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Abstract. We consider a fluid—structure interaction system composed by a three-dimensional viscous incompressible fluid and
an elastic plate located on the upper part of the fluid boundary. The fluid motion is governed by the Navier—Stokes system
whereas we add a damping in the plate equation. We use here Navier-slip boundary conditions instead of the standard
no-slip boundary conditions. The main results are the local in time existence and uniqueness of strong solutions of the
corresponding system and the global in time existence and uniqueness of strong solutions for small data and if we assume
the presence of frictions in the boundary conditions.
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1. Introduction

The aim of this work is to analyze the interaction between a viscous incompressible fluid and a viscous
elastic plate. Let us start by presenting the corresponding model. We denote by w the rectangular torus

w=(R/L1Z) x (R/LsZ) Ly >0, Ly > 0. (1.1)
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x3

Fic. 1. Configuration of the domain at time ¢

For any function n: w — 00), we define (sec Fig. 1)

(—1
n) = {(xl,xg,mg) cwxR|0<z3<1+n(x,22)},
n)
Lo

9
I( (x1,29,23) Ew X R | z3 =1+ n(z1,22)},
w x {0}.

In particular
9Q(n) =T'(n) U L. (1.2)

We consider the following system describing the evolution of the fluid governed by the incompressible
Navier—Stokes equations, and the movement of the elastic plate

U+ U-VYU-V-T(U,P)=0 t>0, xe€Qn,)),
V-U=0 t>0, z€Qn,-)), (1.3)
Oun + aAn — kAN + on — A0 = (U P) t>0, s€cw.

In the above system, we have denoted by U the fluid velocity, P the fluid pressure and 7 the transversal
plate displacement.
The Cauchy stress tensor T(U, P) is defined by

T(U,P) = —PI; + 2vD(U), D(U);; = % (8Ui 5Uj> .

Ox;  Ox;
The function I’[-V]L7 is the fluid strain on the structure and is defined by
H,(U, P) = —/T+ [Vl (T(U, P)n - e3)..
We assume
vr>0, a>0, 020, >0 and §>0. (1.4)

These constants correspond respectively to the rigidity («), the stretching (), the damping on the
structure (J) and the viscosity (v).
We have denoted by n the unitary exterior normal of 9Q(n):

n = —eg on Iy,
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and on I'(n):
—0s,m(s)
N(s,1+mn(s)) .
n(s,1+n(s)) = ————<-, where N(s,1+7n(s))= | —0s,n(s) |, scw. (1.5)
N5, T+ 0(s))] :
Here and in what follows, | - | denotes the Euclidian norm of R*, k > 1.

We complete (1.3) by the Navier slip boundary conditions. In order to write these boundary conditions,
we need to introduce some notations. We denote by a,, and a, the normal and the tangential parts of
a € R3:

an=(a-n)n, ar=a—a,=-nx(nxa). (1.6)

Then, our boundary conditions write as follows

U,=0 t>0, xe€ly,
2DU)n],. + /U =0 t>0, zely, wn
(U(t,s,14+n(t,s)) —om(t,s)es)n, =0 t>0, scw,
2DU)n]_(t,s,1+n(t,s)) + B2(U(t,s,1+n(t,s) —on(t,s)es). =0 t>0, s€w.
In what follows, we write the above equations in the following more compact way
U,=0 t>0, xely,
RvD(U)n+ /U] =0 t>0, zely, (18)
(U — 9mes)n =0 t>0, zel(n),

RuD(U)n + f2 (U —0Omes)], =0 t>0, zecI(n).
We assume that the friction coefficients 31 and (s are constants satisfying
ﬂl > 07 ﬂQ > O

These boundary conditions can be compared with the standard no-slip boundary conditions usually
considered with the Navier—Stokes system. In our case, these conditions would write as

{UO t>0, zely,

1.9
U=0mes t>0, xzeT(n). (1.9)

The Navier slip boundary condition was proposed by Navier in 1823 [28] and is relevant in several physical
contexts, see for instance [22,24,35].
To complete the system (1.3), (1.8), we add the following initial conditions

n(0,)=n" inw,
8t77(0a ) = 771 in w, (110)
U,)=0% in Qn°).

Let us remark that we don’t need to consider boundary conditions on the “lateral” boundaries since
we work with the torus w [see (1.1) and (1.2)]. This means that we are considering periodic boundary
conditions for U, P and n:

U(t,l‘1 + L1,$2,l‘3) = U(t,xl,l‘g,l‘g,), U(t,l‘l,l‘z + Lg,l‘g) = U(t,xl,l‘g,]}?,),
n(ta S1 + L17 ‘92) = n(t7 S1, 82)7 n(t> 51,52 + LQ) = n(ta S1, 82)7
and a similar relations for P.

Several works have been devoted to the study of the system (1.3), (1.10) with the Dirichlet boundary
conditions (1.9): existence of strong solutions [3,23], feedback stabilization [2,30], global existence of
strong solutions [15]. Let us point out that in this latter work, the authors manage to obtain in particular

that there is no contact between the plate and the bottom of the domain in finite time for the system
(1.3), (1.9), (1.10). This result, as previous works on fluid—structure interaction systems, shows that the
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standard no-slip boundary conditions may lead to some paradoxal results as the distance between two
structures is going to 0: in the case of rigid bodies immersed into a viscous incompressible fluid, it is
shown that in particular geometries there is no contact in finite time of two structures [18,19] and in
general, if there is contact, then it occurs with null relative velocity and null relative acceleration [31].
In [9,10], the author considered boundary conditions involving the pressure. Here, our aim is to analyze
the same system (1.3) with the Navier-slip boundary conditions (1.8) instead of the Dirichlet boundary
conditions. Such a system was already considered in [17,27] where the existence of weak solutions is
proved in dimension 2 (global existence as long as the deformable structure does not touch the fixed
bottom). The uniqueness of weak solutions for this system has been obtained in [16].

Our objective is to prove the existence and uniqueness of strong solutions for small time or for small
data. This is the first work on strong solutions for such a system in the case of Navier-slip boundary
conditions and to our knowledge, it is also the first work on strong solutions for this kind of systems in
the 3D case.

In the case where the structures are rigid bodies immersed into a viscous incompressible fluid, several
authors have already considered the Navier-slip boundary conditions: existence of weak solutions [12,29],
existence of contact in finite time [13], existence of strong solutions and study of contacts in finite time
[36], uniqueness of weak solutions [7]. Let us also mention the work of [8] where they consider a nonlinear
boundary condition of Tresca’s type.

