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Abstract. In this paper, we study the global existence and asymptotic dynamics of generalized magnetohydrodynamic
equations in R

3, in which the dissipation terms are −η(−Δ)α and −μ(−Δ)β , 0 < α, β < 1. With the help of combining
the local existence and the a priori estimates, we establish the global existence and uniqueness of solution with small initial
data. Moreover, we obtain the asymptotic decay rates of solutions by the method of energy estimates.
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1. Introduction

Recent mathematical studies of fluid mechanics have found that molecular dissipation is better modelled
by the fractional powers of −(−Δ)α, α > 0. In this paper, for α, β ∈ (0, 1), we consider the following
generalized magnetohydrodynamic (MHD) system

⎧
⎪⎪⎨

⎪⎪⎩

∂tu + u · ∇u = −∇P + b · ∇b − η(−Δ)αu, x ∈ R
3, t > 0,

∂tb + u · ∇b = b · ∇u − μ(−Δ)βb, x ∈ R
3, t > 0,

∇ · u = ∇ · b = 0, x ∈ R
3, t > 0,

(u, b)|t=0 = (u0(x), b0(x)), x ∈ R
3,

(1.1)

with η, μ positive constants. Here u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t)), b = b(x, t) =
(b1(x, t), b2(x, t), b3(x, t)) and P = P (x, t) are non-dimensional quantities corresponding to the flow ve-
locity, the magnetic field and the total kinetic pressure at the point (x, t), u0(x) and b0(x) are the initial
velocity and magnetic field satisfying that ∇ · u0 = 0 and ∇ · b0 = 0, respectively. We denote the Fourier
transform of the function z by ẑ, then fractional Laplacian is defined by

̂(−Δ)αz(ξ) = |ξ|2αẑ(ξ). (1.2)

More details on (−Δ)α can be found in Chapter 5 of Stein’s book [34].
When α = β = 1, (1.1) reduces to the standard incompressible MHD equations. The MHD equations

govern the dynamics of the velocity field u and the magnetic field b in electrically conducting fluids such
as plasmas [2,31]. Fundamental mathematical issues such as the global regularity of their solutions have
generated extensive research and many interesting results have been obtained. For example, Schonbek et
al. [32] studied large time behaviour of solutions to n-dimensional (n-D) (2 � n � 4) MHD equations
in weighted Sobolev spaces. They obtained very interesting results on the upper and lower bounds of L2

decay. He and Xin [17,18] considered the 3D MHD equations and showed that, if u satisfies

∇u ∈ Lq(0, T ;Lp(R3)) for
3
p

+
2
q

= 2 with 1 < q � 2, (1.3)
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then the solution (u, b) is regular on [0, T ]. Cao and Wu [4] established two regularity criteria for the 3D
MHD equations:

uz ∈ Lq(0, T ;Lp(R3)) for
3
p

+
2
q

� 1 with p � 3 (1.4)

and

Pz ∈ Lq(0, T ;Lp(R3)) for
3
p

+
2
q

� 7
4

with p � 12
7

. (1.5)

That is, any solution (u, b) of the 3D MHD equations is regular if the derivative of u in one direction,
say along the z-axis, is bounded in Lq(0, T ;Lp(R3)) with (p, q) satisfying (1.4) or if the derivative of P
in one direction satisfies (1.5). The readers may refer to [3,5,8,13,24,27,28,30,31,33,38,39,41] for more
details.

The generalization of dissipation in the above manner has been implemented to other fluid systems,
including the Navier-Stokes, Boussinesq, and surface quasi-geostrophic equations, see [6,7,11,19–21,25].
Studying these generalized equations has enabled researchers to gain a deeper understanding of the
strength and weaknesses of available mathematical methods and techniques, and, in some cases, motivated
and inspired the invention of new methods. In the remainder of this introduction, we present the known
results on generalized MHD equations in three major parameter domains:(i)η = 0, μ > 0, (ii)η = 0, μ = 0
and (iii)η > 0, μ > 0.

When η = 0, μ > 0, (1.1) turns to the generalized MHD equations without viscous diffusion. Specially,
if b ≡ 0, that is, the 3D Euler equations, Beale, Kato and Majda [1] showed that if a solution of the system
is initally smooth and loses its regularity at some later time, then the maximum vorticity necessarily grows
without bound as the critical time approaches equivalently, if the vorticity remains bounded, a smooth
solution persists. Constantin [9] and Constantin et al. [10] generalize the above result by linking the
vorticity directions and the probability of blow up.

When η = 0, μ = 0, (1.1) becomes the ideal MHD equations. In order to extend the result of [1],
Caflisch, Klapper and Steele [3] derived a necessary condition for singularity development in the ideal
MHD equations. Gibbon and Ohkitani [14] investigated the regularity of a class of stretched solutions to
the 3D ideal MHD equations through analytical criteria and pseudo-spectral computations.

When η > 0, μ > 0, Wu [40] showed that the n-D(n � 3) generalized MHD equations possess global
weak solutions corresponding to any L2 initial data with any α > 0 and β > 0. Moreover, weak solutions
associated with

α � 1
2

+
n

4
, β � 1

2
+

n

4
(1.6)

are actually global classical solutions when their initial data are sufficiently smooth. As a special conse-
quence, smooth solutions of the 3D generalized MHD equations with

α � 5
4
, β � 5

4
(1.7)

do not develop finite-time singularities. So far the best result for the global regularity of the n-D gen-
eralized MHD equations has been derived in [45], where it has been proved that the system is globally
regular as long as the following conditions

α � 1
2

+
n

4
, β > 0, α + β � 1 +

n

2
(1.8)

are satisfied. Tran, Yu and Zhai [35] extended the above results to the case β = 0, they considered the
n-D generalized MHD equations with hyper-viscosity and zero resistivity, and proved that the system has
a unique global classical solution if the following condition is satisfied:

α � 1 +
n

2
. (1.9)

Yamazaki [48] investigated a n-D generalized MHD equations to prove its global well-posedness with
logarithmically supercritical dissipation and diffusion with the logarithmic power that is improved in
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contrast to the previous work of [35,45]. When n = 2, Tran, Yu and Zhai [36] showed that smooth
solutions of the system are global in the following three cases:

(i) α � 1
2
, β � 1;

(ii) 0 � α � 1
2
, 2α + β > 2;

(iii) α � 2, β = 0.

