
J. Math. Fluid Mech. (2020) 22:46
c© 2020 Springer Nature Switzerland AG
1422-6928/20/040001-42
https://doi.org/10.1007/s00021-020-00503-9

Journal of Mathematical
Fluid Mechanics

Global Existence of Martingale Solutions and Large Time Behavior for a 3D Stochastic
Nonlocal Cahn–Hilliard–Navier–Stokes Systems with Shear Dependent Viscosity
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Abstract. In this paper, we consider a stochastic version of a nonlinear system which consists of the incompressible Navier–
Stokes equations with shear dependent viscosity controlled by a power p > 2, coupled with a convective nonlocal Cahn–
Hilliard-equations. This is a diffuse interface model which describes the motion of an incompressible isothermal mixture
of two (partially) immiscible fluid having the same density. We prove the existence of a weak martingale solutions when
p ∈ [11/5, 12/5), and their exponential decay when the time goes to infinity.
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1. Introduction

We consider a mathematical model of two isothermal, incompressible, immiscible fluids evolving in three
dimensional bounded domain M ⊂ R

3. This system of equations is well-known as a diffuse interface
model (see, e.g., [1,25,26]) for the phase separation of an incompressible and isothermal non-Newtonian
binary fluid mixture. In a simplified setting where the density of the mixture is supposed to be one as
well as the viscosity and the mobility, the model reduces to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tu + (u.∇)u − divT (ϕ,Du) + ∇π = μ∇ϕ + g0(t),
div u = 0,

∂tϕ + (u.∇)ϕ = Δμ,

μ = −Δϕ + F ′(ϕ),

(1.1)

in (0, T ) × M, where T > 0 is a given final time, π is the pressure, g0 is a given volume force applied to
the binary mixture fluid, u and ϕ are unknown variables which represent the (volume) averaged velocity
and the (relative) concentration difference of one of the fluids, respectively. The chemical potential μ is
the variation of the free energy functional (cf. [9])

F(ϕ) =
∫

M

(
1
2
|∇ϕ|2 + F (ϕ)

)

dx. (1.2)

Here F is a double well potential (e.g., F (r) = (r2 − 1)2, r ∈ R), which accounts for the presence of
two components. The potential can be defined either on the whole real line (smooth potential) or on a
bounded interval (singular potential). The latter case (in a logarithmic form) is the most appropriate
choice from the modeling viewpoint (see [9]), while the former can be considered as an approximation. In
the context of statistical mechanics, the square gradient term in (1.2) arises from attractive long-ranged
interactions between the molecules of the fluid (see, e.g., [1] and references therein). The stress tensor
T , up to the pressure term, dependents on the symmetric gradient Du := (∇u + ∇tru)/2 of the flow
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velocity field u and, possibly, on ϕ, through a suitable constitutive law. In fact, when we are in presence
of Newtonian mixture, the stress tensor is defined as

T (ϕ,Du) = ν(ϕ)Du, (1.3)

where ν is a given strictly positive function depending only on ϕ; and in this case, system (1.1) is what
we call the Cahn–Hilliard–Navier–Stokes system (CH-NSs) or the H-model (cf. [2,21,35,53]). The CH-NS
model describes the chemical interactions between the two phases at the interface, which is achieved
using a Cahn–Hilliard approach, and also the hydrodynamic properties of the mixture which is obtained
using Navier–Stokes equations with surface tension terms acting at the interface (cf. [21]). Now, when
the mixture has non-Newtonian features, then the stress tensor T depends on some power of |Du|. For
instance, it can be given as follows

T (ϕ,Du) = (ν1(ϕ) + ν2(ϕ)|Du|p−2)Du (1.4)

where ν1 and ν2 are strictly positive functions and p > 2. Systems like (1.1)–(1.3), also known as CH-NSs,
have been analyzed by many authors and used in several different contexts (see, for instance, [2,21,22,53],
cf. also [14,28] for numerical issues).

We note that system (1.1) has been deduced phenomenologically, i.e., as the (conserved) gradient flow
associated with the Fréchet derivative of the free energy functional F defines in (1.2). However in [23,24],
starting from a microscopic model, another form of the free energy functional has been proposed and
rigorously justified as a macroscopic limit of microscopic phase segregation models with particle conserving
dynamics (cf. also [8]). In this case the gradient term is replaced by a nonlocal spatial operator, namely,

E(ϕ) = 1
4
∫

M
∫

M J(x − y)(ϕ(x) − ϕ(y))2dxdy +
∫

M F (ϕ(x))dx, (1.5)

where J : R3 → R is a sufficiently smooth interaction kernel such that J(x) = J(−x). Taking the first
variation of E the chemical potential becomes

μ = aϕ − J ∗ ϕ + F ′(ϕ),

where

a(x) =
∫

M J(x − y)dy and (J ∗ ϕ)(x) =
∫

M J(x − y)ϕ(y)dy, (1.6)

and consequently, we have the following nonlocal evolution system
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tu + (u.∇)u − divT (ϕ,Du) + ∇π = μ∇ϕ + g0(t),
div u = 0,

∂tϕ + (u.∇)ϕ = Δμ,

μ = aϕ − J ∗ ϕ + F ′(ϕ),

(1.7)

in (0, T )×M. As mention by Van der Waals in [46], we can observe (formally) that the nonlocal interaction
term can be locally approximated by the square gradient, provided that the interaction J is sufficiently
concentrated around 0; i.e., the functional F can be viewed as a local approximation of E . Hence system
(1.7) seems well justified and more general than the classical one, though the related literature is far less
abundant. In the case (1.3), the solvability of system (1.7) has been analyzed first in [10] and then in
[16–19] under various assumptions and generalizations. In [15], assuming that the stress tensor T only
depends on Du with a (p − 1)-power growth, the authors proved the existence of a weak solution when
p ≥ 11/5 and they extend some previous results on time regularity and uniqueness when p > 11/5. The
aim of this paper is to study a stochastic version of the system (1.7), in the case that T only depends on
Du with a (p − 1)-power growth.

However, in order to consider a more realistic model for our problem, it is sensible to consider some
king of noise in the equation (1.7). This may reflect, for instance, some environmental effects on the phe-
nomena, some external random forces, etc. This approach is basically motivated by Reynold’s work, which
stipulates that the velocity of a fluid particle in turbulent regime is composed of slow (deterministic) and
fast (stochastic) components. While this belief was based on empirical and experimental data, Rozovskii
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and Mikulevicius were able to derive the models rigorously in their recent work [36], thereby confirming
the importance of this approach in hydrodynamic turbulence. More precisely, it is mentioned in [29] that
some rigorous information on questions in turbulence might be obtained from stochastic version of the
equations of fluid dynamics. To the best of our knowledge, the study of the stochastic version of the
system (1.7) has not been analyzed

Considering the fact that the majority of work studies in SPDEs assumed that the fluids are Newtonian
(since it is well-known that the incompressible Navier–Stokes equation governs the motions of single-phase
fluids such as air or water), and that there are some conducting materials appearing in many practical and
theoretical situations that cannot be characterized by Newtonian fluids (see for instance the introduction
of Biskamp’s book [5] for some examples of these non-Newtonian conducting fluids), we will analyzed
in this paper a stochastic version of problem (1.7) within a reasonably simple (but meaningful) non-
Newtonian setting. Namely, for a final time T > 0 and sufficiently smooth bounded domain M ⊂ R

3,
assuming matched densities equal to unity and that the stress tensor T only depends on Du with a
(p − 1)-power growth, we have to deal with the system of stochastic partial differential equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu + (u.∇)u − divT (Du) + ∇π = μ∇ϕ + g0(t) + g1(u, ϕ) + g2(t, u, ϕ)Ẇt,

div u = 0,

∂tϕ + (u.∇)ϕ = Δμ,

μ = aϕ − J ∗ ϕ + F ′(ϕ),
u = 0, ∂μ

∂η = 0 on (0, T ) × ∂M,

u(0) = u0, ϕ(0) = ϕ0 in M,

(1.8)

where ∂M is the boundary of M, η is the outward normal to ∂M, u = (u1, u2, u3), ϕ and π are unknown
random fields defined on [0, T ] × M, representing, respectively, the fluid velocity, the order (phase)
parameter and the pressure, at each point of [0, T ] × M. The external volume forces g0(t), g1(u, ϕ), are
given. The term g2(t, u, ϕ)Ẇt is an external force depending on u and ϕ, where Ẇt denotes the time
derivative of a cylindrical Wiener process. The quantities u0 and ϕ0 are given non-random initial velocity
and phase field, respectively. These equations are of the nonlocal type because of the presence of the
term J , which is the spatial-dependent internal kernel and J ∗ ϕ denotes the spatial convolution over M.
The purpose of the present manuscript is to prove some results related to problem (1.8), which are the
stochastic analog of some of those obtained in [15] for the deterministic case. Our main results are the
following:

1. We prove the existence of martingale solution for the stochastic system (1.8). We consider a suffi-
ciently general forcing consisting of a regular part and a stochastic part both depending nonlinearly
on the velocity of the fluids and the (order) phase parameter ϕ (i.e. the relative concentration of
one fluid or the difference of the two concentration). These forces terms are supposed to be non-
Lipschitz. The method for the proof is based in the Galerkin, compactness, and monotonicity
methods.

2. Having the existence of a martingale weak solutions in hand, we now move to the study of its
asymptotic behavior as the time t is large. Then, we study the decay of the martingale weak
solutions as times goes to infinity. More precisely, we prove that under some conditions on the
forcing terms gi, i = 0, 1, 2, the couple (u, ϕ) converges to zero exponentially in the mean square.

We note that for the proof of item (1) we drew our inspiration from the paper [15,45] and for the
proof of item (2) we mainly follow the idea in [6,7].

The layout of the manuscript is as follows. In Section 2, we present the mathematical setting of our
model, the stochastic framework and we gather all the necessary tools and the hypotheses. In Section 3 we
introduce the notion of weak solutions and we state our first result for the existence of weak probabilistic
solution. In Section 4, we derive the proof of our first main result by means of Galerkin methods and
probabilistic and analytic compactness results. In Section 5, we prove our second main result concerning
the exponential asymptotic behavior of these weak solutions.
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2. Functional Setup and Preliminary

Here, we introduce some necessary notations and most of the hypotheses relevant for our analysis.

2.1. The Deterministic Framework

We introduce some notations and background following the mathematical theory of hydrodynamic equa-
tions such as Navier–Stokes equations. We denote by D(M) the space of functions u ∈ C∞(M) with
compact support. Let p ∈ (1,∞), we introduce the following spaces

V = {u ∈ D(M)3 : div u = 0},

Gdiv = the closure of V in (L2(M))3,

Vdiv,p = the closure of V in (W 1,p(M))3.

We denote by | . | the (L2(M))3-norm, and by (. , .) the (L2(M))3-inner product.
The space Gdiv is equipped with the scalar product and norm induced by (L2(M))3 and thanks to

Poincaré’s inequality we can endow the space Vdiv,p with the norm ‖u‖1,p defined by

‖u‖p
1,p =

∫

M
|∇u|pdx.

Note that this norm is equivalent to the usual (W 1,p(M))3-norm on Vdiv,p.
We equip the space Vdiv := Vdiv,2 with the norm ‖.‖ generated by the scalar product

((u, v)) =
∫

M
∇u . ∇v dx.

Owing to Poincaré’s inequality, ‖.‖ and the usual (H1(M))3-norm are equivalent on Vdiv.
For other Hilbert spaces X, the scalar product will be denoted by (., .)X . The notations 〈., .〉Y and

‖.‖Y will stand for the duality pairing between a Banach space Y and its duality Y ′, and for the norm of
Y , respectively.

With the view to implement the approximation scheme (see Section 4 below), we introduce the aux-
iliary Hilbert space Ws defined by (see [33])

Ws = the closure of V in (Hs(M))3,

where s > 5
2 is fixed and we have the following Gelfand chain

Ws ↪→ Vdiv,p ↪→ Gdiv
∼= G′

div ↪→ V ′
div,p ↪→ W′

s, (2.1)

where each space is densely and compactly embedded into the next one.
Note that it is enough to take s ≥ 5

2 − 3
p so as to (2.1) holds.

We set H := L2(M), U := H1(M) and we also introduce the spaces (see [15] for more details)

Hs1
(0)(M) := {φ ∈ Hs1(M) : 〈φ, 1〉Hs1 = 0},

H−1
(0) (M) := H1

(0)(M)′ = {φ ∈ U ′ : 〈φ, 1〉U = 0},

with s1 ∈ R.
We set

‖ψ‖2
Hs1 =

∑

k∈N

ιs1
k c2

k, ck =
∫

M
ψ(x)ψk(x)dx,

where {(ιk, ψk)}k∈N are the eigenvalues and the eigenfunctions of the weak Laplace operator AN with
homogeneous Neumann boundary condition, that is, for f ∈ U ′ and φ ∈ U we have

ANφ = f ⇐⇒ ∫

M ∇φ.∇ψdx = 〈f, ψ〉U , for all ψ ∈ U. (2.2)
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We recall that AN maps U onto H−1
(0) (M) and the restriction of AN to H1

(0)(M) is an isometry between
H1

(0)(M) and the space H−1
(0) (M). Further, we denote by A−1

N : H−1
(0) (M) → H1

(0)(M) the inverse map
defined by

ANA−1
N f = f, ∀f ∈ H−1

(0) (M) and A−1
N ANf = f, ∀f ∈ H1

(0)(M).

We know that, for every f ∈ H−1
(0) (M), A−1

N f is the unique solution with zero mean value of the Neumann
problem

{
−Δφ = f, in M,
∂φ
∂η = 0, on ∂M.

In addition, we have
〈
ANφ,A−1

N f
〉

U
= 〈φ, f〉U , for all φ ∈ U, f ∈ H−1

(0) (M),
〈
f,A−1

N g
〉

U
=
〈
g,A−1

N f
〉

U
=
∫

M ∇(A−1
N f).∇(A−1

N g)dx, for all f, g ∈ H−1
(0) (M).

(2.3)

Note that AN can be also viewed as an unbounded linear operator on H with domain D(AN ) = {φ ∈
H2(M) : ∂φ

∂η = 0 on ∂M} and there a positive constant c > 0 such that

‖A−1
N φ‖U ≤ c‖φ‖U ′ , ‖A−1

N φ‖H2 ≤ c|φ|. (2.4)

Remark 2.1. The natural no-flux condition ∂μ
∂η = 0 implies the conservation of the following quantity

〈ϕ(t)〉 = 1
|M|

∫

M ϕ(t, x)dx,

where |M| stands for the Lebesgue measure of M. More precisely, we have

〈ϕ(t)〉 = 〈ϕ(0)〉 , ∀t ≥ 0.

Thus, up to a shift of the order parameter field, we can always assume that the mean of ϕ is zero at the
initial time and, therefore it will remain zero for all positive times. Hereafter, we assume that

〈ϕ(t)〉 = 〈ϕ(0)〉 = 0 ∀t ≥ 0.

Remark 2.2. We have just added a stochastic force in the equation for velocity u, not in the equation for
the relative concentration ϕ since it will involve tedious calculations and will increase significantly the
size of the paper. In fact, we need to apply Itô’s formula to the functional Etot defines in (3.3) below,
which will require tedious calculations and probably more assumptions.

Let us set

H = Gdiv × H,

Ws = Ws × U, for fix s > 5/2.

The space H is a complete metric space with respect to the norm

‖(u, ϕ)‖2
H

= |u|2 + |ϕ|2. (2.5)

The space Ws will be equipped with the usual scalar product and norm of the cartesian space Hs(M) ×
H1(M), respectively denoted by ((., .))s = ((., .))Hs + ((., .))H1 and ‖.‖2

s = ‖.‖2
Hs + ‖.‖2

U .
We define the Banach space V by

V = Vdiv,p × U,

with norm

‖(u, ϕ)‖V = ‖u‖1,p + ‖ϕ‖U . (2.6)
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Remark 2.3. The norm defines in (2.6) is equivalent to any norm of the form

[[(u, ϕ)]] = C1‖u‖1,p + C2‖ϕ‖U , (2.7)

where C1 and C2 are positive constants depending only on p and |M|.
Hereafter we set

‖(u, ϕ)‖p,2
V

= ‖u‖p
1,p + ‖ϕ‖2

U and Lp,2(0, T ;V) = Lp(0, T ;Vdiv,p) × L2(0, T ;U).

The space Lp,2(0, T ;V) is a Banach space with respect to the norm

‖(u, ϕ)‖2
Lp,2(0,T ;V) = ‖u‖p

Lp(0,T ;Vdiv,p) + ‖ϕ‖2
L2(0,T ;U) =

∫ T

0
‖(u(s), ϕ(s))‖p,2

V
ds. (2.8)

2.2. Nonlinear Operators

For u, v, w ∈ Vdiv, we define the trilinear operator b(., ., .) as

b(u, v, w) =
∫

M
(u(x). ∇)v(x). w(x)dx =

3∑

i,j=1

∫

M
ui(x)∂xi

vj(x)wj(x)dx.

We recall that
{

b(u, v, w) = −b(u,w, v), ∀ u, v, w ∈ Vdiv,

b(u, v, v) = 0, ∀ u, v ∈ Vdiv.
(2.9)

For more properties concerning the nonlinear operator b, we refer the readers to [51].
In order to introduce the weak formulation of problem (1.8), we introduce the following bilinear and

trilinear forms as in [15].

〈N(u), v〉Vdiv,p
=
∫

M
T (Du). Dv dx,

〈B0(u, u), v〉Vdiv,p
=
∫

M
[(u.∇)v]. u dx,

〈R1(ϕ), v〉Vdiv,p
= −1

2

∫

M
ϕ2∇a. v dx +

∫

M
(∇J ∗ ϕ)ϕ. v dx,

〈B1(u, ϕ), ψ〉U =
∫

M
ϕu. ∇ψ dx,

(2.10)

which are well defined for all u, v ∈ Vdiv,p and for all ϕ ∈ L2κ+2(M) and ψ ∈ U = H1(M), where p and
κ are chosen as in Theorem 3.1 below. Here T designates the extra stress tensor of the non-Newtonian
fluid, and it only depends on Du with a (p − 1)-power growth (cf. (1.4) as in the introduction).

We note that b(u, u, v) := −〈B0(u, u), v〉, for all u, v ∈ Vdiv,p. For simplicity we will write B0(u) :=
B0(u, u).

2.3. Stochastic Setting and Assumptions

Let (Ω,F ,P) be a complete probability space and F = {Ft}t∈[0,T ] an increasing and right continuous
family of sub σ-algebras of F , such that F0 contains all the P-null sets of F . Given K1 and K2 two
separable Banach spaces, we denote by L(K1) the set of bounded linear map in K1, by L(K1,K2) the
space of continuous linear mapping from K1 into K2. By L2(K1,K2), we mean the subspace of L(K1,K2)
consisting of Hilbert–Schmidt operators when K1 and K2 are separable. It is known that L2(K1,K2) is
a Hilbert space, and its norm is denoted by ‖.‖L2(K1,K2).

Let {βj
t , t ≥ 0, j = 1, 2, . . .} be a given sequence of mutually independent standard real Ft-Wiener

processes defined on (Ω,F ,P), and suppose given K, a separable Hilbert space, and {ej , j = 1, 2, . . .},
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an orthonormal basis of K. We denote by {Wt, t ≥ 0}, the cylindrical Wiener process with values in K
defined by

Wt =
∞∑

j=1

βj
t ej . (2.11)

Remark 2.4. Let H̃ be a Hilbert space and M
2(Ω × [0, T ];L2(K, H̃)) the space of all equivalence classes

of F-progressively measurable processes ψ : Ω × [0, T ] → L2(K, H̃) satisfying

E
∫ T

0
‖ψ(s)‖2

L2(K,H̃)
ds < ∞.

