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Abstract. In this paper, we consider global axisymmetric smooth solutions for the Boussinesq equation for magnetohydro-
dynamics convection without magnetic diffusion and heat convection. We obtain that for axially symmetric initial data
without any smallness restrictions, such a system admits global smooth axially symmetric solutions without swirl.
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1. Introduction

In this paper, we consider the following three dimensional incompressible Boussinesq equations for mag-
netohydrodynamics (MHD) convection

ut + u · ∇u + ∇π = μΔu + B · ∇B + gθez, (1.1a)
Bt + u · ∇B = B · ∇u, (1.1b)
θt + u · ∇θ = 0, (1.1c)
∇ · u = ∇ · B = 0. (1.1d)

Here u = (u1, u2, u3) is the velocity, π is the pressure, θ is the temperature fluctuation about a constant,
and B = (B1, B2, B3) is the magnetic field, defined on x ∈ R

3 and t ∈ R
+. This system can be used to

model the large scale cosmic magnetic fields that are maintained by hydromagnetic dynamos. Physically,
the first equation describes the conservation law of the momentum with the effect of the buoyancy force,
and the constant μ is the viscosity. Here −gez denotes the direction of the gravity and the original form
of the buoyancy term is g(θ − θ0)ez with θ0 denoting the temperature distribution of the reference state
which can be absorbed in the pressure term and hence is assumed to be zero in this paper. The second
equation shows that the electromagnetic field is governed by the Maxwell equation and the third equation
describes the temperature fluctuation about a constant state. Here, we have omitted the magnetic diffusion
and heat diffusion. For more physics details and numerical simulations, the interested readers may refer
to [5,28,31,32] and the references therein. Hereafter, the system is referred to as the Boussinesq–MHD
system or BMHD for short.

Global regularity of such a PDE system for large initial data is widely open even if when θ = B ≡ 0.
In this case, the system reduces to the 3D classical incompressible Navier–Stokes equation, whose global
well-posedness is widely open for large initial data. But under axially symmetric assumptions, global well-
posedness of classical solutions without swirl component of velocity field was solved by Ladyzhenskaya [20]
and by Ukhovskii and Yudovich [33] independently. More precisely, the Navier–Stokes system has a
unique global axisymmetric solution for initial data u0 ∈ H1 and vorticity ω0 and r−1ω0 ∈ L2 ∩ L∞,
which can be guaranteed when u0 ∈ Hs with s > 7/2 in 3D. The initial regularity was weakened to
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u0 ∈ H2 by Leonardi et al. [24] and to u0 ∈ H1/2 by Abidi [1] later on. The main observation is that
under axisymmetric assumptions, the vorticity quantity r−1ω has maximum principle and hence global
regularity can be obtained. See also [17] for the global regularity of the axisymmetric Navier–Stokes
equation with swirl for a class of large anisotropic initial data. If furthermore, we let the viscosity μ to be
zero, the Navier–Stokes equation reduces to the standard 3D Euler equation describing the motion of an
ideal incompressible fluid, whose global in time regularity is a long standing open problem due to possible
vortex stretching [4,27]. To gain insight into this challenging problem, many authors turn to study the
2D Boussinesq equation, i.e., the system (1.1) without magnetic field B, which retains some key features
of the 3D Euler or Navier–Stokes equations.

When the magnetic field B ≡ 0, the BMHD system reduces to the Boussinesq system, whose weak
solutions in Lp was studied in R

n by Cannon and DiBenedetto [10] for general spatial dimensions and the
local well-posedness in Sobolev spaces was obtained By Chae and Nam in [13] in R

2. In the 2D case, many
global well-posedness results are obtained under various viscous conditions. For example, see [12,18] for
global well-posedness in the partial viscosity case and [21] for the initial boundary value problem. See
also [2] for global well-posedness in the 2D case with partial vsicosity in Besov spaces. For the 3D case,
when the initial data is axisymmetric, global well-posedness was shown by Abidi et al. [3], under the
assumption that the initial density/temperature θ0 does not intersect the Z-axis and the orthogonal
projection of the support of θ0 to the Z-axis is compact.

When the temperature θ vanishes, the BMHD system reduces to the well-known MHD system, for
which there are lots of important results up to date. Concerning the local well-posedness, one may refer
to the paper of Sermange and Temam [30] in the case of fully viscosity, where the authors also proved
the global well-posedness in the 2D case. Global existence of classical solutions is obtained by Lin et
al. [26] under smallness conditions in Sobolev spaces of the initial velocity field and the displacement of
the magnetic field from a non-zero constant. See also [11,19,29,36] and the references therein for global
well-posedness under different conditions. For partial regularity and various blowup conditions, one may
refer to [9,14–16,23] and the references therein. For global well-posedness in the 3D case, Lin et al. [25,35]
studied global well-posedness of small solutions for MHD-type solutions. For a class of axisymmetric initial
data, Lei [22] established the global well-posedness of classical solutions whose the swirl component of
the velocity and magnetic vorticity vanish.

