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Abstract. Local in time weak solutions to the 3D Navier–Stokes are constructed for a class of initial data in L2
loc. In
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space and discretely self-similar vector fields in L2
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1. Introduction

Let u be the velocity field associated with a viscous incompressible fluid and p the associated pressure.
The Navier–Stokes equations describe the evolution of u and p [6,12,23,24,27,30,31]. In particular, we
have

∂tu − Δu + u · ∇u + ∇p = 0,

∇ · u = 0,
(1.1)

in the sense of distributions. The system (1.1) is set on R
3 × (0, T ) where T > 0 can be +∞. Also, u

evolves from a prescribed, divergence-free initial data u0 : R3 → R
3.

In the classical paper [25], J. Leray constructed global-in-time weak solutions to (1.1) on R
4
+ =

R
3 × (0,∞) for any divergence-free vector field u0 ∈ L2(R3). Leray’s solution u satisfies the following

properties:

1. u ∈ L∞(0,∞;L2(R3)) ∩ L2(0,∞; Ḣ1(R3)) ∩ Cw(0, T ;L2),
2. u satisfies the weak form of (1.1),∫∫ (−u · ∂tζ + ∇u : ∇ζ + (u · ∇)u · ζ

)
= 0, ζ ∈ C∞

c (R4
+;R3) s.t. divζ = 0,

3. u(t) → u0 in L2(R3) as t → 0+,
4. u satisfies the global energy inequality : For all t > 0,

∫
R3

|u(x, t)|2 dx + 2
∫ t

0

∫
R3

|∇u(x, t)|2 dx ds ≤
∫
R3

|u0(x)|2 dx.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00021-019-0462-1&domain=pdf
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In his book [23], Lemarié-Rieusset introduced a local analogue of Leray weak solutions evolving from
locally integrable data u0 ∈ L2

uloc. Here, Lq
uloc, for 1 ≤ q ≤ ∞, is the space of functions on R

3 with finite
norm

‖u0‖Lq
uloc

:= sup
x∈R3

‖u0‖Lq(B(x,1)) < ∞.

We also denote

Eq = ClLq
uloc

(C∞
0 (R3)),

the closure of C∞
0 (R3) in the Lq

uloc-norm.
The following definition is motivated by those found in [16,18,23]. Note that Q∗ is a slightly larger

set than Q so that Q ⊂ Q∗ and Q∗∗ is a slightly larger set than Q∗ so that Q∗ ⊂ Q∗∗ (see Sect. 2).

Definition 1.1 (Local energy solutions). A vector field u ∈ L2
loc(R

3 × [0, T )) is a local energy solution to
(1.1) with divergence-free initial data u0 ∈ L2

loc(R
3) if the following conditions hold:

1. u ∈ L∞(0, T ;L2
loc) ∩ L2

loc(R
3 × [0, T ]),

2. for some p ∈ L
3/2
loc (R3 × (0, T )), the pair (u, p) is a distributional solution to (1.1),

3. for all compact subsets K of R3 we have u(t) → u0 in L2(K) as t → 0+,
4. u is suitable in the sense of Caffarelli–Kohn–Nirenberg, i.e., for all cylinders Q compactly supported

in R
3 × (0, T ) and all non-negative φ ∈ C∞

0 (Q), we have the local energy inequality

2
∫∫

|∇u|2φ dx dt ≤
∫∫

|u|2(∂tφ + Δφ) dx dt +
∫∫

(|u|2 + 2p)(u · ∇φ) dx dt, (1.2)

5. the function t 
→ ∫
u(x, t) ·w(x) dx is continuous on [0, T ) for any compactly supported w ∈ L2(R3),

6. for every cube Q ⊂ R
3, there exists pQ(t) ∈ L3/2(0, T ) such that for x ∈ Q∗ and 0 < t < T ,

p(x, t) − pQ(t) = −1
3
δijf(x) + p.v.

∫
y∈Q∗∗

Kij(x − y)(ui(y, s)uj(y, s)) dy

+
∫

y/∈Q∗∗
(Kij(x − y) − Kij(xQ − y)(ui(y, s)uj(y, s)) dy,

where xQ is the center of Q and Kij(y) = ∂i∂j(4π|y|)−1.

This differs from the usual definitions of local Leray solutions (e.g. in [16,18,23,28]) and local energy
solutions (e.g. in [5,17]) because we are not assuming the data or the solutions are uniformly locally
square integrable. In particular, we neither assume u0 ∈ L2

uloc nor that u satisfies

ess sup
0≤t<R2

sup
x0∈R3

∫
BR(x0)

|u(x, t)|2 dx + sup
x0∈R3

∫ R2

0

∫
BR(x0)

|∇u(x, t)|2 dx dt < ∞

for any R > 0. When referencing local Leray solutions, we mean local energy solutions that, additionally,
satisfy these assumptions. These modifications reflect the main goal of this paper, which is to construct
local energy solutions for initial data that is not uniformly locally square integrable.

Other interesting classes of solutions can be found in [8,21,31], e.g. very weak solutions or weak
solutions in a class inspired by the BMO−1 space of Koch–Tataru [19]. However, the local energy class is
particularly useful in that it is very general but retains enough structure to make progress on theoretical
problems such as regularity and uniqueness. Several examples identified in [26] concerning this usefulness
are the following:

• Local Leray solutions satisfy the local energy inequality of Caffarelli, Kohn, and Nirenberg. Conse-
quently, partial regularity results based on that of Caffarelli, Kohn, and Nirenberg [7] are available
for local Leray solutions. Additionally, the local energy inequality allows for the analysis of dynamics,
e.g. the turbulence theory of Dascaliuc and Grujić [9].
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• Local Leray solutions appear as the limit when re-scaling solutions near a possible singularity. Since
the energy is a supercritical quantity, it blows up in the scaling limit, even though the limiting
solution still solves the Navier–Stokes equations. The local energy, however, does not blow up, and
the resulting solution belongs to the local Leray class.

• Local Leray solutions make sense in several critical infinite energy spaces such as the Lebesgue space
L3, the Lorentz space L3,∞, and the Morrey space M2,1, all of which embed in L2

uloc but not in L2.
Critical spaces are spaces for which the norm of u is scaling invariant. These spaces are borderline
cases for many important questions like regularity and uniqueness. For example, L∞(0, T ;L3) is a
regularity class for Leray solutions [10], but this is unknown for L∞(0, T ;L3

w), even though L3
w is

only marginally larger than L3. Local Leray solutions played a key role in [15] and there is compelling
evidence that they play an important role in establishing non-uniqueness of solutions in the Leray
class [13,14]. See also [5] which examines local energy solutions and their existence, regularity and
uniqueness properties for data in Morrey spaces.

Local energy solutions are known to exist locally in time for initial data in L2
uloc(Ω) where Ω is R

3

[18,22–24] or R
3
+ [26]. Global existence is known provided the initial data decays at spatial infinity in an

appropriate sense, e.g. u0 ∈ E2 [18,23] or u0 has oscillation decay [22], or if the initial data is self-similar
[4,15,24].