(i) For any s ∈ [0, T ] and ψ ∈ M
2(Ω × [0, T ];L2(K, H̃)), we have

ψ(s) ◦ J−1 ∈ L2(Q1/2(K1), H̃),

where J is any one-to-one Hilbert–Schmidt operator from K into another Hilbert space (K1, (., .)K1)
and Q = JJ∗ ∈ L(K1), J∗ the adjoint of J; since

‖ψ(s)‖2
L2(K,H̃)

=
∑

i∈N

(ψ(s)ei, ψ(s)ei)H̃

=
∑

i∈K

(
ψ(s) ◦ J−1(Jei), ψ(s) ◦ J−1(Jei)

)

H̃
= ‖ψ(s) ◦ J−1‖2

L2(Q1/2(K1),H̃)
.

Hence

‖ψ(s) ◦ J−1‖L2(Q1/2(K1),H̃) = ‖ψ(s)‖L2(K,H̃).

(ii) It follows from the theory of stochastic integration on infinite dimensional Hilbert space, cf. [37,
Chapter 5, Section 26] and [11, Chapter 4], that the process χ defined by

χ(t) =
∫ t

0
ψ(s)dWs :=

∫ t

0
ψ(s) ◦ J−1dW̄ (s), t ∈ [0, T ] (2.12)

is a H̃-valued martingale; where

W̄ (t) :=
∞∑

j=1

βj
t Jej , t ∈ [0, T ]. (2.13)

Moreover, the following Itô isometry holds

E‖ ∫ t

0
ψ(s) ◦ J−1dW̄ (s)‖2

H̃
= E

∫ t

0
‖ψ(s)‖2

L2(K,H̃)
ds, ∀t ∈ [0, T ], (2.14)

and the Burkholder–Davis–Gundy inequality

E

(

sup
s∈[0,T ]

∥
∥
∥
∥

∫ s

0

ψ(τ) ◦ J−1dW̄ (τ)
∥
∥
∥
∥

q

H̃

)

≤ cqE

(∫ t

0

‖ψ(s)‖2
L2(K,H̃)

ds

)q/2

,

∀t ∈ [0, T ], ∀q ∈ (1,∞).

(2.15)

(iii) W̄ (t), t ∈ [0, T ] is a Q-Wiener process on K1, see [34, Proposition 2.5.2]; and it is also a K1-valued
continuous, square integrable Ft-martingale, see [34, Proposition 2.2.10].

(iv) The series defines in (2.13) even converges in L2(Ω,F ,P; C([0, T ];K1)), and thus always has a P-a.s.
continuous version.

Remark 2.5. for any g ∈ H̃, one has
(∫ t

0

ψ(s)dW (s), g
)

H̃

=
(∫ t

0

ψ(s) ◦ J−1dW̄ (s), g
)

H̃

=
∞∑

j=1

∫ t

0

(ψ(s)ej , g)H̃ dβj
s , t ∈ [0, T ],

where each stochastic integral in the series is understood as an Itô’s stochastic integral with respect to
the corresponding real valued Wiener process βj

s . The above series converges in L2(Ω,Ft,P; C([0, t]; H̃)),
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for each 0 < t ≤ T ; see [11] for details. In particular, we note that if ψ ∈ M
2(Ω × [0, T ];L2(K, H̃)) and

g ∈ L2(Ω,F ,P;L∞(0, T ; H̃)) is Ft-progressively measurable, then the series
∞∑

j=1

∫ t

0

(ψ(s)ej , g(s))dβj
s , t ∈ [0, T ],

converges in L2(Ω,Ft,P; C([0, t];R)), and defined a real-valued continuous Ft-martingale.

We will use the notation
∫ t

0

(ψ(s)dW (s), g) :=
∫ t

0

(
ψ(s) ◦ J−1dW̄ (s), g

)
:=

∞∑

j=1

∫ t

0

(ψ(s)ej , g)H̃dβj
s , t ∈ [0, T ].

Hereafter, we shall fix one such J and (K1, (., .)K1) as in Remark 2.4 and for the process Wt, t ∈ [0, T ],
given by (2.11) we define W̄ (t), t ∈ [0, T ] as in (2.13) for the fixed J.

The stochastic integral of g2(s, u(s), ϕ(s)) (which is the unique Gdiv-valued Ft-martingale) with respect
to the K-cylindrical Wiener process Wt, t ∈ [0, T ] is given by

∫ t

0
g2(s, u(s), ϕ(s))dWs =

∫ t

0
g2(s, u(s), ϕ(s)) ◦ J−1dW̄ (s)

:=
∫ t

0
ḡ2(s, u(s), ϕ(s))dW̄ (s) t ∈ [0, T ].

(2.16)

Using the notations above, we rewrite problem (1.8) as follows
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

du
dt

+ N(u) − B0(u) − R1(ϕ) = g0(t) + g1(u, ϕ) + g2(t, u, ϕ)Ẇt in V ′
div,p,

dϕ
dt

− B1(u, ϕ) = Δμ in U ′ = (H1(M))′,
μ = aϕ − J ∗ ϕ + F ′(ϕ),
(u, ϕ)(0) = (u0, ϕ0),

(2.17)

or equivalently
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t) +
∫ t

0

(N(u(s)) − B0(u(s)) − R1(ϕ(s)))ds = u0 +
∫ t

0

g0(s)ds

+
∫ t

0

g1(u(s), ϕ(s))ds +
∫ t

0

ḡ2(s, u(s), ϕ(s))dW̄ (s),

ϕ(t) −
∫ t

0

B1(u(s), ϕ(s))ds = ϕ0 +
∫ t

0

Δμ(s)ds,

μ = aϕ − J ∗ ϕ + F ′(ϕ),

(2.18)

P-a.s, and for all t ∈ [0, T ], where

g0 ∈ L2(0,∞;Gdiv), g1 : Gdiv × H → V ′
div,p, g2 : [0,∞) × Gdiv × H → L2(K,Gdiv). (2.19)

Remark 2.6. The pressure is excluded from (2.17) as usual; in fact, one (formally) has

μ∇ϕ = ∇ (
F (ϕ) + a

2ϕ2 − (J ∗ ϕ)ϕ
)− ∇a

2 ϕ2 + (∇J ∗ ϕ)ϕ.

This explains that μ∇ϕ = R1(ϕ) in V ′
div,p. Here J ∈ W 1,1

loc (R3). More assumptions on the kernel J will
be given below (see (H5)).

We also introduce additional notations frequently used throughout the work. The mathematical ex-
pectation with respect to the probability measure P is denoted by E. For a probability space (Ω,F ,P) and
a Banach space X, we denote by Lγ(Ω,F ,P;Lq(0, T ;X)) (1 ≤ γ, q < ∞) the space of random functions
u : [0, T ] × M × Ω → Lq(0, T ;X) such that u is measurable w.r.t. (t, ω) and for all t, u is measurable
w.r.t. Ft, with (Ft)0≤t≤T be a filtration of nondecreasing and right continuous family of sub σ-algebra of
F with F0 containing all the P-null sets. We furthermore endow this space with the norm

‖u‖Lγ(Ω,F,P;Lq(0,T ;X)) = [E‖u‖γ
Lq(0,T ;X)]

1/γ .
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If q = ∞, we write

‖u‖Lγ(Ω,F,P;L∞(0,T ;X)) = [Eess sup
t∈[0,T ]

‖u(t)‖γ
X ]1/γ .

Let us introduce the hypotheses on g1(u, ϕ),T , J and F that are relevant for the major part of the paper.
(H1) We assume that g1 : Gdiv × H → V ′

div,p is nonlinear mapping such that
(a) (u, ϕ) �→ g1(u, ϕ) is continuous; there exists a positive constant C such that

‖g1(u, ϕ)‖V ′
div,p

≤ C(1 + |u| + |ϕ|), ∀(u, ϕ) ∈ Gdiv × H.

(H2) We suppose that g2 : [0, T ]×Gdiv×H → L2(K,Gdiv) is nonlinear mapping such that it is continuous
in both variables. We require that, for any t ∈ [0, T ] and (u, ϕ) ∈ Gdiv × H, g2(t, u, ϕ) satisfy

‖g2(t, u, ϕ)‖L2(K,Gdiv) = ‖ḡ2(t, u, ϕ)‖L2(Q1/2(K),Gdiv) ≤ C(1 + |u| + |ϕ|),
with ḡ2 defined as in (2.16).

As in ([15]), our assumption on the stress tensor T , the potential F and the kernel J are the following:
(H3) T (.) continuously depends on a symmetric tensor e ∈ R

3×3 and satisfies the following conditions

(T (E) − T (S)) .(E − S) ≥
{

c1(1 + |E| + |S|)p−2|E − S|2
c2|E − S|2 + c2|E − S|p (2.20)

|T (E) − T (S)| ≤ c3(1 + |E| + |S|)p−2|E − S|, T (0) = 0,

for all E,S ∈ R
3×3, for some ci > 0, i = 1, 2, 3 and some p > 2. Here | . | stands for a Euclidean

norm of a tensor and “.′′ at the left hand side of (2.20) denotes the scalar product of two tensors.
(H4) F ∈ C2(R) has a polynomially controlled growth

|F ′(s)|r ≤ c4(1 + |F (s)|), r ∈ (1, 2], (2.21)

for some c4 > 0 and satisfies the coercivity condition:

F ′′(s) + a(x) ≥ c5 max{1, |s|2κ}, (2.22)

for all s ∈ R, almost any x ∈ M, some c5 > 0 and some κ ≥ 0.
(H5) J ∈ W 1,1

loc (R3), J(x) = J(−x) and a(x) =
∫

M J(x − y)dy ≥ 0 a.e., in M. Moreover, we set

a∗ := sup
x∈M

∫

M
|J(x − y)|dy < ∞, b∗ := sup

x∈M

∫

M
|∇J(x − y)|dy < ∞.

Remark 2.7. Assumption J ∈ W 1,1
loc (R3) can be weakened. Indeed, it can be replaced by J ∈ W 1,1(Bδ),

where Bδ := {z ∈ R
3 : |z| < δ} with δ := diam(M) = supx,y∈M d∗(x, y), where d∗(., .) is the Euclidean

metric on R
3.

Remark 2.8. The hypothesis (2.22) is physically justified and relevant (see [20] for more details). From
the mathematical viewpoint assumption (2.22) is satisfied, in particular, if a ≡ 0 and F is strictly convex.

Remark 2.9. (2.22) implies the existence of positive constants c6 > 0 and c7 > 0 such that

F (s) ≥ c6|s|2κ+2 − c7, for all s ∈ R.

In order to formulate problem (1.8) in the framework of the proof of existence theorem in [27, Chapter
IV, Section 2, pp. 167–177], which do not require the Lipschitz condition on the coefficients, we need
some preliminaries which we state below.

Lemma 2.1. (Korn’s inequalities) Let 1 < m < ∞ and let M ⊂ R
3 be of class C1. Then, there exist two

positive constants κi
m = κi

m(M), i = 1, 2 such that

κ1
m‖v‖1,m ≤

(∫

M
|Dv|mdx

)1/m

≤ κ2
m‖v‖1,m, ∀v ∈ Vdiv,m.
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Proof. The proof of this lemma can be found in [39, Chapter 5, Theorem 1.10]. �

Let X be a Banach space and X ′ be its topological dual. Let T be a function from X to X ′ with
domain D = D(T) ⊆ X.

Definition 2.1. [44, Definition 2.3] The function T is said to be

(a) demicontinuous if for a sequence vn ∈ D, v ∈ D and vn → v in X implies that T(vn)
weakly

⇀ T(v) in
X ′,

(b) hemicontinuous if v ∈ D, u ∈ X and v + tnu ∈ D for a sequence of positive real numbers tn such

that tn → 0 implies T(v + tnu)
weakly

⇀ T(v) in X ′,
(c) locally bounded if for a sequence vn ∈ D, v ∈ D and vn → v in X imply that T(vn) is bounded in

X ′.

From the above definition, it is clear that a demicontinuous function is hemicontinuous and locally
bounded.

We now introduce the following result concerning the operator N : Vdiv,p → V ′
div,p.

Proposition 2.1. We assume that T satisfies (H3) with p ≥ 2. Then,
(a) the operator N is demicontinuous,
(b) the operator N is monotone; that is, 〈N(u) − N(v), u − v〉Vdiv,p

≥ 0, ∀u, v ∈ Vdiv,p.
(c) There exists a positive constant C such that

‖N(u)‖p′

V ′
div,p

≤ C(1 + ‖u‖p
1,p), ∀u ∈ Vdiv,p, with p′ the conjugate index to p. (2.23)

Proof. Let p > 2. The item (b) of proposition 2.1 follows easily from (2.10)1 and (2.20)1.
Proof of item (a). Let (vn)n≥1 be a sequence of points of Vdiv,p and v ∈ Vdiv,p be such that vn → v in

Vdiv,p. Let u ∈ Vdiv,p. We have

〈N(vn) − N(v), u〉Vdiv,p
(≤)

∫

M
|T (Dvn) − T (Dv)||Du|dx

(≤) c3

∫

M
(1 + |Dvn| + |Dv|)p−2|D(vn − v)||Du|dx

≤ cc3,p

(∫

M
|Du|pdx

) 1
p
(∫

M
(1 + |Dvn|p + |Dv|p)dx

) p−2
p
(∫

M
|D(vn − v)|pdx

) 1
p

,

(2.24)

where we have used Hölder’s inequality and (2.20)1. Here cc3,p is a positive constant depending on p and
c3. It then follows from (2.24) and Lemma (2.1) that

〈N(vn) − N(v), u〉Vdiv,p
≤ cc3,p(κ2

p)
2‖u‖1,p[1 + (κ2

p)
p(‖vn‖p

1,p + ‖v‖p
1,p)]‖vn − v‖1,p (2.25)

for all u, v ∈ Vdiv,p. Therefore from (2.25), the fact that vn → v in Vdiv,p; i.e., ‖vn − v‖1,p → 0 as n → ∞,
v ∈ Vdiv,p and every convergent sequence is bounded, we deduce that

〈N(vn) − N(v), u〉Vdiv,p
→ 0,

as n → ∞ for every u ∈ Vdiv,p. This proves that the operator N is demicontinuous; and hence hemicon-
tinuous and locally bounded.

By definition we have

‖N(u)‖V ′
div,p

= sup
‖v‖1,p=1

| 〈N(u), v〉Vdiv,p
|.

Hence, thanks to (2.10)1, using Hölder’s and Korn’s inequalities we have

‖N(u)‖V ′
div,p

≤ C

[∫

M
|T (Du)|p′

ds

] 1
p′

≤ C

[∫

M
(1 + |Du|p)ds

]1/p′

, (2.26)
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where we have also used (2.20)2.
Finally, thanks to (2.26) in conjunction with Korn’s inequality, we obtain (2.23). �

3. Statement of the Main Result

We introduce the concept of solution of the problem (2.17) or (2.18) that is interest to us.

Definition 3.1. By a solution of the problem (2.17) or (2.18), we mean a system ((Ω̃, F̃ , F̃, P̃), W̃t, ũ, ϕ̃),
where

(1) (Ω̃, F̃ , P̃) is a complete probability space; F̃ := {F̃t : t ≥ 0} is a filtration on the probability
space (Ω̃, F̃ , P̃), i.e., a nondecreasing family {F̃t : t ≥ 0} of sub σ-fields of F̃ : F̃s ⊂ F̃t ⊂ F̃ for
0 ≤ s < t < ∞;

(2) W̃t is a F̃t-cylindrical Wiener process on Gdiv;
(3) for almost every t ∈ [0, T ], ũ(t) and ϕ̃(t) are F̃t measurable;
(4) for almost every t, ũ(t) ∈ Lq(Ω̃, F̃ , P̃;Lp(0, T ;Vdiv,p))∩Lq(Ω̃, F̃ , P̃;L∞(0, T ;Gdiv)), ϕ̃(t) ∈ Lq(Ω̃, F̃ ,

P̃;L2(0, T ;U)) ∩ Lq(Ω̃, F̃ , P̃;L∞(0, T ;L2κ+2(M))), 2 ≤ q < ∞;
(5) P̃-a.s the following integral equations of Itô type hold:

(ũ(t) − u0, v) +
∫ t

0

〈(N(ũ(s)) − B0(ũ(s)) − R1(ϕ̃(s))), v〉Vdiv,p
ds

=
∫ t

0

〈g0(s), v〉Vdiv,p +
∫ t

0

〈g1(ũ(s), ϕ̃(s)), v〉Vdiv,p
ds +

∫ t

0

(g2(s, ũ(s), ϕ̃(s)), v)dW̃s,

(ϕ̃(t) − ϕ0, ψ) −
∫ t

0

〈B1(ũ(s), ϕ̃(s)), ψ〉U ds =
∫ t

0

〈Δμ̃(s), ψ〉U ds,

μ̃ = aϕ̃ − J ∗ ϕ̃ + F ′(ϕ̃),

(3.1)

for any t ∈ [0, T ] and (v, ψ) ∈ Ws × U := Ws × H1(M), s ≥ 5/2 > 5/2 − 3/p.

Now we can state our first result in the following theorem.

Theorem 3.1. Let p ≥ 11/5 and
⎧
⎪⎪⎨

⎪⎪⎩

κ ≥ 2(3 − p)
5p − 6 , if p < 3,

0 < κ ≤ 2, if p = 3,

κ > 0 if p > 3.

(3.2)

Assume that u0 ∈ Gdiv, ϕ0 ∈ H with F (ϕ0) ∈ L1(M) and g0 ∈ Lp′
(0, T ;V ′

div,p). Suppose also that all
the assumptions, namely, (H1) and (H5) are satisfied. Then problem (2.17) or (2.18) has a solution in
the sense of the above definition. Moreover, we note that a solution (ũ, ϕ̃) in the sense of definition 3.1
belongs to Lq(Ω̃, F̃ , P̃; C(0, T ;H)), q ∈ [2,∞).

Proof. The proof will be carried out in Sects. 4.1–4.4. �

In the rest of the paper, we set

Etot(u, ϕ) := |u|2 + 2E(ϕ), where E is given by (1.5). (3.3)
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4. Auxiliary Results

In this section, we introduce the Galerkin approximation scheme to reduce the original system to a
system of finite-dimensional ordinary stochastic differential equations (SDEs). We derive crucial a priori
estimates from the Galerkin approximation which will serve as a toolkit for the proof of Theorem 3.1.
More precisely, the priori estimates will be used to prove the tightness of the family of laws of the sequence
of solutions of the system of SDEs on appropriate topological spaces.

4.1. The Approximate Solution

We first assume that ϕ0 ∈ D(B) = {ϕ ∈ H2(M) : ∂ηϕ = 0 on ∂M} ⊂ H instead of ϕ0 ∈ H, where
B = −Δ + I. The general case ϕ0 ∈ H with F (ϕ0) ∈ L1(M) can be dealt in the same fashion as in [10],
by means of a density argument and by relying on the form of the potential F as a quadratic perturbation
of a convex function.

As a Galerkin base in Vdiv,p we employ the family {wj , j = 1, 2, . . .}, where each wj solves

(wj , v)Ws
= λj(wj , v), ∀v ∈ Ws.

In U we choose as Galerkin base the family {ψj , j = 1, 2, . . .}, where ψj are the eigenfunctions of the
operator B. We set Wn

s = span{w1, w2, . . . , wn} and Hn = span{ψ1, ψ2, . . . , ψn}. Let P1
n be the operator

from W′
s to Wn

s defined by P1
nu∗ :=

∑n
j=1 〈u∗, wj〉Ws

wj , u∗ ∈ W′
s. We will consider the restriction of the

operator P1
n to the space Gdiv (still) denoted by P1

n. More precisely, we have Gdiv
∼= G′

div ↪→ V ′
div,p ↪→ W′

s

(s > 5/2), i.e. every element u ∈ Gdiv induces a functional u∗ ∈ W ′
s by the formula

〈u∗, v〉Ws
= (u, v), v ∈ Ws.