For the full BMHD system, there are some theoretical as well as numerical results up to date. Bian
et al. [5–7] studied the global existence and uniqueness for the initial boundary value problem to the 2D
stratified Boussinesq–MHD system without smallness assumptions on the initial data, with temperature-
dependent viscosity, thermal diffusivity and electrical conductivity. But few results are known up to
date about global well-posedness in the 3D case. In a recent paper [8], the authors proved a global
well-posedness result for large initial data for the BMHD system with a nonlinear damping term, with
both fluid viscosity and magnetic diffusion. However, it is not known whether global well-posedness
holds without the nonlinear damping term even with full velocity viscosity, magnetic diffusion as well as
heat diffusion. Numerically, Schrinner et al. [31,32] studied the global numerical simulations of rotating
magnetoconvection and the geodynamo with mean-field description, where mean fields are defined by
azimuthal averaging over all values of the zaimuthal coordinate and are axisymmetric about the polar
axis. Both the theoretic difficulties and the numerical simulations motivate us to study the radial solutions
or the axisymmetric solutions of such a system.

In this paper, we will show that the BMHD system (1.1) in R
3 is globally well-posed for a class of large

axially symmetric initial data without swirl, even if there is no magnetic diffusion and heat convection.
The case when swirl is present will be pursued in short future. Before we state the main result, we
introduce the axisymmetric solutions for the BMHD system (1.1).

Let x = (x1, x2, z) ∈ R
3 and r =

√
x2
1 + x2

2. We define the axially symmetric coordinate system
(er, eφ, ez) by

er = (x1/r, x2/r, 0)�, eφ = (−x2/r, x1/r, 0)�, ez = (0, 0, 1)�,
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where φ denotes the angle variable. Considering the BMHD system (1.1) in the axially symmetric coor-
dinate (er, eφ, ez), but letting the unknowns depend only on the variables (t, r, z) and be independent of
the angular variable φ, we can write

⎧
⎪⎨

⎪⎩

u(t, x) = ur(t, r, z)er + uφ(t, r, z)eφ + uz(t, r, z)ez,

B(t, x) = Br(t, r, z)er + Bφ(t, r, z)eφ + Bz(t, r, z)ez,

θ(t, x) = θ(t, r, z), π(t, x) = π(t, r, z).
(1.2)

Then the BMHD system (1.1) can be equivalently written in the axially symmetric coordinate (er, eφ, ez),
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu
r + ur∂ru

r + uz∂zu
r − (uφ)2

r + ∂rπ =
(
Δ − 1

r2

)
ur + Br∂rB

r + Bz∂zB
r − (Bφ)2

r ,

∂tu
φ + ur∂ru

φ + uz∂zu
φ + uruφ

r =
(
Δ − 1

r2

)
uφ + Br∂rB

φ + Bz∂zB
φ + BrBφ

r ,

∂tu
z + ur∂ru

z + uz∂zu
z + ∂zπ = Δuz + Br∂rB

z + Bz∂zB
z + θ,

∂tB
r + ur∂rB

r + uz∂zB
r = Br∂ru

r + Bz∂zu
r,

∂tB
φ + ur∂rB

φ + uz∂zB
φ + Bruφ

r = Br∂ru
φ + Bz∂zu

φ + urBφ

r ,

∂tB
z + ur∂rB

z + uz∂zB
z = Br∂ru

z + Bz∂zu
z,

∂tθ + ur∂rθ + uz∂zθ = 0.

(1.3)

For such a system, it is not difficult to have the following local existence and uniqueness result.

Lemma 1.1. Let (u0, B0, θ0) ∈ H2(R3) be axially symmetric and u0 and B0 are divergence free. Then
there exists exactly one solution (u,B, θ, π) such that

(u,B, θ) ∈ L∞(0, T ;H2(R3)), u ∈ L2(0, T ;H3(R3)),
(

∂u

∂t
,
∂B

∂t
,
∂θ

∂t

)
∈ L2(0, t;H1(R3)), ∇π ∈ L∞(0, T ;L2(R3)),

for some T > 0. Moreover, (u,B, θ, π) is axially symmetric.

The proof can be adapted from a similar local existence and uniqueness result for the incompressible
Navier–Stokes equations in R

3 in [24]. By uniqueness of local classical solutions, it is clear that if uφ =
Br = Bz = 0 for all later times if they vanish initially. In this case, we have the following simplified
system for (ur, uz, Bφ, θ):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tu
r + ur∂ru

r + uz∂zu
r + ∂rπ = (Δ − 1

r2 )ur − (Bφ)2

r ,

∂tu
z + ur∂ru

z + uz∂zu
z + ∂zπ = Δuz + θ,

∂tB
φ + ur∂rB

φ + uz∂zB
φ = urBφ

r ,

∂tθ + ur∂rθ + uz∂zθ = 0.

(1.4)

In this case, the incompressible condition is equivalent to

∂ru
r +

ur

r
+ ∂zu

z = 0,

and the divergence free condition is automatically satisfied since Br = Bz = 0 for all times t ≥ 0.
Let ω = ∇ × u be the vorticity. Then it is computed that ω = ωφeφ, where ωφ = ∂zu

r − ∂ru
z. From

the first two equations of (1.4), we have the following equation for ωφ,

∂tω
φ + u · ∇ωφ − ur

r
ωφ =

(
∂rr +

1
r
∂r + ∂zz − 1

r2

)
ωφ − 2

r
Bφ∂zB

φ − ∂rθ. (1.5)

Further, let Π = Bφ/r and Ω = ωφ/r, the system (1.4) gives the following system
⎧
⎪⎨

⎪⎩

∂tΩ + u · ∇Ω = (Δ + 2
r ∂r)Ω − ∂zΠ2 − ∂rθ

r ,

∂tΠ + u · ∇Π = 0,
∂tθ + u · ∇θ = 0.