Our goal is to construct local-in-time suitable weak solutions for some L2
loc initial data that is not

uniformly locally square integrable. To accomplish this, we construct solutions for data in weighted,
adapted local energy spaces. These are built off of a specific cover of R3 by cubes. Let S0 = {x : |xi| ≤
2; i = 1, 2, 3} and let Rn = {x : |xi| < 2n; i = 1, 2, 3}. Denote Sn = Rn+1\Rn for n ∈ N\{1} and
S1 = R2\S0. Then |Sn| = 56 · 23n for n ∈ N. Partition S0 into 64 cubes of side-length 1 and Sn into
56 cubes of side-length 2n. Then, S0 comprises a 4 × 4 × 4 grid of cubes while each shell Sn boxes in
∪n−1

i=0 S0. Let C be the collection of these cubes. Note that the number of cubes in ∪n−1
i=0 Si grows linearly

in n (Fig. 1).
The main features of the collection C are the following:

(i) The side-length of a cube is proportional to its distance from the origin.
(ii) Adjacent cubes have comparable volume.
(iii) If |Q′| < |Q| then the distance between the centers of Q and Q′ is ∼ |Q|1/3.
(iv) The number of cubes Q′ satisfying |Q′| < |Q| is bounded above by ∼ |Q|1/3.

Fig. 1. A two-dimensional illustration of S0, S1 and S2. The cross hatched region is S0, the hatched region is S1 and the
remaining region is S2. The subsequent shells are just dyadic dilations of S2
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For convenience we also refer to the collection of cubes in C contained in Sn as Sn and accordingly
write Q ∈ Sn.

Our initial data space is an analogue of L2
uloc but adapted to the cover C and weighted.

Definition 1.2. We say f ∈ Mp,q
C if

‖f‖p
Mp,q

C
:= sup

Q∈C
1

|Q|q/3

∫
Q

|f(x)|p dx < ∞.

Let M̊p,q
C be the subset of Mp,q

C so that
1

|Q|q/3

∫
Q

|u0|p dx → 0 as |Q| → ∞, Q ∈ C.

Comments on Definition 1.2
1. We clearly have the embedding M2,q

C ⊂ M2,q′
C whenever q < q′. Additionally, M2,q

C ⊂ M̊2,q′
C whenever

q < q′.
2. Recall that f is in the critical (with respect to the scaling of the Navier–Stokes equations) Morrey

space M2,1 if

sup
x0∈R3,r>0

1
|Br(x0)|1/3

∫
Br(x0)

|f |2 dx < ∞.

M2,1
C is clearly a much weaker space than M2,1 and does not assert any control (except square

integrability) at small scales.
3. Note that M2,q

C ⊂ L2
loc for all q, but M2,q

C is not directly comparable to L2
uloc when q < 3. Indeed,

f(x) =
∑
k∈N

2qk/2χB1(2ke1)(x) ∈ M2,q
C \L2

uloc,

while g(x) = 1 ∈ L2
uloc\M2,q

C . On the other hand, L2
uloc ⊂ M2,3

C .
4. The set Lp is dense in M̊p,q

C . To see this, let u0 ∈ M̊p,q
C and ε > 0 be given. Then, there exists N so

that

‖u0χR3\BN (0)‖p
Mp,q

C
< ε.

Then, u0(1 − χR3\BN (0)) ∈ Lp and

‖u0(1 − χR3\BN (0)) − u0‖p
Lp(BN (0)) < ε.

Our main result concerns the local existence of solutions to the Navier–Stokes equations with data in
M̊2,2

C .

Theorem 1.3. Assume u0 ∈ M̊2,2
C is divergence-free. Let T = c−1 min{1, ‖u0‖−4

M2,2
C

}, for a sufficiently large

constant c > 0. Then, there exists u : R3 × (0, T ) → R
3 and p : R3 × (0, T ) → R so that (u, p) is a local

energy solution to the Navier–Stokes equations and

ess sup
0<t<T

‖u(t)‖2
M2,2

C
+ sup

Q∈C
1

|Q|2/3

∫ T

0

∫
Q

|∇u|2 dx dt ≤ C‖u0(t)‖2
M2,2

C
,

where C > 0 is a constant.

Comments on Theorem 1.3:
1. Existence of solutions with data in M2,q

C is related to the existence of self-similar and discretely
self-similar solutions with data in L2

loc. Recall that if there exists λ > 1 so that u0(x) = λu0(λx) for
all x, then u0 is said to be discretely self-similar, while u0 is self-similar if this holds for all λ > 0.
In [24], Lemarié-Rieusset constructed self-similar solutions for self-similar initial data in L2

loc. Later
in [8], Chae and Wolf constructed discretely self-similar solutions for discretely self-similar data in
L2

loc. These solutions were not shown to satisfy the local energy inequality. In [4], the first author
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and Tsai constructed discretely self-similar solutions for the same data as [8] satisfying the local
energy inequality by extending a construction in [3]. As mentioned in [4, Comment 4], discretely
self-similar data in L2

loc is not necessarily in L2
uloc, so there was no general existence theory including

this class of data. Note that
1

|Q|1/3

∫
Q

|u0(x)|2 dx ≤ C

∫
B√

2(0)

|u0(y)|2 dy,

after re-scaling the solution and changing variables. Thus any DSS data in L2
loc belongs to M2,1

C and,
thus, also to M̊2,2

C . So M̊2,2
C can be viewed as a natural class containing all discretely self-similar

L2
loc initial data for which a local existence theory is now available. Finding such a functional setting

was a motivation for this paper.
2. Unlike other constructions of local energy solutions, Theorem 1.3 applies to some initial data that

is not uniformly locally square integrable. The example f(x) in the third comment following Defi-
nition 1.2 illustrates this as it is not uniformly locally square integrable but (after modifying it to
make it divergence free) is a valid initial data for Theorem 1.3.

3. The decay assumption on u0 means that u0 is a limit of L2 functions un
0 in M2,2

C . This is convenient
for an approximation argument since solutions for the initial data un

0 are well understood.
To eliminate the decay assumption, we would need a local existence theory for a regularized problem
and a local pressure expansion for this system. The solutions to the regularized problem have
no decay and are not necessarily bounded. Indeed, etΔu0 are not necessarily bounded for u0 ∈
M2,2

C . This complicates the analysis of the pressure. Recently Kwon and Tsai introduced a new
approximation scheme which localizes the pressure but not the solution [22]. We expect this approach
would allow the assumption that u0 ∈ M̊2,1

C to be weakened to u0 ∈ M2,1
C . For the sake of simplicity

we do not pursue this here, but note it in case such an improvement is useful in a future application.
4. Considering the scale of M2,q spaces, Theorem 1.3 gives existence of solutions for u0 ∈ M2,q for

q < 2. It is worth noting that solutions with a priori bounds in the M2,q class can also be constructed
when u0 ∈ M̊2,q and q < 2, but the time scale becomes T = c−1 min{1, ‖u0‖−4

M2,q}. The proof is
identical to that of Theorem 1.3. It seems difficult to extend the results to q > 2, which would be
interesting because L2

uloc ⊂ M2,3, and local existence is known in L2
uloc. The reason that q = 2 is

an endpoint case for our argument has to do with the treatment of the cubic term in the a priori
estimates in Sect. 3.

5. The decay of the initial data does not lend itself to the usual extension argument to go from local
to global existence in [18,22,23]. This is because, while the data is decaying, it is doing so at
progressively larger scales. Since it is not becoming small at a single scale, the ensuing solution
cannot be made small in the far-field at any fixed time. Thus the splitting argument of [18,22,23]
cannot be used and a new approach is needed.