Thus the restriction of P1
n to Gdiv is given by P1

nu =
∑n

j=1(u,wj)wj , u ∈ Gdiv. Hence in particular, P1
n is

the (., .)-orthogonal projection from Gdiv onto Wn
s . Similarly, we define by P2

n the orthogonal projection
from H onto Hn. Let (Ω,F ,P,Wt) (Wt is a cylindrical Wiener processes evolving on K). We equip the
probability space (Ω,F ,P) with the natural filtration of Wt which is denoted by Ft. We then look for the
three functions of the form

un(t) =
n∑

k=1

a
(n)
k (t)wk, ϕn(t) =

n∑

k=1

b
(n)
k (t)ψk, μn(t) =

n∑

k=1

c
(n)
k (t)ψk,

which solves the following approximating problem
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d(un, wj) + [(T (Dun),Dwj) + b(un, un, wj)]dt = −(ϕn∇μn, wj)dt + (P1
ng0, wj)dt

+(g1(un, ϕn), wj)dt +
∑n

i=1(g2(t, un, ϕn)ei, wj)dβi
t ,

d(ϕn, ψj) + (∇μn,∇ψj)dt = (unϕn,∇ψj)dt,

μn = P2
n(aϕn − J ∗ ϕn + F ′(ϕn)),

un(0) = P1
nu0 := u0n, ϕn(0) = P2

nϕ0 := ϕ0n,

(4.1)

where u0n, ϕ0n and P1
ng0 are such that u0n → u0 in Gdiv, ϕ0n → ϕ0 in H2(M) and P1

ng0 → g0 in
Lp′

(0, T ;V ′
div,p) as n → ∞ respectively.

We first note that since the operator N is hemicontinuous and monotone (see Proposition 2.1), we
infer from [33, Chapitre II, page 171] that N is continuous from Vdiv,p into V ′

div,p and locally bounded.
System (4.1) is then a system of stochastic differential equations in a finite dimensional Banach spaces
with continuous and locally bounded coefficients. From the existence theorem in [49, Chapter 3, Section
3, p. 59] (see also [27, Chapter 4, Section 2, pp. 167-177]), which do not require the Lipschitz condition
on the coefficients, there exists on a short interval [0, Tn), Tn ≤ T a sequence of continuous functions
(un, ϕn) solving (4.1). It will follows from a priori estimates that (un, ϕn) exists on [0, T ].
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4.2. A Priori Estimates

In this subsection, we derive some basic energy estimates for the sequence of the approximate solutions
un, ϕn and for the sequence μn, F (ϕn) and F ′(ϕn).

First, we prove the following lemma.

Lemma 4.1. the sequence (un, ϕn, μn, F (ϕn), F ′(ϕn), n = 1, 2, . . .) satisfies

E sup
s∈[0,T ]

|un(s)|q < C, E sup
s∈[0,T ]

‖ϕn(s)‖q
L2κ+2(M) < C,

E sup
s∈[0,T ]

‖F (ϕn(s))‖q/2
L1(M) < C, E sup

s∈[0,T ]

‖F ′(ϕn(s))‖q
Lr(M) < C,

(4.2)

and

E

(∫ T

0

‖un(s)‖p
1,pds

) q
p

< C,E

(∫ T

0

‖ϕn(s)‖2
Uds

) q
2

< C,E

(∫ T

0

‖μn(s)‖2
Uds

) q
2

< C, (4.3)

for any q ∈ [2,∞), r ∈ (1, 2] and p ≥ 11/5, with U := H1(M). Here C is a positive constant depending on
the parameters T, q, p,M, κ1

2, κ
1
p, |J |L1(R3), κ, r, c2, c4, c5, c6 and the initial data u0, ϕ0 and |F (ϕ0)|L1(M).

We recall that the constant c3 is given by (H3), the constants c4 and c5 are given by (H4), the constant c6

is defined as in Remark 2.9, and the constants κ1
2 and κ1

p are given by Korn’s inequality (see Lemma 2.1).

Proof. Let τR
n , R, n ∈ N, be stopping time defined by

τR
n = inf{t ∈ [0, T ]; |un(t)|2 + ‖ϕn(t)‖2

L2κ+2 +
∫ t

0
(‖un(s)‖p

1,p + ‖ϕn(s)‖2
U )ds ≥ R2} ∧ T. (4.4)

Let t ∈ [0, τR
n ∧ T ]. By applying Itô’s formula to the process |un(t)|2, taking μn as test function in (4.1)2,

recalling that b(un, un, un) = 0 (see (2.9)) and by summing the ensuing identities, we obtain

[Etot(un(t), ϕn(t)) + κ̄1] + 2
∫ t

0

(T (Dun),Dun)ds + 2
∫ t

0

|∇μn|2ds

= κ̄1 + Etot(u0n, ϕ0n) + 2
∫ t

0

〈P1
ng0, un

〉

Vdiv,p
ds + 2

∫ t

0

〈g1(un, ϕn), un〉Vdiv,p
ds

+
n∑

j,k=1

∫ t

0

[(g2(s, un, ϕn)ej , wk)]2ds + 2
n∑

j=1

∫ t

0

(g2(s, un, ϕn)ej , un)dβj
s ,

(4.5)

with

κ̄1 = κ|M|
c
1/κ
6

( |J |L1(R3)

κ + 1

)(κ+1)/κ

+ 2c7|M|. (4.6)

Note that the constant κ̄1 is such that [Etot(un(t), ϕn(t)) + κ̄1] ≥ 0. In fact, we have

2E(ϕn(t)) = 2|√aϕn(t)|2 + 2
∫

M F (ϕn(t, x))dx − (ϕn(t), J ∗ ϕn(t))
≥ ∫

M(a(x) − |J |L1(R3))(ϕn(t, x))2dx + 2c6‖ϕn(t)‖2κ+2
L2κ+2(M) − 2c7|M|

≥ c6‖ϕn(t)‖2κ+2
L2κ+2(M) − κ̄1,

(4.7)

where we have used Hölder’s inequality, Young’s inequality for convolutions, Young’s inequality and
Remark 2.9. It then follows from (4.7) that

Etot(un(t), ϕn(t)) + κ̄1 = |un(t)|2 + 2E(ϕn(t)) + κ̄1

≥ |un(t)|2 + c6‖ϕn(t)‖2κ+2
L2κ+2(M) ≥ 0.

(4.8)

Now since
n∑

j,k=1

[(g2(s, un(s), ϕn(s))ej , wk)]2 ≤ ‖g2(s, un(s), ϕn(s))‖2
L2(K,Gdiv),
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and

Etot(u0n, ϕ0n) ≤ |u0n|2 + 2|J |L1(R3)|ϕ0n|2 + 2
∫

M
F (ϕ0n(x))dx

≤ |u0|2 + 2|J |L1(R3)|ϕ0|2 + 2
∫

M
F (ϕ0(x))dx

≡ K(u0, ϕ0),

(4.9)

(where in (4.9), we have used the fact that, since ϕ0 ∈ D(B) a.s., then we have ϕ0n → ϕ0 in H2(M) a.s.
and hence also in L∞(M) a.s.), it follows from (4.5) that

[Etot(un(t), ϕn(t)) + κ̄1] + 2Zp

∫ t

0

[‖un(s)‖2 + ‖un(s)‖p
1,p]ds + 2

∫ t

0

|∇μn|2ds

≤ κ̄1 + K(u0, ϕ0) + 2
∫ t

0

[‖g0(s)‖V ′
div,p

+ ‖g1(un(s), ϕn(s))‖V ′
div,p

]‖un(s)‖1,pds

+
∫ t

0

‖g2(s, un(s), ϕn(s))‖2
L2(K,Gdiv)ds + 2

∫ t

0

n∑

j=1

(g2(s, un(s), ϕn(s))ej , un)dβj
s ,

(4.10)

with Zp = c2 min
(
(κ1

2)
2, (κ1

p)
p
)
. Note that in (4.10) we have also used the assumption (H3) (see (2.20))

in conjunction with Lemma 2.1.
Hereafter, we set (for the sake of simplicity):

χn(t) := Etot(un(t), ϕn(t)) + κ̄1, ϑp,n := [‖un(t)‖2 + ‖un(t)‖p
1,p],

�n(t) :=
∫ t

0

n∑

j=1

(g2(s, un(s), ϕn(s))ej , un(s))dβj
s , t ∈ [0, T ].

(4.11)

Setting a1 = (pZp

2 )
1
p ‖un(s)‖1,p, b = 2( 1

p )
1
p ( 1

Zp
)

1
p ‖g0(s)‖V ′

div,p
× 2

1
p , using Young’s inequality, we see that

2‖g0(s)‖V ′
div,p

‖un(s)‖1,p = a1b ≤ 1
pap

1 + 1
p′ b

p′
= Zp

2 ‖un(s)‖p
1,p + (2)

p′(p+1)
p

p′Z
p′
p

p p
p′
p

‖g0(s)‖p′

V ′
div,p

. (4.12)

Here p′ = p
p−1 . One can easily see that

2‖g1(un(s), ϕn(s))‖V ′
div,p

‖un(s)‖1,p ≤ Zp

2 ‖un(s)‖2
1,p + 2

Zp
‖g1(un(s), ϕn(s))‖2

V ′
div,p

. (4.13)

Now setting r1 = p
2 , r2 = p

p−2 , a1 = (p
2 )

2
p ‖un(s)‖2

1,p, b = ( 2
p )

2
p , using Young’s inequality, we have

‖un(s)‖2
1,p = a1b ≤ 1

r1
ar1
1 + 1

r2
br2 = ‖un(s)‖p

1,p + (p−2)×2
2

p−2

p[p]
2

p−2
. (4.14)

It then follows from estimates (4.12)–(4.14) that

2[‖g0(s)‖V ′
div,p

+ ‖g1(un(s), ϕn(s))‖V ′
div,p

]‖un(s)‖1,p

≤ Zp‖un‖p
1,p + Zp(p−2)

2p

(
2
p

) 2
p−2

+ 2
Zp

‖g1(un, ϕn)‖2
V ′
div,p

+ (2)
p′(p+1)

p

p′Z
p′
p

p p
p′
p

‖g0‖p′

V ′
div,p

.
(4.15)

By Young inequality’s, we infer that

|ϕn|2 ≤ c6

κ + 1
‖ϕn‖2κ+2

L2κ+2(M) +
κ|M|

(κ + 1)c1/κ
6

. (4.16)
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Now, owing to the assumption on g1 and g2, we can derive from the estimates (4.8), (4.15)–(4.16) and
(4.10) that

χn(t) + 2Zp

∫ t

0

ϑp,n(s)ds + 2
∫ t

0

|∇μn(s)|2ds

≤ κ̄1 + K(u0, ϕ0) + C1

∫ t

0

‖g0(s)‖p′

V ′
div,p

ds + C2

∫ t

0

(1 + χn(s))ds + 2�n(t),
(4.17)

with C1 := C1(κ1
2, κ

1
p, p) and C2 := C2(κ1

2, κ
1
p, c2, c6, κ, p, |M|). χn(t), ϑp,n(t) and �n(t) are defined as in

(4.11).
From (4.17), we infer that

E sup
s∈[0,t∧τR

n ]

[χn(s)] + 2E
∫ t∧τR

n

0

[Zpϑp,n(s) + |∇μn(s)|2]ds

≤ κ̄1 + K(u0, ϕ0) + C1

∫ t∧τR
n

0

‖g0(s)‖p′

V ′
div,p

ds + C2E

∫ t∧τR
n

0

(1 + χn(s))ds + 2E sup
s∈[0,t∧τR

n ]

|�n(s)|.
(4.18)

By Burkholder–Davis–Gundy’s inequality and Hölder’s inequality, we have

2E sup
s∈[0,t∧τR

n ]

|�n(s)| = 2E sup
s∈[0,t∧τR

n ]

∣
∣
∣
∣
∣
∣

∫ s

0

n∑

j=1

(g2(τ, un(τ), ϕn(τ))ej , un(τ))dβj
τ

∣
∣
∣
∣
∣
∣

≤ CE

⎛

⎝

∫ t∧τR
n

0

n∑

j=1

(g2(s, un(s), ϕn(s))ej , un)2ds

⎞

⎠

1/2

≤ CE

(∫ t∧τR
n

0

‖g2(s, un(s), ϕn(s))‖2
L2(K,Gdiv)|un(s)|2ds

)1/2

≤ C

[

E sup
s∈[0,t∧τR

n ]

|un(s)|2
]1/2 [

E

∫ t∧τR
n

0

‖g2(s, un, ϕn)‖2
L2(K,Gdiv)ds

]1/2

.

(4.19)

Thanks to (4.19), using Young’s inequality and the assumption on g2 (see (H2)), we obtain

2E sup
s∈[0,t∧τR

n ]

|�n(s)| ≤ 1
2
E sup

s∈[0,t∧τR
n ]

|un(s)|2 + CE

∫ t∧τR
n

0

‖g2(s, un, ϕn)‖2
L2(K,Gdiv)ds

≤ 1
2
E sup

s∈[0,t∧τR
n ]

|un(s)|2 + CE

∫ t∧τR
n

0

(1 + |un(s)|2 + |ϕn(s)|2)ds.

Hence, from this previous inequality and (4.16), there exists a positive constant C3 depending on c6, κ
and M such that

2E sup
s∈[0,t∧τR

n ]

|�n(s)| ≤ 1
2
E sup

s∈[0,t∧τR
n ]

|un(s)|2 + C3E

∫ t∧τR
n

0

(1 + [|un|2 + c6‖ϕn‖2κ+2
L2κ+2 ])ds

≤ 1
2
E sup

s∈[0,t∧τR
n ]

[χn(s)] + C3E

∫ t∧τR
n

0

(1 + [χn(s)])ds,

(4.20)

where we have also used (4.8).
Thanks to (4.18) and (4.20), we obtain

E sup
s∈[0,t∧τR

n ]

[χn(s)] + 2E
∫ t∧τR

n

0

[2Zpϑp,n(s) + 2|∇μn|2]ds ≤ K1 + C̃2E

∫ t∧τR
n

0

sup
0≤s≤τ

[χn(s)]dτ, (4.21)
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with
C̃2 := C̃2(κ1

2, κ
1
p, c2, κ, c6, p, |M|),

K1 := 2κ̄1 + 2K(u0, ϕ0) + C1(κ1
2, κ

1
p, p)

∫ T

0
‖g0(s)‖p′

V ′
div,p

ds + C̃2T,
(4.22)

χn and ϑp,n are defined in (4.11). Now, we define

Z(t) := E

∫ t∧τR
n

0

sup
0≤s≤τ

[χn(s)]dτ (4.23)

and then (4.21), implies

Z ′(t) ≤ K1 + C̃2Z(t). (4.24)

This gives

Z(t) ≤ K1

C̃2

(eC̃2t − 1). (4.25)

Owing to (4.21), (4.23) and (4.25), we derive that

E sup
s∈[0,t∧τR

n ]

[χn(s)] + 2E
∫ t∧τR

n

0

[2Zpϑp,n(s) + 2|∇μn(s)|2]ds ≤ K1 + K1e
C̃2t. (4.26)

Arguing similarly as in [13, Inequality (4.57)], using (4.16) we get

|∇ϕn|2 ≤ 8
c25

|ϕn|2 + 4
c25

|∇μn|2 ≤ 8c6
c25(κ+1)

‖ϕn‖2κ+2
L2κ+2(M) + 8κ|M|

c25(κ+1)c
1/κ
6

+ 4
c25

|∇μn|2. (4.27)

Thanks to (4.8), (4.16), (4.27) and (4.26), we infer that

E

∫ t∧τR
n

0

‖ϕn‖2
Uds = E

∫ t∧τR
n

0

(|ϕn|2ds + |∇ϕn|2)ds

≤ [κ̃1 + κ̃3]t + [κ̃2 + κ̃4]tE sup
s∈[0,t∧τR

n ]

‖ϕn(s)‖2κ+2
L2κ+2 + κ̃5E

∫ t∧τR
n

0

|∇μn|2ds

≤ [κ̃1 + κ̃3]t + [κ̃2 + κ̃4]κ̃6t(1 + eC̃2t) + κ̃7(1 + eC̃2t) < C,

(4.28)

where κ̃1 = κ|M|
(κ+1)c

1/κ
6

, κ̃2 = c6
κ+1 , κ̃3 = 8κ|M|

c25(κ+1)c
1/κ
6

, κ̃4 = 8c6
c25(κ+1)

, κ̃5 = 4
c25

, κ̃6 = K1
c6

and κ̃7 = K1
c25

. Now, we

will prove that

τR
n ↗ T P − almost surely as R → ∞.

Indeed, since (un, ϕn)(. ∧ τR
n ) : [0, T ] → Wn

s × Hn is continuous, we have

R2
P(τR

n < t) ≤ E[1τR
n <t(ρn(τR

n ) +
∫ τR

n

0
�n(s)ds)]

≤ E[1τR
n <t(ρn(τR

n ) +
∫ τR

n

0
�n(s)ds)] + E[1τR

n ≥t(ρn(τR
n ) +

∫ τR
n

0
�n(s)ds)]

= E[ρn(τR
n ∧ t) +

∫ τR
n ∧t

0
�n(s)ds],

(4.29)

with t ∧ τR
n = τR

n , since τR
n < t, and for any n ∈ N and t ∈ [0, T ]. Here ρn(.) = |un(.)|2 + ‖ϕn(.)‖2

L2κ+2(M)

and �n(.) = ‖un‖p
1,p(.) + ‖ϕn‖2

U (.).
From (4.29) and the inequalities (4.8), (4.26) and (4.28), we infer that

P(τR
n < t) ≤ C

R2
. (4.30)

Since the constant C in (4.30) does not depend on n and R, it then follows that

lim
R→∞

P(τR
n < t) = 0 for all t ∈ [0, T ] and n ∈ N,

which implies that there exists a subsequence τRk
n , such that τRk

n → T a.s., which along with the fact
that (τR

n , n)R∈N is increasing, yields that τR
n ↗ T a.s. for any n ∈ N. Therefore Tn = T .
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Now, since the constant K1+K1e
C̃2t in (4.26) does not depend on n and R, and since τR

n ↗ T P-almost
surely as R → ∞, we can conclude by passing to the limit in (4.26) that

E sup
s∈[0,T ]

[χn(s)] + 2E
∫ T

0

[2Zpϑp,n(s) + 2|∇μn(s)|2]ds ≤ K1 + K1e
C̃2T ≡ C. (4.31)

We infer from (4.17) that

sup
s∈[0,T ]

[χn(s)] +
∫ T

0

[2Zpϑp,n(s) + 2|∇μn|2]ds ≤ κ̄1 + K(u0, ϕ0) + C1

∫ T

0

‖g0(s)‖p′

V ′
div,p

ds

+C2T + C2

∫ T

0

[χn(s)]ds + 2 sup
s∈[0,T ]

|�n(s)|.
(4.32)

Now squaring both sides of the above inequality to the power q/2, q > 2, we obtain thanks to the
Minkowski inequality and after taking the expected values

E sup
s∈[0,T ]

[χn(s)]
q
2 +

(∫ T

0

[2Zpϑp,n(s) + 2|∇μn(s)|2]ds

) q
2

≤ C5(q)

⎡

⎣κ̄
q
2
1 + K̃q(u0, ϕ0) + C

q
2
1

(∫ T

0

‖g0(s)‖p′

V ′
div,p

ds

) q
2

+ (C2T )
q
2

⎤

⎦

+ C5(q)C
q
2
2 T

q−2
2 E

∫ T

0

[χn(s)]q/2ds + C5(q)E sup
s∈[0,T ]

|�n(s)|q/2,

(4.33)

with

K̃q(u0, ϕ0) = |u0|q + 2
q
2 |J |

q
2
L1(R3)|ϕ0|q + 2

q
2 |F (ϕ0)|

q
2
L1(M). (4.34)

Using again the Burkholder–Davis–Gundy inequality as we did in the proof of Eq. (4.20) and the as-
sumption on g2, we can check that

C5(q)E sup
s∈[0,T ]

|�n(s)|q/2 ≤ C̃5(q)E

⎛

⎝

∫ T

0

n∑

j=1

(g2(s, un, ϕn)ej , un)2ds

⎞

⎠

q/4

≤ 1
2E sup

s∈[0,T ]

|un(s)|q + C̄5T + C̄5E

∫ T

0

(|un|2 + c6|ϕn|2κ+2
L2κ+2

)q/2
ds,

(4.35)

with C̄5 := C̄5(q, κ, c6, |M|) and where we have also used (4.16).
From (4.35) and (4.8), we infer that

C5(q)E sup
s∈[0,T ]

|�n(s)|q/2 ≤ 1
2
E sup

s∈[0,T ]

[χn(s)]q/2 + C̄5T + C̄5E

∫ T

0

[χn(s)]q/2ds. (4.36)

Inserting (4.36) in (4.33) and multiplying the resulting inequality by 2, we obtain

E sup
s∈[0,T ]

[χn(s)]
q
2 + 2E

(∫ T

0

[2Zpϑp,n(s) + 2|∇μn(s)|2]ds

) q
2

≤ 2C5(q)

⎡

⎣κ̄
q
2
1 + K̃q(u0, ϕ0) + C

q
2
1

(∫ T

0

‖g0(s)‖p′

V ′
div,p

ds

) q
2

+ (C2T )
q
2

⎤

⎦

+ 2C̄5T + C6E

∫ T

0

sup
τ∈[0,s]

[χn(τ)]
q
2 ds,

(4.37)
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with C6 = 2C5(q)C
q
2
2 T

q−2
2 + 2C̄5(q, κ, c6, |M|). Now dropping the integral term in the left-hand side of

(4.37) and applying the deterministic Gronwall lemma, we arrive at

E sup
s∈[0,T ]

[χn(s)]q/2 ≤ C7

⎡

⎣1 + K̃q(u0, ϕ0) +

(∫ T

0

‖g0(s)‖p′

V ′
div,p

ds

) q
2
⎤

⎦ , (4.38)

with C7 := C7(q, T, κ, c6, |M|, κ1
2, κ

1
p, |J |L1(R3)) and K̃q(u0, ϕ0) is given by (4.34).