(1.6)
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We also note that by definition of ω and Ω, there exists some ψφ such that

−
(

Δ +
2
r
∂r

)
(r−1ψφ) = Ω, u = ∇ × (ψφeφ).

The main result is stated in the following.

Theorem 1.1. Suppose that u0, B0 and θ0 are all axially symmetric and u0, B0 are divergence free vectors
with uφ

0 = Br
0 = Bz

0 = 0. Moreover, we assume that u0, B0 ∈ Hs(R3) with s ≥ 2 and r−1Bφ
0 ∈ L∞(R3).

Suppose also that θ0 ∈ Hs(R3) with s ≥ 2 such that spt θ0, the support of θ0, does not intersect the Z-axis
and the projection of spt θ0 to the Z-axis is compact. Then there exists a unique global solution to the
system (1.1) with initial data (u0, B0, θ0) that satisfies

‖∇su(t)‖2L2 + ‖∇sB(t)‖2L2 + ‖∇sθ(t)‖2L2) + μ

∫ t

0

‖∇s+1u(τ)‖2L2dτ � C(t),

for some C(t) > 0.

Remark 1.1. Here, we indeed assumed that θ0 ∈ L∞(R3) thanks to Sobolev embedding. We also remark
that as pointed out in [3], the assumption that spt θ0 is away from the Z-axis can be relaxed to by assuming
that θ is a constant c0 near the Z-axis, by taking a change of variable θ̄ = θ − c0 and π̄ = π − c0z. We
will not go into the details of this point.

Compared to the MHD system considered in [22], we have an extra transport equation of the temper-
ature and an extra singular term r−1∂rθ in the momentum equation in (1.6). This singular term causes
difficulties in estimating the ‖Ω(t)‖L2 in Lemma 2.3, due to the exponential growth of the quantity
‖r−1θ(t)‖L2 in terms of

∫ t

0
‖r−1ur‖L∞dτ . More precisely, from (1.6), one has

∂t(r−1θ) + u · ∇(r−1θ) + (r−1θ)(r−1ur) = 0,

which gives the estimate

‖r−1θ(t)‖Lp � ‖r−1θ0‖Lpe
∫ t
0 ‖r−1ur‖L∞ dτ .

To avoid this difficulty, we assume as in [3] that spt θ0 is away from Z-axis and its projection to Z-
axis is compact, and this property is maintained due to the transport equation satisfied by θ in (1.6).
Therefore, not involved in much technicalities, we assume that spt θ0 is away from the Z-axis to avoid
the singularities of last term r−1∂rθ in (1.6) near r = 0.

In the next section, we will prove theorem 1.1. Throughout this paper, A � B means there exists some
constant C > 0 such that A ≤ CB.

2. Proof of Theorem 1.1

2.1. Basic Estimates

From the Biot–Savart law, we have the following Lemma.

Lemma 2.1. Let u be a smooth axisymmetric divergence free vector field and ω = ωφeφ be its curl, then

‖u‖L∞ �‖ωφ‖1/2
L2 ‖∇ωφ‖1/2

L2 ,

‖r−1ur‖L∞ �‖Ω‖1/2
L2 ‖∇Ω‖1/2

L2 .

This lemma was proved in [3]. See also similar estimates in [22] in integral form.
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2.2. The Flow Map

First, we cite the following proposition concerning the transport equation satisfied by the temperature θ,
which was proved in [3].

Proposition 2.1. Let u be a smooth axisymmetric vector field and θ be a solution of the transport equation

∂tθ + u · ∇θ = 0, (2.1)

with initial data θ(t = 0) = θ0.
(a) Assume that d(spt θ0, {OZ}) = r0 > 0. Then one has for every t ≥ 0 that

d(spt θ(t), {OZ}) ≥ r0e
− ∫ t

0 ‖r−1ur‖L∞dτ .

(b) Denote by Πz the orthogonal projector over the z-axis {OZ}, and assume that Πz(spt θ0) is a compact
set with diameter d0. Then for every t ≥ 0, one has Πz(spt θ(t)) is a compact set with diameter d(t)
such that

d(t) ≤ d0 + 2
∫ t

0

‖u(τ)‖L∞dτ.

With this proposition, one has the following Corollary, which was also proved in [3].

Corollary 2.1. Let u be a smooth axisymmetric divergence free vector field, and θ be a solution of the
transport equation (2.1) with initial data θ0 ∈ L2 ∩ L∞. Assume further that

r0 := d(spt θ0, {OZ}) > 0, d0 := diam(Πz(spt θ0)) < ∞,

then we have∫

R3
r−2θ2(t, x)dx ≤ r−2

0 ‖θ0‖2L2

+2π‖θ0‖2L∞

∫ t

0

‖r−1ur(τ)‖L∞dτ

(
d0 + 2

∫ t

0

‖u(τ)‖L∞dτ

)
. (2.2)

2.3. Energy Estimates

Here, we first give some L2-estimates for the solutions of the Boussinesq system (1.1).