While this paper was under review and prior to the revision, Fernandez-Dalgo and Lemarié-Rieusset
posted the paper [11] on the arxiv in which they construct global solutions in the framework of weighted
spaces L2

wγ
where wγ = (1 + |x|)−γ with 0 < γ ≤ 2 and

‖u0‖2
L2

wγ
:=

∫
R3

|u0|2wγ(x) dx.

The largest space in this scale occurs when γ = 2. This space is smaller than M̊2,2
C . Namely, one can

check that

f(x) =
∑
Q∈C

χQ(x)|Q|−1/6(ln |xQ|)−1/2 ∈ M̊2,2
C \L2

w2
.

It is easy to adjust this example so that f is divergence-free. A global construction for data in a related
but non-comparable space (to that in [11]) appears in [5].

Also note an important existence result due to Basson in two spatial dimensions obtained in [1], where
the initial data is required to satisfy supR≥1 R−2

∫
|x|<R

|u0(x)|2 dx < ∞.
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The paper is organized as follows. The main technical ingredients are the analysis of the pressure which
is carried out in Sect. 2 and new a priori bounds in the M2,q

C setting which are contained in Sect. 3. The
compactness argument of [18,23] puts these ingredients together in Sect. 4 where we prove Theorem 1.3.

2. Pressure Formula and Its Bound

The pressure estimates in [23] and [18] can be adapted to the M2,q
C framework. In this section we verify

that the pressure formula converges when u is in a reasonable solution class for data in M2,q
C . First we

introduce some notation. Denote

Gijf = RiRjf = −1
3
δijf(x) + p.v.

∫
Kij(x − y)f(y) dy,

where Ri denotes the i-th Riesz transform and

Kij(y) = ∂i∂j
1

4π|y| =
−δij |y|2 + 3yiyj

4π|y|5 .

For a given cube Q, let xQ ∈ R
3 be the center of Q. Fix Q ∈ C. Let Q∗ be the union of Q and all adjacent

cubes in C, and let Q∗∗ be the same union but for Q∗.
For x ∈ Q∗, let

GQ
ijf(x) = −1

3
δijf(x) + p.v.

∫
y∈Q∗∗

Kij(x − y)f(y) dy

+
∫

y/∈Q∗∗

(
Kij(x − y) − Kij(xQ − y)

)
f(y) dy.

(2.1)

Our pressure expansion is: For Q ∈ C and t ∈ (0, T ), there exists pQ(t) ∈ L3/2(0, T ) such that

p(x, t) − pQ(t) = (GQ
ijuiuj)(x, t), x ∈ Q∗ (2.2)

where p is the pressure corresponding to a local energy solution u.
Above, the pressure formula needed to be modified in comparison with the usual Riesz transform

formula because f is not required to decay at spatial infinity. Note that this is the typical modification
of the singular integrals for spaces with no decay at infinity [16,18,23,24,29]. When u ∈ Lp has compact
support, GQ

ij agrees with Gij up to a constant.
In this section, we bound p(x, t) − pQ(t) when u is in a solution class associated to the spaces M2,q

C .
We assume for some T > 0 that

αT (u) := sup
0<t<T

‖u(t)‖2
M2,q

C
< ∞,

and

βT (u) := sup
Q∈C

1
|Q|q/3

∫ T

0

∫
Q

|∇u|2 dx dt < ∞.

When T is clear we sometimes write α and β in place of αT and βT . These assumptions imply

γ(u) := sup
Q∈C

1
|Q|q/3

∫ T

0

∫
Q

|u|3 dx dt < ∞.

We now show that ∫ T

0

∫
Q∗

|p − pQ(t)|3/2 dx dt

is bounded in terms of α(u) and γ(u) and powers of |Q|.
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Lemma 2.1. Assume u is a local energy solution to the Navier–Stokes equations on R
3×[0, T ] with pressure

p satisfying (2.2). Then, for Q ∈ C,

1
|Q|1/3

∫ T

0

∫
Q∗

|p − pQ(t)|3/2 dx dt

≤ C sup
Q′∩Q∗∗ 	=∅

1
|Q′|1/3

∫ T

0

∫
Q′

|u|3 dx dt + CT |Q|q/2−1/3α
3/2
T .

Proof. For x ∈ Q∗, write p(x, t) − pQ(t) as Inear(x, t) + Ifar(x, t) where Inear(x, t) is sum of the first two
terms on the right hand side of (2.1) and Ifar(x, t) is the last term.

The required estimate for Inear follows from the Calderón-Zygmund inequality and noting that the
argument for the boundedness is local. In particular,

1
|Q|1/3

∫ T

0

∫
Q∗

|Inear|3/2 dx dt ≤ C

|Q|1/3

∫ T

0

∫
Q∗∗

|u|3 dx dt.

Since |Q| ∼ |Q′| for all Q′ ⊂ Q∗∗ and there are a fixed number of such Q′ (independent of Q), we have

1
|Q|1/3

∫ T

0

∫
Q∗∗

|u|3 dx dt ≤ C sup
Q′∩Q∗∗ 	=∅

|Q′|1/3

|Q|1/3

1
|Q′|1/3

∫ T

0

∫
Q′

|u|3 dx dt

≤ C sup
Q′∩Q∗∗ 	=∅

1
|Q′|1/3

∫ T

0

∫
Q′

|u|3 dx dt.

To estimate Ifar note that when y /∈ Q∗∗ and x ∈ Q∗, we have

|Kij(x − y) − Kij(xQ − y)| ≤ C|Q|1/3

|x − y|4 .

This estimate (for balls instead of cubes) may be found in [18] and [16]. Thus, for x ∈ Q∗,

|Ifar(x, t)| ≤ C|Q|1/3

∫
R3\Q∗∗

1
|x − y|4 |u|2 dy

≤ C
∑

Q′∈C1

|Q|1/3

∫
Q′

1
|x − y|4 |u|2 dy + C

∑
Q′∈C2

|Q|1/3

∫
Q′

1
|x − y|4 |u|2 dy,

where C1 is the collection of Q′ ∈ C such that Q′ ∩ Q∗∗ = ∅ and |Q′| < |Q| while C2 is the collection
of Q′ ∈ C such that Q′ ∩ Q∗∗ = ∅ and |Q′| ≥ |Q|. Let n ∈ N be such that Q ∈ Sn. If |Q′| < |Q|, then
Q′ ∈ Sj for some j < n. Also, the number of cubes Q′ such that |Q′| ≤ |Q| is bounded above by |Q|1/3.
Furthermore, |Q|1/3 ∼ |xQ − xQ′ |. Also, if Q′ ∩ Q∗∗ = ∅, y ∈ Q′, and x ∈ Q, then |x − y| ∼ |xQ − x′

Q|.
Hence,

∑
Q′∈C1

|Q|1/3

∫
Q′

1
|x − y|4 |u|2 dy ≤ C

∑
Q′∈C1

|Q|1/3

|Q|4/3

∫
Q′

|u|2 dy

≤ C sup
|Q′|<|Q|

|Q|1/3

|Q|
∫

Q′
|u|2 dy = C sup

|Q′|<|Q|

|Q′|q/3

|Q|2/3

1
|Q′|q/3

∫
Q′

|u|2 dy

≤ C|Q|q/3−2/3 sup
Q′∈C

1
|Q′|q/3

∫
Q′

|u|2 dx.
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On the other hand,
∑

Q′∈C2

|Q|1/3

∫
Q′

1
|x − y|4 |u|2 dy =

∑
m≥n

∑
Q′∈Sm∩C2

|Q|1/3

|xQ − xQ′ |4
∫

Q′
|u|2 dx

≤ C|Q|1/3
∑
m≥n

1
2(4−q)m

sup
Q′∈C

1
|Q′|q/3

∫
Q′

|u|2 dx ≤ C|Q|1/3

2(4−q)n
sup
Q′∈C

1
|Q′|q/3

∫
Q′

|u|2 dx

≤ C|Q|q/3−1 sup
Q′∈C

1
|Q′|q/3

∫
Q′

|u|2 dx,

and thus
1

|Q|1/3

∫ T

0

∫
Q∗

|Ifar(x, t)|3/2 dx dt ≤ C
T (|Q|q/2−1 + |Q|q/2−3/2)

|Q|1/3
|Q|α3/2

T

≤ CT |Q|q/2−1/3α
3/2
T .