(1.10)

They also showed that in the inviscid case η = 0, if β > 1, smooth solutions are global as long as the
direction of the magnetic field remains smooth enough. Interested readers can refer to [40,42–44,46] for
more details.

There are few results to our knowledge on the asymptotic stability for solutions to problem (1.1).
The first target of this paper is to show the global existence and uniqueness of classical solution to (1.1)
in the whole space R

3 by the energy method which refines the works of Guo and Wang [16] and Wang
[37], under the assumption that the H3-norm of the initial data is small, but the higher order derivatives
can be arbitrarily. Assuming that initial data additionally belong to the homogeneous negative index
Sobolev space Ḣ−s(R3), we establish the asymptotic behavior of solutions as time goes to infinity by
energy analysis, which is the second target of this paper.

For simplicity, we introduce several notations which will be used throughout the sequel. Throughout
this paper, we denote ‖(u, b)‖HN := ‖u‖HN + ‖b‖HN , and omit the variables x, t of functions if it does
not cause any confusion. We use Hs(R3), s ∈ R to denote the usual Sobolev spaces with norm ‖ · ‖Hs

and Lp(R3) (1 � p � ∞) to denote the usual Lp space with norm ‖ · ‖Lp . ∂k with an integer k � 0 stands
for usual spatial derivatives of order k. When k < 0 or k is not a positive integer, ∂k stands for Λk, which
Λ = (−Δ)1/2 for notational convenience.

The result of global existence to (1.1) reads as follows.

Theorem 1.1. Assume (u0, b0) ∈ HN (R3) × HN (R3) for N � 3, α, β ∈ ( 12 , 1). There exists a constant
ε0 > 0, such that if

‖u0‖H3(R3) + ‖b0‖H3(R3) � ε0, (1.11)

then system (1.1) admits a unique global solution (u, b) satisfying for all t � 0,

‖u(t)‖2HN (R3) + ‖b(t)‖2HN (R3) +
∫ t

0

(
‖∂αu(τ)‖2HN (R3) + ‖∂βb(τ)‖2HN (R3)

)
dτ

� C‖u0‖2HN (R3) + ‖b0‖2HN (R3),

(1.12)

where C is a positive constant independent of t.

Our second result concerns the asymptotic decay rates of solutions to (1.1). We introduce the homo-
geneous negative index Sobolev space Ḣ−s(R3):

Ḣ−s(R3) :=
{
f ∈ L2(R3) :

∥
∥|ξ|−sf̂(ξ)

∥
∥

L2(R3)
< ∞}

(1.13)

embowed with the norm ‖f‖Ḣ−s(R3) :=
∥
∥|ξ|−sf̂(ξ)

∥
∥

L2(R3)
. Thanks to the mass conservation, we can find

that Ḣ−s(R3) is a natural function space for system (1.1). Under the assumption that the Ḣ−s(R3)
norms of initial data are small, we derive the decay rate of solutions to (1.1) and their higher order
spatial derivatives. More precisely, we have the following decay estimates.

Theorem 1.2. Let the assumptions in Theorem 1.1 hold. Furthermore, if (u0, b0) ∈ Ḣ−s(R3) × Ḣ−s(R3)
for some s ∈ [0, 3

2 ), then for any t > 0, the solution (u, b) of (1.1) obtained in Theorem 1.1 with suitably
small ε0 has the following decay rates:

‖∂ku(t)‖L2(R3) + ‖∂kb(t)‖L2(R3) � C(1 + t)
−

s + k

2min{α, β} , (k = 0, 1, · · · , N − 1)
(1.14)
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and

‖∂Nu(t)‖L2(R3) + ‖∂Nb(t)‖L2(R3) � C(1 + t)
−

s + N − 1
2min{α, β} ,

(1.15)

where C is a positive constant independent of t.

Remark 1. In the proof of Theorem 1.1, we need the assumption α, β > 1/2. However, it is still unknown
whether this assumption is optimal or not. The optimality of the lower bound for α, β can be somehow
questioned particularly because initial data are small, see for instance [15].

Remark 2. Notice that for the general existence of the solution in Theorem 1.1, we only assume that
‖u0‖H3(R3) + ‖b0‖H3(R3) is small enough, while the higher order derivatives can be arbitrarily large. The
constraint s < 3/2 in Theorem 1.2 stems from applying Lemma 2.5 that been used to estimate the
nonlinear terms when doing the negative estimate via Λ−s.

As far as we know, there are few studies on the decay estimates for MHD equations. Recently, in [12],
the authors focused on a system of the 2D MHD equations with the kinematic dissipation given by the
fractional operator (−Δ)α and the magnetic diffusion by partial Laplacian. They developed a systematic
approach for systems with partial dissipation to extract large-time decay rates for solutions.

