(D)}. (1.12)

However, it is not possible to apply Proposition 2.1 to f = v · ∇v with

v ∈ Lα1(D), ∇v ∈ Lβ1(D) (1.13)

or

v ∈ Lα2(D), ∇v ∈ Lβ2(D) (1.14)

if α1 and β1 are simultaneously close to (n+1)/(n− 1) and (n+1)/n, or if α2 and β2 are simultaneously
close to n(n + 1)/2 and n(n + 1)/(n + 2), because the relation

2
n

<
1
α2

+
1
β2

<
1
α1

+
1
β1

< 1

required in the linear theory, see Proposition 2.1, is not satisfied. In order to overcome this difficulty,
given (α1, α2, β1, β2) satisfying (1.9), we choose auxiliary exponents (q1, q2, r1, r2) fulfilling

α1 ≤ q1 ≤ q2 ≤ α2, β1 ≤ r1 ≤ r2 ≤ β2,
2
n

<
1
qi

+
1
ri

< 1, i = 1, 2

such that the application of Proposition 2.1 to f = v · ∇v with v ∈ Lq1(D) and ∇v ∈ Lr1(D) (resp.
v ∈ Lq2(D) and ∇v ∈ Lr2(D)) recovers (1.13) (resp. (1.14)) with u.

Another possibility to prove Theorem 1.1 is combining Proposition 2.1 with the Sobolev inequality. We
then get a solution (us, ps) ∈ Xq(n) for all q ∈ (1,∞) with n/3 ≤ q ≤ (n + 1)/3, where Xq(n) is defined
in Proposition 2.1. The restriction n/3 ≤ q ≤ (n + 1)/3 is removed by applying a bootstrap argument
to decrease the lower bound to 1 and to increase the upper bound to n/2. As compared with this way,
in our proof, we do not any use a bootstrap argument and directly construct a solution possessing the
optimal summability at infinity as well as regularity required in the study of the starting problem.

Let us proceed to the starting problem. To study the attainability of the stationary solution us of
class (1.12) with (α1, α2, β1, β2) satisfying (1.9), it is convenient to set

α1 =
n

1 + ρ1
, α2 =

n

1 − ρ2
, β1 =

n

2 + ρ3
, β2 =

n

2 − ρ4
(1.15)

with (ρ1, ρ2, ρ3, ρ4) satisfying

0 < ρ1 <
n2 − 2n − 1

n + 1
,

1
n + 1

≤ ρ2 <
n − 1
n + 1

, 0 < ρ3 <
n2 − 2n − 2

n + 1
,

2
n + 1

≤ ρ4 <
n

n + 1
(1.16)

and we need the additional condition

ρ2 + ρ4 > 1. (1.17)

We note that the set of those parameters is nonvoid. It is reasonable to look for a solution to (1.2) of the
form

u(x, t) = v(x, t) + ψ(t)us, p(x, t) = φ(x, t) + ψ(t)ps.
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Then the perturbation (v, φ) satisfies the following initial boundary value problem
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂v

∂t
= Δv − a

∂v

∂x1
− v · ∇v − ψ(t)v · ∇us − ψ(t)us · ∇v + (1 − ψ(t))a

∂v

∂x1
+h1(x, t) + h2(x, t) − ∇φ, x ∈ D, t > 0,

∇ · v = 0, x ∈ D, t ≥ 0,
v|∂D = 0, t > 0,

v → 0 as |x| → ∞,
v(x, 0) = 0, x ∈ D,

(1.18)

where

h1(x, t) = −ψ′(t)us, (1.19)

h2(x, t) = ψ(t)
(
1 − ψ(t)

)(
us · ∇us + a

∂us

∂x1

)
. (1.20)

In what follows, we study the problem (1.18) instead of (1.2). In fact, if we obtain the solution v of (1.18)
which converges to 0 as t → ∞, the solution u of (1.2) converges to us as t → ∞. Problem (1.18) is
converted into

v(t) =
∫ t

0

e−(t−τ)AaP
[

− v · ∇v − ψ(τ)v · ∇us − ψ(τ)us · ∇v

+
(
1 − ψ(τ)

)
a

∂v

∂x1
+ h1(τ) + h2(τ)

]
dτ (1.21)

by using the Oseen semigroup e−tAa (see Section 3) as well as the Fujita–Kato projection P from Lq(D)
onto Lq

σ(D) associated with the Helmholtz decomposition (see Fujiwara and Morimoto [16], Miyakawa
[30] and Simader and Sohr [33]):

Lq(D) = Lq
σ(D) ⊕ {∇p ∈ Lq(D) | p ∈ Lq

loc(D)} (1 < q < ∞).

Here,

Lq
σ(D) = C∞

0,σ(D)
‖·‖q

, C∞
0,σ(D) = {u ∈ C∞

0 (D)n | ∇ · u = 0}.

We are now in a position to give the second main theorem on attainability of stationary solutions.

Theorem 1.2. Let n ≥ 3 and let ψ be a function on R satisfying (1.1). We set M = max
t∈R

|ψ′(t)|. Suppose
that ρ1, ρ2, ρ3 and ρ4 satisfy (1.16)–(1.17) and let δ be the constant in Theorem 1.1 with (1.15). Then
there exists a constant ε = ε(n,D) ∈ (0, δ] such that if

0 < (M + 1)a
n−2
n+1 < ε,

Equation (1.21) admits a unique solution v within the class

Y0 :=
{
v ∈ BC([0,∞);Ln

σ(D)) | t
1
2 v ∈ BC((0,∞);L∞(D)), t

1
2 ∇v ∈ BC((0,∞);Ln(D)),

lim
t→0

t
1
2
(‖v(t)‖∞ + ‖∇v(t)‖n

)
= 0

}
. (1.22)

Moreover, we have the following.
1. (sharp decay) Let n = 3. Then there exists a constant ε∗ = ε∗(D) ∈ (0, ε] such that if 0 <

(M + 1)a1/4 < ε∗, the solution v enjoys decay properties

‖v(t)‖q = O(t−
1
2+

3
2q − ρ1

2 ), 3 ≤ ∀q ≤ ∞, (1.23)

‖∇v(t)‖3 = O(t−
1
2− ρ1

2 ) (1.24)

as t → ∞.
Let n ≥ 4 and suppose that ρ3 > 1 and 1 < ρ1 ≤ 1 + ρ3 in addition to (1.16) (the set of those
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parameters is nonvoid when n ≥ 4 ). Then there exists a constant ε∗ = ε∗(n,D) ∈ (0, ε] such that if
0 < (M + 1)a(n−2)/(n+1) < ε∗, the solution v enjoys

‖v(t)‖q = O(t−
1
2+

n
2q − ρ1

2 ), n ≤ ∀q ≤ ∞, (1.25)

‖∇v(t)‖n = O(t−
1
2− ρ1

2 ) (1.26)

as t → ∞.
2. (Uniqueness) There exists a constant ε̂ = ε̂(n,D) ∈ (0, ε] such that if 0 < (M+1)a(n−2)/(n+1) < ε̂,

the solution v obtained above is unique even within the class

Y := {v ∈ BC([0,∞);Ln
σ(D)) | t

1
2 v ∈ BC((0,∞);L∞(D)), t

1
2 ∇v ∈ BC((0,∞);Ln(D))}. (1.27)

For the sharp decay properties (1.23)–(1.26), the key step is to prove the Ln-decay of the solution,
that is,

‖v(t)‖n = O(t−
ρ1
2 ) (1.28)

as t → ∞. Once we have (1.28), the other decay properties can be derived by the similar argument to
[8]. Note that the condition ρ1 ≤ 1 + ρ3 is always fulfilled and thus redundant for n = 3 since ρ1 < 1/2
and ρ3 < 1/4. On the other hand, it is enough for n ≥ 4 to consider the case ρ1, ρ3 > 1. To prove (1.28),
we first derive slower decay

‖v(t)‖n = O(t−
ρ
2 )

with some ρ ∈ (0, 1) by making use of us ∈ Ln/(1+ρ1)(D) and ∇us ∈ Ln/(2+ρ3)(D), see Lemma 3.6 in
Section 3. When n = 3, one can take ρ := min{ρ1, ρ3}, yielding better decay properties of the other norms
of the solution. With them at hand, we repeat improvement of the estimate of ‖v(t)‖n step by step to
find (1.28). However, this procedure does not work for n ≥ 4 because of ρ1 > 1. In order to get around
the difficulty, our idea is to deduce the Lq0-decay of the solution with some q0 < n, that is appropriately
chosen, see Lemma 3.8. We are then able to repeat improvement of estimates of several terms to arrive at
(1.28), where the argument is more involved than the three-dimensional case above. Finally, to prove the
uniqueness within Y , we employ the idea developed by Brezis [5], which shows that the solution v ∈ Y
necessarily satisfies the behavior as t → 0 in (1.22).