Therefore,

1
|Q|1/3

∫ T

0

∫
Q∗

|p(x, t) − pQ(t)|3/2 dx dt

≤ C sup
Q′∩Q∗∗ 	=∅

|Q′|1/3

|Q|1/3

1
|Q′|1/3

∫ T

0

∫
Q′

|u|3 dx dt + CT |Q|q/2−1/3α
3/2
T ,

and the proof is concluded. �

Note that we have not shown that, for a given solution, the pressure satisfies the local expansion (2.2),
but rather that if the pressure satisfies the local expansion, then it is bounded in the above sense.

3. A Priori Bounds

In order to approximate a solution in the local energy class by Leray solutions we need an estimate for
them in the M2,q

C spaces.
Let φ be a radial smooth cutoff function such that φ = 1 in [−1/2, 1/2]3, φ = 0 off of [−3/4, 3/4]3

with φ non-increasing in |x|. For Q ∈ C, let φQ be the translation and dilation of φ so that φQ equals 1
on Q and vanishes off of Q∗. Then, ‖∂λφQ(x)‖L∞ ≤ C(λ)/|Q||λ|/3 where C does not depend on Q and λ
is any multi-index. Denote

αt = ess sup
0<s<t

sup
Q∈C

1
|Q|q/3

∫
Q

|u(x, s)|2φQ dx,

and

βt = sup
Q∈C

1
|Q|q/3

∫ t

0

∫
Q

|∇u|2φQ dx ds.

The following statement provides a priori estimates for the existence of suitable weak solutions with
data u0 ∈ M2,q

C .

Theorem 3.1. Assume u0 ∈ M2,q
C , for 0 ≤ q ≤ 2, is divergence-free, and let (u, p) be a local energy

solution with initial data u0 on R
3 × (0, T ) where

T =
1
C

min
{

1, ‖u0‖−4

M2,q
C

}
(3.1)

for a sufficiently large universal constant C. Assume additionally that

αT + βT < ∞,
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and αt and βt are continuous in t. Then

sup
0<t<T

‖u(t)‖2
M2,q

C
+ sup

Q∈C
1

|Q|q/3

∫ T

0

∫
Q

|∇u|2 dx dt ≤ C‖u0(t)‖2
M2,q

C
. (3.2)

It is important that Theorem 3.1 also applies to suitable Leray weak solutions as shown at the end of
this section.

Proof of Theorem 3.1. Assume u and p are as in the statement of Theorem 3.1. Fix Q ∈ C. The local
energy inequality and the item 5 of Definition 1.1 give

1
2

∫
|u(x, t)|2φQ(x) dx +

∫ t

0

∫
|∇u(x, s)|2φQ(x) dx ds

≤ 1
2

∫
|u(x, 0)|2φQ(x) dx +

1
2

∫ t

0

∫
|u(x, s)|2ΔφQ(x) dx ds

+
1
2

∫ t

0

∫ (|u(x, s)|2u(x, s) · ∇φQ(x) + 2p(x, s)u(x, s) · ∇φQ(x)
)
dx ds.

Clearly,

1
2

∫ t

0

∫
|u|2ΔφQ dx ds ≤ Ct

|Q|2/3
ess sup
0≤s≤t

sup
Q′∩Q∗ 	=∅

∫
Q′

|u|2 dx

≤ Ct ess sup
0≤s≤t

sup
Q′∩Q∗ 	=∅

|Q′|q/3

|Q|2/3

1
|Q′|q/3

∫
Q′

|u|2 dx ≤ C tαt,

where we used q ≤ 2 and the fact that the smallest cubes in C have volume bounded away from zero so
that |Q′|q/3/|Q|2/3 ≤ C when Q′ ∩ Q∗ �= ∅.

For the cubic and pressure terms we have∫ t

0

∫ ( |u|2
2

u · ∇φQ(x) + pu · ∇φQ(x)
)

dx ds

≤ 1
|Q|1/3

∫ t

0

∫
Q∗

(|u|3 + |p − pQ|3/2) dx ds

≤ C sup
Q′∩Q∗∗ 	=∅

|Q′|1/3

|Q|1/3

1
|Q′|1/3

∫ t

0

∫
Q′

|u|3 dx ds + Ct|Q|q/3α
3/2
t

≤ C sup
Q′∩Q∗∗ 	=∅

1
|Q′|1/3

∫ t

0

∫
Q′

|u|3 dx ds + Ct|Q|q/3α
3/2
t ,

where we used Lemma 2.1 and q/2 − 1/3 ≤ q/3.
Recall that for any cube Q′ the Gagliardo-Nirenberg inequality implies∫

Q′
|u|3 dx ≤ C

(∫
Q′

|u|2 dx

)3/4 (∫
Q′

|∇u|2 dx

)3/4

+
C

|Q′|1/2

(∫
Q′

|u|2 dx

)3/2

.

Hence, for any Q′ ∈ C,

1
|Q′|1/3

∫ t

0

∫
Q′

|u|3 dx ds

≤ Ct1/4|Q′|q/2−1/3

(
1

|Q′|q/3
ess sup
0≤s≤t

∫
Q′

|u|2 dx

)3/4 (
1

|Q′|q/3

∫ t

0

∫
Q′

|∇u|2 dx ds

)3/4

+ Ct|Q′|q/2−5/6

(
1

|Q′|q/3
ess sup
0≤s≤t

∫
Q′

|u|2 dx

)3/2

≤ Ct1/4|Q′|q/2−1/3(αt + βt)3/2,
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where we used t ≤ C by (3.1) and the fact that the smallest cubes in C have volume bounded away from
0 so that |Q′|−5/6 ≤ C|Q′|−1/3. At this point we have shown∫

Q

|u(x, t)|2 dx +
∫ t

0

∫
Q

|∇u(x, s)|2 dx ds

≤ C t αt + Ct|Q|q/3α
3/2
t + C sup

Q′∩Q∗∗ 	=∅

|Q′|1/3

|Q|1/3

1
|Q′|1/3

∫ t

0

∫
Q′

|u|3 dx ds

≤ C t αt + Ct|Q|q/3α
3/2
t + Ct1/4 sup

Q′∩Q∗∗ 	=∅
|Q′|q/2−1/3(αt + βt)3/2.