Lemma 2.2. Let u0, B0 ∈ L2 be divergence free, θ0 ∈ L2 ∩ L∞. Then for every smooth solution (u,B, θ),
it holds that,

‖θ(t)‖Lp ≤ ‖θ0‖Lp , ∀p ∈ [1,∞],

‖Π(t)‖Lp ≤ ‖Π0‖Lp , ∀p ∈ [1,∞],

‖u(t)‖2L2 + ‖B(t)‖2L2 +
∫ t

0

‖∇u(τ)‖2L2dτ � (1 + t)et.

(2.3)

Proof. The first two inequalities are standard. Since u is divergence free, by taking L2-estimates for the
first two equations, one has

1
2

d

dt
‖u(t), B(t)‖2L2 + μ‖∇u(τ)‖2L2 ≤ ‖u(t)‖L2‖θ(t)‖L2 � 1 + ‖u(t)‖2L2 , (2.4)

which implies immediately that

‖u(t), B(t)‖2L2 + μ

∫ t

0

‖∇u(τ)‖2L2dτ ≤ et(‖u0, B0‖2L2 + t) � (1 + t)et, (2.5)

thanks to the Gronwall inequality. �

Next, we give some estimates for ωφ and Ω = ωφ/r.
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Lemma 2.3. Suppose that (u,B, θ) is a smooth solution of the Boussinesq–MHD system (1.6) with initial
data (u0, B0, θ0) ∈ H2, which satisfies the conditions of Theorem 1.1. Then there holds,

‖ωφ(t)‖2L2 +
∫ t

0

‖∇ωφ(τ)‖2L2 + ‖r−1ωφ‖2L2dτ � C(t),

and

‖Ω(t)‖2L2 +
∫ t

0

‖∇Ω(τ)‖2L2dτ + 4π

∫ t

0

∫

R

|Ω(τ, 0, z)|2dzdτ � C(t),

for some constant C(t).

Proof. (i). Recall the equation (1.5) for ωφ. Take the L2-inner product with ωφ to obtain

1
2

d

dt
‖ωφ(t)‖2L2 =

∫
ωφ

(
∂rr +

1
r
∂r + ∂zz − 1

r2

)
ωφdx −

∫
ωφ(u · ∇ωφ)dx

+
∫

ur

r
|ωφ|2dx −

∫
2rΠ∂zΠωφdx −

∫
ωφ∂rθdx.

The first integral on the RHS equals to

−
∫

ωφ

(
∂rr +

1
r
∂r + ∂zz − 1

r2

)
ωφdx = ‖∂rω

φ‖2L2 + ‖∂zω
φ‖2L2 + ‖r−1ωφ‖2L2

= ‖∇ωφ‖2L2 + ‖r−1ωφ‖2L2 .

The second integral vanishes, and the third and fourth terms can be estimated as
∣∣∣∣

∫
ur

r
|ωφ|2dx

∣∣∣∣ ≤‖ur‖L6‖ωφ‖L3‖Ω‖L2 ≤ C‖ur‖L6‖ωφ‖1/2
L2 ‖∇ωφ‖1/2

L2 ‖Ω‖L2

≤1
4
‖∇ωφ‖2L2 + C‖ωφ‖2L2 + C‖∇u‖2L2‖Ω‖2L2 ,

and ∣∣∣
∣

∫
2rΠ∂zΠωφdx

∣∣∣
∣ =

∣∣∣
∣

∫
BφΠ∂zω

φdx

∣∣∣
∣ ≤ ‖Π‖L∞‖Bφ‖L2‖∂zω

φ‖L2

≤‖Π0‖L∞‖Bφ‖L2‖∂zω
φ‖L2 ≤ C(1 + t)et +

1
4
‖∂zω

φ‖2L2 ,

where we have used Lemma 2.2. For the last integral, it follows from integration by parts that
∣∣∣
∣

∫
ωφ∂rθdx

∣∣∣
∣ =

∣∣∣
∣2π

∫
ωφ∂rθrdrdz

∣∣∣
∣ ≤

∣∣∣
∣2π

∫
θΩrdrdz

∣∣∣
∣ +

∣∣∣
∣2π

∫
θ∂rω

φrdrdz

∣∣∣
∣

≤ ‖θ‖L2‖Ω‖L2 + ‖θ‖2L2 +
1
4
‖∂rω

φ‖2L2

≤ C‖Ω‖2L2 + C‖θ0‖2L2 +
1
4
‖∂rω

φ‖2L2 .

Therefore, we have
d

dt
‖ωφ(t)‖2L2 + ‖∇ωφ‖2L2 + ‖r−1ωφ‖2L2 � (1 + t)et + ‖ωφ‖2L2 + (1 + ‖∇u‖2L2)‖Ω‖2L2 .

Integrating over [0, t], one has

‖ωφ(t)‖2L2 +
∫ t

0

‖∇ωφ‖2L2 + ‖r−1ωφ‖2L2dτ

� tet +
∫ t

0

‖ωφ(τ)‖2L2dτ +
∫ t

0

(1 + ‖∇u(τ)‖2L2)‖Ω(τ)‖2L2dτ.