In the next section we introduce the Lq-theory of the Oseen system and then prove Theorem 1.1. The
final section is devoted to the proof of Theorem 1.2.

2. Proof of Theorem 1.1

In order to prove Theorem 1.1, we first recall the result on the Oseen boundary value problem due to
Galdi [19, Theorem VII.7.1], see also Galdi [17] for the first proof of this result.

Proposition 2.1. Let n ≥ 3 and let D ⊂ R
n be an exterior domain with C2 boundary. Suppose a > 0 and

1 < q < (n + 1)/2. Given f ∈ Lq(D) and u∗ ∈ W 2−1/q,q(∂D), problem
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δu − a
∂u

∂x1
= ∇p + f, x ∈ D,

∇ · u = 0, x ∈ D,
u|∂D = u∗,

u → 0 as |x| → ∞

(2.1)

admits a unique (up to an additive constant for p) solution (u, p) within the class

Xq(n) :=
{

(u, p) ∈ L1
loc(D)

∣
∣
∣ u ∈ Ls2(D), ∇u ∈ Ls1(D), ∇2u ∈ Lq(D),

∂u

∂x1
∈ Lq(D), ∇p ∈ Lq(D)

}
,
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where
1
s1

=
1
q

− 1
n + 1

,
1
s2

=
1
q

− 2
n + 1

. (2.2)

Here, by W 2−1/q,q(∂D) we denote the trace space on ∂D from the Sobolev space W 2,q(D) (see, for in-
stance, [1,19]).

If, in particular, a ∈ (0, 1] and q < n/2, then the solution (u, p) obtained above satisfies

a
2

n+1 ‖u‖s2 + a

∥
∥
∥
∥

∂u

∂x1

∥
∥
∥
∥

q

+ a
1

n+1 ‖∇u‖s1 + ‖∇2u‖q + ‖∇p‖q ≤ C
(‖f‖q + ‖u∗‖

W
2− 1

q
,q
(∂D)

)

with a constant C > 0 dependent on q, n and D, however, independent of a.

For later use, we prepare the following lemma. The proof is essentially same as the one of Young’s
inequality for convolution, thus we omit it.

Lemma 2.2. Let R0, d > 0. Assume that 1 ≤ q, s ≤ ∞ and 1/q + 1/s ≥ 1. Suppose u ∈ Lq(Rn) with
suppu ⊂ Bd := {x ∈ R

n | |x| < d} and ρ ∈ Ls(Rn\BR0). Then for all R ≥ R0 + d, ρ ∗ u is well-defined
as an element of Lr(Rn\BR) together with

‖ρ ∗ u‖Lr(Rn\BR) ≤ ‖ρ‖Ls(Rn\BR0 )
‖u‖Lq(Bd),

where ∗ denotes the convolution and 1/r := 1/q + 1/s − 1.

When the external force f is taken from Lq1(D) ∩ Lq2(D) with 1 < q1, q2 < (n + 1)/2 and q1 �= q2, we
can apply Proposition 2.1 to f ∈ Lqi(D) (i = 1, 2). The following tells us that the corresponding solutions
coincide with each other.

Lemma 2.3. Suppose n ≥ 3, 1 < q1, q2 < (n + 1)/2 and f ∈ Lq1(D) ∩ Lq2(D). Let (ui, pi) be a unique
solution obtained in Proposition 2.1 with f ∈ Lqi(D) and u∗ = −ae1. Then u1 = u2.

Proof. We first show that u1 − u2 behaves like the Oseen fundamental solution E at large distances. We
fix R0 > 0 satisfying R

n\D ⊂ BR0 . Let ζ ∈ C∞(Rn) be a cut-off function such that ζ(x) = 0 for |x| ≤ R0,
ζ(x) = 1 for |x| ≥ R0 + 1, and set

u(x) := u1(x) − u2(x), p(x) := p1(x) − p2(x),

v(x) := ζ(x)u(x) − B[u · ∇ζ], π(x) := ζ(x)p(x).

Here, B is the Bogovskĭı operator defined on the domain BR0+1\BR0 , see Bogovskĭı [3], Borchers and
Sohr [4] and Galdi [19]. Then we have

−Δv + a
∂v

∂x1
+ ∇π = g(x), ∇ · v = 0 in S ′(Rn), (2.3)

where S ′(Rn) is the set of tempered distributions on R
n and

g(x) = −(Δζ)u − 2(∇ζ · ∇)u + a
∂ζ

∂x1
u + p∇ζ +

(
Δ − a

∂

∂x1

)
B[u · ∇ζ].

For (2.3) with g = 0, we have supp v̂ ⊂ {0} and supp π̂ ⊂ {0}, where (̂·) denotes the Fourier transform.
We thus find

v(x) =
∫

Rn

E(x − y)g(y) dy + P (x), π(x) = C(n)
∫

Rn

x − y

|x − y|n · g(y) dy + Q(x)

with some polynomials P (x), Q(x) and some constant C(n). In view of v ∈ L( 1/q1−2/(n+1) )−1
(Rn)

+L( 1/q2−2/(n+1) )−1
(Rn) and ∇π ∈ Lq1(Rn) + Lq2(Rn), we have P (x) = 0 and Q(x) = p. Here, p is some

constant. Then Lemma 2.2 with

ρ = E, ∇E,
x − y

|x − y|n ,
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u = g, d = R0 + 1, q = 1 and r = s leads us to

u ∈ Lq(Rn\B2R0+1), ∇u ∈ Lr(Rn\B2R0+1), p − p ∈ Ls(Rn\B2R0+1) (2.4)

for all q > (n + 1)/(n − 1), r > (n + 1)/n and s > n/(n − 1), see (1.7).
Let ϕ ∈ C∞[0,∞) be a cut-off function such that ϕ(t) = 1 for t ≤ 1, ϕ(t) = 0 for t ≥ 2, and set

ϕR(x) = ϕ(|x|/R) for R ≥ 2R0 + 1, x ∈ R
n. We note that there exists a constant C > 0 independent of

R such that

‖∇ϕR‖n ≤ C. (2.5)

It follows from

−Δu + a
∂u

∂x1
+ ∇p = 0, ∇ · u = 0 in D, u|∂D = 0

that

0 =
∫

D

{
− Δu + a

∂u

∂x1
+ ∇(p − p)

}
· (ϕRu) dx

=
∫

D

|∇u|2ϕR dx +
∫

R≤|x|≤2R

{
(∇u · ∇ϕR)u − a

2
∂ϕR

∂x1
|u|2 − (p − p)∇ϕR · u

}
dx. (2.6)

Since we can see

|∇u||u|, |u|2, (p − p)|u| ∈ Ln/(n−1)
(
R

n\B2R0+1)

from (2.4), letting R → ∞ in (2.6) yields ‖∇u‖22 = 0 because of (2.5). From this together with u|∂D = 0,
we conclude u1 = u2. �

Proof of Theorem 1.1. Let n ≥ 3 and let (α1, α2, β1, β2) satisfy (1.9). We first choose parameters (q1, q2, r1,
r2) satisfying

n + 1
n − 1

< α1 ≤ q1 ≤ n + 1 ≤ q2 ≤ α2 <
n(n + 1)

2
, (2.7)

n + 1
n

< β1 ≤ r1 ≤ n + 1
2

≤ r2 ≤ β2 <
n(n + 1)

n + 2
, (2.8)

max
{

1
α1

+
2

n + 1
,

1
β1

+
1

n + 1

}

≤ 1
q1

+
1
r1

< 1, (2.9)

2
n

<
1
q2

+
1
r2

≤ min
{

1
α2

+
2

n + 1
,

1
β2

+
1

n + 1

}

. (2.10)

It is actually possible to choose those parameters. In fact, we put

α1 =
n + 1

n − 1 − γ1
, α2 =

n(n + 1)
2 + γ2

, β1 =
n + 1
n − η1

, β2 =
n(n + 1)

n + 2 + η2

with arbitrarily small γi, ηi ∈ (0, n − 2] and look for (q1, q2, r1, r2) of the form

q1 =
n + 1

n − 1 − γ̃1
, q2 =

n(n + 1)
2 + γ̃2

, r1 =
n + 1
n − η̃1

, r2 =
n(n + 1)

n + 2 + η̃2
.