So, again using the fact that the volumes of cubes in C are bounded away from zero and dividing through
by |Q|q/3 we obtain

1
|Q|q/3

∫
Q

|u(x, t)|2 dx +
1

|Q|q/3

∫ t

0

∫
Q

|∇u(x, s)|2 dx ds

≤ C tαt + Ctα
3/2
t + Ct1/4 sup

Q′∩Q∗∗ 	=∅

|Q′|q/2−1/3

|Q|q/3
(αt + βt)3/2

≤ C tαt + Ct1/4(αt + βt)3/2,

provided q ≤ 2 and noting that t ≤ C by (3.1). Therefore,

αt + βt ≤ Ct(αt + βt) + Ct1/4(αt + βt)3/2.

Since α0 + β0 = α0 = ‖u0‖2
M2,q

C
and αt + βt is continuous in t, it follows that

αt + βt ≤ 2‖u0‖2
M2,1

C
,

on some time interval [0, T ) where T is maximal, that is, αT + βT = 2‖u0‖2
M2,q

C
. Let

T0 = max{(2C)−1, (C4α
1/2
0 )−4}.

If T < T0, then αT < α0, which is impossible. Therefore, T0 ≤ T , that is

ess sup
0<t<T0

sup
Q∈C

1
|Q|q/3

∫
Q

|u|2 dx + sup
Q∈C

1
|Q|q/3

∫ T0

0

∫
Q

|∇u|2 dx dt ≤ 2‖u0‖2
M2,q

C
,

and (3.2) is established. �

We also need for Theorem 3.1 to hold for suitable weak solutions in the Leray class. For a definition
of a suitable weak solution in the Leray class, see [31, Definition 3.1].

Lemma 3.2. Theorem 3.1 applies to suitable weak solutions in the Leray class.

Proof. Assume (u, p) is a suitable weak solution in the sense of [31, Definition 3.1]. Then, u satisfies the
items 1–5 in Definition 1.1. For item 6, which concerns the existence of pressure note that

lim
|x0|→∞

∫ R2

0

∫
BR(x0)

|u|2 dx dt = 0,

for any R > 0. Indeed, for a fixed R we have
∫ R2

0

∫
BR(x0)

|u|2 dx dt ≤
∫ R2

0

∫
|u|2 dx < ∞.

Thus by the dominated convergence theorem

lim
|x0|→∞

∫ R2

0

∫
BR(x0)

|u|2 dx dt =
∫ R2

0

lim
|x0|→∞

∫
BR(x0)

|u|2 dx dt = 0.
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In [17] the above property is shown to imply the local pressure expansion for balls, which is equivalent to
our pressure expansion for cubes. Thus item 6 is satisfied. Hence, any suitable weak solution in the sense
of [31, Definition 3.1] is a local energy solution. Note also that

ess sup
0<t<T

‖u(t)‖2
M2,q

C
+ sup

Q∈C
1

|Q|q/3

∫ T

0

∫
Q

|∇u|2 dx dt

≤ C ess sup
0<t<T

‖u‖2
L2 + C

∫ T

0

‖u‖2
H1 dt < ∞.

It remains to show that αt+βt is continuous in t. Our proof is based on the argument in [20, Lemma 2].
Denote by LQ ⊆ [0, T ) the set of Lebesgue points of the function t 
→ ∫ |u(x, s)|2φQ(s) ds. We first show
that

ess sup
0<s<t

∫
|u(x, s)|2φQ(x) dx +

∫ t

0

∫
|∇u(x, s)|2φQ(x) dx ds (3.3)

is continuous in t for every fixed Q. Since
∫ t

0

∫ |∇u(x, s)|2φQ(x) dx ds, is continuous in t, we only need to
show the continuity of the first term in (3.3). Using a sequence of functions of the form φQ(x)ψ(t), we
obtain from (1.2)

∫
|u(x, t2)|2φQ(x) dx +

∫ t2

t2

∫
|∇u(x, s)|2φQ(x) dx ds,

≤
∫

|u(x, t1)|2φQ(x) dx

+
∫∫

|u|2(∂tφQ + ΔφQ) dx dt

+
∫∫

(|u|2 + 2p)(u · ∇φQ) dx dt, t1, t2 ∈ LQ, 0 ≤ t1 ≤ t2 < T.

Choosing t1 = t ∈ LQ and t2 = t + h, we get

lim sup
h→0+,t+h∈LQ

∫
|u(x, t + h)|2φQ(x) dx ≤

∫
|u(x, t)|2φQ(x) dx, t ∈ LQ, (3.4)

while setting t2 = t ∈ LQ and t1 = t − h, we get

lim inf
h→0+,t−h∈LQ

∫
|u(x, t − h)|2φQ(x) dx ≥

∫
|u(x, t)|2φQ(x) dx, t ∈ LQ. (3.5)

Since ess sup0<s<t

∫ |u(x, s)|2φQ(x) dx is non-decreasing in t, (3.4) and (3.5) imply continuity of
ess sup0<s<t

∫ |u(x, s)|2φQ(x) dx as a function of t for any fixed Q.
Next, we establish the continuity of αt. Fix t ∈ [0, T ), and let ε > 0. Note that ess sup0<s<T ‖u(s)‖2

2 <
∞. Thus, there exists m so that

ess sup
0<s<T

1
|Q|q/3

∫
Q

|u(x, s)|2 dx ≤ ε

2
, Q ∈ Sn, n ≥ m.

We have two possibilities: Either

ess sup
0<s<t

sup
Q∈C

1
|Q|q/3

∫
|u(x, s)|2φQ dx ds ≤ ε

2
, (3.6)

or there exists Q0 ∈ Sn with n < m so that

ess sup
0<s<t

sup
Q∈C

1
|Q|q/3

∫
|u(x, s)|2φQ dx ds = ess sup

0<s<t

1
|Q0|q/3

∫
Q0

|u(x, s)|2φQ dx. (3.7)
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Assume the first case, (3.6), holds. Then for each Q ∈ Sn, where n < m, there exists δQ > 0 so that

ess sup
0<s<τ

1
|Q|q/3

∫
|u(x, s)|2φQ(x) dx ≤ ε

whenever |t − τ | < δQ. Then, using the first part of the proof,
∣∣∣∣ess sup

0<s<τ

1
|Q|q/3

∫
|u(x, s)|2φQ(x) dx − ess sup

0<s<t

1
|Q|q/3

∫
|u(x, s)|2φQ(x) dx

∣∣∣∣ ≤ ε

for all Q ∈ Sn where n < m and |t − τ | < δQ. Letting δ = minQ∈⋃m
n=0 Sn

δQ gives
∣∣∣∣ess sup

0<s<t
sup
Q∈C

1
|Q|q/3

∫
|u(x, s)|2φQ dx ds − ess sup

0<s<τ
sup
Q∈C

1
|Q|q/3

∫
Q

|u(x, s)|2φQ dx

∣∣∣∣ ≤ 3ε

2

for t − τ < δ by (3.6) and

ess sup
0<s<τ

sup
Q∈C

1
|Q|q/3

∫
Q

|u(x, s)|2φQ dx ≤ 3ε

2
.

If the second case, (3.7), holds, then let S be the collection of Q ∈ ⋃m−1
n=0 Sn so that

ess sup
0<s<t

sup
Q̃∈C

1
|Q̃|q/3

∫
|u(x, s)|2φQ̃ dx ds > ess sup

0<s<t

1
|Q|q/3

∫
Q

|u(x, s)|2φQ dx.