The main result of this article is

Theorem 1.1. 1. Assume (3; > 0 for i = 1,2 and (1.4). Suppose n° € H?*(w), n* € H'(w) and
U% e [HY(2(n°))]? such that

1+7°>0, V-U'=0 inQn"), U°—n'es)n=0 onT(n"), U’=0 onTy.
There exists a time Ty such that the system (1.3), (1.8), (1.10) admits a unique strong solution
(U7 Pa 77) on <07 TO)
n € L*(0,To; H (w)) N C°([0, To]; H? (w)) N H* (0, To; H?(w)) N C*([0, To]; H' (w)) N H?(0, Ty; L* (w)),
U € L*(0, To; [H*(Qn(6))*) N C°([0, ToJ; [H (n(t))]*) N H' (0, To; [L*(Qn(t)))]*),
VP e L*(0, To; [L*(Q(n(t))]).
2. Assume B; = 0 for i = 1,2 with 81 + B2 > 0 and (1.4). There exist v > 0 and Ry > 0 such that if
n’ € H3(w), nt € HY(w) and UY € [HY(Q(n°))]? satisfy
1+7°>0, V-U'=0 inQ®n", U°-n'es)n=0 onD(xn°), U’=0 only.
and
0 0 1
v H[Hl(sz)]3 +|In HHB(W) +|In HHl(w) < Ro,
then the system (1.3), (1.8), (1.10) admits a unique strong solution (U, P,n) on (0,00):
0 € T(0, 003 HY(w)) N BE([0, 00 H (w)) 0 H(0, 005 HE(w)) 1 BCL([0, o0]; H' (w)) 1 H2(0, 00; I2(w)),
U € L3(0, 00 [H*(Q(n(1))]”) N BCI([0, oc]; [H (2(n(t)))]*) N H(0, 00; [L*(Qn(1)))]%),
2 172 3
VP e L7(0, 00; [L*(Q(n(t)))]"),
for ~ € 10,7].

In the above statement, the spaces LP, H® are the classical Lebesgue, Sobolev spaces. We use the
notation BC? = C%N L*> and BC' = C' N W, The notation -, is explained below in (2.2), (2.3) and
corresponds to an exponential decay of order +. Finally, the notation L?(0,T; H*(2(n(t)))) corresponds
to the fact that the fluid velocity and pressure are written in a moving domain depending on 7. To obtain
our result, we thus need to use a change of variables for U and P and the fluid velocity and pressure
after change of variables are obtained in spaces of the form L2(0,7T; H'(Q)) with a fixed 2. The precise

definition of strong solutions is given in Sect. 3 (Definition 3.1) and we reformulate the above result in a
more precise way in Theorem 6.1.
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Remark 1.2. We can write a bi-dimensional version of the system (1.3), (1.8), (1.10) and for such a
system, one can prove a similar result as Theorem 1.1. In fact, in that case, one could obtain a global
in time existence of strong solutions up to a possible contact between the beam and the bottom of the
domain by following the arguments in [15].

Remark 1.3. For the sake of simplicity in the proof of Theorem 1.1 and in the remaining part of this
article, we assume k = o = 0 since these constants do not play any role in the analysis.

The plan of this paper is as follows: In Sect. 2, we give some notation. In Sect. 3, we remap the problem
into a fixed domain using a change of variables like it was introduced in [21], and we restate Theorem 1.1.
We obtain some regularity properties of the Stokes system in domains of class H® in Sect. 4. In Sect. 5,
we study the linearized problem by writing it as an evolution equation. We prove in particular that the
associated semigroup is analytic and in Sect. 6, we prove the main result using a fixed-point argument.

2. Notation

During the course of our analysis, we will use some functional spaces that we introduce in this section.
First, let us note that due to the incompressibility of the fluid and to the boundary conditions (1.8);

and (1.8)3, we have
d
— ds = 0.
ﬁL”s

For simplicity, we assume throughout the paper that

/nods =0

/n(t,-)ds —0 (t>0).
It yields to consider the following space
13(w) = {e e I*(w) | /sds—o},

and the orthogonal projection M : L?(w) — L(w). Applying M on the plate Eq. (1.3)3, we find
Btm + Aln + Ag&tn = HU(U7 .P)7

so that

where

A =al?y, D(A;) = H(w)N L3(w),
Asn = —6An, D(4z) = H*(w) N Li(w),
and
H,, (U, P) = M(H,, (U, P)).

The projection of (1.3)3 onto LZ(w)* leads to impose the choice of the constant normalizing the pressure,
see for instance [15].

We denote by H*(0,T’; X) the usual Sobolev spaces with values in a Banach space X. For s > 0, s ¢ N,
the norm of these spaces can be defined by using

1/2
B @) — ) . .,
[€]s.2.0m),2 = </(O,T)><(O,T) 7o dtdt .
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More precisely, the norm ||| 7. o 7% for s € (0, 1) is given by

1/2
€0 £+ 0,72 (||€||L2 or:x) T Lst 2 (0,T),x> . (2.1)

1
We recall (see [6]) that if s € (2, 1>, then the norm |- |, 5 (0,7),x is equivalent to the norm defined in

(2.1) in the space {£ € H*(0,T;X%) | £(0) = 0}.
Let X;, X2 be two Banach spaces endowed with the norm ||-|| respectively [-[|y,. For s > 0, we
define the following space

W*(0,T;%1,%2) = {v e L*0,T; %) |ve H*0,T;X,)},
endowed with norm

s 0,751 22 = 120,520 + ez 0,7, -

For s = 1, we will denote W(0,T; X1, X2) by W(0,T; X1, X5).
For v > 0, we also consider the spaces

L2 (0,00;X1) = {v € LP(0,00; X1) ; t+— vy(t) = ev(t) € LP(0,00; X1)}, p € [1,+00], (2.2)
and
W3(0,00; X1, X2) = {v € W*(0,00; X1, X2) 5 t = vy(t) = ev(t) € W5(0,00; X1, X2)}. (2.3)

For these spaces, we use the norms defined by

||U||LP(0 00;X1) ||U’Y||LP(O 00;X1)
|\U||W5(o,oo;x1,x2) = ||U“/||WS(0,O<>;3€17352)'
In what follows, we set
Q=90(n"), (2.4)
for the local existence and
0 =9Q(0), (2.5)

for the global existence.