The researches such as [35,36,40,45] all considered system (1.1) under the condition that where α or
β is greater than or equal to 1. Our results Theorems 1.1 and 1.2 are established under the condition that
1/2 < α, β < 1. Therefore, it is necessary for us to find some new ideas and techniques (see the proof of
Lemmas 3.1 and 3.2) to control the terms b ·∇b and b ·∇u in the proof of global existence and asymptotic
stability of solutions to (1.1). Yamazaki [47] considered a 3D damped Euler equations and proved the
global well-posedness of the equations for small initial data in critical Besov space. In fact, although the
choosen spaces are different, our proof method of Theorem 1.1 is similar to the Proposition 2.3 in [47].

The rest of this paper is arranged as follows. In Sect. 2, we give some useful inequalities which will
be fundamental to the arguments. In Sect. 3, we show the a priori estimates and the local existence of
classical solution to (1.1), then complete the proof of Theorem 1.1. Finally, Sect. 4 is devoted to deriving
the decay estimates and proving Theorem 1.2. For convenience, we will use a � b if a � Cb, where the
positive constant C only depends on the parameters coming from the problem.

2. Preliminary

In this section, we introduce some lemmas which will be used in the next section.

Lemma 2.1. Let 0 � k, m � l and 1 � p, q, r � ∞. Then we have

‖∂mf‖Lp(R3) � ‖∂kf‖1−θ
Lq(R3)‖∂lf‖θ

Lr(R3), (2.1)

where θ ∈ [0, 1] and k, m, l satisfy

m

3
− 1

p
=

(
k

3
− 1

q

)

(1 − θ) +
(

l

3
− 1

r

)

θ.

Especially, when p = ∞, we require that θ ∈ (0, 1), k � m + 1 and l � m + 2.

Proof. One can refer to [29, p125, Theorem] for instance. �

Lemma 2.2. Let k � 1 be an integer and define the commutator

[∂k, f ]g = ∂k(fg) − f∂kg. (2.2)

Then we have
∥
∥[∂k, f ]g

∥
∥

Lp(Rn)
� ‖∂f‖Lp1 (Rn)‖∂k−1g‖Lp2 (Rn) + ‖∂kf‖Lp3 (Rn)‖g‖Lp4 (Rn), (2.3)
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and for k � 0

‖∂k(fg)‖Lp(Rn) � ‖f‖Lp1 (Rn)‖∂kg‖Lp2 (Rn) + ‖∂kf‖Lp3 (Rn)‖g‖Lp4 (Rn), (2.4)

where p, p2, p3 ∈ (1,∞) with 1
p = 1

p1
+ 1

p2
= 1

p3
+ 1

p4
.

Proof. For p = p2 = p3 = 2, it can be proved by using Lemma 2.1. For the general cases, one may refer
to [22, Lemma 3.1]. �

Lemma 2.3. (Kato-Ponce’s commutator estimates.) Let s > 0 and 1 < p < ∞. Then
∥
∥[(−Δ)s/2, f ]g

∥
∥

Lp(Rn)
� ‖∂f‖Lp1 (Rn)‖(−Δ)(s−1)/2g‖Lp2 (Rn) + ‖(−Δ)s/2f‖Lp3 (Rn)‖g‖Lp4 (Rn), (2.5)

and

‖(−Δ)s/2(fg)‖Lp(Rn) � ‖f‖Lp1 (Rn)‖(−Δ)s/2g‖Lp2 (Rn) + ‖(−Δ)s/2f‖Lp3 (Rn)‖g‖Lp4 (Rn) (2.6)

with 1 < pj � ∞ (j = 1, 4) and 1 < pj < ∞ (j = 2, 3) such that 1
p = 1

p1
+ 1

p2
= 1

p3
+ 1

p4
.

Proof. One can refer to [23] for instance. �

Lemma 2.4. Let α > 0, s � 0 and k � 0. Then

‖∂kf‖L2(Rn) � ‖∂k+αf‖1−θ
L2(Rn)‖Λ−sf‖θ

L2(Rn) (2.7)

with θ = α
s+k+α .

Proof. By the Parseval theorem and Hölder’s inequality, we can easily get (2.7). See [50] for instance.
�

Lemma 2.5. Assume that 1 < p < q < ∞, 0 < s < 3 and 1
q + s

3 = 1
p . It holds that

‖Λ−sf‖Lq(R3) � ‖f‖Lp(R3). (2.8)

Proof. It follows from the Hardy-Littlewood-Sobolev theorem, and one can see [34, p119, Theorem 1] for
instance. �

3. Proof of Local and Global Existence

In this section, we investigate the global existence of solutions to (1.1). Since fractional powers of −(−Δ)α

and −(−Δ)β with α, β ∈ ( 12 , 1) cause some new challenges in mathematics, some new ideas ad techniques
are needed here. First of all, we derive the a priori estimates for solutions of (1.1) as follows.

Lemma 3.1. Let α, β ∈ (12 , 1) and N � 3. Suppose that (u, b) is a solution of (1.1). Then there exists a
small enough ε such that if

‖(u, b)‖H3 � ε, (3.1)

we have

‖(u(t), b(t))‖2HN +
∫ t

0

(‖∂αu(τ)‖2HN + ‖∂βb(τ)‖2HN

)
dτ � C1‖(u0, b0)‖2HN (3.2)

hold for any t � 0, where C1 is a positive constant independent of t.
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Proof. For 0 � k � N , applying ∂k to the first two equations of (1.1), and taking the inner product with
∂ku and ∂kb, respectively, we obtain

1
2

d
dt

(‖∂ku‖2L2 + ‖∂kb‖2L2

)
+ η‖∂k+αu‖2L2 + μ‖∂k+βb‖2L2

= −
∫

R3
∂k ((u · ∇)u) · ∂kudx +

∫

R3
∂k ((b · ∇)b) · ∂kudx

−
∫

R3
∂k ((u · ∇)b) · ∂kbdx +

∫

R3
∂k ((b · ∇)u) · ∂kbdx

=: I1 + I2 + I3 + I4.