Therefore the first two estimates in (4.2) follow from (4.38), (4.31), (4.8) and the fact that the domain
M is bounded.

By using (4.37) and (4.38), it is straightforward to check that

E

(∫ T

0
‖un(s)‖p

1,pds
) q

2
+ E

(∫ T

0
‖un(s)‖2ds

) q
2

+ E

(∫ T

0
|∇μn(s)|2ds

) q
2

≤ C̃7

[

1 + K̃q(u0, ϕ0) +
(∫ T

0
‖g0(s)‖p′

V ′
div,p

ds
) q

2
]

,
(4.39)

with C̃7 := C̃7(q, T, κ, c6, |M|, κ1
2, κ

1
p, |J |L1(R3)).

So as to proved (4.3)1, we make the following observation: For any a1 > 0, q > 2 and p ≥ 11/5, we
have using the Young inequality

a
q/p
1 ≤ 2

p
a

q/2
1 +

p − 2
2

.

Now, applying this previous inequality with a1 =
(∫ T

0
‖un(s)‖p

1,pds
)q/p

in conjunction with (4.39), we
infer that

E

(∫ T

0
‖un(s)‖p

1,pds
)q/p

≤ 2
pE

(∫ T

0
‖un(s)‖p

1,pds
)q/2

+ p−2
2

≤ C̃7

[

1 + K̃q(u0, ϕ0) +
(∫ T

0
‖g0(s)‖p′

V ′
div,p

ds
) q

2
]

+ p−2
2 .

This proves (4.3)1.
We will now prove that E sup

s∈[0,T ]

‖F (ϕn(s))‖q/2
L1(M) < C. The proof will be done in two cases:

First case: One can have F (ϕn) > 0.
From the first line of (4.7) in conjunction with (4.32), we obtain

2 sup
s∈[0,T ]

‖F (ϕn(s))‖L1(M) ≤ sup
s∈[0,T ]

|(ϕn(s), J ∗ ϕn(s))| + κ̄1 + K(u0, ϕ0)

+C1

∫ T

0
‖g0(s)‖p′

V ′
div,p

ds + C2T + C2

∫ T

0
[χn(s)]ds + 2 sup

s∈[0,T ]

|�n(s)|.(4.40)

Using young’s inequality for convolutions, we obtain

sup
s∈[0,T ]

|(ϕn(s), J ∗ ϕn(s))| ≤ |J |L1(R3) sup
s∈[0,T ]

|ϕn(s)|2. (4.41)

Making similar reasoning as in (4.20), we obtain

2E sup
s∈[0,T ]

|�n(s)| ≤ 1
2
E sup

s∈[0,T ]

[χn(s)] + C3(c6, κ, |M|)
∫ T

0

(1 + [χn(s)])ds. (4.42)

Taking the expected values in (4.40), using (4.41)–(4.42) and dividing the resulting inequality by 2, we
obtain

E sups∈[0,T ] ‖F (ϕn(s))‖L1(M) ≤ 2|J |L1(R3)E sups∈[0,T ] |ϕn(s)|2 + 2κ̄1 + 2K(u0, ϕ0)
+ 2C1

∫ T

0
‖g0‖p′

V ′
div,p

ds + C2,3T + (1 + C2,3T )E sups∈[0,T ][χn(s)],(4.43)

where C1 := C1(κ1
2, κ

1
p, p), C2 := C2(κ1

2, κ
1
p, c2, c6, κ, p, |M|), C3 := C3(c6, κ, |M|) and C2,3 = 2C2 + 2C3.
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Now, from (4.43), (4.16), (4.8) and (4.31), we obtain

E sups∈[0,T ] ‖F (ϕn(s))‖L1(M) ≤ C̄7

[
1 + K(u0, ϕ0) +

∫ T

0
‖g0(s)‖p′

V ′
div,p

ds
]
, (4.44)

with C̄7 := C̄7(T, κ, c6, |M|, κ1
2, κ

1
p, |J |L1(R3)) and K(u0, ϕ0) is given by the last inequality of (4.9). Insert-

ing (4.41) in (4.40), raising both sides to the power q/2 > 1, and taking the expectation in the resulting
inequality, we obtain

sup
s∈[0,T ]

‖F (ϕn(s))‖
q
2
L1(M) ≤ C(q)[|J |

q
2
L1 sup

s∈[0,T ]

|ϕn(s)|q + κ̄
q
2
1 + K̃q(u0, ϕ0)]

+C(q)C
q
2
1

(∫ T

0

‖g0(s)‖p′

V ′
div,p

ds

) q
2

+ C(q)(C2T )
q
2

+C(q)C
q
2
2

(∫ T

0

[χn(s)]ds

) q
2

+ C(q) sup
s∈[0,T ]

|�n(s)| q
2 .

(4.45)

Arguing similarly as in (4.36), we can check that

C(q)E sup
s∈[0,T ]

|�n(s)|q/2 ≤ 1
2
E sup

s∈[0,T ]

[χn(s)]q/2 + C̄qT + C̄qE

∫ T

0

[χn(s)]q/2ds,

with C̄q := C̄q(q, κ, c6, |M|). Inserting now this previous inequality to (4.45) (after taking the expecta-
tion), using the inequality (4.38) and the fact that M is a bounded domain, we arrive at

E sup
s∈[0,T ]

‖F (ϕn(s))‖q/2
L1(M) ≤ ιq

⎡

⎣1 + K̃q(u0, ϕ0) +

(∫ T

0

‖g0(s)‖p′

V ′
div,p

ds

)q/2
⎤

⎦ , (4.46)

where ιq := C̃q(q, T, κ, c6, |M|, κ1
2, κ

1
p, |J |L1(R3)) and K̃q(u0, ϕ0) is given by (4.34).

Second case: or F (ϕn) < 0.
From (4.7), we infer that

2‖F (ϕn(t))‖L1(M) ≤ 2|√aϕn(t)|2 + |J |L1(R3)|ϕn(t)|2 + κ̄1

≤ 3|J |L1(R3)|ϕn(t)|2 + κ̄1 ≤ κ̃8‖ϕn(t)‖2κ+2
L2κ+2(M) + κ̃9,

(4.47)

where we have also used Young’s inequality for convolutions, the inequality (4.16), and the fact that

|a|L∞(M) ≤ |J |L1(R3). Here κ̃8 =
3c6|J|L1(R3)

κ+1 and κ̃9 =
3κ|M||J|L1(R3)

(κ+1)c
1/κ
6

+ κ̄1.

Since (4.47) holds for every t ∈ [0, T ], we also infer that

2 sup
t∈[0,T ]

‖F (ϕn(t))‖L1(M) ≤ κ̃8 sup
t∈[0,T ]

‖ϕn(t)‖2κ+2
L2κ+2 + κ̃9 ≤ κ̃8 sup

t∈[0,T ]

[χn(s)] + κ̃9. (4.48)

We note that in (4.48), we have also used (4.8).
Taking now the mathematical expectation in (4.48), making used of (4.31), we infer that

2E sup
t∈[0,T ]

‖F (ϕn(t))‖L1(M) ≤ κ̃8[K1 + K1e
C̃2T ] + κ̃9, (4.49)

with K1, C̃2 given by (4.22); and κ̃8, κ̃9 given by (4.47).
Also from (4.48), it is straightforward to check that

E sup
t∈[0,T ]

‖F (ϕn(t))‖q/2
L1(M) ≤ C(q)(κ̃9)q/2 + C(q)(κ̃8)q/2

E sup
t∈[0,T ]

[χn(t)]q/2.

From this previous inequality and (4.38), we get

E sup
t∈[0,T ]

‖F (ϕn(t))‖q/2
L1(M) ≤ ι7

⎡

⎣1 + K̃q(u0, ϕ0) +

(∫ T

0

‖g0(s)‖p′

V ′
div,p

ds

) q
2
⎤

⎦ , (4.50)
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with ι7 := ι7(q, T, κ, c6, |M|, κ1
2, κ

1
p, |J |L1(R3)) and K̃q(u0, ϕ0) is defined as in (4.34). This completes the

proof of estimate (4.2)3, i.e.,

E sup
t∈[0,T ]

‖F (ϕn(t))‖q/2
L1(M) < C, for both cases. (4.51)

In view to prove estimate (4.2)4, we begin by making the following observation: from assumption (H4)
and the Young inequality, it is straightforward to check that

|F ′(ϕn(s))| ≤ 1
r |F ′(ϕn(s))|r + r − 1

r ≤ (c4
r + 1

) |F (ϕn(s))| + r − 1
r , ∀s ∈ [0, T ]. (4.52)

Hence, (4.2)4 follows from (4.52), (4.51) and (4.49).
We now give the proof of estimates (4.3)2 and (4.3)3.
From (4.28) and the fact that τR

n ↗ T P-almost surely as R → ∞, we obtain

E

∫ T

0

‖ϕn(s)‖2
Uds ≤ C, (4.53)

Thanks to (4.16), (4.27), (4.38) and (4.39), we infer that

E

(∫ T

0
‖ϕn(s)‖2

Uds
) q

2 ≤ C(q)
[

E

(∫ T

0
|ϕn(s)|2ds

)q/2

+ E

(∫ T

0
|∇ϕn(s)|2ds

) q
2
]

≤ ῑ7

[

1 + K̃q(u0, ϕ0) +
(∫ T

0
‖g0(s)‖p′

V ′
div,p

ds
) q

2
]

,
(4.54)

with ῑ7 := ῑ7(q, T, κ, c6, |M|, κ1
2, κ

1
p, |J |L1(R3)). So, by (4.53) and (4.54), we obtain (4.3)2.

Arguing similarly as in [12, Inequality (3.65)], we check that

|μn(s)|2 ≤ C
[
|∇μn(s)|2 + 4|M|−1|J |2L1(R3)|ϕn(s)|2

]

≤ C

[

c2
4r

−2|M|−2‖F (ϕn(s))‖2
L1(M) +

(
c4 + r − 1

r

)2
]

.
(4.55)

Now, owing to (4.55), (4.49), (4.16) and (4.31), it follows that

E
∫ T

0
‖μn(s)‖2

Uds = E
∫ T

0
|μn(s)|2ds + E

∫ T

0
|∇μn(s)|2ds < C. (4.56)

Also, from (4.55), (4.51), (4.39) and (4.38), we get

E

(∫ T

0
‖μn(s)‖2

Uds
)q/2

≤ E

(∫ T

0
|μn(s)|2ds

)q/2

+ E

(∫ T

0
|∇μn(s)|2ds

)q/2

< C, (4.57)

where U = H1(M).
The estimate (4.3)3 follows from (4.56) and (4.57). This completes the proof of Lemma 4.1. �

In the next propositions, we prove two uniform estimates for un and ϕn which are very crucial for our
purpose.

Proposition 4.1. In addition to assumptions of Theorem 3.1, Let s ∈ R such that s > 5/2. We assume
that t �→ un(t) is extended to zero outside the interval [0, T ]. Then, there exists a positive constant C such
that

E sup
0<|θ|≤δ<1

‖un(t + θ) − un(t)‖p′

W′
s

≤ Cδ
p′
p , ∀t ∈ [0, T ], n ∈ N

∗ and p′ = p/(p − 1).

Proposition 4.2. Let the assumptions of Theorem 3.1 be satisfied. We assume that t �→ ϕn(t) is extended
to zero outside the interval [0, T ]. Then, there exists a positive constant C such that

E sup
0<|θ|≤δ<1

‖ϕn(t + θ) − ϕn(t)‖2
V ′

s
≤ Cδ

p′
p , ∀t ∈ [0, T ], n ∈ N

∗ and p′ = p/(p − 1).
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Proof of Proposition 4.1. We rewrite the equation for un as

d(un, v) + [(T (Dun),Dv) + b(un, un, v)]dt = −(ϕn∇μn, v)dt + (P1
ng0, v)dt

+ (g1(un, ϕn), v)dt +
∑n

i=1(g2(t, un, ϕn)ei, v)dβi
t , ∀v ∈ Wn

s .
(4.58)

Let us take v ∈ Ws, and decompose it as v = vI + vII , where vI ∈ Wn
s and vII ∈ (Wn

s )⊥, and notice that
vI and vII are orthogonal also in Ws. Then, from (4.58) we can write

d(un, v) = d 〈un, v〉Ws
= d 〈un, vI〉Ws

= −[(T (Dun),DvI) + b(un, un, vI)]dt

− (ϕn∇μn, vI)dt + (P1
ng0, vI)dt + (g1(un, ϕn), vI)dt

+
n∑

i=1

(g2(t, un, ϕn)ei, vI)dβi
t .

(4.59)

Let us set ˜̃un(t) = un(t + θ) − un(t), for any θ ∈ (0, δ) and δ ∈ (0, 1). Hence from (4.59), we have

〈˜̃un(t), v
〉

Ws
= −

∫ t+θ

t

[(T (Dun),DvI) + b(un, un, vI)]dτ −
∫ t+θ

t

(ϕn∇μn, vI)dτ

+
∫ t+θ

t

(P1
ng0, vI)dτ +

∫ t+θ

t

(g1(un, ϕn), vI)dτ +
∫ t+θ

t

(P1
ng2(τ, un, ϕn)ei, vI)dβi

τ ,

(4.60)

where, for the sake of simplicity, we have set
∫ t+θ

t

(P1
ng2(τ, un, ϕn)ei, vI)dβi

τ :=
n∑

j=1

∫ t+θ

t

(P1
ng2(τ, un, ϕn)ei, vI)dβi

τ .

We set

yt(θ) = | ∫ t+θ

t
[(T (Dun),DvI) + b(un, un, vI)]dτ

− ∫ t+θ

t
(ϕn∇μn, vI)dτ +

∫ t+θ

t
(P1

ng0, vI)dτ

+
∫ t+θ

t
(g1(un, ϕn), vI)dτ +

∫ t+θ

t
(P1

ng2(τ, un, ϕn)ei, vI)dβi
τ |.

It follows from this that

yt(θ) ≤ |
∫ t+θ

t

(T (Dun),DvI)dτ | + |
∫ t+θ

t

b(un, un, vI)dτ |

+ |
∫ t+θ

t

(ϕn∇μn, vI)dτ | + |
∫ t+θ

t

(P1
ng0, vI)dτ |

+ |
∫ t+θ

t

(g1(un, ϕn), vI)dτ | + |
∫ t+θ

t

(P1
ng2(τ, un, ϕn)ei, vI)dβi

τ |.

(4.61)

We have

| ∫ t+θ

t
(T (Dun),DvI)dτ | = | ∫ t+θ

t
〈N(un(τ)), vI〉Vdiv,p

dτ |
≤ ∫ t+θ

t
| 〈N(un(τ)), vI〉Vdiv,p

|dτ

≤ ‖vI‖Vdiv,p

∫ t+θ

t
‖N(un(τ))‖V ′

div,p
dτ

≤ C‖vI‖Ws

∫ t+θ

t
‖N(un(τ))‖V ′

div,p
dτ,

where we have used the Cauchy–Schwarz inequality and the fact Ws ↪→ Vdiv,p continuously.
Now, from this last inequality and by Hölder’s inequality, we infer that

| ∫ t+θ

t
(T (Dun),DvI)dτ | ≤ C‖vI‖Ws

θ
1
p

(∫ t+θ

t
‖N(un(τ))‖p′

V ′
div,p

dτ
) 1

p′
.
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Hence,
∣
∣
∣
∫ t+θ

t
(T (Dun),DvI)dτ

∣
∣
∣
p′

≤ C‖vI‖p′
Ws

θ
p′
p
∫ t+θ

t
‖N(un(s))‖p′

V ′
div,p

ds

≤ C‖v‖p′
Ws

θ
p′
p
∫ t+θ

t
‖N(un(s))‖p′

V ′
div,p

ds := C‖v‖p′
Ws

y1
t (θ, p).

. (4.62)

Note that (see [15, Inequalities (4.14)])

|b(un, un, vI)| ≤ C|un|2‖vI‖Ws
≤ C|un|2‖v‖Ws

, (4.63)

and the following holds

| ∫ t+θ

t
b(un, un, vI)dτ | ≤ ∫ t+θ

t
|b(un, un, vI)|dτ ≤ C‖v‖Ws

∫ t+θ

t
|un(τ)|2dτ

≤ C‖v‖Ws
θ

1
p

(∫ t+θ

t
|un(τ)|2p′

dτ
) 1

p′
.

Therefore, we have
∣
∣
∣
∣
∣

∫ t+θ

t

b(un, un, vI)dτ

∣
∣
∣
∣
∣

p′

≤ C‖v‖p′
Ws

θ
p′
p

∫ t+θ

t

|un(τ)|2p′
dτ := C‖v‖p′

Ws
y2

t (θ, p). (4.64)

As in [15, Inequalities (4.15)], we also have

|(ϕn∇μn, vI)| ≤ C|ϕn||∇μn|‖vI‖Ws
≤ C|ϕn||∇μn|‖v‖Ws

. (4.65)

By (4.65) and the Hölder inequality, we have

| ∫ t+θ

t
(ϕn∇μn, vI)dτ | ≤ ∫ t+θ

t
|(ϕn∇μn, vI)|dτ ≤ C‖v‖Ws

∫ t+θ

t
|ϕn||∇μn|dτ

≤ C‖v‖Wsθ
1
p

(∫ t+θ

t
|ϕn|p′ |∇μn|p′

dτ
) 1

p′
.

Thus,
∣
∣
∣
∫ t+θ

t
(ϕn∇μn, vI)dτ

∣
∣
∣
p′

≤ C‖v‖p′
Ws

θ
p′
p
∫ t+θ

t
|ϕn|p′ |∇μn|p′

dτ

≤ C‖v‖p′
Ws

θ
p′
p

(
∫ t+θ

t
|ϕn| 2p′

2−p′ dτ

) 2−p′
2 (∫ t+θ

t
|∇μn|2dτ

) p′
2

:= C‖v‖p′
Ws

y3
t (θ, p).