In order to differentiate the normal or the normal and tangential component of a vector v in  and
in Q(t), we use the notation ng, v,, and v,, for the configuration €.

We denote by

Dy () = {¢ € [C5°(Q)]*, div$ = 0},

the space of infinitely differentiable functions with free divergence in 2 with compact support .
Let us also define the following space

Xp = W(0,T; [H*(Q))°, [L*(Q))°) x L*(0,T; H' () /R) x W?(0,T; D(Ay), L§(w)), (2.6)
endowed with the norm
1w, 2, M ey = Nuellvy o722y T 18l Lo 0.1 2y + 1IVPI L2 0,7, p2 02
+Inllw=20,00040),22 2wy T 1720l oo (0,753 ) + ”athLOO(O T;H(w)) (2.7)

If T'=+o00 and v > 0, we will write
Xoery = Wy (0, 50: [H(Q)%, [L(Q)]) x L2(0, 00 H'(Q)/R) x W2(0, 00 D(A1), Li(w)),  (2.8)
endowed with the norm
[ (w, p, 77)”/\50M ||UHW (0,005 [H2(Q))3,[L2(Q))3) T ||u||Loo(o sos[HY(Q)]3) T ||VP||L2 (0,00,[L2(Q)]3)

+||77||W2 (0,00;D(A1),L3(w)) T ||77||Loo(oooH~" ) T ||8t77||L°o (0,00;H! (w)) - (2.9)
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To write the boundary conditions, we also introduce the operator 7 defined as follows (see [2]):
0 ify € I'o,
Toelu) = {as)eg ity = (5.1+1°(s)) € ).
We can verify that 7,0 € £(L*(w); [L?(99)]*) and that
TjC = V1+[VIPPCes, V€ [LP(09).
We set
T =T,0 M.
We also define
P ifyel,
' {62 ity € T(n°).

3. Change of variables

For n',n? € H3(w) with
ntn?>—-1 inw,

we can consider the change of variables X, ,» defined below

n
Y1
Y
Xy : Q') — Q°), | y2 | — HnQ(;hyg) : (3.1)
Y3 T I ]

T+ (yr.y2)
The mapping X, ,2 is invertible of inverse X, 1. Moreover, using the Sobolev embedding H3(w) —
Cl(w) and that
- 1+ 772
= Tt
we deduce that X, ,2 is a C*-diffeomorphism from Q(n') onto Q(n?).
In the case Q = Q(n°) [see (2.4)], we set

det(Van 2 )

X(t, ) - Xno’n(t’,), Yr(t7 ') - Xn(t’_)’n(l (3.2)
and in the case = Q(0) [see (2.5)], we set
)((t7 ) = XO,n(t,~)7 Y(t, ) = Xn(t,-),O (3.3)

We have in both cases that Y (¢,-) = [X(¢,-)] "
We consider the following transformation of v and p:

u(t,y) = (Cof VX (t,y))"U(t, X(t,y)), p(t,y) =Pt X(t,y)) (t=>0, yeQ). (3.4)

Here, (Cof VX (t,y))* denotes the transpose of (Cof VX (¢,y)). After some standard calculations (see, for
instance, [21]), the system (1.3), (1.8), (1.10) can be written as

Ou —V - T(u,p) = F(u,p,n) t>0, yen,
V-u=0 t>0, yen, (3.5)
O + Ain + A20im = Hyo (u, p) + H(u,n) ¢ >0,
with the boundary conditions
[u—Tam),, =0 £>0, yedn,
{ [2vD(u)no + Bu —Tom)],, = G(u,n) t>0, yeIN,
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and with the initial conditions

uw(0,)=u’=0U" inQ,
n(0,-) =7° nw (3.7)
Im(0,-) =n' in w

In order to write the nonlinearities F', H, GG, we first set

(Cof VY)* = (aix);y, - (3.8)
Then
Fi(u,p,m) = Z( it — @ik (X)) Opup — Z aik(X X)o Y (X) — Zataik(X (0
k k
+VJ;:m <alk oz, (X)g;/]l(X) - 5ik6mj5jl> aijgykm
+Z< S0 S0 +aik<x>%1’; <x>> - > 8;;‘; (X)ue
Y00 — SO0 - 3 a0 2
k k,l,j
+k%n ((5ij(5kl5km - akl(X)aij(X)‘?)?: (X)) u; g;‘i, i=1,2,3, (3.9)
and

da Oa; Y, ou
H(u,m) = vM [ - ( 3;; (X) + 5335 (X)> RS (53k5jl(No)j - a3k(X)amj_(X)Nj) 57;

J.k g,k,l

(3.10)

Y] 0
+ ((53l(5j/€(N0)j —ajk(X) d X N) Uk .

o0 ) By

To define GG, we introduce the following notations.

1 0
7'1 = 0 s 7'2 = ]_ 5 (311)
88177 68277

8 m 8 7”
Wi =v an ( ;; (X)U"rn + aaj 7n) + ﬂ (Z ak_l - Tatn ' ek)
J

O, DY,
8yq 8xk

X)) . k=1,2,3, (3.12)

and

V' = (vD(wng + f(u—Tom) -7~ W', i=12 (3.13)



JMFM Existence of Strong Solutions to a Fluid Structure Interaction Problem Page 9 of 30 36

Then G(u,n) is given by
Vl((asznO)Q + 1) — V2(681770882770)

Gl(“ﬂ?) = |N0|2 )
_ V2((351770)2 + 1) B Vl(aslﬂoaszﬁo)
G?(u777) - |N0|2 ’
s, "V + 9,,m°V?
Gs(u,n) = — 2 3.14
3( T}) |N0|2 ( )
More precisely, let us note that
RvDU)n+pU —-Ton)], =0 t>0, z € dn) (3.15)
writes as
(2uD(u)ng + Blu —Tom)) - 76 = V', i=1,2. (3.16)

The formula (3.14) for G is such that
G- 1i=V, i=12 G-ng=0

so that (3.16) is equivalent to the second condition of (3.6), with G tangential.
Using the above transformation, we can now introduce our definition of strong solutions for system
(1.3), (1.8), (1.10)

Definition 3.1. The triplet (U, P,n) is a strong solution of (1.3), (1.8), (1.10) if the following conditions
are satisfied

n € W?(0,T; D(Ar), Lj(w)), (D1)
1+5>0 in[0,7], (D2)
X and Y are given by (3.2) and (u,p) are given by (3.4), (D3)
(u,p) € W(0,T; [H*(Q)]%, [L*(Q)]*) x L*(0,T; H'(Q)/R), (D4)
(u, p,m) satisfies the system (3.5), (3.6), (3.7). (D5)

Following this definition, in order to prove Theorem 1.1, we have to prove the existence and uniqueness
of

(u,p,n) € W(O, T3 [H*(Q)], [L(Q)]) x L*(0,T; H'(Q)/R) x W2(0,T; D(Ar), Li(w)),
solution of the system (3.5), (3.6), (3.7) and satistying (D2).