(3.3)

It is obviously to find taht I1 = I3 = I2 + I4 = 0 for the case k = 0. Now we are going to estimate the
terms I1-I4 for 0 < k � N .
The estimate for I1. At first, using Lemma 2.1, we have the following inequality

‖∂u‖
L

3
2α

� ‖u‖
3(2α−1)
2(1+α)

L2 ‖∂1+αu‖
5−4α

2(1+α)

L2 � ‖u‖H3 . (3.4)

Recalling that ∇ · u = 0, it holds that
∫

R3
(u · ∇)∂ku · ∂kudx = −1

2

∫

R3
u · ∇|∂ku|2dx = 0. (3.5)

Employing (3.5) and I1 can be written as

I1 = −
∫

R3

(
∂k ((u · ∇)u) − (u · ∇)∂ku

) · ∂kudx. (3.6)

Then applying Kato-Ponce’s commutator estimate (2.5) in Lemma 2.3 and Hölder’s inequality, together
with (3.4), we arrive at

I1 �‖∂k ((u · ∇)u) − (u · ∇)∂ku‖
L

6
3+2α

‖∂ku‖
L

6
3−2α

�‖∂u‖
L

3
2α

‖∂ku‖2
L

6
3−2α

�‖u‖H3‖∂k+αu‖2L2

�ε‖∂k+αu‖2L2 .

(3.7)

The estimate for I2 and I4 For the term I2 and I4, employing Lemma 2.1, it follows that

‖∂u‖
L

3
2β

� ‖u‖
2α+4β−3
2(1+α)

L2 ‖∂1+αu‖
5−4β

2(1+α)

L2 � ‖u‖H3 (3.8)

and

‖∂b‖
L

3
α+β

� ‖b‖
2α+4β−3
2(1+β)

L2 ‖∂1+βb‖
5−2(α+β)
2(1+β)

L2 � ‖b‖H3 . (3.9)

Indeed, inspired by [49], noting that
∫

R3
(b · ∇)∂kb · ∂kudx +

∫

R3
(b · ∇)∂ku · ∂kbdx

=
∫

R3
(b · ∇)(∂ku · ∂kb)dx = −

∫

R3
(∇ · b)(∂ku · ∂kb)dx = 0,

(3.10)

we can obviously find that

I2 + I4 =
∫

R3

(
∂k ((b · ∇)b) − (b · ∇)∂kb

) · ∂kudx

+
∫

R3

(
∂k ((b · ∇)u) − (b · ∇)∂ku

) · ∂kbdx.

(3.11)
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Therefore, applying (2.5), Hölder’s and Cauchy’s inequalities, along with (3.8) and (3.9), we have

I2 + I4 �
(
‖∂b‖

L
3

α+β
‖∂kb‖

L
6

3−2β
+ ‖∂kb‖

L
6

3−2β
‖∂b‖

L
3

α+β

)
‖∂ku‖

L
6

3−2α

+
(
‖∂b‖

L
3

α+β
‖∂ku‖

L
6

3−2α
+ ‖∂kb‖

L
6

3−2β
‖∂u‖

L
3
2β

)
‖∂kb‖

L
6

3−2β

�‖∂b‖
L

3
α+β

‖∂k+αu‖L2‖∂k+βb‖L2 + ‖∂u‖
L

3
2β

‖∂k+βb‖2L2

�ε
(‖∂k+αu‖2L2 + ‖∂k+βb‖2L2

)
.

(3.12)

The estimate for I3 Similarly, we will estimate the term I3. Due to ∇ · b = 0, we obtain
∫

R3
(u · ∇)∂kb · ∂kbdx = −1

2

∫

R3
u · ∇|∂kb|2dx = 0. (3.13)

Owing to the same arguments in (3.6)–(3.7), recalling (2.5), (3.8) and (3.9), together with Hölder’s and
Cauchy’s inequalities, we observe

I3 = −
∫

R3

(
∂k ((u · ∇)b) − (u · ∇)∂kb

) · ∂kbdx

�
(
‖∂u‖

L
3
2β

‖∂kb‖
L

6
3−2β

+ ‖∂ku‖
L

6
3−2α

‖∂b‖
L

3
α+β

)
‖∂kb‖

L
6

3−2β

�‖u‖H3‖∂k+βb‖2L2 + ‖b‖H3‖∂k+αu‖L2‖∂k+βb‖L2

�ε
(‖∂k+αu‖2L2 + ‖∂k+βb‖2L2

)
.

(3.14)

Hence, plugging (3.7), (3.12) and (3.14) into (3.3), and summing up with respect to k from 0 to N ,
we obtain

d
dt

(‖u‖2HN + ‖b‖2HN

)
+ C

(‖∂αu‖2HN + ‖∂βb‖2HN

)
� 0. (3.15)

Then integrating it from 0 to t, we complete the proof of Lemma 3.1. �

Next, we prove the local existence of (1.1) by induction. The key is to look for the appropriate
approximate solutions in the sequel. We construct the solution sequence (Xj)j�0 := (uj , bj)j�0, by
iteratively solving the following Cauchy problem

⎧
⎨

⎩

∂tu
j+1 + uj · ∇uj+1 = −∇P j+1 + bj · ∇bj+1 − η(−Δ)αuj+1, x ∈ R

3, t > 0,
∂tb

j+1 + uj · ∇bj+1 = bj · ∇uj+1 − μ(−Δ)βbj+1, x ∈ R
3, t > 0,

∇ · uj+1 = ∇ · bj+1 = 0, x ∈ R
3, t > 0,

(3.16)

where

(uj+1, bj+1)|t=0 = (u0(x), b0(x)) := X0, x ∈ R
3 (3.17)

for j � 0. Set X0 = 0 and solve (3.16) with j = 0 to obtain X1. Similarly, we define Xj iteratively.