(4.66)

We have by Cauchy–Schwarz’s inequality

| ∫ t+θ

t
(P1

ng0, vI)dτ | ≤ ∫ t+θ

t
|(P1

ng0, vI)|dτ

≤ ‖vI‖Ws

∫ t+θ

t
‖P1

ng0(τ)‖W′
s
dτ

≤ ‖vI‖Ws

∫ t+θ

t
‖g0(τ)‖W′

s
dτ

≤ C‖v‖Ws

∫ t+θ

t
‖g0(τ)‖V ′

div,p
dτ,

where we have also used the fact that ‖P1
n‖L(W′

s,W(s)) ≤ 1 and V ′
div,p ↪→ W′

s continuously. Hence, by
Hölder’s inequality, we obtain

∣
∣
∣
∫ t+θ

t
(P1

ng0, vI)dτ
∣
∣
∣ ≤ C‖v‖Ws

θ
1
p

(∫ t+θ

t
‖g0(τ)‖p′

V ′
div,p

dτ
) 1

p′

From this previous inequality, we have
∣
∣
∣
∫ t+θ

t
(P1

ng0, vI)dτ
∣
∣
∣
p′

≤ C‖v‖p′
Ws

θ
p′
p
∫ t+θ

t
‖g0(τ)‖p′

V ′
div,p

dτ := C‖v‖p′
Ws

y4
t (θ, p) . (4.67)

Making similar reasoning as in (4.67), we obtain
∣
∣
∣
∫ t+θ

t
(g1(un(τ), ϕn(τ)), vI)dτ

∣
∣
∣
p′

≤ C‖v‖p′
Ws

θ
p′
p
∫ t+θ

t
‖g1(un, ϕn)‖p′

V ′
div,p

dτ := C‖v‖p′
Ws

y5
t (θ, p). (4.68)
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Raising both sides of the inequality (4.61) to the power p′ (p′ is the conjugate index to p), and thanks to
previous inequalities, we obtain

yt(θ)p′ ≤ C‖v‖p′
Ws

∑5
i=1 yi

t(θ, p) +
∣
∣
∣
∫ t+θ

t
(P1

ng2(τ, un, ϕn)ei, vI)dβi
τ

∣
∣
∣
p′

. (4.69)

Thanks to (2.23), we have

E supθ∈(0,δ) y1
t (θ, p) ≤ Cδ

p′
p

(
δ + E

∫ T

0
‖un(τ)‖p

1,pdτ
)

.

Owing to Lemma 4.1 (see inequality (4.3)1), we derive from this last inequality that

E sup
θ∈(0,δ)

y1
t (θ, p) ≤ Cδ

p′
p . (4.70)

Also, thanks to Lemma 4.1, we obtain

E sup
θ∈(0,δ)

y2
t (θ, p) ≤ Cδ

p′
p E sup

τ∈[0,T ]

|un(τ)|2p′ ≤ Cδ
p′
p . (4.71)

By Hölder’s inequality, we have

E sup
θ∈(0,δ)

y3
t (θ, p) ≤ δ

p′
p E

(
∫ t+δ

t
|ϕn| 2p′

2−p′ dτ

) 2−p′
2 (∫ t+δ

t
|∇μn|2dτ

) p′
2

≤ δ
p′
p

[

E
∫ t+δ

t
|ϕn| 2p′

2−p′ dτ

] 2−p′
2 [

E
∫ t+δ

t
|∇μn|2dτ

] p′
2

≤ Cδ
p′
p

[

E sup
τ∈[0,T ]

|ϕn(τ)| 2p′
2−p′

] 2−p′
2 [

E
∫ T

0
|∇μn|2dτ

] p′
2

.

Therefore, thanks to (4.16) in conjunction with Lemma 4.1, we have

E sup
θ∈(0,δ)

y3
t (θ, p) ≤ Cδ

p′
p . (4.72)

By the assumption on g0, it follows that

E supθ∈(0,δ) y4
t (θ, p) ≤ Cδ

p′
p E

∫ T

0
‖g0(τ)‖p′

V ′
div,p

dτ ≤ Cδ
p′
p . (4.73)

Using the assumptions on g1 in conjunction with Lemma 4.1, we obtain

E sup
θ∈(0,δ)

y5
t (θ, p) ≤ Cδ

p′
p . (4.74)

By the Burkholder–Davis–Gundy lemma, we have

E sup
θ∈(0,δ)

∣
∣
∣
∣
∣

∫ t+θ

t

n∑

i=1

(P1
ng2(τ, un, ϕn)ei, vI)dβi

τ

∣
∣
∣
∣
∣

p′

≤ CE

(∫ t+δ

t

n∑

i=1

(P1
ng2(τ, un(τ), ϕn(τ))ei, vI)2dτ

) p′
2

≤ C|vI |p′
E

(∫ t+δ

t

n∑

i=1

|P1
ng2(τ, uτ , ϕn(τ))|2dτ

) p′
2

≤ C‖v‖p′
Ws

E

(∫ t+δ

t

‖g2(τ, un(τ), ϕn(τ))‖2
L2(K,Gdiv)dτ

) p′
2

.
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From this last estimate and the assumption on g2, we derive that

E sup
θ∈(0,δ)

∣
∣
∣
∣
∣

∫ t+θ

t

n∑

i=1

(P1
ng2(τ, un, ϕn)ei, vI)dβi

τ

∣
∣
∣
∣
∣

p′

≤ C‖v‖p′
Ws

E

(

δ +
∫ t+δ

t

(|un(τ)|2 + |ϕn(τ)|2)dτ

) p′
2

≤ C‖v‖p′
Ws

(

δ + δE sup
τ∈[t,t+δ]

|un(τ)|2 + δE sup
τ∈[t,t+δ]

|ϕn(τ)|2
) p′

2

.

(4.75)

Thanks to (4.16), (4.75), and Lemma 4.1, we see that

E sup
θ∈(0,δ)

∣
∣
∣
∣
∣

∫ t+θ

t

n∑

i=1

(P1
ng2(τ, un, ϕn)ei, vI)dβi

τ

∣
∣
∣
∣
∣

p′

≤ C‖v‖p′
Ws

δ
p′
2 ≤ C‖v‖p′

Ws
δ

p′
p . (4.76)

Now, from (4.69) and the estimates (4.70)–(4.76), we have

E sup
θ∈(0,δ)

sup
v∈Ws,‖v‖Ws=1

yt(θ)p′ ≤ Cδ
p′
p . (4.77)

Hence

E sup
θ∈(0,δ)

‖˜̃un(t)‖p′

W′
s

= E sup
θ∈(0,δ)

sup
v∈Ws,‖v‖Ws=1

| 〈˜̃un(t), v
〉

Ws
|p′ ≤ Cδ

p′
p , (4.78)

with ˜̃un(t) = un(t+θ)−un(t), and for any positive integer n, t ∈ [0, T ] and δ ∈ (0, 1). The Proposition 4.1
follows readily from this last inequality and noting that a similar argument can be carried out to find a
similar estimate for negative values of θ.

Proof of Proposition 4.2. The second equations for the Galerkin approximation is written as

d(ϕn, ψ) + (∇μn,∇ψ)dt = (unϕn,∇ψ)dt, ∀ψ ∈ Hn. (4.79)

Let ψ ∈ U := H1(M) and decompose it as ψ = ψI + ψII , where ψI ∈ Hn and ψII ∈ H⊥
n . Recall that ψI

and ψII are orthogonal also in U . Then, from (4.79), we deduce

d(ϕn, ψ) = d 〈ϕn, ψ〉U = d 〈ϕn, ψI〉U = −(∇μn,∇ψI)dt + (unϕn,∇ψI)dt. (4.80)

It follows from (4.80) that

〈ϕn(t + θ) − ϕn(t), ψ〉U = − ∫ t+θ

t
(∇μn(τ),∇ψI)dτ +

∫ t+θ

t
(un(τ)ϕn(τ),∇ψI)dτ

:= Xt(θ),
(4.81)

for any 0 < θ < δ < 1.
We have

(Xt(θ))2 ≤ C
∣
∣
∣
∫ t+θ

t
(∇μn(τ),∇ψI)dτ

∣
∣
∣
2

+ C
∣
∣
∣
∫ t+θ

t
(un(τ)ϕn(τ),∇ψI)dτ

∣
∣
∣
2

. (4.82)

Note that

C
∣
∣
∣
∫ t+θ

t
(∇μn(τ),∇ψI)dτ

∣
∣
∣
2

≤ C
(∫ t+θ

t
|(∇μn(τ),∇ψI)|dτ

)2

≤ C|∇ψI |2θ
∫ t+θ

t
|∇μn(τ)|2dτ

≤ C‖ψ‖2
Uθ

∫ t+θ

t
|∇μn(τ)|2dτ := X1

t (θ).

(4.83)

Owing to Lemma 4.1, we derive that

E sup
θ∈(0,δ)

X1
t (θ) ≤ C‖ψ‖2

Uδ ≤ C‖ψ‖2
Uδ

p′
p . (4.84)
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As far as the second term in the right hand side of (4.82) is concerned we notice that when p < 3 and
κ ≥ 2(3−p)

5p−6 , due to the embedding W 1,p(M) ↪→ L
3p

3−p (M) ↪→ L
2κ+2

κ (M), we can check that (see [15,
Inequality (4.18)])

|(un(τ)ϕn(τ),∇ψI)| ≤ C‖un(τ)‖Vdiv,p
‖ϕn(τ)‖L2κ+2‖ψ‖U . (4.85)

When p = 3 and κ ∈ (0, 2] or p > 3 and κ > 0, due to the embedding W 1,p(M) ↪→ L
2κ+2

κ (M), we have
also

|(un(τ)ϕn(τ),∇ψI)| ≤ C‖un(τ)‖1,p‖ϕn(τ)‖L2κ+2‖ψ‖U . (4.86)

Now from (4.85), we estimate the second term in the right hand side of (4.82) as follows

C
∣
∣
∣
∫ t+θ

t
(un(τ)ϕn(τ),∇ψI)dτ

∣
∣
∣
2

≤ Cθ
∫ t+θ

t
|(un(τ)ϕn(τ),∇ψI)|2dτ

≤ Cθ‖ψ‖2
U

∫ t+θ

t
‖un(τ)‖2

1,p‖ϕn(τ)‖2
L2κ+2dτ

≤ Cθ‖ψ‖2
U

(∫ t+θ

t
‖un‖p

1,pdτ
) 2

p

(
∫ t+θ

t
‖ϕn‖

2p
p−2

L2κ+2dτ

) p−2
p

= X2
t (θ),

where we have also used the Hölder inequality.
Hence, from this previous inequality, we infer that

E sup
θ∈(0,δ)

X2
t (θ) ≤ Cδ‖ψ‖2

U

[
E
∫ t+δ

t
‖un‖p

1,pdτ
] 2

p

[

E
∫ t+δ

t
‖ϕn‖

2p
p−2

L2κ+2dτ

] p−2
p

≤ Cδ
2(p−1)

p ‖ψ‖2
UE sup

τ∈[t,t+δ]

‖ϕn(τ)‖2
L2κ+2

[

E

∫ t+δ

t

‖un‖p
1,pdτ

] 2
p

.

(4.87)

Owing to Lemma 4.1, we derive from (4.87) that

E sup
θ∈(0,δ)

X2
t (θ) ≤ Cδ

2(p−1)
p ‖ψ‖2

U ≤ Cδ
p′
p ‖ψ‖2

U , with p′ =
p

p − 1
. (4.88)

Collecting (4.84), (4.88), from (4.82) we then get

E sup
θ∈(0,δ)

sup
ψ∈Ws,‖ψ‖V =1

(Xt(θ))2 ≤ Cδ
p′
p . (4.89)

Therefore

E sup
θ∈(0,δ)

‖ϕn(t + θ) − ϕn(t)‖2
U ′ = E sup

θ∈(0,δ)

sup
ψ∈V,‖ψ‖U=1

| 〈ϕn(t + θ) − ϕn(t), ψ〉U |2 ≤ Cδ
p′
p , (4.90)

for any positive integer n, t ∈ [0, T ] and δ ∈ (0, 1).
Finally, collecting all the estimates and making a similar reasoning with θ < 0, we thus deduce

E sup
0<|θ|≤δ<1

‖ϕn(t + θ) − ϕn(t)‖2
U ′ ≤ Cδ

p′
p ,

for any positive integer n, t ∈ [0, T ]. This completes the proof of Proposition 4.2. �

4.3. Tightness and Compactness Results

In this subsection, we study the tightness property of the Galerkin solutions and derive several weak con-
vergence results. The estimates from the previous Propositions (Propositions 4.1–4.2) play an important
role in this part of the paper.

Throughout this subsection, we fix s ∈ R such that s > 5/2. Let us consider the spaces

X1 = L2(0, T ;H) ∩ C(0, T ;W′
s),

X2 = C(0, T ;K)
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and we denote by B(X1) and B(X2) their borel σ-algebras, respectively.
Now, before proving that the family of laws {L(un, ϕn) : n ∈ N} is tight on the Polish space X1, we

recall the following result which will be needed in the sequel. The proof of this result can be found in the
book of Métivier [38, Chapter VI, Lemma 2 and Lemma 3].

Lemma 4.2. Let B, B0 and B1 be three reflexive Banach spaces satisfying the compact embedding B0 ↪→
B ↪→ B1. Let q ∈ (1,∞) and Q be a subset of Lq(0, T ;B), which is included in a compact set of Lq(0, T ;B1)
and

sup
v∈Q

∫ T

0

‖u(s)‖q
B0

ds < ∞.

Then, Q is relatively compact in Lq(0, T ;B).

We shall prove the following important result.

Lemma 4.3. The family of laws {L(un, ϕn) : n ∈ N} is tight in X1.

Proof. We firstly prove that {L(un, ϕn) : n ∈ N} is tight in C(0, T ;W′
s). For this aim, we first observe

that for a fixed number R > 0 we have

P(‖(un(t), ϕn(t))‖H > R) ≤ 1
R2

E sup
t∈[0,T ]

‖(un(t), ϕn(t))‖2
H
,

from which along with (4.2)1, (4.2)2 and the fact that the domain M is bounded we infer that

sup
n∈N

P(‖(un(t), ϕn(t))‖H > R) ≤ C

R2
, (4.91)

for any t ∈ [0, T ].
Since, by the compact embedding H ⊂ W

′
s, balls in H are compact for the strong topology in W

′
s,

then this implies that the family {(un(t), ϕn(t)) : n ∈ N} is relatively compact in W
′
s for any t ∈ [0, T ].

Therefore, by Propositions 4.1–4.2 and [47, Lemma 1, page 71] we derive that the laws of the family
{(un, ϕn) : n ∈ N} are tight in C(0, T ;W′

s). This means that for any ε > 0 there exists a compact subset
Kε of C(0, T ;W′

s) such that

P((un, ϕn) ∈ Kε) ≥ 1 − ε

2
, n ∈ N. (4.92)

We also observe that for a fixed number R > 0, we have

P
(‖(un, ϕn)‖Lp,2(0,T ;V) > R

) ≤ 1
R2E‖(un, ϕn)‖2

Lp,2(0,T ;V) = 1
R2

(
E
∫ T

0
[‖un‖p

1,p + ‖ϕn‖2
U ]ds

)
,

from which along with (4.3)1, (4.3)2 we derive that

P
(‖(un, ϕn)‖Lp,2(0,T ;V) > R

) ≤ C

R2
. (4.93)

Now, taking R =
√

2C
ε := ε1, where C is the constant appearing in (4.93), we infer that

P(‖(un, ϕn)‖Lp,2(0,T ;V) ≤ ε1) = 1 − P(‖(un, ϕn)‖Lp,2(0,T ;V) > ε1)
≥ 1 − C

ε2
1

= 1 − ε
2 , n ∈ N.

(4.94)

Now, let

Qε = {(u, ϕ) ∈ Lp,2(0, T ;V) : ‖(u, ϕ)‖Lp,2(0,T ;V) ≤ ε1} ∩ Kε.

Since Lp,2(0, T ;V)∩C(0, T ;W′
s) is compactly embedded in L2(0, T ;H)∩L2(0, T ;W′

s), then Qε satisfies the
conditions of Lemma 4.2. Hence Qε is relatively compact in L2(0, T ;H). Moreover, P((un, ϕn) ∈ Qε) ≥
1 − ε, n ∈ N. This proves that the family of laws {L(un, ϕn) : n ∈ N} is tight in L2(0, T ;H) and we can
easily conclude the proof of the lemma. �
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Hereafter, the law of the cylindrical Brownian motion W = (Wt)t∈[0,T ] is denoted by Π and we mention
that it is possible to find a set Ω̄ ∈ F of measure zero such that W (ω) ∈ C(0, T ;K) for any ω ∈ Ω/Ω̄. For
any n ∈ N, we construct a family of probability laws on X2 = C(0, T ;K) by setting

Πn(.) = P(W ∈ .) ∈ Pr(X2) = Π, ∀n ≥ 1 (4.95)

and where Pr(X2) denotes the set of all probability measures on (X2,B(X2)).
We now prove the following important result.

Theorem 4.1. The family of laws of ((un, ϕn);W ) is tight on the Polish space X1 × X2.

Proof. We have already proved that the family of laws {L(un, ϕn) : n ∈ N} is tight in X1 (cf. Lemma 4.3).
Now we shall proved that the family {Πn : n = 1, 2, . . .} is tight in Pr(X2). For this, we endow the space
X2 with the uniform convergence, and then X2 is now a Polish space. Hence, it follows from [3, Theorem
6.8] that Pr(X2) endowed with the Prohorov’s metric is a separable and complete metric space. By
construction, the family of probability laws {Πn : n = 1, 2, . . .} is reduced to one element which is
the law of W and belongs to Pr(X2). Thus, by [43, Chapter II, Theorem 3.2] we infer that the family
{Πn : n = 1, 2, . . .} is tight on Pr(X2). Finally from the fact that {L(un, ϕn) : n ∈ N} is tight in X1, the
family {Πn : n = 1, 2, . . .} is tight in Pr(X2) in conjunction with [31, Corollary 1.3], we infer that the
family of laws of the joint processes ((un, ϕn),W ) is tight in X1 × X2. �

Proposition 4.3. Let X = X1 × C(0, T ;K). There exist a Borel probability measure μ1 on X and a subse-
quence of ((un, ϕn),W ) such that their laws weakly converge to μ1.

Proof. Thanks to the theorem 4.1, the laws of ((un, ϕn),W ) form a tight family on X. Since X is a Polish
space, we get the result from the application of Prohorov’s theorem (cf. [3, Theorem I. 5. 1, page 59]).
�

The following result relates the above convergence in law to almost sure convergence.

Proposition 4.4. There exist a complete probability space (Ω̃, F̃ , P̃) and a sequence of X-valued random
variables, denoted by {(ũn, ϕ̃n, W̃n) : n ∈ N}, defined on (Ω̃, F̃ , P̃) such that their laws are equal to the
laws of {(un, ϕn,W ) : n ∈ N} on X. Also, there exists an X-random variable {(ũ, ϕ̃), W̃} defined on
(Ω̃, F̃ , P̃) such that

L(ũ, ϕ̃, W̃ ) = μ1,

W̃n → W̃ in C(0, T ;K) P̃-a.s.,
(ũn, ϕ̃n) → (ũ, ϕ̃) in L2(0, T ;H) P̃-a.s.,
(ũn, ϕ̃n) → (ũ, ϕ̃) in C(0, T ;W′

s).

(4.96)

Proof. The proof of Proposition 4.4 is a consequence of Proposition 4.3 and Skorokhod’s Theorem [50].
�

Proposition 4.5. Let Q = II∗ where I is the canonical injection, which is Hilbert–Schmidt, from K
into K1. Then, the stochastic process W̃ = (W̃t)t∈[0,T ] is a K1-valued Q-Wiener process on (Ω̃, F̃ , P̃).
Furthermore, if 0 ≤ s < t ≤ T , then the increments W̃t − W̃s are independent of the σ-algebra F̃s

generated by ũ(τ), ϕ̃(τ), W̃τ for τ ∈ [0, s].