Let S′ = ∪m−1
n=0 Sn\S. Let

ε̄ = min
{

ε

2
, min
Q∈S

(
ess sup
0<s<t

sup
Q̃∈C

1
|Q̃|q/3

∫
|u(x, s)|2φQ̃ dx ds

− ess sup
0<s<t

1
|Q|q/3

∫
Q

|u(x, s)|2φQ dx

)}
.

For each Q ∈ S′, there exists δQ > 0 so that

ess sup
0<s<t

sup
Q∈C

1
|Q|q/3

∫
|u(x, s)|2φQ dx ds +

ε̄

2

≥ ess sup
0<s<τ

1
|Q|q/3

∫
Q

|u(x, s)|2φQ dx

≥ ess sup
0<s<t

sup
Q∈C

1
|Q|q/3

∫
|u(x, s)|2φQ dx ds − ε̄

2

whenever |t − τ | < δQ. On the other hand, for each Q ∈ S, there exists δQ > 0 so that

ess sup
0<s<τ

1
|Q|q/3

∫
Q

|u(x, s)|2φQ dx ≤ ess sup
0<s<t

sup
Q∈C

1
|Q|q/3

∫
|u(x, s)|2φQ dx ds − ε̄

2
.

Hence,
∣∣∣∣ess sup

0<s<τ

1
|Q|q/3

∫
Q

|u(x, s)|2φQ dx − ess sup
0<s<t

1
|Q|q/3

∫
Q

|u(x, s)|2φQ dx

∣∣∣∣ ≤ ε

provided |t − τ | < minS∪S′ δQ.
The proof of the continuity of βt is similar, but simpler since there is no supremum over the time

interval in the definition of β. �
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4. Construction

4.1. Approximating the Initial Data

We begin with a lemma on approximation of functions in M̊2,2
C with those in L2.

Lemma 4.1. Assume f ∈ M̊2,2
C is divergence-free. For every ε > 0 there exists a divergence-free g ∈ L2

such that ‖f − g‖M2,2
C

≤ ε.

To make sure the approximation is divergence-free, we utilize Bogovskii’s map [2] (see also [12,31])
which we recall next.

Lemma 4.2. Let Ω be a bounded Lipschitz domain in R
n, where 2 ≤ n < ∞. There is a linear map Ψ that

maps a scalar f ∈ L2(Ω) with
∫
Ω

f = 0 to a vector field v = Ψf ∈ W 1,2
0 (Ω;Rn) and

divv = f, ‖v‖W 1,2
0 (Ω) ≤ c(Ω)‖f‖L2(Ω).

The constant c(Ω) depends on the size of Ω and, when Ω are shells of the form {x : 2n ≤ |x| ≤ 2n+1},
it is of the form C2n.

Proof of Lemma 4.1. Assume f ∈ M̊2,2
C is divergence-free, and let ε > 0. Assume n is large enough

so that ‖fχR3\B2n (0)‖M2,2
C

≤ ε/C for some constant C to be identified later. Let Z = Zn ∈ C∞(R3)
satisfy Z(x) = 1 if |x| ≤ 2n, Z(x) = 0 if |x| ≥ 2n+1, and assume it is radial, and non-increasing for
2n ≤ |x| ≤ 2n+1. For every n, we may choose Z so that ‖∇Z‖∞ ≤ C2−n where C is independent of n.
Then,

∇ · (fZ) = f · ∇Z

because f is divergence-free. Note that ∫
f · ∇Z dx = 0

because Z has compact support and f is divergence free. Denote by Φ the image of −f · ∇Z under the
Bogovskii map with q = 2 and domain An = {x : 2n ≤ |x| ≤ 2n+1}. Then, Φ ∈ W 1,2

0 (An) and

∇ · (Zf + Φ) = 0.

Furthermore, ∫
An

|Φ|2 dx ≤ C22n

∫
An

|f |2|∇Z|2 dx ≤ C

∫
An

|f |2 dx.

Let g = Zf + Φ.
Note that there exist only finitely many cubes Q′ ∈ C that intersect An and this number is bounded

independently of n. Hence,

‖Φ‖2
M2,2

C
≤ sup

Q′∩An 	=0

1
|Q′|2/3

∫
Q′

|Φ|2 dx ≤ C
1

22n

∫
An

|Φ|2 dx,

where we have also used the fact that if Q′ intersects An, then |Q′| ∼ 23n. Thus,
1

22n

∫
An

|Φ|2 dx ≤ C
1

22n

∫
An

|f |2 dx

≤ C
1

22n

∑
Q′∩An 	=0

∫
Q′

|fχR3\B2n (0)|2 dx

≤ C
∑

Q′∩An 	=0

1
|Q′|2/3

∫
Q′

|fχR3\B2n (0)|2 dx

≤ C‖fχR3\B2n (0)‖2
M2,2

C
≤ Cε2.
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Therefore,

‖f − g‖M2,2
C

≤ ‖f − Zf‖M2,2
C

+ ‖Φ‖M2,2
C

≤ Cε,

and the proof is concluded. �

4.2. Proof of Theorem 1.3

Proof of Theorem 1.3. Let u0 ∈ M̊2,2
C be divergence-free. By Lemma 4.1, for each n ∈ N there exists

un
0 ∈ L2 so that ‖u0 − un

0‖M2,2
C

≤ 1/2n. By the classical theory, there exists a global in time suitable
weak solution un in the Leray class with the initial data un

0 and an associated pressure pn (see e.g. [31,
Chapter 3]), which satisfies the pressure expansion (2.2).

Let Qn = ∪m≤n;Q′∈Sm
Q′. We adopt the same convention when defining Q∗

n and Q∗∗
n as when Q ∈ C;

namely, Q∗
n is the union of Qn and all cubes in C adjacent to Qn and Q∗∗

n the union of Q∗
n and the cubes

in C adjacent to Q∗
n.

Define p̄n recursively as follows:
• If x ∈ Q0 then p̄n(x) = GQ1

ij (un
i un

j )(x), where we use 0 instead of xQ in (2.1).

• If x ∈ Qk+1 then p̄n(x) = G
Qk+1
ij (un

i un
j )(x) + cn,k, where

cn,k = GQk

ij (un
i un

j )(x) − G
Qk+1
ij (un

i un
j )(x), x ∈ Qk+1

is a constant (in x) chosen so that the definition is unambiguous. Note that

cn,k =
∫

Q∗∗
k+1\Q∗∗

k

Kij(−y)un
i un

j (y) dy.

It is easy to see that ∇pn = ∇p̄n and therefore (un, p̄n) is also a global-in-time local energy solution to
(1.1). We therefore redefine pn to be p̄n. Defined in this way pn still satisfies the local pressure expansion
for cubes in C.

By Lemma 3.2 we may apply Theorem 3.1 with q = 2 to obtain a priori estimates for un on the time
interval [0, T ) depending only on ‖u0‖M2,2

C
.

We now construct a solution to (1.1) with the initial data u0 following the inductive procedure from
[18]. Fix k ∈ N and denote by B2k the ball of radius 2k centered at the origin. From Theorem 3.1 we
have

sup
0<t<T

∫
B2k

|un(x, t)|2 dx +
∫ T

0

∫
B2k

|∇un(x, t)|2 dx dt ≤ C(k, u0).