Lemma 3.2. Let α, β ∈ (12 , 1). Suppose that initial data (u0, b0) ∈ HN × HN with N � 3. Then there
exists a constant T1 > 0 such that (1.1) possesses a unique classical solution satisfying

(u, b) ∈ L∞(0, T1;HN ) and (∂αu, ∂βb) ∈ L2(0, T1;HN ).

Proof. The readers may refer to the proof of Proposition 3.6 in [26] by using mollifier and Picard theorem
(see [26, Theorem 3.1]). We omit the details here for brevity. �

Lemma 3.3. Assume α, β ∈ ( 12 , 1). There are small constant ε0 > 0, T2 > 0 and ε1 > 0 such that if
‖(u0, b0)‖H3 � ε0, then for any j � 0, (uj , bj) ∈ C([0, T2];H3 × H3) is well-defined and

sup
0�t�T2

‖(uj , bj)‖H3 � ε1, for j � 0. (3.18)
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Proof. We prove it by induction. Suppose that it is true for j � 0 with ε > 0 small enough to be specified
later. To prove (3.18) for j +1, we need some energy estimates on (uj+1, bj+1). Applying ∂k to equations
(3.16)1 and (3.16)2, taking the inner product with ∂kuj+1 and ∂kbj+1, respectively, we arrive at

1
2

d
dx

(‖∂kuj+1‖2L2 + ‖∂kbj+1‖2L2

)
+ η‖∂k+αuj+1‖2L2 + μ‖∂k+βbj+1‖2L2

= −
∫

R3
∂k

(
(uj · ∇)uj+1

) · ∂kuj+1dx +
∫

R3
∂k

(
(bj · ∇)bj+1

) · ∂kuj+1dx

−
∫

R3
∂k

(
(uj · ∇)bj+1

) · ∂kbj+1dx +
∫

R3
∂k

(
(bj · ∇)uj+1

) · ∂kbj+1dx

:= R1 + R2 + R3 + R4.

(3.19)

Now we are going to estimate the terms R1, R2, R3 and R4. First of all, we deal with the term R1 for
the case k = 0, k = 1 and 2 � k � 3. For k = 0, recalling that ∇ · uj = 0, we arrive at

R1 = −1
2

∫

R3
uj · ∇|uj+1|2dx = 0. (3.20)

For k = 1, based on ∇ · uj = 0, together with Lemma 2.1, Hölder’s and Young’s inequalities, we observe

R1 = − 1
2

∫

R3
uj · ∇|∂uj+1|2dx −

∫

R3
∂uj · ∇uj+1 · ∂uj+1dx

�‖∂uj‖
L

3
2α

‖∂uj+1‖
L

6
3−2α

‖∂uj+1‖
L

6
3−2α

�‖uj‖H3‖∂1+αuj+1‖2L2

�C‖uj‖2H3‖∂αuj+1‖2H3 +
η

16
‖∂αuj+1‖2H3 .

(3.21)

For 2 � k � 3, noting that ∇ · uj = 0, it follows that
∫

R3
(uj · ∇)∂kuj+1 · ∂kuj+1dx = −1

2

∫

R3
uj · ∇|∂kuj+1|2dx = 0. (3.22)

Recalling (2.5) in Lemma 2.3 again, along with Lemma 2.1, Hölder’s and Young’s inequalities, we have

R1 = −
∫

R3

(
∂k

(
(uj · ∇)uj+1

) − (uj · ∇)∂kuj+1
) · ∂kuj+1dx

�
(
‖∂uj‖

L
3
2α

‖∂kuj+1‖
L

6
3−2α

+ ‖∂kuj‖L2‖∂uj+1‖
L

3
α

)
‖∂kuj+1‖

L
6

3−2α

�‖uj‖H3‖∂k+αuj+1‖L2‖∂k+αuj+1‖L2

+ ‖∂kuj‖L2‖∂αuj+1‖θ
L2‖∂k+αuj+1‖1−θ

L2 ‖∂k+αuj+1‖L2

�‖uj‖H3‖∂αuj+1‖2H3

�C‖uj‖2H3‖∂αuj+1‖2H3 +
η

16
‖∂αuj+1‖2H3 ,

(3.23)

where θ = 4α+2k−5
2k ∈ [0, 1) if α ∈ ( 12 , 1).

Secondly, we estimate the terms R2 and R4. For k = 0, using ∇ · bj = 0 and the integration by parts,
we can easily find that

R2 + R4 =
∫

R3
(bj · ∇)bj+1 · uj+1dx +

∫

R3
(bj · ∇)uj+1 · bj+1dx

=
∫

R3
(bj · ∇)(uj+1 · bj+1)dx = −

∫

R3
(∇ · bj)(uj+1 · bj+1)dx = 0.

(3.24)
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For k = 1, applying Lemma 2.1, the integration by parts, Hölder’s and Young’s inequalities, we conclude

R2 + R4 = −
∫

R3
bj · ∇bj+1 · ∂2uj+1dx −

∫

R3
bj · ∇uj+1 · ∂2bj+1dx

�‖bj‖L∞‖∂bj+1‖L2‖∂2uj+1‖L2 + ‖bj‖L∞‖∂uj+1‖L2‖∂2bj+1‖L2

�‖bj‖H3‖∂βbj+1‖H3‖∂αuj+1‖H3

�C‖bj‖2H3‖∂βbj+1‖2H3 +
η

16
‖∂αuj+1‖2H3 .