Proof. The proof is a verbatim reproduction of similar result in [45, Proposition 3.11]. �
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Now, since (ũn, ϕ̃n, W̃n) and (un, ϕn,W ) have the same law (cf. Proposition 4.4), it follows from
Lemma 4.1 that (ũn, ϕ̃n) satisfies the estimates

Ẽ sup
s∈[0,T ]

|ũn(s)|q < C,

Ẽ sup
s∈[0,T ]

‖ϕ̃n(s)‖q
L2κ+2(M) < C,

Ẽ sup
s∈[0,T ]

‖F (ϕ̃n(s))‖q/2
L1(M) < C,

Ẽ sup
s∈[0,T ]

‖F ′(ϕ̃n(s))‖q
Lr(M) < C,

Ẽ

(∫ T

0

‖ũn(s)‖p
1,pds

)q/p

< C,

Ẽ

(∫ T

0

‖ϕ̃n(s)‖2
Uds

)q/2

< C,

Ẽ

(∫ T

0

‖μ̃n(s)‖2
Uds

)q/2

< C,

(4.97)

for any n ∈ N, q ∈ [2,∞) and p ≥ 11/5. Here μ̃n = aϕ̃n − J ∗ ϕ̃n + F ′(ϕ̃n) and U = H1(M).
We will now prove the following important lemma:

Lemma 4.4. We can extract a subsequence {(ũnk
, ϕ̃nk

) : k ∈ N} from {(ũn, ϕ̃n) : n ∈ N} such that

(ũnk
, ϕ̃nk

) → (ũ, ϕ̃) in L2(Ω̃, F̃ , P̃;L2(0, T ;H),
J ∗ ϕ̃nk

→ J ∗ ϕ̃ in L2(Ω̃, F̃ , P̃;L2(0, T ;U)),
μ̃nk

⇀ μ̃ = aϕ̃ − J ∗ ϕ̃ + F ′(ϕ̃) in L2(Ω̃, F̃ , P̃;L2(0, T ;U)).
(4.98)

Also the processes ũ, ϕ̃ and μ̃ satisfy the estimates (4.97).

Proof. Thanks to the estimate (4.97)5 and the Eberlein–Smulian theorem (see [52, Chapter 21, Proposi-
tion 21.23-(h)]), we infer that there exists a subsequence ũnk

of ũn satisfying

ũnk
⇀ ũ in Lq(Ω̃, F̃ , P̃;Lp(0, T ;Vdiv,p)),

ũnk
(T ) ⇀ η1 in L2(Ω̃, F̃ , P̃;Gdiv), for any q ∈ [2,∞).

(4.99)

We claim that η1 = ũ(T ) in L2(Ω̃, F̃ , P̃;Gdiv). The prove of this will be given later.
Thanks to (4.99)1, reasoning similarly as in [13, Equation (4.88)], we check that

ũnk
→ ũ in L2(Ω̃, F̃ , P̃;L2(0, T ;Gdiv)).

Thus, modulo the extraction of a subsequence (still) denoted (ũnk
)k≥1 we have

ũnk
→ ũ dP̃ ⊗ dt-a.e. in Gdiv. (4.100)

Thanks to (4.96)2 and (4.97)2, [13, Equation (4.89)] we obtain

ϕ̃nk
→ ϕ̃ in L2(Ω̃, F̃ , P̃;L2(0, T ;H)),

and thus, modulo the extraction of a subsequence (still) denoted (ϕ̃nk
)k≥1 one has

ϕ̃nk
→ ϕ̃ dP̃ ⊗ dt-a.e. in H. (4.101)

Naturally the convergent (4.98)1 follows from the previous convergence.
Later, we will show that

ϕ̃nk
⇀ η2 = ϕ̃(T ) in L2(Ω̃, F̃ , P̃;H). (4.102)

Due to (4.98)1 and the fact that the map J∗ : H → U is linear and bounded, we easily derive the
convergence (4.98)2.

Now, we will show that μ̃nk
⇀ μ̃ = aϕ̃ − J ∗ ϕ̃ + F ′(ϕ̃) in L2(Ω̃, F̃ , P̃;L2(0, T ;U)).
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First of all, from the estimate (4.97)7 and the Eberlein–Smulian theorem (see [52, Chapter 21, Propo-
sition 21.23-(h)]), we can extract a subsequence of μ̃n denoted by μ̃nk

such that for any q ∈ [2,∞)

μ̃nk
⇀ μ̃ in Lq(Ω̃, F̃ , P̃;L2(0, T ;U)). (4.103)

From the estimates (4.97)2,4 and the fact that the domain M is bounded, we infer that ρ̃(., ϕ̃n) =
a(.)ϕ̃n + F ′(ϕ̃n) is bounded in Lq(Ω̃, F̃ , P̃;L∞(0, T ;Lr(M))), for any q ∈ [2,∞). Therefore from the
Banach–Alaoglu theorem, we conclude there exits a subsequence of ρ(., ϕ̃n) denoted by ρ(., ϕ̃nk

) such
that for any q ∈ [2,∞)

ρ(., ϕ̃nk
) ∗

⇀ ρ in Lq(Ω̃, F̃ , P̃;L∞(0, T ;Lr(M))). (4.104)

From the pointwise convergence (4.101) we have ρ(., ϕ̃nk
) → a(.)ϕ̃ + F ′(ϕ̃) dP̃-almost everywhere in

(0, T ) × M and therefore from (4.104) we have ρ = aϕ̃ + F ′(ϕ̃), i.e., ρ(x, ϕ) = a(x)ϕ̃ + F ′(ϕ̃); x ∈ M.
Now, we introduce the following set

D = {Φ = φ(ω)χ(t)v : φ ∈ L∞(Ω̃, P̃), χ ∈ D(0, T ) and v ∈ Hn},

where Hn is defined in the Sect. 4.1. This set is dense in L2(Ω̃, F̃ , P̃;L2(0, T ;H)).
For any Φ = φ(ω)χ(t)v ∈ D and every nk ≥ n (n is fixed), we have

Ẽ

(
φ(ω)

∫ T

0
(μ̃nk

(t), v) χ(t)dt
)

= Ẽ

(
φ(ω)

∫ T

0
(ρ(., ϕ̃nk

(t)) − J ∗ ϕ̃nk
(t), v)χ(t)dt

)
.

By passing to the limit as nk → ∞ in this identity and using the convergence (4.103), (4.104) and (4.98)2,
on account of the density of D in L2(Ω̃, F̃ , P̃;L2(0, T ;H)) we get μ̃ = aϕ̃ + F ′(ϕ̃) − J ∗ ϕ̃ i.e. (4.98)3. In
particular we obtain ρ(., ϕ̃) = a(.)ϕ̃ + F ′(ϕ̃) ∈ L2(Ω̃, F̃ , P̃;L2(0, T ;U)).

Finally, making similar reasoning as in [13, Proposition 4.2, Inequality (4.86)] we can check that the
stochastic processes ũ, ϕ̃ and μ̃ satisfies the same estimates as in (4.97). This ends the proof of Lemma
4.4. �

Proposition 4.6. Let p ∈ [11/5, 12/5) and T > 0. There exits five processes N ,B0,R1 ∈ L2(Ω̃, F̃ , P̃;Lp′

(0, T ;V ′
div,p), B1 ∈ L2(Ω̃, F̃ , P̃;L2(0, T ;U ′) and g1 ∈ L2(Ω̃, F̃ , P̃;L2(0, T ;V ′

div,p) such that

P1
nk

N(ũnk
) ⇀ N in L2(Ω̃, F̃ , P̃;Lp′

(0, T ;V ′
div,p),

P1
nk

B0(ũnk
) ⇀ B0 in L2(Ω̃, F̃ , P̃;Lp′

(0, T ;V ′
div,p),

P1
nk

ϕ̃nk
∇μ̃nk

⇀ R1 in L2(Ω̃, F̃ , P̃;Lp′
(0, T ;V ′

div,p),
P2

nk
ũnk

.∇ϕ̃nk
⇀ B1 in L2(Ω̃, F̃ , P̃;L2(0, T ;U ′),

P1
nk

g1(ũnk
, ϕ̃nk

) ⇀ g1 in L2(Ω̃, F̃ , P̃;L2(0, T ;V ′
div,p)).

(4.105)

Proof. Using the assumption (H1) for g1, the estimates (4.97)1,2, and applying also the Banach–Alaoglu
theorem we easily derive (4.105)5.

Owing to (2.23), (4.97)5 and application of Banach–Alaoglu’s theorem, we get (4.105)1.
By mean of Hölder’s and Gagliardo–Nirenberg’s inequalities, we have for all v ∈ Vdiv,p

|b(ũnk
, ũnk

, v)| ≤ c‖ũnk
‖L3p/(4p−6)‖ũnk

‖1,p‖v‖L3p/(3−p)

≤ c|ũnk
|(10p−18)/(5p−6)‖ũnk

‖(12−5p)/(5p−6)
W 1,p ‖ũnk

‖1,p‖v‖L3p/(3−p)

≤ c|ũnk
|(10p−18)/(5p−6)‖ũnk

‖(12−5p)/(5p−6)
W 1,p ‖ũnk

‖1,p‖v‖W 1,p

≤ c|ũnk
|(10p−18)/(5p−6)‖ũnk

‖6/(5p−6)
1,p ‖v‖1,p,

where we have also used the fact that W 1,p ↪→ L
3p

3 − p and that Vdiv,p-norm is equivalent to the W 1,p-
norm. Hence,

‖B0(ũnk
)‖V ′

div,p
= sup

v∈Vdiv,p,‖v‖1,p≤1

|b(ũnk
, ũnk

, v)| ≤ c|ũnk
| 10p−18

5p−6 ‖ũnk
‖

6
5p−6
1,p . (4.106)
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Thanks to (4.106), using Hölder’s inequality, we see that

Ẽ

[∫ T

0
‖P1

nk
B0(ũnk

)‖p′

V ′
div,p

dt
]2/p′

≤ cẼ

[
(∫ T

0
|ũnk

| 2(5p−9)
5p−11 dt

) 2(5p−11)
5p−6

(∫ T

0
‖ũnk

‖p
1,pdt

) 12
p(5p−6)

]

≤ c

[

Ẽ sup
t∈[0,T ]

|ũnk
(t)| 4(5p−9)

5p−8

] 5p−8
5p−6 [

Ẽ

(∫ T

0
‖ũnk

‖p
1,pdt

) 6
p

] 2
5p−6

.

Therefore, from this previous inequality and the estimates (4.97)1–(4.97)5, we infer that

Ẽ

[∫ T

0
‖P1

nk
B0(ũnk

(t))‖p′

V ′
div,p

dt
]2/p′

< C. (4.107)

Thanks to (4.107) and the Banach–Alaoglu theorem, we derive that (4.105)2 holds.

By using the Sobolev embedding W 1,p ↪→ L
3p

3−p , the Hölder inequality and the fact that κ ≥ 2(3−p)
5p−6 ,

we have

|(ϕ̃nk
∇μ̃nk

, v)| ≤ c‖ϕ̃nk
‖L6p/(5p−6) |∇μ̃nk

|‖v‖L3p/(3−p) ≤ c‖ϕ̃nk
‖L2κ+2 |∇μ̃nk

|‖v‖1,p,

for all v ∈ Vdiv,p. Hence

‖ϕ̃nk
∇μ̃nk

‖V ′
div,p

≤ c‖ϕ̃nk
‖L2κ+2 |∇μ̃nk

|. (4.108)

From (4.108), (4.97)2–(4.97)7 and the Hölder inequality, we obtain

Ẽ[
∫ T

0
‖ϕ̃nk

(t)∇μ̃nk
(t)‖p′

V ′
div,p

dt]
2
p′ ≤ cẼ

[(
∫ T

0
‖ϕ̃nk

(t)‖
2p

p−2

L2κ+2dt

) p−2
p ∫ T

0
|∇μ̃nk

(t)|2dt

]

≤ c[Ẽ sup
t∈[0,T ]

‖ϕ̃nk
(t)‖4

L2κ+2 ]
1
2

⎡

⎣Ẽ

(∫ T

0

|∇μ̃nk
|2dt

)2
⎤

⎦

1
2

< C.

(4.109)

Thus from (4.109) and the Banach–Alaoglu theorem, we derive (4.105)3.
Now, we complete our proof by proving (4.105)4. For this we first give the following estimate:

|(ũnk
.∇ϕ̃nk

, ψ)| = |(ũnk
, ϕ̃nk

∇ψ)| ≤ c‖ϕ̃nk
‖L2κ+2‖ũnk

‖L2(κ+1)/κ‖ψ‖U

≤ c‖ϕ̃nk
‖L2κ+2‖ũnk

‖L3p/(3−p)‖ψ‖U

≤ c‖ϕ̃nk
‖L2κ+2‖ũnk

‖1,p‖ψ‖U ,
(4.110)

where we have used the fact that, since κ ≥ 2(3−p)
5p−6 , then the following Sobolev embedding hold: W 1,p ↪→

L3p/(3−p) ↪→ L(2κ+2)/κ.
Using now (4.110), (4.97)2,5 and the Hölder inequality, we get

Ẽ
∫ T

0
‖P2

nk
ũnk

(t).∇ϕ̃nk
(t)‖2

U ′dt ≤ c[Ẽ sup
t∈[0,T ]

‖ϕ̃nk
(t)‖4

L2κ+2 ]
1
2

⎡

⎣Ẽ

(∫ T

0

‖ũnk
‖p
1,pdt

) 4
p

⎤

⎦

1
2

< C. (4.111)

Finally (4.105)4 follows from (4.111) and an application of Banach–Alaoglu’s theorem. The proof of
Proposition 4.6 is now complete. �

Hereafter, 〈., .〉 denotes the dual pairing between Vdiv,p and V ′
div,p relative to Gdiv, and that between

U = H1(M) and U ′ relative to H.



JMFM Nonlocal-CHNS Page 31 of 42 46

4.4. Passage to the Limit and the End of Proof of Theorem 3.1

Here we prove several convergence which will enable us to conclude that the limiting objects that we
found in Proposition 4.4 are in fact a weak martingale solution to our problem.

Lemma 4.4 will be used to prove the following convergence results.

Proposition 4.7.
∫ .

0

P1
nk

g1(ũnk
(s), ϕ̃nk

(s))ds →
∫ .

0

g1(s)ds

=
∫ .

0

g1(ũ(s), ϕ̃(s))ds in L2(Ω̃, F̃ , P̃;L2(0, T ;V ′
div));

P1
nk

B0(ũnk
) ⇀ B0 = B0(ũ) in L2(Ω̃, F̃ , P̃;Lp′

(0, T ;V ′
div,p));

P1
nk

ϕ̃nk
∇μ̃nk

⇀ R1 = ϕ̃∇μ̃ in L2(Ω̃, F̃ , P̃;Lp′
(0, T ;V ′

div,p));

P2
nk

ũnk
.∇ϕ̃nk

⇀ B1 = ũ.∇ϕ̃ in L2(Ω̃, F̃ , P̃;L2(0, T ;U ′).

(4.112)

Proof. We have already proved in Proposition 4.6 that P1
nk

g1(ũnk
, ϕ̃nk

) belongs to a bounded set of
L2(Ω̃, F̃ , P̃;Lp′

(0, T ;V ′
div,p)); P1

nk
K0(ũnk

); P1
nk

ϕ̃nk
∇μ̃nk

belong to a bounded set of L2(Ω̃, F̃ , P̃;Lp′

(0, T ;V ′
div,p)) and P2

nk
ũnk

.∇ϕ̃nk
belongs to a bounded set of L2(Ω̃, F̃ , P̃;L2(0, T ;U ′).

Hereafter we denote by (for the sake of simplicity) ˜̃unk
(.) := ũnk

(.) − ũ(.) and ˜̃ϕnk
(.) := ϕ̃nk

(.) − ϕ̃(.).
In order to prove (4.112)2,3, we introduce the following set

D = {Φ = φ(ω)χ(t)wj : φ ∈ L∞(Ω̃, P̃), χ ∈ D(0, T ) and j = 1, 2, . . .},

where {wj : j = 1, 2, . . .} is defined in Sect. 4.1. Since this set is dense in L2(Ω̃, F̃ , P̃;Lp(0, T ;Vdiv,p)), it
then follows from [52, Proposition 21.23] that the claims (4.112)2,3 are achieved if we prove that

Ẽ(φ(ω)
∫ T

0
〈B0(ũnk

(s)) − B0(ũ(s)), wj〉 χ(s)ds) → 0;
Ẽ(φ(ω)

∫ T

0
〈ϕ̃nk

(s)∇μ̃nk
(s) − ϕ̃(s)∇μ̃(s), wj〉 χ(s)ds) → 0

for any Φ = φ(ω)χ(t)wj ∈ D. For this purpose we first note that

Ẽ(φ(ω)
∫ T

0
〈B0(ũnk

) − B0(ũ), wj〉 χ(s)ds) = −Ẽ(φ(ω)
∫ T

0
b(˜̃unk

, ũnk
, wj)χ(s)ds)

+Ẽ(φ(ω)
∫ T

0
b(ũ, ũ − ũnk

, wj)χ(s)ds)
= I1 + I2

(4.113)

and

Ẽ(φ(ω)
∫ T

0
〈ϕ̃nk

∇μ̃nk
− ϕ̃∇μ̃, wj〉 χ(s)ds) = Ẽ(φ(ω)

∫ T

0
([ϕ̃nk

− ϕ̃]∇(μ̃nk
− μ̃), wj) χ(s)ds)

−Ẽ(φ(ω)
∫ T

0
([μ̃nk

− μ̃]∇ϕ̃, wj) χ(s)ds)
+ Ẽ(φ(ω)

∫ T

0
([ϕ̃nk

− ϕ̃]∇μ̃, wj) χ(s)ds)
= I3 + I4 + I5.

(4.114)

The mapping b(ũ, ., wj) from L2(Ω̃, F̃ , P̃;L2(0, T ;Vdiv,p)) into L2(Ω̃, F̃ , P̃;L2(0, T ;R)) is linear and con-
tinuous. Therefore, by invoking (4.99), b(ũ, ũ − ũnk

, wj) → 0 weakly in L2(Ω̃, F̃ , P̃;L2(0, T ;R)); and then
I2 → 0 as nk → ∞. Next, from the properties of the operator b and Hölder’s inequality, we see that

|Ẽ(φ(ω)
∫ T

0
b(ũnk

− ũ, ũnk
, wj)χ(s)ds)| ≤ c‖Φ‖L∞

[

Ẽ

(∫ T

0
‖ũnk

‖p
1,pds

) 2
p

] 1
2 [∫ T

0
|ũnk

− ũ|2ds
] 1

2
,

with ‖Φ‖L∞ = ‖Φ‖L∞(Ω̃×[0,T ]×M).
Thanks to (4.97)5 in conjunction with (4.98)1 we see that the right-hand side of the above inequality

converges to 0 as nk → ∞. Hence, I1 converges to 0 and then (4.112)2 holds.
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By Lemma 4.4 and Hölder’s inequality, we have

|Ẽ(φ(ω)
∫ T

0
([ ˜̃ϕnk

(s)]∇μ̃, wj)χ(s)ds)| ≤ c‖Φ‖L∞ [Ẽ
∫ T

0
|∇μ̃|2ds]

1
2 [Ẽ

∫ T

0
| ˜̃ϕnk

|2ds]
1
2 → 0, (4.115)

and therefore I5 → 0 as nk → ∞. We recall that ˜̃ϕnk
= ϕ̃nk

− ϕ̃.
For fixed Φ ∈ D and ϕ̃ ∈ L2(Ω̃, F̃ , P̃;L2(0, T ;U)), the mapping

Γ �→ Ẽ

(

φ(ω)
∫ T

0

(Γ(s)∇ϕ̃(s), wj) χ(s)ds

)

is a continuous linear functional on L2(Ω̃, F̃ , P̃;L2(0, T ;U)). Then, by invoking (4.103), we infer that
I4 → 0 as nk goes to infinity.

Arguing similarly as in (4.115), we have

|Ẽ(φ(ω)
∫ T

0

(
[ ˜̃ϕnk

(s)]∇(μ̃nk
(s) − μ̃(s)), wj

)
χ(s)ds)|

≤ c‖Φ‖L∞
[
Ẽ
∫ T

0

[|∇μ̃(s)|2 + |∇μ̃nk
(s)|2] ds

] 1
2
[
Ẽ
∫ T

0
| ˜̃ϕnk

(s)|2ds
] 1

2
.

(4.116)

Using now (4.116), (4.97)7 in conjunction with Lemma 4.4, it follows that I3 converges to 0 as nk goes
to infinity; and then we get the convergence (4.112)3.