Then the conditions (2.7)–(2.10) are accomplished by

n − 2 < γ̃1 + η̃1 ≤ n − 2 + min{γ1, η1}, n − 2 < γ̃2 + η̃2 ≤ n − 2 + min{γ2, η2},

γi ≤ γ̃i, ηi ≤ η̃i, i = 1, 2.

For each i = 1, 2, the set of (γ̃i, η̃i) with those conditions is nonvoid for given γi and ηi; for instance, we
may take γ̃i = γi, η̃i = n − 2 when γi ≤ ηi and take γ̃i = n − 2, η̃i = ηi when γi ≥ ηi.

To obtain a small solution, we use the contraction mapping principle. We define

B := {u ∈ Lα1(D) ∩ Lα2(D) | ∇u ∈ Lβ1(D) ∩ Lβ1(D)}
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which is a Banach space endowed with the norm

‖u‖B :=
2∑

i=1

(a
2

n+1 ‖u‖αi
+ a

1
n+1 ‖∇u‖βi

).

Given v ∈ B, which satisfies

v · ∇v ∈
2⋂

i=1

Lκi(D),
1
κi

=
1
qi

+
1
ri

, 1 < κi <
n

2

for i = 1, 2, we can employ Proposition 2.1 with f = v · ∇v, q = κi (i = 1, 2) and u∗ = −ae1. Then, due
to Lemma 2.3, the problem (1.11) admits a unique solution (u, p) such that

a
2

n+1 ‖u‖μi
+ a

∥
∥
∥
∥

∂u

∂x1

∥
∥
∥
∥

κi

+ a
1

n+1 ‖∇u‖λi
+ ‖∇2u‖κi

+ ‖∇p‖κi

≤ C ′(‖v · ∇v‖κi
+ a) ≤ C ′(‖v‖qi

‖∇v‖ri
+ a) ≤ C ′(a− 3

n+1 ‖v‖2B + a)

for i = 1, 2. Here, 1/λi = 1/κi − 1/(n + 1), 1/μi = 1/κi − 2/(n + 1). Furthermore, because the conditions
(2.9) and (2.10) ensure μ1 ≤ α1 ≤ α2 ≤ μ2 and λ1 ≤ β1 ≤ β2 ≤ λ2, we find u ∈ B with

‖u‖B ≤ 4C ′(a− 3
n+1 ‖v‖2B + a).

Hence, we assume

a
n−2
n+1 <

1
64C ′2 =: δ (2.11)

and set

Na := {u ∈ B | ‖u‖B ≤ 8C ′a}
to see that the map Ψ : Na � v �→ u ∈ Na is well-defined. Moreover, for vi ∈ Na (i = 1, 2), set ui = Ψ(vi)
and let pi be the pressure associated with ui. Then we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δ(u1 − u2) − a
∂

∂x1
(u1 − u2) = ∇(p1 − p2) + (v1 − v2) · ∇v1 + v2 · ∇(v2 − v1), x ∈ D,

∇ · (u1 − u2) = 0, x ∈ D,
(u1 − u2)|∂D = 0,

u1 − u2 → 0 as |x| → ∞.

By applying Proposition 2.1 again, we find

‖u1 − u2‖B ≤ 4C ′a− 3
n+1 (‖v1‖B + ‖v2‖B)‖v1 − v2‖B ≤ 64C ′2a

n−2
n+1 ‖v1 − v2‖B

and the map Ψ is contractive on account of (2.11). The proof is complete. �

3. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. We define the operator Aa : Lq
σ(D) → Lq

σ(D) (a > 0, 1 < q < ∞)
by

D(Aa) = W 2,q(D) ∩ W 1,q
0 (D) ∩ Lq

σ(D), Aau = −P

[

Δu − a
∂u

∂x1

]

.

Here, W 1,q
0 (D) denotes the completion of C∞

0 (D) in the Sobolev space W 1,q(D). It is well known that
−Aa generates an analytic C0-semigroup e−tAa called the Oseen semigroup in Lq

σ(D), see Miyakawa [30,
Theorem 4.2], Enomoto and Shibata [7, Theorem 4.4]. The following Lq-Lr estimates of e−tAa , which
play an important role in the proof of Theorem 1.2, were established by Kobayashi and Shibata [26] in the
three-dimensional case and further developed by Enomoto and Shibata [7,8] for n ≥ 3. We also note that
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Lq-Lr estimates in the two-dimensional case were first established by Hishida [22], and recently Maekawa
[28] derived those estimates uniformly in small a > 0 as a significant improvement of [22].

Proposition 3.1. [7,8,26] Let n ≥ 3, σ0 > 0 and assume |a| ≤ σ0.
1. Let 1 < q ≤ r ≤ ∞ (q �= ∞). Then we have

‖e−tAaf‖r ≤ Ct−
n
2 ( 1

q − 1
r )‖f‖q (3.1)

for t > 0 and f ∈ Lq
σ(D), where C = C(n, σ0, q, r,D) > 0 is independent of a.

2. Let 1 < q ≤ r ≤ n. Then we have

‖∇e−tAaf‖r ≤ Ct−
n
2 ( 1

q − 1
r )− 1

2 ‖f‖q (3.2)

for t > 0 and f ∈ Lq
σ(D), where C = C(n, σ0, q, r,D) > 0 is independent of a.

3. Let n/(n − 1) ≤ q ≤ r ≤ ∞ (q �= ∞). Then we have

‖e−tAaP∇ · F‖r ≤ Ct−
n
2 ( 1

q − 1
r )− 1

2 ‖F‖q (3.3)

for t > 0 and F ∈ Lq(D), where C = C(n, σ0, q, r,D) > 0 is independent of a.

The proof of the assertion 3 is simply based on duality argument together with semigroup property
especially for the case r = ∞.

We also prepare the following lemma, which plays a role to prove the uniqueness within Y defined by
(1.27).

Lemma 3.2. Let n ≥ 3 and a > 0. For each precompact set K ⊂ Ln
σ(D), we have

lim
t→0

sup
f∈K

t
1
2
(‖e−tAaf‖∞ + ‖∇e−tAaf‖n

)
= 0. (3.4)

Proof. By applying Proposition 3.1 and approximating f ∈ Ln
σ(D) by a sequence in C∞

0,σ(D), we have

lim
t→0

t
1
2
(‖e−tAaf‖∞ + ‖∇e−tAaf‖n

)
= 0 (3.5)

for all f ∈ Ln
σ(D). Given η > 0, let f1, · · · , fm ∈ K fulfill K ⊂

m⋃

j=1

B(fj ; η), where B(fj ; η) := {g ∈

Ln
σ(D) | ‖g − fj‖n < η}. For each f ∈ K, we choose fi ∈ K such that f ∈ B(fi; η). Then it follows from

(3.1) that

t
1
2 ‖e−tAaf‖∞ ≤ t

1
2 ‖e−tAafi‖∞ + t

1
2 ‖e−tAa(f − fi)‖∞

≤ t
1
2 ‖e−tAafi‖∞ + C‖f − fi‖n ≤

m∑

j=1

t
1
2 ‖e−tAafj‖∞ + Cη.

Since the right-hand side is independent of f ∈ K and since η is arbitrary, (3.5) yields

lim
t→0

sup
f∈K

t
1
2 ‖e−tAaf‖∞ = 0.