4. Regularity properties of the Stokes system

In this section, we obtain some results on the stationary system in Q(n) for n = 7° [see (2.4)] or for n = 0
[see (2.5)]:

o —vAu+Vp=f inQ(n),

Viu=g in Q(n), (4.1)
Uy =0 on 09(n), .
[2vD(@)n + Bu). =b on 9Q(n).

Let define the following space
Hy = {¢ € [H Q)] | ¢n =000 0Q(n)}.
We give the definition of a weak solution of the system (4.1).
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Definition 4.1. We say that (u,p) is a weak solution of (4.1) if (w,p) € [H*(2(n))]* x L*(Q(n))/R, if
V- -u=7gin Q(n), @, = a on 9Q(n) and if the following variational equation is satisfied:

a/ u-¢dy+2v D(ﬂ):D(qﬁ)dy—/ PV - ody
Q(n) Q(n) Q(n)

+ BT - pdl’ = Fody(b, @) gr—1/2 g2
99Q(n) Q(n)

for all ¢ € HYL.
We have the following result

Theorem 4.2. Assume 8 > 0 and o > 0 with 31 + B2 > 0 or a > 0. Let n € H3(Q(n)) and &y > 0 such
that 1 +n > &g on w. For any

fe)), gel*Qn), ae[H*0Qm)?, be[H *02n)?
such that

/ gdy = / @-ndl', b-n=0, (4.2)
Q(n) 9Q(n)

there exists a unique weak solution (u,p) € [H1(Q(n))]? x L3(Q(n)) to the Stokes system (4.1). Moreover,
we have the following estimates:

@ll s emye + VPl -2 @@ < € <”7H(H;>' 19l L2y + 18l a2 200 + ||B||[H‘1/2(3Q(n))]3) )
(4.3)

where C'is a constant which depends on ||| s, and do.
Moreover, if

Fell*@Qm)f, geH'(Qm), ac[H0n), be [H*(0Qn)],
such that (4.2) holds, then (u,p) € [H2(Q(n))]® x (HX(Q(n)) N LE(n))) and we have the following
estimates:
1l 72 e VI L2 @mype < € (H?”[L%n(n)m+”§”H1(ﬂ<n>>+HEH[H?’“@QM))P + HEH[HUZ(@Q@))P) ’
(4.4)
where C'is a constant which depends on |||z, and do.

In the case where n € C1'1(w) such a result is already known, see [1] (see also [4]). Here, we manage
to obtain the result for n € H?(w) by following an idea of [14,15].

Proof of Theorem 4.2. The proof follows closely the proof of Lemma 6 in [15]. We assume here 51432 > 0
and a = 0, the proof is similar with a > 0.
First, we write the system (4.1) in the domain

0 =0Q(0)
by using the change of variables X, defined by (3.1). Then we set

1
R A -1 pep
n = Cof(VXoy), Ay det(VXoy) 7"
and we define

u=uoXoy, p=poXoy,

f=det(VXo,)foXoy, g=det(VXo,)go Xos,
a=a0Xoy, bi=DB"(bioXoy) e, i=12 (4.5)
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Then system (4.1) is transformed into the following system

—vV - (Vud,)+ B,Vp=f n Q.

V- (Byu) =g in €,

(Biu) - no = (Bja) - ng on 9, (16)
v 1 .

LN| ((Bn_quAn)no + ciet(VM((vu)*B”)n()) + ﬂBn—lu] ce;=b;, i=1,2 ondRQ,

where N is defined by (1.5) and ng is the unit exterior normal to  (that is +es).
Since n € H?(w), we deduce that

By, A, € H*(w; H*(0,1)),
for all s > 0 and the corresponding norms depend on ||7]| 3 (w) and do. Moreover, using the embeddings

HY(w) — LP(w) for all p > 1 and H?(w) — L*(w), we deduce that it is sufficient to prove that the
solution of (4.6) satisfies

lull g2y + 1VPlz2aye < C (”fH[L?(Q)]?’ 19l 210y + llallzrar2a0)2 + ||b||[H1/2(i)Q)]3) )
Step 1: Weak solutions. Let note that the solution of (4.6) verifies

v (G 70 B) = BV (W) =5 (goexr)

Let A > 0 and consider the following system

—VV - (Vudy + gy Ba(Vu)*By) + B, Vp = | in Q,
Ap+ V- (Byu) =g in Q,
(Byu) -ng = (Bja) - ng on 052, (48)

[ﬁ ((B,;lvuAn)no + m((vu)@n)no) +5B;1u} ei=b;, i=12 ondQ,
with

ra g
f=1-vBV (det(vxo,n)> |

To simplify the notations, we set

D, (u) = VuA, + B,(Vu)*B

1
We define
V={ve[H Q)| (Bv) no=0ond0}
We look for weak solutions to the system (4.8). Let f € V/, g € L*(Q), a € [HY?(0Q))® and b €

[H~1/2(09)]?. We have B,V (WXO)) eV

9 g *
B,V —=—— =— [ —=———V-(B}v) dy.
< ! (det(VXO,n)) 7U>v',v /Q det(V.Xo,p) (Byv) dy

Therefore f € V' and we multiply the first equation of (4.8) by v € V and the second equation of (4.8)
by 1 € L?(Q2) to obtain

/D Vvdy—/QpV-(B;v)dy+)\/ﬂp-w+(v-(B,*Zu))-wdy—i-/m|N|ﬁu~vdF

<f7 >V’,V +/Qg : Wiy + <b7 ‘NlB;v>H71/27H1/2 . (49)
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We consider a lifting w satisfying

V- (Byw) =g in €, (4.10)
(Byw) -ng = (Bya) -ng  on 9.
In order to this, we use [4, Corollary 8.2] and (4.2) to deduce the existence of w € [H(Q)]® such that

V- w=g in Q,
w-ng = (Bja)-ng on .