(2.6)

(ii). On the other hand, from the transport equation for Π in (1.6), we have for any Π0 ∈ L2 ∩ L∞

‖Π(t)‖Lp ≤ ‖Π0‖Lp , ∀ p ∈ [2,∞]. (2.7)
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Note also that

|∇B|2 = |(er∂r +
1
r
eφ∂φ + ez∂z)(Bφeφ)|2 = |∇Bφ|2 + |Π|2.

In particular, one has

‖Π(t)‖L2 ≤ ‖Π0‖L2 � ‖B0‖H1 , ‖Π(t)‖L4 ≤ ‖Π0‖L4 ≤ ‖∇B0‖L4 � ‖B0‖H2 .

(iii). Taking L2-inner product of the equation for Ω in (1.6), we obtain

1
2

d

dt
‖Ω(t)‖2L2 =

∫
Ω(Δ +

2
r
∂r)Ωdx −

∫
Ω(u · ∇Ω)dx −

∫
Ω∂zΠ2dx −

∫
Ω

∂rθ

r
dx.

For the terms on the RHS, it follows from integration by parts that

−
∫

Ω(Δ +
2
r
∂r)Ωdx = ‖∇Ω‖2L2 + 2π

∫

R

|Ω(t, 0, z)|2dz

= ‖∂rΩ‖2L2 + ‖∂zΩ‖2L2 + 2π

∫

R

|Ω(t, 0, z)|2dz,

∫
Ω(u · ∇Ω)dx = 0,

∣∣∣
∣

∫
Ω∂zΠ2dx

∣∣∣
∣ ≤ ‖Π‖2L4‖∂zΩ‖L2 ≤ 1

2
‖Π‖4L4 +

1
2
‖∂zΩ‖2L2 ,

∣∣∣∣

∫
Ω

∂rθ

r
dx

∣∣∣∣ =
∣∣∣∣2π

∫
Ω∂rθdrdz

∣∣∣∣ =
∣∣∣∣2π

∫
∂rΩ

θ

r
rdrdz

∣∣∣∣ ≤ 1
2
‖θ/r‖2L2 +

1
2
‖∂rΩ‖2L2 .

Therefore, we have

d

dt
‖Ω(t)‖2L2 + ‖∇Ω‖2L2 + 4π

∫

R

|Ω(t, 0, z)|2dz ≤ ‖θ/r‖2L2 + ‖B0‖4H2 .

Integrating over [0, t], one then has

‖Ω(t)‖2L2 +
∫ t

0

‖∇Ω(τ)‖2L2dτ + 4π

∫ t

0

∫

R

|Ω(τ, 0, z)|2dzdτ

≤ ‖Ω(0)‖2 +
∫ t

0

‖θ/r(τ)‖2L2dτ + t‖B0‖4H2

� 1 + t + t

∫ t

0

‖r−1ur(τ)‖L∞dτ + t

∫ t

0

‖r−1ur(τ)‖L∞dτ

∫ t

0

‖u(τ)‖L∞dτ

� 1 + t + t

∫ t

0

‖r−1ur(τ)‖L∞dτ + t3/2

∫ t

0

‖r−1ur(τ)‖L∞dτ

(∫ t

0

‖u(τ)‖2L∞dτ

)1/2

� 1 + t + t

∫ t

0

‖r−1ur(τ)‖L∞dτ + t3
(∫ t

0

‖r−1ur(τ)‖L∞dτ

)2

+
∫ t

0

‖u(τ)‖2L∞dτ,

(2.8)

where in the above inequality, we have used Corollary 2.1. For the first two integrals, we use Hölder and
Young’s inequalities and Lemma 2.1 to obtain

tα
∫ t

0

‖r−1ur(τ)‖L∞dτ ≤ tα
∫ t

0

‖Ω(τ)‖1/2
L2 ‖∇Ω(τ)‖1/2

L2 dτ,

≤ tα+ 1
2

(∫ t

0

‖Ω(τ)‖2L2dτ

)1/4 (∫ t

0

‖∇Ω(τ)‖2L2dτ

)1/4

.
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Therefore, when α = 1, we obtain

t

∫ t

0

‖r−1ur(τ)‖L∞dτ ≤ t3/2

(∫ t

0

‖Ω(τ)‖2L2dτ

)1/4 (∫ t

0

‖∇Ω(τ)‖2L2dτ

)1/4

� t2
(∫ t

0

‖Ω(τ)‖2L2dτ

)1/3

+
1
4

∫ t

0

‖∇Ω(τ)‖2L2dτ

� 1 + t6
∫ t

0

‖Ω(τ)‖2L2dτ +
1
4

∫ t

0

‖∇Ω(τ)‖2L2dτ,

and when α = 3/2, we obtain

t3
(∫ t

0

‖r−1ur(τ)‖L∞dτ

)2

≤ t4
(∫ t

0

‖Ω(τ)‖2L2dτ

)1/2 (∫ t

0

‖∇Ω(τ)‖2L2dτ

)1/2

� t8
∫ t

0

‖Ω(τ)‖2L2dτ +
1
4

∫ t

0

‖∇Ω(τ)‖2L2dτ.

Thanks again to Lemma 2.1, the last integral in (2.8) can be estimated as
∫ t

0

‖u(τ)‖2L∞dτ ≤
∫ t

0

‖ωφ(τ)‖L2‖∇ωφ(τ)‖L2dτ

≤1
2

∫ t

0

‖ωφ(τ)‖2L2dτ +
1
2

∫ t

0

‖∇ωφ(τ)‖2L2dτ.