(3.25)

For 2 � k � 3, employing ∇ · bj+1 = 0, we deduce
∫

R3
(bj · ∇)∂kbj+1 · ∂kuj+1dx +

∫

R3
(bj · ∇)∂kuj+1 · ∂kbj+1dx

=
∫

R3
(bj · ∇)(∂kuj+1 · ∂kbj+1)dx = 0.

(3.26)

Owing to (3.26), R2 + R4 can be written as

R2 + R4 =
∫

R3

(
∂k

(
(bj · ∇)bj+1

) − (bj · ∇)∂kbj+1
) · ∂kuj+1dx

+
∫

R3

(
∂k

(
(bj · ∇)uj+1

) − (bj · ∇)∂kuj+1
) · ∂kbj+1dx.

(3.27)

According to Lemma 2.1, together with (2.5), Hölder’s and Young’s inequalities, we obtain

R2 + R4 �
(
‖∂bj‖

L
3

α+β
‖∂kbj+1‖

L
6

3−2β
+ ‖∂kbj‖L2‖∂bj+1‖

L
3
α

)
‖∂kuj+1‖

L
6

3−2α

+
(
‖∂bj‖

L
3

α+β
‖∂kuj+1‖

L
6

3−2α
+ ‖∂kbj‖L2‖∂uj+1‖

L
3
β

)
‖∂kbj+1‖

L
6

3−2β

�‖bj‖H3‖∂k+αuj+1‖L2‖∂k+βbj+1‖L2

+ ‖∂kbj‖L2‖∂βbj+1‖θ
L2‖∂k+βbj+1‖1−θ

L2 ‖∂k+αuj+1‖L2

+ ‖∂kbj‖L2‖∂αuj+1‖θ
L2‖∂k+αuj+1‖1−θ

L2 ‖∂k+βbj+1‖L2

�‖bj‖H3‖∂αuj+1‖H3‖∂βbj+1‖H3

�C‖bj‖2H3‖∂βbj+1‖2H3 +
η

16
‖∂αuj+1‖2H3 ,

(3.28)

where θ = 2(α+β)+2k−5
2k ∈ [0, 1) if α, β ∈ ( 12 , 1).

Finally, for the term R3, using the same arguments from (3.20) to (3.23), R3 is estimated by

R3 �C‖uj‖2H3‖∂βbj+1‖2H3 +
μ

16
‖∂βbj+1‖2H3 . (3.29)

Therefore, substituting the estimates for R1, R2+R4 and R3 into (3.19) and summing up with respect
to k from 0 to 3, we have

d
dx

(‖∂kuj+1‖2L2 + ‖∂kbj+1‖2L2

)
+ C

(‖∂αuj+1‖2H3 + ‖∂βbj+1‖2H3

)

� C
(‖uj‖2H3 + ‖bj‖2H3

) (‖∂αuj+1‖2H3 + ‖∂βbj+1‖2H3

)
.

(3.30)

After taking time integration, it holds that

‖Xj+1(t)‖2H3 +
∫ t

0

(‖∂αuj+1(τ)‖2H3 + ‖∂βbj+1(τ)‖2H3

)
dτ

� ‖X0‖2H3 + C

∫ t

0

‖Xj(τ)‖2H3

(‖∂αuj+1(τ)‖2H3 + ‖∂βbj+1(τ)‖2H3

)
dτ,

(3.31)
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which from the inductive assumption implies

‖Xj+1(t)‖2H3 +
∫ t

0

(‖∂αuj+1(τ)‖2H3 + ‖∂βbj+1(τ)‖2H3

)
dτ

� ε20 + Cε21

∫ t

0

(‖∂αuj+1(τ)‖2H3 + ‖∂βbj+1(τ)‖2H3

)
dτ,

(3.32)

for any 0 � t � T2. Choosing properly small constants ε0, ε1 and T2 such that

‖Xj+1(t)‖2H3 +
∫ t

0

(‖∂αuj+1(τ)‖2H3 + ‖∂βbj+1(τ)‖2H3

)
dτ � ε21, (3.33)

which implies that ‖Xj+1(t)‖2H3 � ε21. By inductive argument, ‖Xj(t)‖2H3 � ε21 holds true for all j � 0
and 0 � t � T2. This completes the proof of Lemma 3.3. �

Proof of Theorem 1.1. Let T ∗ = min{T1, T2}, from the proof of Lemmas 3.1 and 3.2, it holds that if we
assume that ‖(u0, b0)‖H3 � ε0, then the corresponding limit function satisfies

sup
0�t�T ∗

‖(u(t), b(t))‖H3 � ε1, (3.34)

where T1 and T2 are given in Lemmas 3.1 and 3.2. Now we prove T ∗ = ∞ by contradiction. Let M1 =
min{ε0, ε1, ε2}. Suppose that ‖(u0, b0)‖H3 � M1

2
√
1+C1

, where C1 is given in Lemma 3.1. We define the
lifespan of solutions to Cauchy problem (1.1) by

T = sup
{
t| sup

0�s�t
‖(u(s), b(s))‖H3 � M1

}
. (3.35)

Since

‖(u0, b0)‖H3 � M1

2
√

1 + C1

� M1

2
< M1 � ε0, (3.36)

then T > 0 holds true from the local existence result Lemma 3.2 and continuation argument. If T is
finite, it follows from the definition of T that

sup
0�s�T

‖(u(s), b(s))‖H3 = M1. (3.37)

On the other hand, from a priori estimates, we observe

sup
0�s�T

‖(u(s), b(s))‖H3 �
√

C1‖(u0, b0)‖H3 � M1

√
C1

2
√

1 + C1

� M1

2
. (3.38)

Thus (3.37) is a contradiction to (3.38) since T is finite. That is, ‖(u(t), b(t))‖H3 � ε1 for any t � 0 if
‖(u0, b0)‖H3 � ε0.