Then w = (B;;)~'w satisfies (4.10) and the estimate

lwll g1y < CUlgN 20y + lallgrzoays)- (4.11)

We set u = u+ w. Then, a couple (u, p) is a weak solution of the system (4.8) if and only if (@, p) verifies
the following variational formulation

V/QDn(ﬁ):Vvdy—/QpV-(B;v) dy+)\/ﬂp-w+(v-(B:;ﬁ))-wdy+/m|N|ﬁﬁ-vdF

=—v [ Dy(w):Vudy+ (]77 Vv v+ <b7 \N|B;v>
Q

—/ IN|Bw -v dl (v €V, ¢ € L*(Q)). (4.12)
o0

We have that

H_1/2,H1/2

|VuB; + B, (Vo)*|”
Dy(v): Vv dy = 1 d 4.13
[ oty vy = [ EEo A (113)

and writing

we deduce
|VuB;: + B, (Vo)*|”
7 7 —\ 2
dy = / D@)|" dz, YvelV,
Q det(VXo 77) Q(n) | ( )|

with T-n = 0 on 9Q(n). Applying a Korn inequality (see Proposition 4.5 below):

/D Vo dy+/ INIBJol? dT > Cllollmi (v e V). (4.14)
o0

Hence, we can apply the Lax—Milgram theorem and using (4.11), we deduce the existence of a unique
solution of (u,p) = (ux,px) € [HY(Q)]? x L?(Q) for (4.8) which verifies the estimates

lullgr e + APl L2 < C (HfHV’ 10l g-1/200y5 + N9l L20) + H@||[H1/2(aﬂ)]3) : (4.15)
Taking ¢ = 0 and v € [H(Q2)]? in (4.9), we obtain
/ D)) : Vo dy+ [ Vp- (Byo) dy = (Fo)vey
Q

This shows that Vp € [H~1(Q)]® and using standard result (see, for instance [4, Proposition 1.1]), we
deduce

12l 22y < € (IF s + 0llars e + Il s e ) - (4.16)
Then, combining (4.15), (4.16) and (4.11), we obtain the estimate independent of A:

lulligr oy + 1Pl 2y e < C (”f”vf + 10l -2 0092 + 119/l L2 + ||aH[H1/2(8Q)]3> : (4.17)
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We can thus pass to the limit as A — 0 in (4.8) to obtain a weak solution (u,p) of (4.6). To prove
unlqueness let us consider (*,p*) another weak solution corresponding to the same data. It follows that
u—u* € H, V- (u—u*). Then, from Definition 4.1, we obtain

21// |D(ﬂfﬂ*)|2 dy+/ 6|ﬂfﬂ*|2 dl’ = 0.
Q(n) 0Q(n)

Thus, using Proposition 4.5, we get @ = u" in Q(n).

Step 2: Strong solutions. We use an argument developed in [14,15]: if we approximate by n. € C11(w),
and the corresponding u., p. are H2 and H'. We show below that their norms depend only on the H?
norm of 7. so that we can pass to the limit. To simplify, we do not write any € below.

We first differentiate system (4.6) with respect to y; and y2 to obtain a similar problem as (4.6) with
source and boundary terms corresponding to the differentiates of f, g, a, b, A, and B,,. We only need to
estimate the terms coming from A, and B,, that is

IV - (Vudy, Ay) = 8y, By Vpllve, IV - (8y,Byu)llr2), 1By, 0y, Brull iz a0y
[0y, B, ' Nudplsr-1r200y0, 1By Vudy, Ayl (-1/2 000

‘ 9 1 1

o~ (Vu)'B S
¥ det(VXo.,) (Vu) By det(VXo.,)

(Vu)" 0y, By,

-2 ’ H-1/2(00))

Here we use a nice idea proposed in [14,15]: we estimate the above terms by using the H? regularity of
u and the H' regularity of p. More precisely, using the embeddings H'/?(w) ¢ L*(w) and H'/*(w) C
L8/3(w), we deduce that the above terms are estimated by

1/4 3/4
Illazs oy (el s Il s + 121 oty 2l 30 ) (4.18)

Using the first part of this proof and in particular (4.17), we obtain for ¢ = 1,2
10y vl (g1 e + 19y.Pll 120y < € (||fH[L2(Q)]3 + 10l gr2r2 00y + 191 1) + ||a||[H3/2(aQ)]3)
sy (Il e Nl s + I35ty P13 ) ) - (419)
We differentiate (4.6)2 with respect to y3, we obtain
H—ySazn n8§3u1 — Y30y, 77853“2 + a§3u3HL2(Q)
<C (||f||[L2(Q)]3 16l 17200y + 191510y + ||a||[H3/2(aQ)]3>
+Cnll sy (Nullfr s el ays + 21 ey 1213y ) - (4.20)
Then, going back to (4.6);, we also obtain
| A330,u1 — y38y1778ysp||L2(Q) + || Ass Oy, ua — y3ayz773yspHLz(Q) + || AssOy,us + 8yapHL2(Q)
C (I lizaqays + 16l 2 omye + 190l gy + Nallsrors omye)
+Cnllroy (Il oo Il s + Il oty 113 ) ) - (4.21)
Since Asg = m(l + (y304,m)* + (y30,,m)%) > 0, we deduce

H8§3UH[L2(Q)]3 + 10yspll 20y < C (||f|| w2 T 10l o0y + 190 @) + HaH[HS/?(aQ)P)
3/4 1/4 3/4
+Clnll sy (Il s Il s + Pl oty NPl )
Combining this with (4.19), we deduce the result. (]

We also need the following theorem which is proved in [32].
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Theorem 4.3. Assume 3 > 0 with By + B2 > 0. Let n € H3(w) and 5o > 0 such that 1+n > &y on w. Let
us consider the following non stationary Stokes system:

v —V - -T(v,m) =0 t>0, yeQ,

V-v=0 t>0, ye,
Upo =0 t>0, ye€o, (4.22)
[2vD(v)ng + vl =g t>0, yeoai,
v(0,-) =0 y e
There exists 9 > 0 such that if
g € W20, 00; [H'2(0Q)1, [L*(OQ)]?), Gy = 0, (4.23)
for some vy € [0,7]. Then the problem (4.22) admits a unique solution which satisfies the estimate

~2
191, (0,00, 1772022 z2(0p) 1V N2z 0 001122 (@012) < C N2/ 0 oo onps p2oaysy (429)
where C' is a positive constant.
We recall that the spaces W2(0, 00; X1, Xa) and L2(0, 00; L*(£2)) are defined by (2.3), (2.2).