Therefore, we arrive at the following inequality

‖Ω(t)‖2L2 +
∫ t

0

‖∇Ω(τ)‖2L2dτ + 4π

∫ t

0

∫

R

|Ω(τ, 0, z)|2dzdτ

≤ C(1 + t8)
(

1 +
∫ t

0

‖Ω(τ)‖2L2dτ

)
+ C

∫ t

0

‖ωφ(τ)‖2L2dτ +
1
2

∫ t

0

‖∇ωφ(τ)‖2L2dτ.

(2.9)

(iv). Combining the inequalities (2.6) and (2.9), one has

‖ωφ(t)‖2L2 + ‖Ω(t)‖2L2 +
∫ t

0

‖∇ωφ‖2L2 + ‖r−1ωφ‖2L2dτ

+
∫ t

0

‖∇Ω(τ)‖2L2dτ + 4π

∫ t

0

∫

R

|Ω(τ, 0, z)|2dzdτ

� (1 + t8)
(

1 +
∫ t

0

(1 + ‖∇u(τ)‖2L2)(‖ωφ(τ)‖2L2 + ‖Ω(τ)‖2L2)dτ

)
.

(2.10)

Recalling the third inequality in Lemma 2.2, we have by integral Gronwall inequality that

‖ωφ(t)‖2L2 + ‖Ω(t)‖2L2 � C(t).

It follows from (2.10) that
∫ t

0

‖∂rω
φ‖2L2 + ‖∂zω

φ‖2L2 + ‖r−1ωφ‖2L2dτ

+
∫ t

0

‖∇Ω(τ)‖2L2dτ + 4π

∫ t

0

∫

R

|Ω(τ, 0, z)|2dzdτ � C(t).

The proof is complete. �

By using the Biot–Savart law [24], we have the following two corollaries.
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Corollary 2.2. Under the assumption of Lemma 2.3, there exists some constant C(t) such that

‖u(t)‖2H1 +
∫ t

0

‖u(τ)‖2H2dτ � C(t).

Corollary 2.3. Under the assumption of Lemma 2.3, there exists some constant C(t) such that
∫ t

0

‖r−1ur(τ)‖L∞dτ � C(t).

Proof. By combing the estimates in Lemma 2.3 and Lemma 2.1,
∫ t

0

‖r−1ur(τ)‖L∞dτ ≤ C sup
0≤τ≤t

‖Ω(τ, ·)‖1/2
L2

∫ t

0

‖∇Ω(τ)‖1/2
L2 dτ � C(t).

�

Lemma 2.4. Suppose that (u,B, θ) is a smooth solution of the Boussinesq–MHD system (1.6) with initial
data (u0, B0, θ0) ∈ H2, which satisfies the conditions of Theorem 1.1. Then there holds

‖Bφ(t)‖Lp � C(t), ∀ p ∈ [1,+∞].

Proof. By multiplying the third equation in (1.4) with p|Bφ|p−2Bφ and integrating over R
3, one has

d

dt
‖Bφ(t)‖Lp ≤ ‖r−1ur‖L∞‖Bφ(t)‖Lp , ∀ p ∈ [1,∞].

By Gronwall inequality, one has

‖Bφ(t)‖Lp ≤ ‖Bφ
0 ‖Lpe

∫ t
0 ‖r−1ur‖L∞dτ � C(t),

independent of p > 0. Letting p → ∞, then we finishe the proof. �

Lemma 2.5. Suppose that (u,B, θ) is a smooth solution of the Boussinesq–MHD system (1.6) with initial
data (u0, B0, θ0) ∈ H2, which satisfies the conditions of Theorem 1.1. Then there exists some constant
C(t) such that

‖ωφ(t)‖4L4 +
∫ t

0

‖ωφ(τ)‖4L12dτ � C(t).

Proof. Now, we consider the L4-estimate of the vorticity ωφ. For this, we multiply the equation (1.5)
with |ωφ|2ωφ and then integrating over R

3 to obtain

1
4

d

dt
‖ωφ‖4L4 =

∫
|ωφ|2ωφ

(
∂rr +

1
r
∂r + ∂zz − 1

r2

)
ωφ −

∫
(u · ∇ωφ)|ωφ|2ωφ

+
∫

ur

r
ωφ|ωφ|2ωφ − 2

∫
|ωφ|2ωφrΠ∂zΠ −

∫
|ωφ|2ωφ∂rθ.

(2.11)

For the first integral, we can show by integration by parts that
∫

|ωφ|2ωφ

(
∂rr +

1
r
∂r + ∂zz − 1

r2

)
ωφdx = −

∫ (
3
4
|∇|ωφ|2|2 +

|ωφ|4
r2

)
dx.