We can discuss the Ln norm of the first derivative similarly and thus conclude (3.4). �

We recall a function space Y0 defined by (1.22), which is a Banach space equipped with norm ‖ · ‖Y =
‖ · ‖Y,∞, where

‖v‖Y,t := [v]n,t + [v]∞,t + [∇v]n,t,

[v]q,t := sup
0<τ<t

τ
1
2− n

2q ‖v(τ)‖q, q = n,∞; [∇v]n,t := sup
0<τ<t

τ
1
2 ‖∇v(τ)‖n

for t ∈ (0,∞]. Construction of the solution is based on the following.
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Lemma 3.3. Suppose 0 < a(n−2)/(n+1) < δ, where δ is a constant in Theorem 1.1 with (1.15)–(1.17). Let
ψ be a function on R satisfying (1.1) and set M = max

t∈R

|ψ′(t)|. Suppose that us is the stationary solution

obtained in Theorem 1.1. For u, v ∈ Y0, we set

G1(u, v)(t) =
∫ t

0

e−(t−τ)AaP [u · ∇v](τ) dτ, G2(v)(t) =
∫ t

0

e−(t−τ)AaP [ψ(τ)v · ∇us] dτ,

G3(v)(t) =
∫ t

0

e−(t−τ)AaP [ψ(τ)us · ∇v] dτ,

G4(v)(t) =
∫ t

0

e−(t−τ)AaP

[

(1 − ψ(τ))a
∂v

∂x1
(τ)

]

dτ,

H1(t) =
∫ t

0

e−(t−τ)AaPh1(τ) dτ, H2(t) =
∫ t

0

e−(t−τ)AaPh2(τ) dτ,

where h1 and h2 are defined by (1.19) and (1.20), respectively. Then we have G1(u, v), Gi(v),Hj ∈ Y0

(i = 2, 3, 4, j = 1, 2) along with

‖G1(u, v)‖Y,t ≤ C[u]
1
2
n,t[u]

1
2∞,t[∇v]n,t, (3.6)

‖G2(v)‖Y,t ≤ C
(‖∇us‖ n

2+ρ3
+ ‖∇us‖n

2
+ ‖∇us‖ n

2−ρ4

)
[v]∞,t, (3.7)

‖G3(v)‖Y,t ≤ C
(‖us‖ n

1+ρ1
+ ‖us‖n + ‖us‖ n

1−ρ2

)
[∇v]n,t, (3.8)

‖G4(v)‖Y,t ≤ Ca[∇v]n,t, (3.9)

‖H1‖Y,t ≤ CM‖us‖n, (3.10)

‖H2‖Y,t ≤ C
(‖us‖ n

1−ρ2
‖∇us‖ n

2−ρ4
+ a‖∇us‖ n

2−ρ4

)
(3.11)

for all t ∈ (0,∞] and

lim
t→0

‖Hj(t)‖Y,t = 0 (3.12)

for j = 1, 2. Here, C is a positive constant independent of u, v, ψ, a and t.

Proof. The continuity of those functions in t is deduced by use of properties of analytic semigroups
together with Proposition 3.1 in the same way as in Fujita and Kato [15]. Since L∞ estimate is always
the same as Ln estimate of the first derivative, the estimate of [·]∞,t may be omitted. Although (3.6)–(3.8)
are discussed in Enomoto and Shibata [8, Lemma 3.1.] we briefly give the proof for completeness. We
find that u ∈ Y0 satisfies u(t) ∈ L2n(D) and

‖u(t)‖2n ≤ t−
1
4 [u]

1
2
n,t[u]

1
2∞,t

for all t > 0, which together with Proposition 3.1 implies
∫ t

0

‖e−(t−τ)AaP [u · ∇v](τ)‖n dτ ≤ C

∫ t

0

(t − τ)− 1
4 ‖u(τ)‖2n‖∇v(τ)‖n dτ ≤ C[u]

1
2
n,t[u]

1
2∞,t[∇v]n,t

and
∫ t

0

‖∇e−(t−τ)AaP [u · ∇v](τ)‖n dτ ≤ C

∫ t

0

(t − τ)− 3
4 ‖u(τ)‖2n‖∇v(τ)‖n dτ

≤ Ct−
1
2 [u]

1
2
n,t[u]

1
2∞,t[∇v]n,t.

We thus conclude (3.6). It follows from Proposition 3.1 that
∫ t

0

‖e−(t−τ)AaP [ψ(τ)v · ∇us]‖n dτ ≤ C

∫ t

0

(t − τ)− 1
2 ‖v(τ)‖∞‖∇us‖n

2
dτ ≤ C[v]∞,t‖∇us‖n

2
(3.13)
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and that
∫ t

0

‖∇e−(t−τ)AaP [ψ(τ)v · ∇us]‖n dτ ≤ C

∫ t

0

(t − τ)−1+
ρ4
2 ‖v(τ)‖∞‖∇us‖ n

2−ρ4
dτ

≤ Ct−
1
2+

ρ4
2 [v]∞,t‖∇us‖ n

2−ρ4
(3.14)

for t > 0. Furthermore, for t ≥ 2, we split the integral into
∫ t

0

‖∇e−(t−τ)AaP [ψ(τ)v · ∇us]‖n dτ =
∫ t

2

0

+
∫ t−1

t
2

+
∫ t

t−1

(3.15)

as in [6,8]. By applying (3.2), we have
∫ t

2

0

≤ C

∫ t
2

0

(t − τ)−1‖v(τ)‖∞‖∇us‖n
2

dτ ≤ Ct−
1
2 [v]∞,t‖∇us‖n

2
, (3.16)

∫ t−1

t
2

≤ C

∫ t−1

t
2

(t − τ)−1− ρ3
2 ‖v(τ)‖∞‖∇us‖ n

2+ρ3
dτ ≤ Ct−

1
2 [v]∞,t‖∇us‖ n

2+ρ3
, (3.17)

∫ t

t−1

≤ C

∫ t

t−1

(t − τ)−1+
ρ4
2 ‖v(τ)‖∞‖∇us‖ n

2−ρ4
dτ ≤ Ct−

1
2 [v]∞,t‖∇us‖ n

2−ρ4
. (3.18)

Combining (3.13)–(3.18) yields (3.7). By the same manner, we obtain (3.8). We use Proposition 3.1 to
find

∫ t

0

∥
∥
∥
∥∇ke−(t−τ)AaP

[
(
1 − ψ(τ)

)
a

∂v

∂x1

]∥
∥
∥
∥

n

dτ ≤ Ca

∫ min{1,t}

0

(t − τ)− k
2 ‖∇v(τ)‖n dτ

≤ Ca[∇v]n,t

∫ min{1,t}

0

(t − τ)− k
2 τ− 1

2 dτ

for k = 0, 1, which lead us to (3.9). We see (3.10) from
∫ t

0

∥
∥
∥∇ke−(t−τ)AaP [ψ′(τ)us]

∥
∥
∥

n
dτ ≤ CM‖us‖n

∫ min{1,t}

0

(t − τ)− k
2 dτ (3.19)

for k = 0, 1 and (3.11) from
∫ t

0

∥
∥
∥
∥∇ke−(t−τ)AaP

[

ψ(τ)(1 − ψ(τ))
(
us · ∇us + a

∂us

∂x1

)]∥
∥
∥
∥

n

dτ

≤ C‖us‖ n
1−ρ2

‖∇us‖ n
2−ρ4

∫ min{1,t}

0

(t − τ)
ρ2+ρ4

2 −1− k
2 dτ

+ Ca‖∇us‖ n
2−ρ4

∫ min{1,t}

0

(t − τ)− 1
2+

ρ4
2 − k

2 dτ (3.20)

for k = 0, 1, where the condition (1.17) is used. The behavior of G1(u, v)(t) and Gi(v)(t) as well as
the one of Hj(t), see (3.12), as t → 0 follows from (3.6)–(3.9) and (3.19)–(3.20) with t < 1, so that
G1(u, v), Gi(v),Hj ∈ Y0 and ‖G1(u, v)(t)‖n + ‖Gi(v)(t)‖n + ‖Hj(t)‖n → 0 as t → 0. The proof is
complete. �

Let us construct a solution of (1.21) by applying Lemma 3.3.