Let us moves to the proof of (4.112)4. For this let us introduce the following set

D̃ = {Φ̃ = φ(ω)χ(t)ψj : φ ∈ L∞(Ω̃, P̃), χ ∈ D(0, T ) and j = 1, 2, . . .},

where {ψj : j = 1, 2, . . .} is defined in Sect. 4.1. Since this set is dense in L2(Ω̃, F̃ , P̃;L2(0, T ;U)), it then
follows from [52, Proposition 21.23] that the claims (4.112)4 are achieved if we prove that

Ẽ(φ(ω)
∫ T

0
〈ũnk

(s).∇ϕ̃nk
(s) − ũ(s).∇ϕ̃(s), ψj〉 χ(s)ds) → 0,

for any Φ̃ = φ(ω)χ(t)ψj ∈ D̃. For this purpose, we begin by rewriting the last identity as follows

Ẽ(φ(ω)
∫ T

0
〈ũnk

(s).∇ϕ̃nk
(s) − ũ(s).∇ϕ̃(s), ψj〉 χ(s)ds)

= −Ẽ(φ(ω)
∫ T

0
([ũnk

− ũ]ϕ̃nk
,∇ψj) χds) − Ẽ(φ(ω)

∫ T

0
(ũ[ϕ̃nk

− ϕ̃],∇ψj) χds)
= I6 + I7.

By the Hölder inequality and Lemma 4.4, we have

|Ẽ(φ(ω)
∫ T

0

(
ũ[ ˜̃ϕnk

],∇ψj

)
χds)| ≤ c‖Φ̃‖L∞ [Ẽ

∫ T

0
|ũ(s)|2ds]

1
2 [Ẽ

∫ T

0
| ˜̃ϕnk

(s)|2ds]1/2 → 0,

as nk → ∞. Hence, I7 → 0 as nk → ∞.
By Hölder’s inequality, we obtain

|Ẽ(φ(ω)
∫ T

0

(
[˜̃unk

(s)]ϕ̃nk
(s),∇ψj

)
χ(s)ds)| ≤ c‖Φ̃‖L∞ [Ẽ

∫ T

0
|ϕ̃nk

|2ds]
1
2 [Ẽ

∫ T

0
|˜̃unk

(s)|2ds]
1
2 ,

from which in conjunction with (4.97)6 and Lemma 4.4, we infer that I6 → 0 as nk goes to infinity. Hence
(4.112)4 holds.

Thanks to (4.100)–(4.101), the continuity of P1
nk

g1(unk
, ϕnk

) and the applicability of dominated con-
vergence theorem, we infer that (4.112)1 holds. The proof of Proposition 4.7 is now complete. �

Remark 4.1. Almost surely the paths of the process (ũ, ϕ̃) are H = Gdiv × H-valued weakly continuous.
Indeed, we note that from (4.96)4 and the fact that the processes ũ and ϕ̃ satisfy the estimates (4.97)1
and (4.97)2, respectively, see Lemma 4.4; it follows that almost surely (ũ, ϕ̃) ∈ C(0, T ;W′

s) ∩ L2(0, T ;H).
Hence, we infer from [48, Theorem 2.1] that P̃-a.s. (ũ, ϕ̃) ∈ C(0, T ;Hw), where C(0, T ;Hw) denotes the
space of weakly continuous functions u : [0, T ] → H. By closely follows the proof of [48, Theorem 2.1], we
derive from [48, Eq. (2.1), p. 544] that (ũ(t), ϕ̃(t)) ∈ H for all t ∈ [0, T ]. We can used the same argument
to prove that P̃-a.s. (ũnk

(t), ϕ̃nk
(t)) ∈ H for all t ∈ [0, T ].
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Now, to simplify notation let us define the processes Mnk
(t) and Rnk

(t), t ∈ (0, T ] by

Mnk
(t) := ũnk

(t) − ũ0nk
+
∫ t

0

P1
nk

N(unk
)ds −

∫ t

0

P1
nk

B0(ũnk
)ds

+
∫ t

0

P1
nk

ϕ̃nk
∇μ̃nk

ds −
∫ t

0

P1
nk

g0(s)ds −
∫ t

0

P1
nk

g1(ũnk
, ϕ̃nk

)ds

and

Rnk
(t) := ϕ̃nk

(t) − ϕ̃0nk
−
∫ t

0

P2
nk

Δμ̃nk
(s)ds +

∫ t

0

P2
nk

ũnk
(s).∇ϕ̃nk

(s)ds = 0.

Proposition 4.8. Let 11/5 ≤ p < 12/5, M(t) and R(t), t ∈ (0, T ] be two processes define by

M(t) = ũ(t) − u0 +
∫ t

0
(N(s) − B0(ũ(s)) + ϕ̃(s)∇μ̃(s) − g0(s) − g1(ũ(s), ϕ̃(s)))ds,

R(t) = ϕ̃(t) − ϕ0 − ∫ t

0
Δμ̃(s)ds +

∫ t

0
ũ(s).∇ϕ̃(s)ds.

Then, for any t ∈ (0, T ], we have

Mnk
(t) ⇀ M(t) in L2(Ω̃, F̃ , P̃;Lp′

(0, T ;V ′
div,p)),

Rnk
(t) ⇀ R(t) in L2(Ω̃, F̃ , P̃;L2(0, T ;U ′)),

as nk → ∞.

Proof. Thanks to Remark 4.1, the convergence (4.105)1 and Proposition 4.7, we see that

Mnk
(t) ⇀ M(t) in L2(Ω̃, F̃ , P̃;Lp′

(0, T ;V ′
div,p))

as nk → ∞.
Also, thanks to Remark 4.1, (4.98)3 in Lemma 4.4 and (4.112)4 in Proposition 4.7, we see that

Rnk
(t) ⇀ R(t) in L2(Ω̃, F̃ , P̃;L2(0, T ;U ′))

as nk → ∞. �

Let N be the set of null sets of F̃ and for any t ≥ 0 and k ∈ N, let

F̃nk
t := σ(σ((ũnk

(s), ϕ̃nk
(s), W̃nk

(s)); s ≤ t) ∪ N ),
F̃t := σ(σ((ũ(s), ϕ̃(s), W̃ (s)); s ≤ t) ∪ N ),

be the completion of the natural filtration generated by (ũnk
, ϕ̃nk

, W̃nk
) and (ũ, ϕ̃, W̃ ), respectively.

We infer from Proposition 4.4 that the law of (un, ϕn,W ) are equal to those of (ũn, ϕ̃n, W̃n) on
X = X1 ×C(0, T ;K), with X1 = L2(0, T ;H)∩C(0, T ;W′

s). Hence, it is easy to check that W̃n is a sequence
of K1-valued Wiener process adapted to the filtration F̃

nk := {F̃nk
t : t ∈ [0, T ]}. Also from Proposition 4.5,

we see that W̃ is a K1-valued Wiener process adapted to the filtration F̃ := {F̃t : t ∈ [0, T ]}. The W
′
s-

valued stochastic processes (ũnk
, ϕ̃nk

) and (ũ, ϕ̃) are adapted with respect to F̃
nk and F̃ as well. Hence,

since their sample paths are continuous in W
′
s, we infer that there are also predictable in W

′
s.

We now give the following important result.

Proposition 4.9. For each t ∈ (0, T ] we have

Mnk
(t) :=

∫ t

0
P1

nk
g2(s, ũnk

(s), ϕ̃nk
(s))dW̃nk

→ ∫ t

0
g2(s, ũ(s), ϕ̃(s))dW̃ (4.117)

in L2(Ω̃, F̃ , P̃;L2(0, T ;Gdiv)) and the following identity holds P̃-a.s

M(t) =
∫ t

0
g2(s, ũ(s), ϕ̃(s))dW̃ (s). (4.118)

Proof. The proof of (4.117) and (4.118) is similar to that of Lemma 3.13 and Proposition 3.16 of [45].
�

The process (ũ, ϕ̃) satisfies the following property
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Proposition 4.10. For any q ∈ [2,∞), we have (ũ, ϕ̃) ∈ Lq(Ω̃, F̃ , P̃; C(0, T ;H)).

Proof. In fact, from (4.118) in Proposition 4.9 and the last convergence in Proposition 4.8, we have for
each t ∈ (0, T ]

ũ(t) = u0 +
∫ t

0
G(s)ds +

∫ t

0
S(s)dW̃ (s),

ϕ̃(t) = ϕ0 +
∫ t

0
Δμ̃(s)ds − ∫ t

0
ũ(s).∇ϕ̃(s)ds,

(4.119)

where

G(.) := −N(.) + B0(ũ(.)) − ϕ̃(.)∇μ̃(.) + g0(.) + g1(ũ(.), ϕ̃(.)), S(.) := g2(., ũ(.), ϕ̃(.)).

From the properties of g0 and thanks to (4.105)1 and (4.112)1,2,3, we have G(.) ∈ L2(Ω̃, F̃ , P̃;Lp′

(0, T ;V ′
div,p)). By Ẽ sup

s∈[0,T ]

|ũ(s)|q < C, Ẽ sup
s∈[0,T ]

‖ϕ̃(s)‖q
L2κ+2 < C (see Lemma 4.4) and assumption (H2),

we obtain S(.) ∈ L2(Ω̃, F̃ , P̃;L∞(0, T ;L2(K,Gdiv))). Thus, we infer from [30, Chapter I, Theorem 3.2]
that there exists Ω̃1 ∈ F̃ such that P̃(Ω̃1) = 1 and for each ω ∈ Ω̃1 the function ũ(ω, .) takes values in
Gdiv, and it is continuous in Gdiv with respect to t.

Since μ̃ also satisfies the estimate (4.97)7 (cf. Lemma 4.4), we can easily show that Δμ̃ ∈ Lq(Ω̃, F̃ , P̃;
L2(0, T ;U ′)) and thanks to (4.112)4 in Proposition 4.7 and (4.119)2, we derive that ϕ̃t ∈ Lq(Ω̃, F̃ , P̃;L2

(0, T ;U ′)). Also since ϕ̃ satisfies the estimate (4.97)6 (cf. Lemma 4.4), we infer from [51, Lemma 1.2,
page 261] that for P̃-almost all ω ∈ Ω̃ the trajectory ϕ̃(ω, .) is equal almost everywhere to a continuous
H-valued functions defined in [0, T ]. Now, since Ẽ sup

s∈[0,T ]

|ũ(s)|q < C, Ẽ sup
s∈[0,T ]

‖ϕ̃(s)‖q
L2κ+2 < C we infer

that (ũ, ϕ̃) ∈ Lq(Ω̃, F̃ , P̃; C(0, T ;H)). �
To complete the proof of Theorem 3.1, we need to prove some additionally results.

Proposition 4.11. We have the following identity

N(.) = N(ũ) in L2(Ω̃, F̃ , P̃;Lp′
(0, T ;V ′

div,p)).

Before proving this proposition, we first state and prove the following important result.

Proposition 4.12. The following energy identity holds

ẼEtot(ũ(T ), ϕ̃(T )) + 2Ẽ
∫ T

0

[〈N(s), ũ(s)〉 + |∇μ̃(s)|2]ds

= Etot(u0, ϕ0) + Ẽ

∫ T

0

‖g2(s, ũ, ϕ̃)‖2
L2(K,Gdiv) + 2[〈g0(s) + g1(ũ, ϕ̃), ũ〉]ds.

(4.120)

Proof. Since the processes G(.) and S(.) define in (4.119) belong to L2(Ω̃, F̃ , P̃;Lp′
(0, T ;V ′

div,p)) and
L2(Ω̃, F̃ , P̃;L∞(0, T ;L2(K,Gdiv))), respectively, we can apply the Itô formula to the process |ũ|2 (see, for
instance, [42, Theorem 4.2.5]) and derive that

2Ẽ
∫ T

0

〈N(s), ũ(s)〉 ds = |ũ0|2 − Ẽ|ũ(T )|2 − 2Ẽ
∫ T

0

〈ϕ̃(s)∇μ̃(s), ũ(s)〉 ds

+ Ẽ

∫ T

0

2[〈g0(s) + g1(ũ(s), ϕ̃(s)), ũ(s)〉] + ‖g2(s, ũ(s), ϕ̃(s))‖2
L2(K,Gdiv)ds,

(4.121)

where we have also used (2.9)1.
We note that (4.119)2 can be rewritten in the following form

〈∂tϕ̃, ψj〉 + (∇μ̃,∇ψj) = (ũϕ̃,∇ψj). (4.122)

Now taking μ̃ as a test function in (4.122) and multiplying the resulting equality by 2, we get

2
d

dt
E(ϕ̃(.)) + 2|∇μ̃|2 = 2(ũϕ̃,∇μ̃). (4.123)



JMFM Nonlocal-CHNS Page 35 of 42 46

Integrating now (4.123) between 0 and T and adding the resulting equality to (4.121), we obtain (4.120).
�

We now give the proof of Proposition 4.11.

Proof. For the proof, we will use the method of monotonicity (see, for instance, [40, Chapitre 3, Section
3, p. 103]).

From Propositions 4.1–4.2, we have for any j = 1, 2, . . . , nk

(ũnk
(T ), wj) = (ũ0nk

, wj) − ∫ T

0

〈
P̃1

nk
[N(ũnk

) − B0(ũnk
)], wj

〉
ds

− ∫ T

0

〈
P̃1

nk
ϕ̃nk

∇μ̃nk
, wj

〉
ds +

∫ T

0
(P̃1

nk
g0, wj)ds

+
∫ T

0

〈
P̃1

nk
g1(ũnk

, ϕ̃nk
), wj

〉
ds +

∫ T

0
(P̃1

nk
g2(s, ũnk

, ϕ̃nk
), wj)dW̃nk

(4.124)

and

(ϕ̃nk
(T ), ψj) = (ϕ̃0nk

, ψj) +
∫ T

0
(P2

nk
Δμ̃nk

, ψj)ds +
∫ T

0

〈P2
nk

ũnk
.∇ϕ̃nk

, ψj

〉
ds (4.125)

where (wj , ψj) are introduce in Sect. 4.1.
Now from (4.124), (4.112)1,2,3 (see Proposition 4.7), using (4.117), Remark 4.1 and (4.100), we derive

that

(ũ(T ), wj) = (u0, wj) +
∫ T

0
〈G(s), wj〉 ds +

∫ T

0
(S(s), wj)dW̃ (s),

where G(.) and S(.) are defined as in the proof of Proposition 4.10. Also from (4.99)2 and (4.124), we
infer that

(η1, wj) = (ũ0, wj) +
∫ T

0
〈G(s), wj〉 ds +

∫ T

0
(S(s), wj)dW̃ (s),

for all j ≥ 1. Hence, from this two previous equalities, we infer that η1 = ũ(T ) in L2(Ω̃, F̃ , P̃;Gdiv).
Thanks to (4.125), using Remark 4.1, (4.112)4 in Proposition 4.7 and (4.103), we get

(ϕ̃(T ), ψj) = (ϕ0, ψj) +
∫ T

0
(Δμ̃, ψj)ds +

∫ T

0
〈ũ.∇ϕ̃, ψj〉 ds. (4.126)

Owing to (4.125) and (4.102), we get

(η2, ψj) = (ϕ̃0, ψj) +
∫ T

0
(Δμ̃, ψj)ds +

∫ T

0
〈ũ.∇ϕ̃, ψj〉 ds.

Thus, from this two previous equalities, we derive that η2 = ϕ̃(T ) in L2(Ω̃, F̃ , P̃;H).
Applying also the Itô formula to the process |ũnk

|2, we derive that

2Ẽ
∫ T

0

〈N(ũnk
), ũnk

〉 ds = |ũ0nk
|2 − Ẽ|ũnk

(T )|2 − 2Ẽ
∫ T

0

〈P1
nk

ϕ̃nk
∇μ̃nk

, ũnk

〉
ds

+ Ẽ

∫ T

0

2[
〈P1

nk
[g0(s) + g1(ũnk

, ϕ̃nk
)], ũnk

〉
] + ‖P1

nk
g2(s, ũnk

, ϕ̃nk
)‖2

L2(K,Gdiv)ds.

(4.127)

Making similar reasoning as in the proof of (4.120), we can easily check that the processes ũnk
and ϕ̃nk

satisfy

ẼEtot(ũnk
(T ), ϕ̃nk

(T )) + 2Ẽ
∫ T

0
[〈N(ũnk

(s)), ũnk
(s)〉 + |∇μ̃nk

(s)|2]ds

= Etot(ũ0nk
, ϕ̃0nk

) + Ẽ
∫ T

0
‖P1

nk
g2(s, ũnk

(s), ϕ̃nk
(s))‖2

L2(K,Gdiv)

+2Ẽ
∫ T

0
[
〈P1

nk
[g0(s) + g1(ũnk

(s), ϕ̃nk
(s))], ũnk

(s)
〉
]ds.

(4.128)

Take now an arbitrary v ∈ L2(Ω̃, F̃ , P̃;Lp(0, T ;Vdiv,p)) and set

Znk
(T ) := ẼEtot(ũnk

(T ), ϕ̃nk
(T )) + 2Ẽ

∫ T

0

〈N(ũnk
) − N(v), ũnk

− v〉 ds

+ Ẽ

∫ T

0

2|∇(μ̃nk
− μ̃)|2 + ‖P1

nk
g2(s, ũnk

, ϕ̃nk
) − g2(s, ũ, ϕ̃)‖2

L2(K,Gdiv)ds.

(4.129)
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Using (4.128), we see that Znk
(T ) can be rewritten in the form

Znk
(T ) = Etot(ũ0nk

, ϕ̃0nk
) − 2Ẽ

∫ T

0

〈N(ũnk
), v〉 ds − 2Ẽ

∫ T

0

〈N(v), ũnk
− v〉 ds

− 4Ẽ
∫ T

0

(∇μ̃nk
,∇μ̃)ds + 2Ẽ

∫ T

0

|∇μ̃|2ds − Ẽ

∫ T

0

‖g2(s, ũ, ϕ̃)‖2
L2(K,Gdiv)ds

+ 2Ẽ
∫ T

0

‖P1
nk

g2(s, ũnk
, ϕ̃nk

)‖2
L2(K,Gdiv,p)ds + 2Ẽ

∫ T

0

〈P1
nk

g0(s), ũnk

〉
ds

+ 2
∫ T

0

(
g2(s, ũ, ϕ̃) − P1

nk
g2(s, ũnk

, ϕ̃nk
), g2(s, ũ, ϕ̃)

)

L2(K,Gdiv)
ds (4.130)

+ 2Ẽ
∫ T

0

〈P1
nk

g1(ũnk
, ϕ̃nk

) − g1(ũ, ϕ̃), ũnk

〉
ds + 2Ẽ

∫ T

0

〈g1(ũ, ϕ̃), ũnk
〉 ds.

Now, from the fact that ũ0nk
→ u0 in Gdiv and ϕ̃0nk

→ ϕ0 in H2(M) and hence also in L∞(M), we
derive that

Etot(ũ0nk
, ϕ̃0nk

) → Etot(u0, ϕ0) as nk → ∞.

From (4.105)1 and (4.99)1 we obtain

Ẽ
∫ T

0
〈N(ũnk

(s)), v〉 ds → Ẽ
∫ T

0
〈N(s), v〉 ds,

Ẽ
∫ T

0
〈N(v), ũnk

(s) − v〉 ds → Ẽ
∫ T

0
〈N(v), ũ(s) − v〉 ds,

Ẽ
∫ T

0
〈g1(ũ(s), ϕ̃(s)), ũnk

(s)〉 ds → Ẽ
∫ T

0
〈g1(ũ(s), ϕ̃(s)), ũ(s)〉 ds

as nk → ∞.
Thanks to (4.98)3, we have

Ẽ
∫ T

0
(∇μ̃nk

(s),∇μ̃(s)ds → Ẽ
∫ T

0
|∇μ̃(s)|2ds as nk → ∞.

It follows from (4.99)1 and (4.112)1 that

Ẽ
∫ T

0

〈P1
nk

g1(ũnk
(s), ϕ̃nk

(s)) − g1(ũ(s), ϕ̃(s)), ũnk
(s)
〉
ds → 0 as nk → ∞.