By Hölder and Young’s inequality, (2.7), Lemma 2.3 and 2.4
∣
∣∣∣2

∫
|ωφ|2ωφrΠ∂zΠdx

∣
∣∣∣ ≤C‖Π‖L∞‖Bφ‖L∞‖∂z|ωφ|2‖L2‖ωφ‖L2

≤1
4
‖∂z|ωφ|2‖2L2 + C(t).
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From integration by parts, it holds that

−
∫

|ωφ|2ωφ∂rθdx = 6π

∫
θ|ωφ|2∂rω

φrdrdz + 2π

∫
θ|ωφ|2 ωφ

r
rdrdz

=
3
2

∫
θωφ∂r(|ωφ|2)2πrdrdz +

∫
θ|ωφ|2 ωφ

r
2πrdrdz,

and hence
∣∣
∣∣

∫
|ωφ|2ωφ∂rθdx

∣∣
∣∣ ≤ 1

4
‖∂r|ωφ|2‖2L2 + 2‖θ‖2L∞‖ωφ‖2L2 + ‖ωφ‖4L4 + ‖θ‖2L∞‖r−1ωφ‖2L2

≤ 1
4
‖∂r|ωφ|2‖2L2 + ‖ωφ‖4L4 + C(t).

Noting that

|∂r(|ωφ|2)|2 + |∂z(|ωφ|2)|2 ≤ |∇(|ωφ|2)|2

by direct computation and that the second integral on the right side of (2.11) vanishes by integration by
parts, we obtain

d

dt
‖ωφ‖4L4 +

∫ (
|∇|ωφ|2|2 +

|ωφ|4
r2

)
dx � (1 + ‖r−1ur‖L∞)‖ωφ‖4L4 + C(t).

Using Gronwall inequality, one has

‖ωφ(t)‖4L4 +
∫ t

0

∫ (
|∇|ωφ(τ)|2|2 +

|ωφ(τ)|4
r2

)
dxdτ

�e
∫ t
0 (1+‖r−1ur‖L∞)dτ

(
‖ωφ

0 ‖4L4 +
∫ t

0

C(τ)dτ

)
� C(t),

thanks to Corollary 2.3. �

Lemma 2.6. Under the same conditions of Lemma 2.3, there exists some constant C(t)
∫ t

0

‖∇u(τ)‖L∞dτ � C(t), ‖∇B(t)‖L∞ � C(t).

Proof. Recalling Lemma 2.5, we have by interpolation that

‖u‖L∞([0,t];L∞(R3)) � ‖u‖L∞([0,t];L2(R3)) + ‖ωφ‖L∞([0,t];L4(R3)) � C(t),

and hence

‖ω × u‖L4([0,t];L12(R3)) � C(t).

Rewriting the equation for ω = ∇ × u, we have

∂tω + ∇ × (ω × u) = μΔω − ∂z(ΠBφeφ) + ∇ × (θez).

Standard estimates show that [34]

‖∇ω‖L4([0,t];L12(R3)) � C(t).

Sobolev embedding then implies that

‖∇u‖L4([0,t];L∞(R3)) � C(t). (2.12)

Applying ∇ to the third equation in (1.4), we have

∂t∇Bφ + u · ∇∇Bφ = −∇u · ∇Bφ +
ur

r
∇Bφ + ∇urΠ − ur

r
Πer.
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Multiplying the equation with |∇Bφ|p−2∇Bφ, and then integrating over R
3, one has

1
p

d

dt
‖∇Bφ‖p

Lp +
∫

u · ∇∇Bφ|∇Bφ|p−2∇Bφdx ≤ ‖∇u‖L∞‖∇Bφ‖p
Lp

+ ‖r−1ur‖L∞‖∇Bφ‖p
Lp +

(‖∇ur‖L∞ + ‖r−1ur‖L∞
) ‖Π‖Lp‖∇Bφ‖p−1

Lp .

Since u is divergence free, from integration by parts, one has
d

dt
‖∇Bφ‖Lp ≤ (‖∇u‖L∞ + ‖r−1ur‖L∞

) ‖∇Bφ‖Lp +
(‖∇ur‖L∞ + ‖r−1ur‖L∞

) ‖Π‖Lp .

Using Gronwall inequality then gives that

‖∇Bφ(t)‖Lp ≤ e
∫ t
0

(
‖∇u‖L∞+‖r−1ur‖L∞

)
dτ

×
(

‖∇Bφ
0 ‖Lp +

∫ t

0

(‖∇ur‖L∞ + ‖r−1ur‖L∞
)
dτ

)
� C(t).

where we have used (2.7), (2.12) and Corollary 2.3. Letting p → ∞ then implies the result. �

2.4. Proof of Theorem 1.1

Applying the H2 estimate for the system (1.1), we get
1
2

d

dt
(‖∇2u(t)‖2L2 + ‖∇2B(t)‖2L2 + ‖∇2θ(t)‖2L2) + μ‖∇3u(t)‖2L2

=
∫

∇2u∇2(B · ∇B − u · ∇u)dx +
∫

∇2θ∇2uzdx

+
∫

∇2B∇2(B · ∇u − u · ∇B)dx +
∫

∇2θ∇2(u · ∇θ)dx.