Proposition 3.4. Let δ be the constant in Theorem 1.1 with (1.15)–(1.17). Let ψ be a function on R

satisfying (1.1) and set M = max
t∈R

|ψ′(t)|. Then there exists a constant ε = ε(n,D) ∈ (0, δ] such that if

0 < (M + 1)a(n−2)/(n+1) < ε, (1.21) admits a solution v ∈ Y0 with

‖v‖Y ≤ C(M + 1)a
n−2
n+1 (3.21)
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and

lim
t→0

‖v(t)‖n = 0. (3.22)

Proof. We set

v0(t) = 0,

vm+1(t) =
∫ t

0

e−(t−τ)AaP
[

− vm · ∇vm − ψ(τ)vm · ∇us − ψ(τ)us · ∇vm + (1 − ψ(τ))a
∂vm

∂x1

+ h1(τ) + h2(τ)
]
dτ (3.23)

for m ≥ 0. It follows from Theorem 1.1, Lemma 3.3 and a ∈ (0, 1) that vm ∈ Y0 together with

‖vm‖Y,t ≤ ‖G1(vm−1, vm−1)‖Y,t +
4∑

i=2

‖Gi(vm−1)‖Y,t + ‖H1‖Y,t + ‖H2‖Y,t, (3.24)

‖vm‖Y ≤ C1‖vm−1‖2Y + C2a
n−2
n+1 ‖vm−1‖Y + C3(M + 1)a

n−2
n+1 ,

‖vm+1 − vm‖Y ≤ {C1(‖vm‖Y + ‖vm−1‖Y ) + C2a
n−2
n+1 }‖vm − vm−1‖Y (3.25)

for all m ≥ 1. Hence, if we assume

(M + 1)a
n−2
n+1 < min

{

δ,
1

2C2
,

1
16C1C3

}

=: ε, (3.26)

it holds that

‖vm‖Y ≤
1 − C2a

n−2
n+1 −

√(
1 − C2a

n−2
n+1 )2 − 4C1C3(M + 1)a

n−2
n+1

2C1
≤ 4C3(M + 1)a

n−2
n+1 ,

‖vm+1 − vm‖Y ≤ {8C1C3(M + 1)a
n−2
n+1 + C2a

n−2
n+1 }‖vm − vm−1‖Y (3.27)

for all m ≥ 1 and that

8C1C3(M + 1)a
n−2
n+1 + C2a

n−2
n+1 < 1.

Therefore, we obtain a solution v ∈ Y0 satisfying (3.21) with C = 4C3. Moreover, by letting m → ∞ in
(3.24) and by using (3.6)–(3.9) and (3.12), we have (3.22), which completes the proof. �

Remark 3.5. Let b ∈ Ln
σ(D). By the same procedure, we can also construct a solution T (t)b := v(t) ∈ Y0

for the integral equation

v(t) = e−tAab +
∫ t

0

e−(t−τ)AaP
[

− v · ∇v − ψ(τ)v · ∇us − ψ(τ)us · ∇v

+ (1 − ψ(τ))a
∂v

∂x1
+ h1(τ) + h2(τ)

]
dτ (3.28)

whenever

‖b‖n + (M + 1)a
n−2
n+1 < min

{

δ,
1

2C2
,

1
16C1C0

,
1

16C1C3

}

is satisfied. Here, the constant C0 is determined by the following three estimates:

‖e−tAab‖q ≤ C0t
− 1

2+
3
2q ‖b‖n, q = n,∞; ‖∇e−tAab‖n ≤ C0t

− 1
2 ‖b‖n.

Moreover, we find that the solution T (t)b is estimated by

‖T (·)b‖Y ≤ 4
(
C0‖b‖n + C3(M + 1)a

n−2
n+1

)
.

This will be used in the proof of uniqueness of solutions within Y , see (1.27).
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We further derive sharp decay properties of the solution v(t) obtained above. To this end, the first
step is the following. In what follows, for simplicity of notation, we write

G1(t) = G1(v, v)(t), Gi(t) = Gi(v)(t)

for i = 2, 3, 4, which are defined in Lemma 3.3.

Lemma 3.6. Let ε be the constant in Proposition 3.4. Given ρ ∈ (0, 1) satisfying ρ ≤ min{ρ1, ρ3}, there
exists a constant ε′ = ε′(ρ, n,D) ∈ (0, ε] such that if 0 < (M +1)a(n−2)/(n+1) < ε′, then the solution v(t)
obtained in Proposition 3.4 satisfies

‖v(t)‖q = O(t−
1
2+

n
2q − ρ

2 ), n ≤ ∀q ≤ ∞, (3.29)

‖∇v(t)‖n = O(t−
1
2− ρ

2 ) (3.30)

as t → ∞.

Proof. We start with the case q = n, that is,

‖v(t)‖n = O(t−
ρ
2 ) (3.31)

as t → ∞. By using (3.1), we have

‖G1(t)‖n ≤ Ct−
ρ
2
(

sup
0<τ<t

τ
1
2 ‖∇v(τ)‖n

)(
sup

0<τ<t
τ

ρ
2 ‖v(τ)‖n

) ≤ Ct−
ρ
2 ‖v‖Y sup

0<τ<t
τ

ρ
2 ‖v(τ)‖n, (3.32)

‖G2(t)‖n ≤ Ct−
ρ3
2 ‖∇us‖ n

2+ρ3
sup

0<τ<t
τ

1
2 ‖v(τ)‖∞ ≤ Ct−

ρ3
2 ‖∇us‖ n

2+ρ3
‖v‖Y (3.33)

and

‖G3(t)‖n ≤ Ct−
ρ1
2 ‖us‖ n

1+ρ1
‖v‖Y (3.34)

for all t > 0. Moreover, we obtain

‖G4(t)‖n ≤ Ca

∫ min{1,t}

0

(t − τ)− 1
2 ‖v(τ)‖n dτ ≤ Cat−

1
2 ‖v‖Y (3.35)

for all t > 0 by use of (3.3). From (3.1) we see that

‖H1(t)‖n ≤ CMt−
ρ1
2 ‖us‖ n

1+ρ1
(3.36)

and that

‖H2(t)‖n ≤ Ct−
2−ρ2

2 ‖us‖ n
1−ρ2

‖∇us‖n
2

+ Cat−
1+ρ3

2 ‖∇us‖ n
2+ρ3

(3.37)

for t > 0. Note that ρ2 < 1, see (1.16). Collecting (3.32)–(3.37) for t > 1 and (3.21) with C = 4C3 yields

sup
0<τ<t

τ
ρ
2 ‖v(τ)‖n ≤ C4‖v‖Y sup

0<τ<t
τ

ρ
2 ‖v(τ)‖n + C5

≤ 4C3C4(M + 1)a
n−2
n+1 sup

0<τ<t
τ

ρ
2 ‖v(τ)‖n + C5

with some constants C4 = C4(ρ) > 0 and C5 = C5(‖v‖Y , us, a,M, ρ1, ρ2, ρ3) > 0 independent of t, where
C3 comes from estimates of Hj(t) (j = 1, 2) in (3.25). Therefore, if we assume

(M + 1)a
n−2
n+1 < min

{
ε,

1
4C3C4

}
=: ε′,

we have ‖v(t)‖n ≤ Ct−ρ/2 for all t > 0, which implies (3.31).
We next show that

‖v(t)‖∞ + ‖∇v(t)‖n = O(t−
1
2− ρ

2 )

as t → ∞, which together with (3.31) implies (3.29) and (3.30). It suffices to show that

t
1
2 ‖v(t)‖∞ + t

1
2 ‖∇v(t)‖n ≤ C

∥
∥
∥v

( t

2

)∥
∥
∥

n
(3.38)
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for all t ≥ 2. The following argument is similar to Enomoto and Shibata [8]. When t ≥ T > 1, we have

v(t) = e−(t−T )Aav(T ) −
∫ t

T

e−(t−τ)AaP
[
v · ∇v + v · ∇us + us · ∇v

]
dτ. (3.39)

By the same argument as in the proof of Lemma 3.3 and by (1.10), (3.26) as well as (3.21) with C = 4C3,
the integral of (3.39) is estimated as

∫ t

T

‖e−(t−τ)AaP [· · · ]‖∞ dτ +
∫ t

T

‖∇e−(t−τ)AaP [· · · ]‖n dτ

≤ C1(t − T )− 1
2

(
sup

T≤τ≤t
‖v(τ)‖n

) 1
2

(
sup

T≤τ≤t
(τ − T )

1
2 ‖v(τ)‖∞

) 1
2

(
sup

T≤τ≤t
(τ − T )

1
2 ‖∇v(τ)‖n

)

+ C2a
n−2
n+1 (t − T )− 1

2
{

sup
T≤τ≤t

(τ − T )
1
2 ‖v(τ)‖∞ + sup

T≤τ≤t
(τ − T )

1
2 ‖∇v(τ)‖n

}

≤ C1(t − T )− 1
2 ‖v‖Y sup

T≤τ≤t
(τ − T )

1
2 ‖∇v(τ)‖n

+
1
2
(t − T )− 1

2
{

sup
T≤τ≤t

(τ − T )
1
2 ‖v(τ)‖∞ + sup

T≤τ≤t
(τ − T )

1
2 ‖∇v(τ)‖n

}

≤ 3
4
(t − T )− 1

2 sup
T≤τ≤t

(τ − T )
1
2 ‖∇v(τ)‖n +

1
2
(t − T )− 1

2 sup
T≤τ≤t

(τ − T )
1
2 ‖v(τ)‖∞.