Remark 4.4. In [32], the author assumes that 7 is more regular but such an assumption is only used to
obtain a lift of the boundary condition by taking a stationary Stokes system of the form (4.1), see relation
(75) in [32].

Note also that in [32], the condition (4.23) is replaced by the equivalent condition

g € W0, 00 [N QP LX), Gug =0.

Such an equivalence can be obtained by using the surjectivity of the trace operator (see [25, p.21, Theorem
2.3]).

We end this section by proving a Korn’s type inequality (that we used in the above proof).

Proposition 4.5. Assumen € W1 (w). Assume that 31+ B2 # 0. There exists a positive constant C' > 0,
such that

lullascacae < € (1P s + [VEu] aaone ) (4.25)

for all w € [H*(Q(n))]3.
Proof. We first show by contradiction that

lulls= e < € (0@ Nsz o + [VFe] oo ) (4.20)
Assume uy, € [H(Q(n))]® with
lullirz @y =1 (4.27)
and

D (ur)ll L2y + HfukH

Using the classical Korn inequality (see, for instance, [20]), the above relations imply that (uy) converges
weakly to some u € [H(Q(n))]® with D(u) = 0 and /Bu = 0 on 9Q(n). In particular, see [34, Lemma
1.1 p.18], there exist a,b € R3, such that for any y € Q(n), u(y) = a + b A y. Using that

u(y + Lier) = u(y), uly+ Lae2) =uly), (y € Qn)),

we deduce that b = 0, then u = a in Q(n). Since v/Bu = 0 on 9Q(n), we obtain that u = 0 in Q(n). Up to
a subsequence uy, — u strongly in [L2(Q2(n))]® and thus from (4.27), we get [ullir2(@my)e = 1 Which leads

-
[L2(0Q(m)]?

to a contradiction. In order to prove (4.25), we combine (4.26) and the classical Korn inequality (using
that Q(n) is Lipschitz continuous). O
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5. Linear System

Let us consider a linearized system of (3.5), (3.6), (3.7):

ou—V -T(u,p) = f t>0, ye,
V-u=0 t>0, yeQ, (5.1)
Oun+ Ain+ A20im = =T (T(u,p)no) +h  t >0,

with the boundary conditions

{ [u—T0m],, =0 t>0, yeo, (5:2)
[2vD(u)ng + Bu —Tm)], =g t>0, yeI,
and with the initial conditions

u(0,-) = u® in €,

n(0,-) =n° in w, (5.3)

am(0,) =n" nw.
Let us consider (v, ) the solution of (4.22) associated with g. Then w = v — v and ¢ = p — 7 satisfy
ow—V - -T(w,q) = f t>0, ye,
V-w=0 t>0, yeQ (5.4)
Oun + Ain + A0 = —T*(T(w, ¢)no) — T*(T(v, m)no) +h ¢ >0,
with the boundary conditions

[w—Tomn,, =0 t>0, yeof,
[2vD(w)ng + B(w —Tom)], =0 t>0, yeoIQ,

and with the initial conditions
w(0,-) = u° in €,
n(0,-) =71" inw, (5.6)
om(0,-) =n' inw.

To solve (5.4)—(5.6), we use a semigroup approach. We endow the space [L?(Q)]® x D(Ai/Q) x L3(w)
with the scalar product

w v
< m &1 > = <wav>[L2(Q)]3 + <A}/27717A}/2§1>
72 &2

L2(w) + <7727£2>L2(w) .

We consider the following functional spaces
H= {(w,m,ng) € [L*(Q)]? x D(Aiﬂ) x LAw)|V-w=0 inQ, [w— Tn2l,, =0 on [“)Q},
V= ([Hl(g)]S x D(AY) x D(A}/‘*)) NH. (5.7)
We also denote by P the orthogonal projector

P: [L2(Q)) x D(AY?) x L2 (w) — H.
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Finally, we define
D(A) = {(w,m,ng)e ([HQ(Q)]S x D(Ay) XD(A}N)) NV | [2vD(w)no+B(w—Tn2)], =0 on 39} ,

(5.8)
w —vAw
A m| = 2 ) (59)
72 A+ Az + T+ (2vD(w)no)
and
D(A)=D(A), A=PA (5.10)
Using the above definition, we can write (5.4)-(5.6) as
W' + AW =PF, W(0)=W?°, (5.11)
with
w f
W=1|7n|, F=1{0
8157’] h

Proposition 5.1. Assume that 31 + P2 # 0. The operator A defined by (5.8)—(5.10) is the infinitesimal
generator of a strongly continuous semigroup of contraction on H.

w
Proof. First we show that the operator A is dissipative: assume W = | 11 | € D(A). Then, by integration

2
by parts, we obtain:

AW, W) = (AW.W) =20 [ D@ dy~ [ 2D(wna - o~ Tm)] v + [ |45 ns] ds.
Q o0 w

We write
- / 2w D(w)ny - [w — T(n2)] dT = — / 2w[D(w)nolr, - [ — T ()]s dT = / 8w — T ()| d,

o0 oN onN
and we deduce

2
awawy =2 [ peo)? ay+ [ |am] s+ [ gl =Tom) R ar >0

Second, we show that the operator A is m-dissipative: we prove that for some A > 0 the operator

w
Al + A is onto. Let F' = ; € H. The problem is to find | n; | € D(A) solution of the equation
h 2
w
M +A)[m | =F, (5.12)
2
which is equivalent to the system
2w -V -T(w,q) =f inQ, (5.13a)
V.-w=0 inQ, (5.13b)
A —nz =g onw, (5.13c)
Ao+ Ay + Agne = =T (T(w,q)no) + h  on w, (5.13d)
[w—Tn2ln, =0 on 99, (5.13¢)
[2vD(w)ng + B(w — Tne)],, =0 on 9. (5.13f)
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To solve the above system, we use that n; = %(g +172) to obtain a system in (u,73) and we introduce the
space

= {69 e H'QP xD@AY*) | V-6=0 inQ, [6-T¢u, =0 onon}.

We can thus write the Eq. (5.12) in a variational form: find (w,n2) € V such that

(()-(@)=2() ((0)=) 610

with a : V xV — R given by

a(@)(?)) :)\/Qw-qbdy—i—2y/QD(w):D(¢) dy+AAn2-gds+L(A2n2)-gds

+;/MWW%My@dH— Blw — T (n2))ry - [¢ — T ()], dT,

A a0
and L :V — R given by

1
L(?):Af.¢dy+Lh.§ds_)\‘/LJ(A}/QQ).(Ai/Qg)dS

The bilinear form a is continuous and coercive on V thanks to the classical Korn inequality. We can
also check that L is linear and continuous on V. By the Lax—Milgram theorem, there exists a unique
(u,m2) € V solution of (5.14).