It follows that ∫ T

0

∫
B2k

|un|10/3 dx dt ≤ C(k, u0)

and ∫ T

0

∫
B2k

|pn|3/2 dx dt ≤ C(k, u0),

where we used cn,k ≤ C(k)‖un‖2
L2(Q∗∗

k+1)
≤ C(k, u0). Note that the constants change from line to line but

depend only on k and u0. As in [18, p. 154], using (1.1), we additionally have that for any w ∈ C∞
0 (B2k),

∫ T

0

∫
B2k

∂tu
n · w dxdt ≤ C(k, u0)

(∫ T

0

∫
B2k

|∇w|3 dx dt

)1/3

,

implying

‖∂tu
n‖Xk

≤ C(k, u0),
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where Xk is the dual space of L3(0, T ; W̊ 1,3(B2k)).
The preceding four estimates and compactness arguments imply that there exists a sub-sequence

{(u1,n, p1,n)} and a couple (u1, p1) such that

u1,n ∗
⇀ u1 in L∞(0, T ;L2(B2))

u1,n ⇀ u1 in L2(0, T ;H1(B2))

u1,n → u1 in L3(0, T ;L3(B2))

and

p1,n ⇀ p1 in L3/2(0, T ;L3/2(B2))

as n → ∞.
We repeat this procedure for k = 2. Let {u2,n} be a subsequence of {u1,n} that converges to a vector

field u2 on B2 × (0, T ) in the sense

u2,n ∗
⇀ u2 in L∞(0, T ;L2(B4))

u2,n ⇀ u2 in L2(0, T ;H1(B4))

u2,n → u2 in L3(0, T ;L3(B4)),

as n → ∞. Additionally, there exists p2 so that

p2,n ⇀ p2 in L3/2(0, T ;L3/2(B4)).

Iterating this argument we obtain a collection {uk,n} and a sequence uk so that uk is defined on B2k×(0, T )
and

uk,n ∗
⇀ uk in L∞(0, T ;L2(B2k))

uk,n ⇀ uk in L2(0, T ;H1(B2k))

uk,n → uk in L3(0, T ;L3(B2k)),

as n → ∞ for each k. Additionally, there exists pk so that

pk,n ⇀ pk in L3/2(0, T ;L3/2(B2k)).

Let u(k) = uk,k and p(k) = pk,k. Note that if n > m, then un = um on B2m and pn = pm on B2m . Hence,
we unambiguously define u and p by letting them equal un and pn respectively on B2n . Then,

u(k) ∗
⇀ u in L∞(0, T ;L2

loc)

u(k) ⇀ u in L2(0, T ;H1
loc)

u(k) → u in L3(0, T ;L3
loc),

as k → ∞. Also,

p(k) ⇀ p in L3/2(0, T ;L3/2
loc ).

These convergence properties ensure that u and p satisfy (1.1) in the sense of distributions. Further-
more, the convergence properties of u(k) and p(k) imply that the local energy inequality, which is satisfied
by all u(k) and p(k), is inherited by u and p. Also, ‖∂tu‖Xk

≤ C(k, u0). Fix w ∈ L2(B2k). Then the
function

t 
→
∫

B2k

u(x, t) · w(x) dx

is continuous in time because ‖∂tu‖Xk
≤ C(k, u0) and

ess sup
0<t<T

∫
B2k+1

|u|2 dx +
∫ T

0

∫
B2k+1

|∇u|2 dx dt < ∞.
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That the limit u is in the correct local energy class follows from the local energy inequality. Indeed,
let φQ = 1 on Q and equal zero off of Q∗ be the usual non-negative cut-off function. The local energy
inequality, weak continuity in time, and the convergence properties of u(k) and p(k) give

∫ |u(x, t)|2
2

φQ(x) dx +
∫ t

0

∫
|∇u(x, s)|2φQ(x) dx ds

≤
∫ |u(x, 0)|2

2
φQ(x) dx +

∫ t

0

∫ |u|2
2

ΔφQ(x) dx ds

+
∫ t

0

∫ ( |u|2
2

u · ∇φQ(x) + pu · ∇φQ(x)
)

dx ds

≤
∫ |u(x, 0)|2

2
φQ(x) dx + lim

k→∞

∫ t

0

∫ |u(k)|2
2

|ΔφQ(x)| dx ds

+ lim
k→∞

∫ t

0

∫ ( |u(k)|3
2

|∇φQ(x)| + |p(k) − p
(k)
Q (t)|3/2|∇φQ(x)|

)
dx ds

for all t ≥ 0 where we used the fact that
∫ t

0

∫
p
(k)
Q (t)u(k) · ∇φQ dx dt = 0.

Dividing by |Q|2/3 and using the estimates in Sect. 3 gives

ess sup
0<t<T0

1
|Q|2/3

sup
Q∈C

∫
Q

|u|2 dx + sup
Q∈C

1
|Q|2/3

∫ T0

0

∫
Q

|∇u|2 dx dt ≤ C‖u0‖2
M2,1

C
.

We remark that the estimates of Sect. 2 cannot be applied directly to u and p at this point because we
do not have the local pressure expansion for p yet, and to establish it we need the above estimate for u.

Convergence to the initial data in L2
loc follows from the weak continuity in time and the local energy

inequality.
We finally establish the local pressure expansion. Define p̄ recursively by

• If x ∈ Q0 then p̄(x) = GQ1
ij (uiuj)(x)

• If x ∈ Qk+1 then p̄(x) = G
Qk+1
ij (uiuj)(x) + ck, where

ck = GQk

ij (uiuj)(x) − G
Qk+1
ij (uiuj)(x) on Qk+1,

is a constant (in x) . Note that

ck =
∫

Q∗∗
k+1\Q∗∗

k

Kij(−y)uiuj dy.

Note that if Q∗∗ ⊂ Qk+1 and k ∈ N is minimal, then, for all x ∈ Q∗ and at a fixed t (which we suppress),

GQ
ij(uiuj)(x) − p̄(x, t) − ck

= p.v.

∫
y∈Q∗∗

Kij(x − y)(uiuj)(y) dy − p.v.

∫
y∈Q∗∗

k+1

Kij(x − y)(uiuj)(y) dy

+
∫

y/∈Q∗∗
(Kij(x − y) − Kij(xQ − y))(uiuj)(y) dy

−
∫

y/∈Q∗∗
k+1

(Kij(x − y) − Kij(−y))(uiuj)(y) dy

= −
∫

Q∗∗
k+1\Q∗∗

Kij(xQ − y)uiuj(y) dy

+
∫

y/∈Q∗∗
k+1

(Kij(−y) − Kij(xQ − y))uiuj(y) dy.

(4.1)
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Since xQ ∈ Qk+1, the last term converges absolutely whenever u ∈ M2,2
C . Furthermore, the right hand

side above does not depend on x and so is a constant depending on Q and t. We therefore have for
(x, t) ∈ Q∗ that

p̄(x, t) = GQ
ij(uiuj)(x, t) + pQ(t), (4.2)

where pQ(t) is defined by collecting the constants appearing above. It is easy to check that the function p̄
defined this way satisfies the analog of (4.2) for all cubes in R

3, not just for the cubes in C. It remains to
show that p̄ = p, as this will show that p satisfies the Eq. (2.1) modulo a function of time, i.e. it satisfies
the local pressure expansion.

We claim that

GQ
ij(u

(k)
i u

(k)
j ) → GQ

ij(uiuj), (4.3)

in L3/2(0, T ;L3/2(Q)) for any cube Q ∈ C, i.e.,

− 1
3
δij(u

(k)
i u

(k)
j )(x, s) + p.v.

∫
y/∈Q∗∗

Kij(x − y)(u(k)
i u

(k)
j )(y, s) dy

+ p.v.