Therefore, we have

sup
T≤τ≤t

(τ − T )
1
2 ‖∇v(τ)‖n + sup

T≤τ≤t
(τ − T )

1
2 ‖v(τ)‖∞ ≤ C‖v(T )‖n

for all t ≥ T . This combined with t1/2 ≤ √
2(t − T )1/2 for t ≥ 2T asserts that

t
1
2 ‖∇v(t)‖n + t

1
2 ‖v(t)‖∞ ≤ C‖v(T )‖n

for all t ≥ 2T . We then put T = t/2 (t ≥ 2) to conclude (3.38). �

Sharp decay properties (1.23)–(1.24) for the case n = 3 are established in the following proposition.

Proposition 3.7. Let n = 3 and set ε∗ := ε′(ρ, 3,D) which is the constant in Lemma 3.6 with ρ :=
min{ρ1, ρ3} (recall that 0 < ρ1 < 1/2, 0 < ρ3 < 1/4 for n = 3). If 0 < (M + 1)a1/4 < ε∗, then the
solution v(t) obtained in Proposition 3.4 enjoys (1.23) and (1.24).

Proof. The case ρ1 ≤ ρ3 directly follows from Lemma 3.6. To discuss the other case ρ3 < ρ1, we show by
induction that if 0 < (M + 1)a1/4 < ε∗, then

‖v(t)‖3 = O(t−σk), σk := min
{k

2
ρ3,

ρ1
2

}
(3.40)

as t → ∞ for all k ≥ 1. We already know (3.40) with k = 1 from Lemma 3.6.
Let k ≥ 2 and suppose (3.40) with k − 1. By taking (3.21) (near t = 0) and (3.38) into account, we

have

Jk−1(v) := sup
τ>0

(1 + τ)σk−1‖v(τ)‖3 + sup
τ>0

τ
1
2 (1 + τ)σk−1

(‖v(τ)‖∞ + ‖∇v(τ)‖3
)

< ∞.

We use this to see that

‖G1(t)‖3 ≤ C

∫ t

0

(t − τ)− 1
2 τ− 1

2 (1 + τ)−2σk−1 dτ

× (
sup
τ>0

(1 + τ)σk−1‖v(τ)‖3
)(

sup
τ>0

τ
1
2 (1 + τ)σk−1‖∇v(τ)‖3

)

≤ Ct−2σk−1Jk−1(v)2,
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and that

‖G2(t)‖3 ≤ C

∫ t

0

(t − τ)− 1+ρ3
2 τ− 1

2 (1 + τ)−σk−1 dτ ‖∇us‖ 3
2+ρ3

sup
τ>0

τ
1
2 (1 + τ)σk−1‖v(τ)‖∞

≤ Ct−
ρ3
2 −σk−1‖∇us‖ 3

2+ρ3
Jk−1(v)

for t > 0 due to σk−1 ≤ ρ1/2 < 1/4. From these and (3.34)–(3.37), we obtain (3.40) with k. We thus
conclude (1.23) with q = 3, which together with (3.38) completes the proof. �

To derive even more rapid decay properties of the solution v(t) for n ≥ 4, we need the following
lemma, which gives the Lq0-decay of v(t) with a specific q0, see (3.43).

Lemma 3.8. Let n ≥ 4. Suppose 1 < ρ1 ≤ 1 + ρ3 in addition to (1.16) (the set of those parameters is
nonvoid when n ≥ 4). Let ε be the constant in Proposition 3.4 and v(t) the solution obtained there. Given
γ satisfying

max
{

0,
ρ1 + 3 − n

2

}
< γ <

1
2

(3.41)

(note that (1.16) yields ρ1 < n − 2), there exists a constant ε′′ = ε′′(γ, n,D) ∈ (0, ε] such that if 0 <
(M + 1)a(n−2)/(n+1) < ε′′, then v(t) ∈ Lq0(D) for all t > 0 and

sup
τ>0

(1 + τ)γ‖v(τ)‖q0 < ∞, (3.42)

where

q0 :=
n

1 + ρ1 − 2γ
(< n). (3.43)

Proof. We show that there exists a constant ε′′(γ, n,D) ∈ (0, ε] such that if 0 < (M +1)a(n−2)/(n+1) < ε′′,
then vm(t) ∈ Lq0(D) for all t > 0 along with

Km := sup
τ>0

(1 + τ)γ‖vm(τ)‖q0 < ∞, Km ≤ 1
2
Km−1 + C(M + 1)a

n−1
n+1 (3.44)

for all m ≥ 1, where vm(t) is the approximate solution defined by (3.23) and C is a positive constant
independent of a and m. We use (3.1) to see that

∫ t

0

‖e−(t−τ)AaPh1(τ)‖q0 dτ ≤ CM‖us‖ n
1+ρ1

∫ min{1,t}

0

(t − τ)−γ dτ ≤ CM‖us‖ n
1+ρ1

(1 + t)−γ (3.45)

for t > 0. Moreover, it holds that
∫ t

0

∥
∥
∥e−(t−τ)AaP

[
ψ(τ)

(
1 − ψ(τ)

)
a
∂us

∂x1

]∥
∥
∥

q0
dτ ≤ Ca‖∇us‖r

for t ≤ 2, where r := min{n/(2 − ρ4), q0} and that
∫ t

0

∥
∥
∥e−(t−τ)AaP

[
ψ(τ)

(
1 − ψ(τ)

)
a
∂us

∂x1

]∥
∥
∥

q0
dτ ≤ Ca‖∇us‖ n

2+ρ3

∫ 1

0

(t − τ)−γ− 1+ρ3−ρ1
2 dτ

≤ Ca‖∇us‖ n
2+ρ3

t−γ

for t > 2 as well as that
∫ t

0

‖e−(t−τ)AaP [ψ(τ)
(
1 − ψ(τ)

)
us · ∇us]‖q0 dτ ≤ C‖us‖ n

1+κ
‖∇us‖n

2

∫ min{1,t}

0

(t − τ)−1−γ+
ρ1−κ

2 dτ

≤ C‖us‖ n
1+κ

‖∇us‖n
2
(1 + t)−γ

for t > 0, where max{0, ρ1 − 2} < κ < min{n − 3, ρ1 − 2γ} (note that (1.16) yields ρ1 < n − 1). These
estimates imply

∫ t

0

‖e−(t−τ)AaPh2(τ)‖q0 dτ ≤ C(a‖∇us‖r + a‖∇us‖ n
2+ρ3

+ ‖us‖ n
1+κ

‖∇us‖n
2
)(1 + t)−γ
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for t > 0, which together with (3.45) and (1.10) leads us to v1(t) ∈ Lq0(D) for all t > 0 with

K1 ≤ C(M + 1)a
n−1
n+1 . (3.46)

This proves (3.44) with m = 1 since K0 = 0.
Let m ≥ 2 and suppose that vm−1(t) ∈ Lq0(D) for all t > 0 and (3.44) with m − 1. Then we have

G1(vm−1, vm−1)(t) ∈ Lq0(D) for t > 0 with

sup
τ>0

(1 + τ)γ‖G1(vm−1, vm−1)(τ)‖q0 ≤ CKm−1 sup
τ>0

τ
1
2 ‖∇vm−1(τ)‖n. (3.47)

Let t ≥ 2 and split the integral into
∫ t

0

‖e−(t−τ)AaP [ψ(τ)us · ∇vm−1]‖q0 dτ =
∫ t

2

0

+
∫ t−1

t
2

+
∫ t

t−1

.