Now, taking £ = 0 and ¢ € D,(2), the Eq. (5.14) becomes

Awa@+nLDm%M@@:Lf¢@,

(M —vAw — f,¢) =0, Vo€ Dy(0).

Using the De Rham theorem [33, Proposition 1.2, p.14] , we deduce the existence of a unique ¢ € L*(Q2)/R
such that (5.13a) holds. In particular, we have V - T(w, q) € [L?(Q)]* and T(w,q) € [L?*(22)]°. Therefore,
we deduce that T(w, q)ng € [H~1/2(092)]® and

which is equivalent to

[ ) D)y (D 0,8}y v = [ (= ) o, (5.15)
for all ¢ € [Hl(Q)]?’ V¢ =0, ¢n, =0. On the other hand, taking £ = 0 in (5.14) yields
A [ weo dy+ 2 [ D) DO) dy+ (Bl = Tlmlsd Do = [ [0y (516)
for all ¢ € [HY(Q)]3, V- ¢ =0, ¢, = 0. Comparing (5.15) and (5.16) and taking into account that
[ Tw.0): D@y =20 [ Dlw)s Do)y Vo€ [H@)F, V-0=0, 60, =0,
we obtain "
(T, 000, D) 175 g2 = (1B = T)ls ) s grse = 0, V6 € [HYQP, V0= 0,0 =0.

(5.17)
Let ¢ € [H'/?(09Q))® such that ¢,, = 0, and let consider the system
-V -T(g,q) =0 inQ,
in Q,
g=10¢ on 0f).

<

@)
I
o
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The above system admits a unique solution (g,q) € [ (Q)] x L2(2) such that V-g =0 and glon = ¢
This implies that (5.17) holds for all ¢ € [H!(£2)]3, = 0. Inserting (5.17) in (5.15) we get
(

[ 2vD(w) s D)y - / 4V - ddy + ﬂ(w_7772)707¢70>H—1/2,H1/2 = [ =)oy, (9
Q Q

for all ¢ € [HY(Q)]3, ¢n, = 0.

Thus, we deduce that (w, q) is a weak solution of (5.13a), (5.13b), (5.13e) and (5.13f) in the sense of Def-
inition 4.1. Since 17, € H?*(w), Tny € [H?*(0Q)]®> we can apply Theorem 4.2 and obtain
(w,q) € [HA(Q) x H'(Q)/R.

Going back to the variational formulation (5.14), we deduce

/(A}”m)-(A}% ds = —/\/nz-ids—/(flznz)-§ds—/T*(T(u,Q)no)-§d8+/h-£ds,

w

for any ¢ € D(Al/Q) and where 71 = 3(g + 12). We have T(w,q)ny € [H'/?(0Q)]® and thus
T*(T(w, q)ng) € L3(w). Moreover since 1o € H?(w), we deduce that 1y € D(Az). Thus Ay € LE(w).
Applying Lumer-Phillips theorem, we conclude that (e’tA)@O is a semigroup of contractions on H.
O

In order to prove that (e7*4);>¢ is an analytical semigroup, we use Lemma 3.10 in [2]. We first need
to show that (e7*4);>¢ is exponentially stable.
Proposition 5.2. Assume that $1 + (B2 # 0. The semigroup (e’tA)go s exponentially stable.

Proof. Since (e‘tA)t>0 is a semigroup of contraction, we apply the classical result of Huang—Gearhart
(see for instance [26, Theorem 1.3.2, p.4]). We have to show that

iR C p(A) and sup||(iA] + A)7"|| < oo.
A€R

Using the proof of [2, Proposition 3.5], we only need to prove the existence of C' > 0 such that

VA€C, ReAe(0,1), [[(M+A)7'|,<C
f w
Let us consider A € C, with ReA € (0,1), F=|g | € Hand |7 | € D(A) such that
h 2
w
M+A) |m]|=F (5.19)
2

We can write the above relation as the system (5.13). We multiply (5.13a) by w, (5.13d) by 7, and we
perfom integrations by parts to deduce

2 2 12|12 2
Re A (mnwﬂs +lalac + 4|, ) ) + 2 IDw s + [ Bl(w — T} Par

s, < €1 Nwmmle. (5.20)
We have
Il < €43, < CNP s, s (5.21)
On the other hand, we have

[l ooy < CUBW = Tna)lFz2aays + 1T 02l iz o0ys)-
Using (4.25), (5.21) and the fact that 7 € £(L?(w), [L?(99)]?), we obtain
lollFirs gy < O IF g W s (5.22)
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Following the proof of Proposition 3.5 in [2], we have

|45

2 2 2

sy < C (10l oy + U + 1l o))
olw

Gathering the above inequality with (5.22) and (5.21), we obtain

1(w, 1, m2) I < ClIF g,

for some positive constant C'. This concludes the proof. ([

Proposition 5.3. Suppose that B1 + P2 # 0. The operator A is the infinitesimal generator of an analytic
semagroup on H.

Proof. We apply Lemma 3.10 in [2]: since (e~*4);>¢ is exponentially stable, it sufficient to show

C
AL+ A7 F||; < o |Flly (F€H, \e€iR"). (5.23)
f w
Assume \ € iR*, F = | g | € H and let us consider W = (A + A)~'F. We write W = | 01 | so that
h 72

(5.13) holds. We now proceed as in [2, Proposition 3.11]: we multiply (5.13a) by @ and (5.13d) by 7, and
we integrate by parts

A( [y + el - 4720

+ [ Bllw=Tm)n [ dr = (£, W), (5:24)
o0

2

+2u/|Dw|2d +HA1/2 ‘2
Q YT Bl e

L2 (w)
Multiplying by A and taking the real part, we find
2
NP W = 22 [ AL 2, Re (P AW)
Using the Cauchy-Schwarz inequality, we obtain
2
1/2
ARIWIG < 42 A2 |+ 171G (5:25)

Since A; and A, are self-adjoint positive operators and D(Ai“) = D(A;/Q), we apply [11, Theorem 1.1]

to deduce that
0 I
=4
1/2

is the infinitesimal generator of an analytical semigroup on D(A4,’7) x L3(w). We have in particular

— - 1/2
INNOL+8)7 2 arro 120y < CIZIparroyyay (A€ IR Z € D(AT?) x Li(w)).