(2.13)

Note that∫
∇2u∇2(B · ∇B)dx +

∫
∇2B∇2(B · ∇u)dx

=
∫

∇2u · [∇2, B·]∇B + ∇2B · [∇2, B·]∇udx +
∫

∇2uB · ∇∇2B + ∇2BB · ∇∇2udx

=
∫

∇2u · [∇2, B·]∇B + ∇2B · [∇2, B·]∇udx

� (‖∇u‖L∞ + ‖∇B‖L∞)‖∇2u‖L2‖∇2B‖L2 ,

where [·, ·] denotes the commutation and the last integral in the second line cancels thanks to integration
by parts and divergence free condition of B. Other terms in (2.13) can be treated similarly, thanks to
integration by parts and the divergence free condition of u and B, leading to the estimates

1
2

d

dt
(‖∇2u(t)‖2L2 + ‖∇2B(t)‖2L2 + ‖∇2θ(t)‖2L2) + μ‖∇3u(t)‖2L2

� (‖∇u(t)‖L∞ + ‖∇B(t)‖L∞)(‖∇2u(t)‖2L2 + ‖∇2B(t)‖2L2)

+ (1 + ‖∇u(t)‖L∞ + ‖∇θ(t)‖L∞)(‖∇2u(t)‖2L2 + ‖∇2θ(t)‖2L2).

Gronwall inequality then implies that

‖∇2u(t)‖2L2 + ‖∇2B(t)‖2L2 + ‖∇2θ(t)‖2L2 + μ

∫ t

0

‖∇3u(τ)‖2L2dτ � C(t).

Similarly, one can get Hs estimates as follows

‖∇su(t)‖2L2 + ‖∇sB(t)‖2L2 + ‖∇sθ(t)‖2L2) + μ

∫ t

0

‖∇s+1u(τ)‖2L2dτ � C(t).
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This completes the proof of Theorem 1.1.
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[1] Abidi, H.: Résultats de régularité de solutions axisymétriques pour le système de Navier–Stokes. Bull. Sc. Math. 132,
592–624 (2008)

[2] Abidi, H., Hmidi, T.: On the global well-posedness for Boussinesq system. J. Differ. Equ. 233, 199–220 (2007)
[3] Abidi, H., Hmidi, T., Keraani, S.: On the global regularity of axisymmetric Navier–Stokes–Boussinesq system. Discrete

Contin. Dyn. Syst. 29(3), 737–756 (2011)
[4] Beale, J.T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun.

Math. Phys. 94, 61–66 (1984)
[5] Bian, D.: Initial boundary value problem for two-dimensional viscous Boussinesq equations for MHD convection. Discret.

Contin. Dyn. Syst. Ser. S 9(6), 1591–1611 (2016)
[6] Bian, D., Gui, G.: On 2-D Boussinesq equations for MHD convection with stratification effects. J. Differ. Equ. 261,

1669–1711 (2016)
[7] Bian, D., Liu, J.: Initial-boundary value problem to 2D Boussinesq equations for MHD convection with stratification

effects. J. Differ. Equ. 263, 8074–8101 (2017)
[8] Liu, H., Bian, D., Pu, X.: Global well-posedness of the 3D Boussinesq-MHD system without heat diffusion. Z. Angew.

Math. Phys. 70, 81 (2019)
[9] Caflisch, R., Klapper, I., Steele, G.: Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics

and MHD. Commun. Math. Phys. 184, 443–455 (1997)
[10] Cannon, J.R., Di Benedetto, E.: The Initial Problem for the Boussinesq Equations with Data in Lp. Lecture Notes in

Mathematics, vol. 771. Springer, Berlin (1980)
[11] Cao, C., Wu, J.: Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion.

Adv. Math. 226, 1803–1822 (2011)
[12] Chae, D.: Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv. Math. 203, 497–513

(2006)
[13] Chae, D., Nam, H.-S.: Local existence and blow-up criterion for the Boussinesq equations. Proc. R. Soc. Edinb. Sect.

A 127, 935–946 (1997)
[14] Chen, Q., Miao, C., Zhang, Z.: On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics

equations. Commun. Math. Phys. 284(3), 919–930 (2008)
[15] He, C., Xin, Z.: Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations. J.

Funct. Anal. 227, 113–152 (2005)
[16] He, C., Xin, Z.: On the regularity of weak solutions to the magnetohydrodynamic equations. J. Differ. Equ. 213, 235–254

(2005)
[17] Hou, T.Y., Lei, Z., Li, C.: Global regularity of the 3D axi-symmetric Navier–Stokes equations with anisotropic data.

Commun. Part. Differ. Equ. 33, 1622–1637 (2008)
[18] Hou, T.Y., Li, C.: Global well-posedness of the viscous Boussinesq equations. Disc. Cont. Dyn. Syst. 12, 1–12 (2005)
[19] Hu, X., Lin, F.H.: Global existence for two dimensional incompressible magnetohydrodynamic flows with zero mag-

netic diffusivity. arXiv:1405.0082
[20] Ladyzhenskaya, O.A.: Unique solvability in large of a three-dimensional Cauchy problem for the Navier–Stokes equations

in the presence of axial symmetry. Zapisky Nauchnych Sem. LOMI 7, 155–177 (1968)
[21] Lai, M.J., Pan, R.H., Zhao, K.: Initial boundary value problem for 2D viscous Boussinesq equations. Arch. Ration.

Mech. Anal. 199, 739–760 (2011)
[22] Lei, Z.: On axially symmetric incompressible magnetohydrodynamics in three dimensions. J. Differ. Equ. 259, 3202–3215

(2015)
[23] Lei, Z., Zhou, Y.: BKM’s criterion and global weak solutions for magnetohydrodynamics with zero viscosity. Discrete

Contin. Dyn. Syst. Ser. A 25(2), 575–583 (2009)
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