Let λ ∈ (0, ρ1] satisfy λ < n − 3 + 2γ − ρ1; in fact, we can take such λ due to (3.41). Then (3.3) with
F = vm−1 ⊗ us implies

∫ t
2

0

≤ C

∫ t
2

0

(t − τ)−1‖us‖n‖vm−1(τ)‖q0 dτ ≤ Ct−γ‖us‖nKm−1,

∫ t−1

t
2

≤ C

∫ t−1

t
2

(t − τ)−1− λ
2 ‖us‖ n

1+λ
‖vm−1(τ)‖q0 dτ ≤ Ct−γ‖us‖ n

1+λ
Km−1,

∫ t

t−1

≤ C

∫ t

t−1

(t − τ)−1+
ρ2
2 ‖us‖ n

1−ρ2
‖vm−1(τ)‖q0 dτ ≤ Ct−γ‖us‖ n

1−ρ2
Km−1

for t ≥ 2. Moreover, we use (3.3) again to see that
∫ t

0

‖e−(t−τ)AaP [ψ(τ)us · ∇vm−1]‖q0 dτ ≤ C

∫ t

0

(t − τ)−1+
ρ2
2 ‖us‖ n

1−ρ2
‖vm−1(τ)‖q0 dτ

≤ C‖us‖ n
1−ρ2

Km−1

for t ≤ 2. We thus conclude G3(vm−1)(t) ∈ Lq0(D) for t > 0 with

sup
τ>0

(1 + τ)γ‖G3(vm−1)(τ)‖q0 ≤ C(‖us‖n + ‖us‖ n
1+λ

+ ‖us‖ n
1−ρ2

)Km−1. (3.48)

By the same calculation, we have G2(vm−1)(t) ∈ Lq0(D) for t > 0 with

sup
τ>0

(1 + τ)γ‖G2(vm−1)(τ)‖q0 ≤ C(‖us‖n + ‖us‖ n
1+λ

+ ‖us‖ n
1−ρ2

)Km−1. (3.49)

We also have
∫ t

0

∥
∥
∥e−(t−τ)AaP

[(
1 − ψ(τ)

)
a
∂vm−1

∂x1

]∥
∥
∥

q0
≤ Ca

∫ min{1,t}

0

(t − τ)− 1
2 ‖vm−1(τ)‖q0 dτ

≤ CaKm−1(1 + t)− 1
2 ≤ CaKm−1(1 + t)−γ

for t > 0 by (3.3). This together with (3.46)–(3.49), (1.10) and (3.27) yields vm(t) ∈ Lq0(D) for t > 0 and

Km ≤ C(M + 1)a
n−1
n+1 + C̃1

{(
sup
τ>0

τ
1
2 ‖∇vm−1(τ)‖n

)
+ ‖us‖n + ‖us‖ n

1+λ
+ ‖us‖ n

1−ρ2
+ a

}
Km−1

≤ C(M + 1)a
n−1
n+1 + C̃1(4C3 + C̃2)(M + 1)a

n−2
n+1 Km−1.

Suppose

(M + 1)a
n−2
n+1 < min

{

ε,
1

2C̃1(4C3 + C̃2)

}

=: ε′′,

then we get (3.44) with m and, thereby, conclude

Km ≤ 2C(M + 1)a
n−1
n+1
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for all m ≥ 1. Since we know that ‖vm(t)−v(t)‖n → 0 as m → ∞ for each t > 0, we obtain v(t) ∈ Lq0(D)
for t > 0 with

sup
τ>0

(1 + τ)γ‖v(τ)‖q0 ≤ 2C(M + 1)a
n−1
n+1 < ∞,

which completes the proof. �

In view of Lemmas 3.6 and 3.8, we prove sharp decay properties (1.25)–(1.26) for n ≥ 4.

Proposition 3.9. Let n ≥ 4. Suppose ρ3 > 1 and 1 < ρ1 ≤ 1 + ρ3 in addition to (1.16) (the set of those
parameters is nonvoid when n ≥ 4). Let ε be the constant in Proposition 3.4. There exists a constant
ε∗ = ε∗(n,D) ∈ (0, ε] such that if 0 < (M + 1)a(n−2)/(n+1) < ε∗, then the solution v(t) obtained in
Proposition 3.4 enjoys (1.25) and (1.26).

Proof. Fix 1/2 < ρ < 1 and γ > 0 such that

max
{1

2
− ρ

2
,

ρ1 + 3 − n

2

}
< γ <

1
2
. (3.50)

Let ε′(ρ, n,D) and ε′′(γ, n,D) be the constants in Lemmas 3.6 and 3.8, respectively. We show by induction
that if

(M + 1)a
n−2
n+1 < min{ε′(ρ, n,D), ε′′(γ, n,D)} =: ε∗(n,D),

then v(t) satisfies

‖v(t)‖n = O(t−σk), σk := min
{k

2
ρ,

ρ1
2

}
(3.51)

as t → ∞ for all k ≥ 1. This implies (1.25) with q = n, which together with (3.38) completes the proof.
Since ρ < ρ1, (3.51) with k = 1 follows from Lemma 3.6. We note that σ1 < 1/2 and σk > 1/2 for k ≥ 2.

Let k ≥ 2 and suppose (3.51) with k − 1. Then

Lk−1(v) := sup
τ>0

(1 + τ)σk−1‖v(τ)‖n + sup
τ>0

τ
1
2 (1 + τ)σk−1

(‖v(τ)‖∞ + ‖∇v(τ)‖n

)
< ∞

holds due to (3.21) (near t = 0) as well as (3.38). In what follows, we always assume t ≥ 2. From (3.42),
it follows that

‖G1(t)‖n ≤
∫ t

2

0

(t − τ)− n
2q0 ‖v(τ)‖q0‖∇v(τ)‖n dτ +

∫ t

t
2

(t − τ)− 1
2 ‖v(τ)‖n‖∇v(τ)‖n dτ =: I + II (3.52)

with

I ≤ Ct−
n

2q0
(
sup
τ>0

(1 + τ)γ‖v(τ)‖q0

)
Lk−1(v) ≤ Ct−

ρ1
2

(
sup
τ>0

(1 + τ)γ‖v(τ)‖q0

)
Lk−1(v), (3.53)

where (3.43) and (3.50) are taken into account and

II ≤ Ct−2σk−1Lk−1(v)2. (3.54)

For G2(t), we split the integral into
∫ t

0

‖e−(t−τ)AaP [ψ(τ)v · ∇us]‖n dτ =
∫ t

2

0

+
∫ t−1

t
2

+
∫ t

t−1

.

Then we find
∫ t

2

0

≤ C

∫ t
2

0

(t − τ)− 1+ρ3
2 τ− 1

2 (1 + τ)−σk−1 dτ ‖∇us‖ n
2+ρ3

(
sup
τ>0

τ
1
2 (1 + τ)σk−1‖v(τ)‖∞

)

≤
{

Ct−
ρ3
2 −σk−1‖∇us‖ n

2+ρ3
Lk−1(v) ≤ Ct−σk‖∇us‖ n

2+ρ3
Lk−1(v) if k = 2,

Ct−
1+ρ3

2 ‖∇us‖ n
2+ρ3

Lk−1(v) ≤ Ct−
ρ1
2 ‖∇us‖ n

2+ρ3
Lk−1(v) if k ≥ 3
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and
∫ t−1

t
2

+
∫ t

t−1

≤ Ct−σk−1− 1
2
(‖∇us‖ n

2+ρ3
+ ‖∇us‖n

2

)
Lk−1(v),

where we have used ρ3 > 1 and ρ1 ≤ 1 + ρ3. Estimates above imply that

‖G2(t)‖n ≤ Ct−σk
(‖∇us‖ n

2+ρ3
+ ‖∇us‖n

2

)
Lk−1(v). (3.55)

Similarly, we observe

‖G3(t)‖n ≤ Ct−σk
(‖us‖ n

1+ρ1
+ ‖us‖n

)
Lk−1(v). (3.56)

Moreover, by the same manner as in the proof of Lemma 3.6, we obtain

‖G4(t)‖n ≤ Ct−
n

2q0 sup
τ>0

(1 + τ)γ‖v(τ)‖q0 ≤ Ct−
ρ1
2 sup

τ>0
(1 + τ)γ‖v(τ)‖q0 , (3.57)

‖H1(t)‖n ≤ CMt−
ρ1
2 ‖us‖ n

1+ρ1
, (3.58)

‖H2(t)‖n ≤ Ct−
2+κ
2 ‖us‖ n

1+κ
‖∇us‖n

2
+ Ct−

1+ρ3
2 ‖∇us‖ n

2+ρ3

≤ Ct−
ρ1
2

(‖us‖ n
1+κ

‖∇us‖n
2

+ ‖∇us‖ n
2+ρ3

)
(3.59)

for all t ≥ 2, where κ is chosen such that max{0, ρ1 − 2} < κ < min{n − 3, ρ1}. Collecting (3.52)–(3.59),
we conclude (3.51) with k. The proof is complete. �

We next consider the uniqueness. We begin with the classical result on the uniqueness of solutions
within Y0 as in Fujita and Kato [15].