∫
y∈Q∗∗

(Kij(x − y) − Kij(xQ − y))(u(k)
i u

(k)
j )(y, t) dy

→ −1
3
δij(uiuj)(x, s) + p.v.

∫
y/∈Q∗∗

Kij(x − y)(uiuj)(y, s) dy

+ p.v.

∫
y∈Q∗∗

(Kij(x − y) − Kij(xQ − y))(uiuj)(y, t) dy.

(4.4)

Since u(k) → u strongly in L3(0, T ;L3
loc), we have δiju

(k)
i u

(k)
j → δijuiuj in L3/2(0, T ;L3/2(Q∗∗)). Also,

using the Calderón-Zygmund theory, we have

p.v.

∫
y∈Q∗∗

Kij(x − y)(uiuj)(y) dy

− 1
3
δijuiuj + p.v.

∫
y∈Q∗∗

Kij(x − y)(u(k)
i u

(k)
j )(y) dy

= p.v.

∫
y∈Q∗∗

Kij(x − y)((uiuj)(y) − ((u(k)
i u

(k)
j )(y)) dy → 0,

in L3/2(0, T ;L3/2(Q∗∗)).
Therefore, the first two terms on the left hand side of (4.4) converge to the corresponding two on the

right. To get the convergence of the remaining term, for R > 0 denote by QR(0) the cube centered at
zero with side length R. Note that

∣∣∣∣
∫

y/∈Q∗∗
(Kij(x − y) − Kij(xQ − y))((uiuj)(y) − (u(k)

i u
(k)
j )(y)) dy

∣∣∣∣

≤
∣∣∣∣∣
∫

y∈QR(0)∩(Q∗∗)c

(Kij(x − y) − Kij(xQ − y))((uiuj)(y) − (u(k)
i u

(k)
j )(y)) dy

∣∣∣∣∣
+

∣∣∣∣∣
∫

y∈QR(0)c∩(Q∗∗)c

(Kij(x − y) − Kij(xQ − y))((uiuj)(y) − (u(k)
i u

(k)
j )(y)) dy

∣∣∣∣∣
=: IR

1 + IR
2 .
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For the first term, we have
∫ T

0

∫
Q

|IR
1 |3/2 dx dt ≤ C|Q|

∫ T

0

(∫
QR(0)

∣∣(uiuj)(y, t) − (u(k)
i u

(k)
j )(y, t)

∣∣ dy

)3/2

dt

≤ C(Q,R)
∫ T

0

∫
QR(0)

∣∣(uiuj)(y, t) − (u(k)
i u

(k)
j )(y, t)

∣∣3/2
dy dt → 0.

Let ε > 0 be given. Then

|IR
2 (x, t)| ≤ C

∑
Q′∈C;|Q′|1/3>R

|Q|1/3

∫
Q′

1
|x − y|4

∣∣(uiuj)(y, t) − (u(k)
i u

(k)
j )(y, t)

∣∣ dy

≤ C
∑

Q′∈C;|Q′|1/3>R

|Q|1/3

|Q′|4/3

∫
Q′

∣∣(uiuj)(y, t) − (u(k)
i u

(k)
j )(y, t)

∣∣ dy.

Since all u(k) and u are uniformly bounded in M2,2
C in terms of ‖u0‖M2,2

C
, we have

|IR
2 (x, t)| ≤ C‖u0‖2

M2,2
C

∑
Q′∈C;|Q′|>R

|Q|1/3

|Q′|2/3
.

The sum above can be expanded over cubes in nested shells where the number of cubes in each shell is
bounded. We therefore have

|IR
2 (x, t)| ≤ C

R2
|Q|1/3‖u0‖2

M2,2
C

∞∑
n=log2(R)�

1
22n

.

Clearly, we may choose R so that ∫ T

0

∫
Q

|IR
2 (x, t)|3/2 dx dt ≤ ε.

Therefore, we have the convergence (4.3) in L3/2(0, T ;L3/2(Q)) for all Q ∈ C. Now note that p(k) also
satisfies (4.1), i.e. for x ∈ Q we can write

p(k)(x, t) = GQ
ij(u

(k)
i u

(k)
j )(x, t) + p

(k)
Q (t),

where pQ consists of the constants in (4.1) with u replaced by u(k). We have shown that p(k) → p

and GQ
ij(u

(k)
i u

(k)
j ) → GQ

ij(uiuj), both in L3/2(0, T ;L3/2(Q)). To show that p satisfies the local pressure

expansion, it is enough to show that p
(k)
Q (t) → pQ(t) in L3/2(0, T ). Expanding pQ(t) − p

(k)
Q (t) leads

to several integrals over bounded regions and an integral over unbounded regions. The integrals over
bounded regions all converge to zero by convergence properties of u(k) to u. The remaining term is∫

(Q∗∗
k+1)

c

(Kij(−y) − Kij(xQ − y))(u(k)
i u

(k)
j − uiuj)(y, t) dy,

and we need to explain why this vanishes as k → ∞ . We have

|Kij(−y) − Kij(xQ − y))| � 1
|y|4 ,

for |y| large and so can treat this in an analogous way to IR
2 . This gives convergence of the sequence at

every time t. Convergence in L3/2(0, T ) follows by the dominated convergence theorem. This proves that

p(k)(x, t) = GQ
ij(u

(k)
i u

(k)
j )(x, t) + p

(k)
Q (t) → GQ

ij(uiuj)(x, t) + pQ(t)

in L3/2(0, T ;L3/2(Q)), which implies p = GQ
ij(uiuj) + pQ(t), i.e. p satisfies the local pressure expansion

for u. �
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[11] Fernández-Dalgo, P.G., Lemarié-Rieusset, P.G.: Weak solutions for Navier–Stokes equations with initial data in weighted
L2 spaces. arXiv:1906.11038

[12] Galdi, G.P.: An introduction to the mathematical theory of the Navier-Stokes equations. In: Steady-state problems,
2nd edn. Springer Monographs in Mathematics. Springer, New York (2011). ISBN: 978-0-387-09619-3
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[28] Rusin, W., Šverák, V.: Minimal initial data for potential Navier–Stokes singularities. J. Funct. Anal. 260(3), 879–891
(2011)

[29] Stein, E.M.: Note on singular integrals. Proc. Am. Math. Soc. 8, 250–254 (1957)
[30] Temam, R.: Navier–Stokes Equations. AMS Chelsea Publishing, Providence, RI, (2001). Theory and Numerical Analysis,

Reprint of the 1984 edition
[31] Tsai, T.-P.: Lectures on Navier–Stokes equations, Graduate Studies in Mathematics, vol. 192. American Mathematical

Society, Providence (2018)

Zachary Bradshaw
Department of Mathematics
University of Arkansas
Fayetteville
AR 72701
USA
e-mail: zb002@uark.edu

Igor Kukavica
Department of Mathematics
University of Southern California
Los Angeles
CA 90089
USA
e-mail: kukavica@usc.edu

(accepted: September 18, 2019; published online: December 3, 2019)


	Existence of Suitable Weak Solutions to the Navier–Stokes Equations for Intermittent Data
	Abstract
	1. Introduction
	2. Pressure Formula and Its Bound
	3. A Priori Bounds
	4. Construction
	4.1. Approximating the Initial Data
	4.2. Proof of Theorem 1.3

	Acknowledgements
	References