Therefore, the global existence of solution to (1.1) follows from the local existence in Lemma 3.2 and
the a priori estimates in Lemma 3.1 via standard continuity argument. In short, the global existence and
uniqueness of solutions to (1.1) and estimates (1.12) have been proved. �

4. Proof of Decay estimates

In this section, we prove Theorem 1.2 by the energy methods. Firstly, we may assume that there exist a
positive constant M2 > 1 such that

‖u0(t)‖2Ḣ−s + ‖b0(t)‖2Ḣ−s � M2
2, (4.1)

since (u0, b0) ∈ Ḣ−s × Ḣ−s.
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Lemma 4.1. Assume that α, β ∈ (0, 1). Suppose that

‖u(t)‖2
Ḣ−s + ‖b(t)‖2

Ḣ−s � 2M2
2, t ∈ [0, T ], (4.2)

where 0 < s < 3
2 . Then for any t ∈ [0, T ] and all k = 0, 1, · · · , N − 1, we obtain

‖∂ku‖2L2 + ‖∂kb‖2L2 � CM
2

σ1
2 (1 + t)− s+k

σ1 , (4.3)

where σ1 = min{α, β}; for some positive constant κ > 1 and any t ∈ [0, T ], we have

1
2
d
dt

(‖Λ−su‖2L2 + ‖Λ−sb‖2L2

)
+ η‖∂αΛ−su‖2L2 + μ‖∂βΛ−sb‖2L2

� CM
2

σ1
2 ε

s
2
0

(‖Λ−su‖L2 + ‖Λ−sb‖L2

)
(1 + t)−κ,

(4.4)

where C is a positive constant independent of t.

Proof. To derive (4.3), using Lemma 2.4, it holds that

‖∂ku‖L2 � C‖u‖
α

s+k+α

Ḣ−s
‖∂k+αu‖

s+k
s+k+α

L2
(4.5)

and

‖∂kb‖L2 � C‖b‖
β

s+k+β

Ḣ−s
‖∂k+βb‖

s+k
s+k+β

L2 . (4.6)

Then by collecting the above estimates (4.5) and (4.6), we deduce

‖∂ku‖2L2 + ‖∂kb‖2L2 � 2CM
2

s+k+σ1
2

(‖∂k+αu‖2L2 + ‖∂k+βb‖2L2

) s+k
s+k+σ1 , (4.7)

which, together with (3.15) in Lemma 3.1, yields that

d
dt

(‖∂ku‖2L2 + ‖∂kb‖2L2

)
+ CM

− 2
s+k

2

(‖∂ku‖2L2 + ‖∂kb‖2L2

) s+k+σ1
s+k � 0. (4.8)

By a direct calculation, it follows that

‖∂ku‖2L2 + ‖∂kb‖2L2 �CM
2

σ1
2

[(‖∂ku0‖2L2 + ‖∂kb0‖2L2

)
+ t

]− s+k
σ1

�CM
2

σ1
2 (1 + t)− s+k

σ1 .

(4.9)

Therefore, combining Lemma 3.1 and (4.9), we get (4.3).
Now we are going to estimate (4.4). Applying Λ−s to equations (1.1)1 and (1.1)2, and taking the inner

product with Λ−su and Λ−sb, respectively, we conclude

1
2

d
dt

(‖Λ−su‖2L2 + ‖Λ−sb‖2L2

)
+ η‖∂αΛ−su‖2L2 + μ‖∂βΛ−sb‖2L2

= −
∫

R3
Λ−s(u · ∇u) · Λ−sudx +

∫

R3
Λ−s(b · ∇b) · Λ−sudx

−
∫

R3
Λ−s(u · ∇b) · Λ−sbdx +

∫

R3
Λ−s(b · ∇u) · Λ−sbdx

:= F1 + F2 + F3 + F4.

(4.10)

For the term F1, recalling Lemma 2.5 and Hölder’s inequality, we obtain

F1 �‖Λ−s(u · ∇u)‖L2‖Λ−su‖L2

�‖u · ∇u‖
L

6
3+2s

‖Λ−su‖L2

�‖u‖
L

3
s
‖∂u‖L2‖Λ−su‖L2 .

(4.11)
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Similarly, F2, F3 and F4 can be estimated as

F2 � ‖b‖
L

3
s
‖∂b‖L2‖Λ−su‖L2 ,

(4.12)
F3 � ‖u‖

L
3
s
‖∂b‖L2‖Λ−sb‖L2 (4.13)

and

F4 � ‖b‖
L

3
s
‖∂u‖L2‖Λ−sb‖L2 . (4.14)

From Lemma 2.1, we have the following inequalities

‖u‖
L

3
s

� ‖u‖
1+2s

4
L2 ‖∂2u‖

3−2s
4

L2 (4.15)

and

‖b‖
L

3
s

� ‖b‖
1+2s

4
L2 ‖∂2b‖

3−2s
4

L2 (4.16)

Then plugging (4.11)–(4.14) into (4.10), using (4.15)–(4.16) and the decay estimate (4.3), we have

1
2

d
dt

(‖Λ−su‖2L2 + ‖Λ−sb‖2L2

)
+ η‖∂αΛ−su‖2L2 + μ‖∂βΛ−sb‖2L2

� C
(
‖u‖

L
3
s

+ ‖b‖
L

3
s

)
(‖∂u‖L2 + ‖∂b‖L2)

(‖Λ−su‖L2 + ‖Λ−sb‖L2

)