Lemma 3.10. Let ψ be a function on R satisfying (1.1) and let δ be the constant in Theorem 1.1 with
(1.15)–(1.17). Then there exists a constant ε̃ = ε̃(n,D) ∈ (0, δ] such that if 0 < a(n−2)/(n+1) < ε̃, (1.21)
admits at most one solution within Y0.

Proof. The following argument is based on [15]. Suppose that v, ṽ ∈ Y0 are solutions. Then we have

‖v − ṽ‖Y,t ≤ {
C1

(
[∇v]n,t + [ṽ]

1
2
n,t[ṽ]

1
2∞,t

)
+ C2a

n−2
n+1

}‖v − ṽ‖Y,t, t > 0 (3.60)

by applying (1.10) and Lemma 3.3. If we assume

a
n−2
n+1 < min

{
δ,

1
2C2

}
=: ε̃ (3.61)

and choose t0 > 0 such that

C1

{
[∇v]n,t0 +

(
sup

0<τ<∞
‖ṽ(τ)‖n

) 1
2 [ṽ]

1
2∞,t0

}
<

1
2
,

then (3.60) yields [v − ṽ]Y,t0 = 0. Hence, we conclude v = ṽ on (0, t0] and obtain

v(t) − ṽ(t) =
∫ t

t0

e−(t−τ)AaP
[

− (v − ṽ) · ∇v − ṽ · ∇(v − ṽ) − ψ(τ)(v − ṽ) · ∇us

− ψ(τ)us · ∇(v − ṽ) + (1 − ψ(τ))a
∂

∂x1
(v − ṽ)

]
dτ.

By the same argument as in the proof of Lemma 3.3 together with (1.10), we see that

‖v − ṽ‖Y,t0,t ≤ C∗‖v − ṽ‖Y,t0,t (3.62)
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for all t > t0, where

‖v‖Y,t0,t : = sup
t0≤τ≤t

‖v(τ)‖n + sup
t0≤τ≤t

‖v(τ)‖∞ + sup
t0≤τ≤t

‖∇v(τ)‖n, (3.63)

C∗ = C
[(

t
− 1

2
0 ‖v‖Y + t

− 1
4

0 ‖ṽ‖Y

){
(t − t0)

3
4 + (t − t0)

1
4
}

+ a
n−1
n+1

{
(t − t0)

1
2 + (t − t0)

ρ2
2 + (t − t0)

ρ4
2

}
+ a

{
(t − t0) + (t − t0)

1
2
}]

(3.64)

and the constant C is independent of v, ṽ, t and t0. We choose η > 0 such that

ξ := C
[(

t
− 1

2
0 ‖v‖Y + t

− 1
4

0 ‖ṽ‖Y

)(
η

3
4 + η

1
4
)

+ a
n−1
n+1

(
η

1
2 + η

ρ2
2 + η

ρ4
2

)
+ a

(
η + η

1
2
)]

< 1.

On account of (3.62), we have ‖v − ṽ‖Y,t0,t0+η ≤ ξ‖v − ṽ‖Y,t0,t0+η, which leads us to v = ṽ on [t0, t0 + η].
By the same calculation, we can obtain (3.62)–(3.64), in which t0 should be replaced by t0 + η and hence

‖v − ṽ‖Y,t0+η,t0+2η ≤ C
[{

(t0 + η)− 1
2 ‖v‖Y + (t0 + η)− 1

4 ‖ṽ‖Y

}(
η

3
4 + η

1
4
)

+ a
n−1
n+1

(
η

1
2 + η

ρ2
2 + η

ρ4
2

)
+ a

(
η + η

1
2
)]‖v − ṽ‖Y,t0+η,t0+2η

< ξ‖v − ṽ‖Y,t0+η,t0+2η

holds. This implies v = ṽ on [t0 + η, t0 + 2η]. Repeating this procedure, we conclude v = ṽ. �

Remark 3.11. It is clear that the Eq. (3.28) admits at most one solution within Y0 under the same
condition as in Lemma 3.10.

Let us close the paper with completion of the proof of Theorem 1.2.

Proof of Theorem 1.2. Since we know ε ≤ ε̃ from (3.26) and (3.61), Proposition 3.4 and Lemma 3.10
yield the unique existence of solutions in Y0 when (M + 1)a(n−2)/(n+1) < ε. Moreover, Propositions 3.7
and 3.9 give us sharp decay properties of the solution provided a is still smaller. We finally show the
uniqueness of the solution constructed above within Y by following the argument due to Brezis [5]. It
suffices to show that if v ∈ Y is a solution, it necessarily satisfies

lim
t→0

[v]t = 0, (3.65)

where

[v]t := sup
0<τ<t

τ
1
2 (‖v(τ)‖∞ + ‖∇v(τ)‖n).

We assume

(M + 1)a
n−2
n+1 < min

{

δ,
1

2C2
,

1
16C1C0

,
1

16C1C3

}

=: ε̂(n,D) (≤ ε) (3.66)

and let v ∈ Y be a solution. Here, the constants Ci are as in Remark 3.5 as well as in the proof of
Proposition 3.4. Since v ∈ BC([0,∞);Ln

σ(D)) with v(0) = 0, there exists s0 > 0 such that

‖v(s)‖n + (M + 1)a
n−2
n+1 < ε̂

for all 0 < s ≤ s0. Hence by Remark 3.5, the integral equation (3.28) with b = v(s) admits a solution
T (t)v(s) ∈ Y0 along with

‖T (·)v(s)‖Y ≤ 4
(
C0‖v(s)‖n + C3(M + 1)a

n−2
n+1

)
< 4(C0 + C3)ε̂ ≤ 1

2C1
. (3.67)

On the other hand, given s ∈ (0, s0], we can see that zs(t) := v(t + s) for t ≥ 0 also satisfies (3.28) with
b = v(s) and zs ∈ Y0. In view of Remark 3.11, we have zs(t) = T (t)v(s) for s ∈ (0, s0], which implies

t
1
2
(‖v(t + s)‖∞ + ‖∇v(t + s)‖n

) ≤ sup
f∈K

[T (·)f ]t, K = v((0, s0]) := {v(t) ∈ Ln
σ(D) | t ∈ (0, s0]}
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for all s ∈ (0, s0] and t > 0. Passing to the limit s → 0, we find

[v(·)]t ≤ sup
f∈K

[T (·)f ]t. (3.68)

Furthermore, applying Lemma 3.3 to (3.28) with b = f ∈ v((0, s0]) as well as Proposition 3.1 and (1.10),
we have

[T (·)f ]t ≤ C0[S(·)f ]t +
(
C1 sup

f∈K
‖T (·)f‖Y + C2a

n−2
n+1

)
[T (·)f ]t + ‖H1‖Y,t + ‖H2‖Y,t,

where S(t)f := e−tAaf , and deduce from (3.66) and (3.67) that

[T (·)f ]t ≤ C0[S(·)f ]t + ‖H1‖Y,t + ‖H2‖Y,t

1 −
(
C1 sup

f∈K
‖T (·)f‖Y + C2a

n−2
n+1

) (3.69)

for all f ∈ K and t > 0. Collecting (3.69), (3.4), (3.68) and H1,H2 ∈ Y0 leads to (3.65). The proof is
complete. �
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