Note that
〈P1

nk
g0(s), ũnk

〉
=
〈P1

nk
g0(s), ũnk

− ũ
〉

+
〈P1

nk
g0(s), ũ

〉
. From this observation and making use

of the convergence (4.98)1 and P1
nk

g0 → g0 in Lp′
(0, T ;V ′

div,p), we infer that

Ẽ
∫ T

0

〈P1
nk

g0(s), ũnk
(s)
〉
ds → Ẽ

∫ T

0
〈g0(s), ũ(s)〉 ds as nk → ∞.

Now, thanks to the continuity of P1
nk

g2 and (4.96)4, we can arguing as in the proof of (4.100) to derive
that

P1
nk

g2(s, ũnk
, ϕ̃nk

) → g2(s, ũ(s), ϕ̃(s)) in L2(K,Gdiv) dP̃ ⊗ dt-a.e.. (4.131)

From (4.131), (4.97)1,2 and (H2), we can apply the Vitali convergence theorem to derive that

P1
nk

g2(s, ũnk
, ϕ̃nk

) → g2(s, ũ(s), ϕ̃(s)) in L4(Ω̃, F̃ , P̃;L4(0, T ;L2(K,Gdiv))). (4.132)

It follows from (4.132) that

Ẽ
∫ T

0
[2‖P1

nk
g2(s, ũnk

, ϕ̃nk
)‖2

L2(K,Gdiv,p) − ‖g2(s, ũ, ϕ̃)‖2
L2(K,Gdiv)]ds

→ Ẽ

∫ T

0

‖g2(s, ũ, ϕ̃)‖2
L2(K,Gdiv)ds,

∫ T

0

(
g2(s, ũ, ϕ̃) − P1

nk
g2(s, ũnk

, ϕ̃nk
), g2(s, ũ, ϕ̃)

)

L2(K,Gdiv)
ds → 0,

as nk → ∞.
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Letting nk → ∞ in (4.130) and using all the previous convergences, we see that

Znk
(T ) → Etot(u0, ϕ0) − 2Ẽ

∫ T

0
〈N(s), v〉 ds − 2Ẽ

∫ T

0
〈N(v), ũ(s) − v〉 ds

−2Ẽ
∫ T

0
|∇μ̃(s)|2ds + Ẽ

∫ T

0
‖g2(s, ũ(s), ϕ̃(s))‖2

L2(K,Gdiv)ds

+2Ẽ
∫ T

0
〈g0(s), ũ(s)〉 ds + 2Ẽ

∫ T

0
〈g1(ũ(s), ϕ̃(s)), ũ(s)〉 ds.

(4.133)

On the other hand, thanks to item (b) in Proposition 2.1, to the lower semicontinuity of the norms, using
Fatou’s Lemma we have

lim
nk→∞ inf Znk

(T ) ≥ ẼEtot(ũ(T ), ϕ̃(T )). (4.134)

Hence, we obtain

ẼEtot(ũ(T ), ϕ̃(T )) ≤ Etot(u0, ϕ0) − 2Ẽ
∫ T

0
〈N(s), v〉 ds − 2Ẽ

∫ T

0
〈N(v), ũ(s) − v〉 ds

− 2Ẽ
∫ T

0
|∇μ̃(s)|2ds + Ẽ

∫ T

0
‖g2(s, ũ(s), ϕ̃(s))‖2

L2(K,Gdiv)ds

+2Ẽ
∫ T

0
〈g0(s), ũ(s)〉 ds + 2Ẽ

∫ T

0
〈g1(ũ(s), ϕ̃(s)), ũ(s)〉 ds,

which, combined with (4.120) in Proposition 4.12, yields the variational inequality

2Ẽ
∫ T

0
〈N(s) − N(v(s)), v(s) − ũ(s)〉 ds ≤ 0 (4.135)

for any v ∈ L2(Ω̃, F̃ , P̃;Lp(0, T ;Vdiv,p)). Let ζ ∈ L2(Ω̃, F̃ , P̃;Lp(0, T ;Vdiv,p)) and ε > 0. By taking v =
ũ ± εζ, we derive from (4.135) that

2Ẽ
∫ T

0
〈N(s) − N(ũ(s) ± εζ(s)),±εζ(s)〉 ds ≤ 0, (4.136)

from which along the hemicontinuity of N we conclude the proof of Proposition 4.11. �

We can now give the proof of Theorem 3.1, which concerns the existence of a weak martingale solution.

Proof. Endowing the complete probability space (Ω̃, F̃ , P̃) with the filtration F̃ = {F̃t : t ∈ [0, T ]}, where
the σ-algebra F̃t is defined by

F̃t := σ(σ((ũ(s), ϕ̃(s), W̃ (s)); s ≤ t) ∪ N ),

and combining Propositions 4.5, 4.9, 4.10 and 4.11 , we derive that the system {(Ω̃, F̃ , F̃, P̃), (ũ, ϕ̃, W̃ )} is
a martingale solution to (2.17) or (2.18) which satisfy all the items of Definition 3.1. This ends the proof
of the existence theorem. �

5. Exponential Decay of the Weak Solution

In this section, we will prove that any weak solution (ũ, ϕ̃) to (2.17) or (2.18) converges to zero exponen-
tially in the mean square. So in the rest of this section, we will assume the existence of such solution.

We first note from (2.20) that

〈N(ũ), ũ〉Vdiv,p
=
∫

M T (Dũ). Dũ dx ≥ c1

∫

M
(|Dũ|2 + |Dũ|p) dx.

Owing to Korn’s inequalities, we infer from this previous inequality that

〈N(ũ), ũ〉Vdiv,p
≥ c̃1(‖ũ‖2

1,2 + ‖ũ‖p
1,p) ≥ c̃1c̃2|ũ|2,

where c̃2 is the constant in Poincaré’s inequality. Setting c̃3 = c̃1c̃2, then

〈N(ũ), ũ〉Vdiv,p
≥ c̃3|ũ|2. (5.1)

We also remark that by setting 〈μ̃〉 = 1
|M|

∫

M μ̃dx and since the mean of ϕ̃ is zero (cf. Remark 2.1), we
have

(μ̃, ϕ̃) = (μ̃ − 〈μ̃〉 , ϕ̃) ≤ Cp|∇μ̃||ϕ̃|, (5.2)

where Cp is the Poincaré–Wirtinger constant.
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To prove exponential stability, furthermore we assume that the constant c5 is such that
c5

2
≥ |J |L1(R3). (5.3)

Theorem 5.1. We assume that g1 = 0, F ′(0) = 0 and there exists a constant ζ > 0 such that

‖g2(t, ũ(t), ϕ̃(t))‖2
L2(K,Gdiv) ≤ γ(t) + (ζ + δ(t))

(|ũ(t)|2 + |ϕ̃(t)|2) , (5.4)

where γ(t) and δ(t) are nonnegative integrable functions such that there exist real numbers θ > 0, Mγ ≥ 1,
Mδ ≥ 1 with

γ(t) ≤ Mγe−θt, δ(t) ≤ Mδe
−θt, t ≥ 0. (5.5)

We also suppose that there exist positive constants cg1 ,Mα, Mβ and two integrable functions α(.) and
β(.) satisfying

0 < α(t) ≤ Mαe−θt, 0 < β(t) ≤ Mβe−θt, (5.6)

and

〈g1(ũ(t), ϕ̃(t)), ũ(t)〉Vdiv,p
≤ α(t) + (cg1 + β(t))

(|ũ(t)|2 + |ϕ̃(t)|2) , (5.7)

for any t ≥ 0 and (ũ, ϕ̃) ∈ H.
Furthermore, we assume that F ′′(ϕ0) ∈ L2(M) and we suppose that

2c̃3 > 2cg1 + ζ and
2(c5−|J|L1(R3))

C2
p

>
2cg1+ζ

(c5−|J|L1(R3))
. (5.8)

Then any weak solution (ũ(t), ϕ̃(t)) to (2.17) or (2.18) converges to zero exponentially in the mean square.
That is, there exist real numbers b ∈ (0, θ), M0 = M0(u0, ϕ0) > 0 such that

Ẽ‖(ũ(t), ϕ̃(t))‖2
H

≤ M0e
−bt, t ≥ 0.

Proof. We recall that in Theorem 3.1, we have proved that the process (ũ, ϕ̃, W̃ ) is a weak martingale
solution of problem (2.17) in the sense of Definition 3.1. Now from (3.1)1 and Itô’s formula (see, for
instance, [41, Theorem I. 3. 3. 2, page 147]) we obtain

|ũ(t)|2 = |u0|2 − 2
∫ t

0

〈N(ũ(s)) − R1(ϕ̃(s)) − g1(ũ(s), ϕ̃(s)), ũ(s)〉 ds

+
∫ t

0

‖g2(s, ũ(s), ϕ̃(s))‖2
L2(K,Gdiv)ds + 2

∫ t

0

(g2(s, ũ(s), ϕ̃(s)), ũ(s)) dW̃ (s),
(5.9)

where we have also used the fact that 〈B0(ũ(s)), ũ(s)〉 = −b0(ũ(s), ũ(s), ũ(s)) = 0. Here 〈., .〉 denotes the
dual pairing between Vdiv,p and V ′

div,p relative to Gdiv .
Thanks to (3.1)2, we have

(ϕ̃t(t), μ̃(t)) = −|∇μ̃(t)|2 + (B1(ũ(t), ϕ̃(t)), μ̃(t)) t ∈ [0, T ].

Note that since F ′(0) = 0 and d
dt (
∫

M F (0, x)dx) = 0, we have

(ϕ̃t(t), μ̃(t)) = (ϕ̃t(t), aϕ̃(t) − J ∗ ϕ̃(t) + F ′(ϕ̃(t)))

=
d

dt

{
1
2
|√aϕ̃(t)|2 − 1

2
(J ∗ ϕ̃(t), ϕ̃(t)) +

∫

M
[F (ϕ̃(t, x)) − F (0) − F ′(0)ϕ̃(t, x)]dx

}

.
(5.10)

Using Taylor’s formula, we have
∫

M[F (ϕ̃(t, x)) − F (0) − F ′(0)ϕ̃(t, x)]dx = 1
2
∫

M F ′′(ξϕ̃(t, x))(ϕ̃(t, x))2dx

for some 0 < ξ < 1. Thus, from (5.10), we get

(ϕ̃t(t), μ̃(t)) = 1
2

d
dt

{|√aϕ̃(t)|2 − (J ∗ ϕ̃(t), ϕ̃(t)) +
∫

M F ′′(ξϕ̃(t, x))(ϕ̃(t, x))2dx
}

= 1
2

d
dt

{∫

M (a(x) + F ′′(ξϕ̃(t, x))) (ϕ̃(t, x))2dx − (J ∗ ϕ̃(t), ϕ̃(t))
}

.
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Therefore, we have
1
2

d

dt

{∫

M
(a(x) + F ′′(ξϕ̃(t, x))) (ϕ̃(t, x))2dx − (J ∗ ϕ̃(t), ϕ̃(t))

}

= −|∇μ̃(t)|2 + (B1(ũ(t), ϕ̃(t)), μ̃(t)) .

(5.11)

Now integrating (5.11) between 0 and t, multiplying the resulting equality by 2 and adding it to (5.9),
we obtain

|ũ(t)|2 +
∫

M
(a(x) + F ′′(ξϕ̃(t, x)))(ϕ̃(t, x))2dx − (J ∗ ϕ̃(t), ϕ̃(t)) + 2

∫ t

0

[〈N(ũ), ũ〉 + |∇μ̃|2]ds

= |u0|2 +
∫

M

(
a(x) + F ′′(ξϕ0(x))(ϕ0(x))2dx − (J ∗ ϕ0, ϕ0)

)
+ 2

∫ t

0

〈g1(ũ, ϕ̃), ũ〉 ds

+
∫ t

0

‖g2(s, ũ, ϕ̃)‖2
L2(K,Gdiv)ds + 2

∫ t

0

(g2(s, ũ, ϕ̃), ũ) dW̃ (s).

(5.12)

Since (5.8) is satisfied, we can choose a constant b ∈ (0, θ) such that

2c̃3 > 2cg1 + ζ + b and
2(c5 − |J |L1(R3))

C2
p

≥ ζ + 2cg1

c5 − |J |L1(R3)
+ b. (5.13)

Hence, applying again the Itô formula to the real process

ebt

[

|ũ(t)|2 +
{∫

M
(a(x) + F ′′(ξϕ̃(t, x))) (ϕ̃(t, x))2dx − (J ∗ ϕ̃(t), ϕ̃(t))

}]

, using (5.12) and since the math-

ematical expectation of the stochastic integral vanishes, we obtain

ebt
Ẽ

[

|ũ(t)|2 +
{∫

M
(a(x) + F ′′(ξϕ̃(t, x))) (ϕ̃(t, x))2dx − (J ∗ ϕ̃(t), ϕ̃(t))

}]

+ 2Ẽ
∫ t

0

ebs 〈N(ũ(s)), ũ(s)〉 ds + 2Ẽ
∫ t

0

ebs|∇μ̃(s)|2ds

= |u0|2 +
{∫

M

(
a(x) + F ′′(ξϕ0(x))(ϕ0(x))2dx − (J ∗ ϕ0, ϕ0)

)
}

+ 2Ẽ
∫ t

0

ebs 〈g1(ũ(s), ϕ̃(s)), ũ(s)〉 ds + Ẽ

∫ t

0

ebs‖g2(s, ũ(s), ϕ̃(s))‖2
L2(K,Gdiv)ds

+ bẼ

∫ t

0

ebs

[

|ũ(s)|2 +
{∫

M
(a + F ′′(ξϕ̃(s, x))) (ϕ̃(s, x))2dx − (J ∗ ϕ̃(s), ϕ̃(s))

}]

ds.

(5.14)

Using Assumption (H4), (5.3) and Young’s inequality for convolutions, we obtain
∫

M (a + F ′′(ξϕ̃)) ϕ̃2dx ≥ c5|ϕ̃|2 ≥ |J |L1(R3)|ϕ̃|2 ≥ (J ∗ ϕ̃, ϕ̃).

Therefore, we have
∫

M (a + F ′′(ξϕ̃)) ϕ̃2dx − (J ∗ ϕ̃, ϕ̃) ≥ 0. (5.15)

Using the Taylor series expansion, Assumption (H4) and the fact that F ′(0) = 0, we see that

(μ̃, ϕ̃) = (aϕ̃ − J ∗ ϕ̃ + F ′(ϕ̃), ϕ̃) = (aϕ̃ − J ∗ ϕ̃ + F ′(ϕ̃) − F ′(0), ϕ̃)
= (aϕ̃ + F ′′(ξϕ̃)ϕ̃, ϕ̃) − (J ∗ ϕ̃, ϕ̃)
≥ (c5 − |J |L1(R3))|ϕ̃|2,

(5.16)

for some 0 < ξ < 1 and where we have also used the Young inequality for convolutions. From the above
relation in conjunction with (5.2), it follows that

|ϕ̃| ≤ δ1|∇μ̃|, (5.17)

where δ1 = Cp

[c5−|J|L1(R3)]
. Using Cauchy–Schwarz’s inequality, (5.2) and (5.17), one has

(aϕ̃ + F ′′(ξϕ̃)ϕ̃, ϕ̃) − (J ∗ ϕ̃, ϕ̃) = (μ̃, ϕ̃) ≤ δ1Cp|∇μ̃|2. (5.18)
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Thanks to Hölder’s inequality, Young’s inequality for convolutions and (2.22), we obtain
∫

M
(
a(x) + F ′′(ξϕ0(x))(ϕ0(x))2dx − (J ∗ ϕ0, ϕ0)

)

≤ (|a|L∞(M) + |J |L1(R3)+
) |ϕ0|2 + |F ′′(ξϕ0)|L2(M)|ϕ0|L∞(M)|ϕ0|

≤ 2|J |L1(R3)|ϕ0|2 + |F ′′(ξϕ0)|L2(M)|ϕ0|L∞(M)|ϕ0|,
(5.19)

where we used the fact that ϕ0 ∈ H2(M) ↪→ L∞(M) and that |a|L∞(M) ≤ |J |L1(R3).
Inserting now these estimates (5.18)–(5.19) in (5.14), using also (5.17), (5.7), (5.4) and (5.1), we get

ebt
Ẽ

[

|ũ(t)|2 +
{∫

M
(a(x) + F ′′(ξϕ̃(t, x))) (ϕ̃(t, x))2dx − (J ∗ ϕ̃(t), ϕ̃(t))

}]

+ 2c̃3Ẽ

∫ t

0

ebs|ũ(s)|2ds + 2Ẽ
∫ t

0

ebs|∇μ̃(s)|2ds

≤ |u0|2 + 2|J |L1(R3)|ϕ0|2 + |F ′′(ξϕ0)|L2(M)|ϕ0|L∞(M)|ϕ0|

+
∫ t

0

(2Mα + Mγ) e(b−θ)sds + (2cg1 + ζ + b)Ẽ
∫ t

0

ebs|ũ(s)|2ds

+ [c̃4 + c̃5b]Ẽ
∫ t

0

ebs|∇μ̃(s)|2ds + Ẽ

∫ t

0

(2Mβ + Mδ) e(b−θ)s‖(ũ(s), ϕ̃(s))‖2
H
ds,

(5.20)

where c̃4 = (2cg1 + ζ)δ2
1 , c̃5 = δ1Cp and δ1 is given by (5.17). Hence, from (5.13) and (5.20) we have

ebt
Ẽ

[

|ũ(t)|2 +
{∫

M
(a(x) + F ′′(ξϕ̃(t, x))) (ϕ̃(t, x))2dx − (J ∗ ϕ̃(t), ϕ̃(t))

}]

≤ |u0|2 + 2|J |L1(R3)|ϕ0|2 + |F ′′(ξϕ0)|L2(M)|ϕ0|L∞(M)|ϕ0|

+
∫ t

0

(2Mα + Mγ) e(b−θ)sds + Ẽ

∫ t

0

(2Mβ + Mδ) e(b−θ)s‖(ũ(s), ϕ̃(s))‖2
H
ds.

(5.21)

By using (5.16) and (5.21), we can easily see that

ebt
Ẽ‖(ũ(t), ϕ̃(t))‖2

H
≤ |u0|2

δ2
+ 2|J |L1(R3)

|ϕ0|2
δ2

+
|ϕ0|
δ2

|ϕ0|L∞(M)|F ′′(ξϕ0)|L2(M)

+
1
δ2

∫ t

0

(2Mα + Mγ) e(b−θ)sds +
1
δ2

Ẽ

∫ t

0

(2Mβ + Mδ) e(b−θ)s‖(ũ, ϕ̃)‖2
H
ds,

(5.22)

where δ2 = min(1, (c5 − |J |L1(R3))). Now, by applying the deterministic Gronwall’s lemma, we can infer
the existence of M0 ≡ M0(|u0|2 + 2|J |L1(R3)|ϕ0|2 + |F ′′(ξϕ0)|L2(M)|ϕ0|L∞(M)|ϕ0|) such that

Ẽ‖(ũ(t), ϕ̃(t))‖2
H

≤ M0e
−bt for all t > 0.

This completes the proof of Theorem 5.1. �

Compliance with Ethical Standards
Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of
interest.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

[1] Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech.
30, 139–165 (1998)

[2] Abels, H.: On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities.
Arch. Ration. Mech. Anal. 194(2), 463–506 (2009)



JMFM Nonlocal-CHNS Page 41 of 42 46

[3] Billingsley, P.: Convergence of Probability Measures. Wiley Series in Probability and Statistics: Probability and Statis-
tics, 2nd edn. Wiley, New York (1999)
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[13] Deugoué, G., Ngana, A.N., Medjo, T.T.: Martingale solutions to stochastic nonlocal Cahn–Hilliard–Navier–Stokes equa-

tions with multiplicative noise of jump type. Phys. D 398, 23–68 (2019)
[14] Feng, X.: Fully discrete finite element approximation of the Navier–Stokes–Cahn–Hilliard diffuse interface model for

two-phase flows. SIAM J. Numer. Anal. 44, 1049–1072 (2006)
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