� C (‖u‖L2 + ‖b‖L2)
1+2s

4
(‖∂2u‖L2 + ‖∂2b‖L2

) 3−2s
4

· (‖∂u‖L2 + ‖∂b‖L2)
(‖Λ−su‖L2 + ‖Λ−sb‖L2

)

� CM
2

σ1
2 ε

1+2s
4

0

(‖Λ−su‖L2 + ‖Λ−sb‖L2

)
(1 + t)− s+1

2σ1 (1 + t)− s+2
2σ1

· 3−2s
4

� CM
2

σ1
2 ε

s
2
0

(‖Λ−su‖L2 + ‖Λ−sb‖L2

)
(1 + t)−κ,

(4.17)

where

κ =
s + 1
2σ1

+
s + 2
2σ1

· 3 − 2s

4
> 1 (4.18)

by s ∈ (0, 3
2 ). This completes the proof of Lemma 4.1. �

Proof of Theorem 1.2. By Lemma 4.1, the decay estimate (1.14) can be obtained from (4.3) provided
that we can close that the a priori assumption (4.2) for some constant M2 > 1. Now we show (4.2) holds
true. According to (4.4), we observe

‖Λ−su‖2L2 + ‖Λ−sb‖2L2 �CM
2

σ1
2 ε

s
2
0

∫ t

0

(‖Λ−su(τ)‖L2 + ‖Λ−sb(τ)‖L2

)
(1 + τ)−κdτ

+
(‖Λ−su0‖2L2 + ‖Λ−sb0‖2L2

)

�CM
2

σ1
2 ε

s
2
0 sup

0�τ�t

(‖Λ−su(τ)‖2L2 + ‖Λ−sb(τ)‖2L2

) 1
2

×
∫ t

0

(1 + τ)−κdτ +
(‖Λ−su0‖2L2 + ‖Λ−sb0‖2L2

)

�CM
2

σ1
2 ε

s
2
0 sup

0�τ�t

(‖Λ−su(τ)‖2L2 + ‖Λ−sb(τ)‖2L2

) 1
2

+
(‖Λ−su0‖2L2 + ‖Λ−sb0‖2L2

)

(4.19)

by κ > 1. For convenience, we set

M(t) := sup
0�τ�t

(‖Λ−su(τ)‖2L2 + ‖Λ−sb(τ)‖2L2

) 1
2 , (4.20)
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then using Young’s inequality, it holds that

M2(t) � M2
2 + CM

2
σ1
2 ε

s
2
0 M(t) � 1

4
M2(t) + M2

2 + CM
4

σ1
2 εs

0 (4.21)

for some positive constant C independent of M2 and ε0. Then, if we choose ε0 suitably small such that

CM
2

σ1
2 εs

0 � 1
2 , we can find that

‖Λ−su(t)‖2L2 + ‖Λ−sb(t)‖2L2 � M2(t) � 2M2
2 , (4.22)

which close the a priori assumption (4.2).
Therefore, from the standard continuity arguments we obtained (1.14)–(1.15). This completes the

proof of Theorem 1.2. �
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241–279 (1972)

[14] Gibbon, J.D., Ohkitani, K.: Singularity formation in a class of stretched solutions of the equations for ideal magneto-
hydrodynamics. Nonlinearity 14, 1239–1264 (2001)

[15] Granero-Belinchón, R.: Global solutions for a hyperbolic-parabolic system of chemotaxis. J. Math. Anal. Appl. 449,
872–883 (2017)

[16] Guo, Y., Wang, Y.: Decay of dissipative equations and negative Sobolev spaces. Commun. Partial Differ. Equ. 37,
2165–2208 (2012)

[17] He, C., Xin, Z.: On the regularity of weak solutions to the magnetohydrodynamic equations. J. Differ. Equ. 213, 235–254
(2005)

[18] He, C., Xin, Z.: Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations. J.
Funct. Anal. 227, 113–152 (2005)

[19] Hmidi, T., Keraani, S., Rousset, F.: Global well-posedness for Euler–Boussinesq system with critical dissipation. Com-
mun. Partial Differ. Equ. 36, 420–445 (2011)



9 Page 14 of 14 K. Jiang et al. JMFM

[20] Hmidi, T., Keraani, S., Rousset, F.: Global well-posedness for a Boussinesq–Navier–Stokes system with critical dissipa-
tion. J. Differ. Equ. 249, 2147–2174 (2010)

[21] Hmidi, T., Zerguine, M.: On the global well-posedness of the Euler–Boussinesq system with fractional dissipation.
Physica D 239, 1387–1401 (2010)

[22] Ju, N.: Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space.
Commun. Math. Phys. 251, 365–376 (2004)

[23] Kato, T., Poince, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math.
41, 891–907 (1988)

[24] Lei, Z., Zhou, Y.: BKM’s criterion and global weak solutions for magnetohydrodynamics with zero viscosity. Discrete
Contin. Dyn. Syst. 25, 575–583 (2009)

[25] Li, P., Zhai, Z.: Well-posedness and regularity of generalized Navier–Stokes equations in some critical Q-spaces. J. Funct.
Anal. 259, 2457–2519 (2010)

[26] Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge University Press, UK (2002)
[27] Miao, C., Yuan, B., Zhang, B.: Well-posedness for the incompressible magnetohydrodynamic system. Math. Methods

Appl. Sci. 30, 961–976 (2007)
[28] Mohgooner, S.D., Sarayker, R.E.: L2 decay for solutions of the MHD equations. J. Math. Phys. Sci. 23, 35–53 (1989)
[29] Nirenberg, L.: On elliptic partial differential equations. Ann. Sci. Norm. Super. Pisa 13, 115–162 (1959)
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