Applying this estimate on (5.13¢)—(5.13d), we deduce
A (HA}%] . ||n2||L2(w>) <C (T*(T(waQ)noﬂLz(w) + 4], + |h||L2(w>) . (5.26)
We use the fact 7% € L([L*(09)]?, L3(w)) and we combine (5.26) and (5.25) to find

AW s < € (ITw, @)mo)lz2qonys + 1F 1) - (5.27)

Combining Theorem 4.2 and an interpolation argument, we get for e < 1/4

HT(w’fI)noH[m(aQ)]B <C <||(V : (T(w’Q)))||[H—2E(Q)]3 + ||T772H[H2—2€(BQ)]3> : (5.28)

The rest of the proof is similar to the proof of [2, Proposition 3.11]. O

L?(w
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We recall that X - is the space given in (2.8). We are now in position to give the following theorem.
Theorem 5.4. Suppose that (51 + P2 # 0. There exists 9 > 0 such that if
@, n%n') €V, f e L3(0,+00: [L2(Q)]), h e L3(0,+o0; L§(w)),
and
G € W40, +o00; [H'2(09)]%, [L*(09Q)]*)  with  Gn, = 0,
for v € [0,70], then there exists a unique solution (u,p,n) € Xoo , on (0,+00) of the system (5.1)—(5.3).

Moreover there exists a positive constant C such that

||(u,p, ||;\5‘oo ~ < ( || 7770’771)||V + ||f||Lgy(0,+oo;[L2(Q)]3) + ”g”W$/4(O,+oo;[H1/2(8Q)]3,[L2(8Q)]3)
1P 22 (0,1 00:L2 (w)) ) (5.29)

Proof. Since A generates an analytical and exponentially stable semigroup, from [5, Theorem 3.1, p.143],
the evolution Eq. (5.11) admits a unique strong solution and verifies the estimates

1 0,0,712) 2 0, oty 1071, ) oy + 1007272 5130 it

c (H(u07’r’07nl)’|v + ||f||L§(O,+oo;[L2(Q)]3) + ||h||L%(O,+OO;L2(w))) . (530)

Applying the De Rham theorem [33, Proposition 1.2, p.14], we deduce the existence of ¢ € L?Y(O7 oo; H!
(©)/R) such that (w,n,q) is the solution of (5.4)—(5.6). Setting u = w + v, p = g + ® where (v, 7) is the
solution of (4.22) associated with g, we obtain the result. O

Corollary 5.5. Suppose that f1 + B2 # 0. Assume T > 0 and
(W’,n°n') €V, fe L20,T;[L*(Q)°), he L*(0,T; Lj(w)),
§ € WA, T3 [H2(0Q)F, (LX) with Guy 0.

Then there exists a unique solution (u,p,n) € Xp on (0,T) of the system (5.1)-(5.3). Moreover, there
ezists a positive constant independent of T such that

[[(w, p,m ||XT X (H a770a771)HV + Hf||L2(o,T;[L2(Q)]S)
+ 1gllwrsa o,z 2 0015 1200079 + 17 20,702 () ) (5.31)
Proof. We extend f, g, h by 0 in (T, 00) and apply Theorem 5.4. O

We can now deal with the case 3; =0 for i = 1,2
Theorem 5.6. Suppose that 3y = B2 = 0. Assume T > 0 and
(W0’ n') €V, feL*0,T;[L2(Q)), he L*0,T; Liw)),
g€ WYA0,T; [HY?(0Q)]%, [L*(0Q)]®)  with G, = 0.

Then there exists a unique solution (u,p,n) € Xr on (0,T) of the system (5.1)~(5.3). Moreover, there
exists a positive constant (non decreasing with respect to T') such that

| (u,p,m ||XT < (H 77707771)||V + ||f||L2(O,T;[L2(Q)]3) + ||§||W1/4(o,T;[Hl/2(asz)]3,[L2(asz)]3)
+ 12l 20,7 12wy ) (5.32)

Proof. Let introduce the space

X = WY40,T; [HY?(00)]3, [L*(99Q)]%) x WY/4(0,T; HY?(w), L*(w)).
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Let (@, 72) € X. From Corollary 5.5 (with 8; = 33 = 1), there exists a unique strong solution (u, p,n) € Xr
to the system (5.1), (5.3) with the boundary conditions

{ [u—Tom),, €(0,7), yean,

=0
5.33
[21/D(u)n0]~ro + [ - Tatn]‘ro =g+ ['ZZ - TEQ]TO te (OvT)v y € 0N, ( )

Using the trace theorems and the definition (2.6) of Xr we can thus define the mapping

72 Y]

Let us prove that the mapping F is a contraction for T small enough: assume (u,73) € X, i = 1,2 and
let (u®,p’,n') € Xr i =1,2 be the corresponding solutions of the system (5.1), (5.3), (5.33). We write

u=u—u?, p=p' —p’ m=n' -0t U= -0, =7 -7
so that
ou—V - T(u,p) =0 t>0, yen,
V-ou=0 t>0, yeQ, (5.34)
Oun + A1+ A0 = =T *(T(u,p)ng) ¢ >0,
{ [u—Tom),, =0 t>0, yeon, (5.35)
[2vD(u)no + (u—Tom)],, =[(u—Tn)l,, t>0, yei,

w(©0,)=0  inQ,
n(0,-) =0 in w, (5.36)
om(0,-) =0 inw.

From (5.31) and the boundedness of 7, we obtain

(s s My, < C (@ 72) [ - (5.37)

From (2.6), (2.7), the trace theorem and Lemma A.5 in [6], there exists a constant C' independent of T'
such that

||at77HH3/4(O,T;H1/2(w)) + ||U||H5/8(0,T;[L2(aﬂ)]3) + HU||L<><>(0,T;[H1/2(BQ)]3) < Cl(u, p, 77)HXT - (5:38)
From Corollary A.3 in [6] and (5.36), we deduce
Hatn”Hl/‘l(mT;L?(w)) + ||U||H1/4(0,T;[L2(ag)]3) < C(T3/4 + T3/8) [ (u, p, 77)HXT (5.39)
and
10111 20,7, 1172wy + 10l 20,7801/ 00273) < CT 2 (0, 2,1) |y - (5.40)
Combining the estimates (5.38), (5.39), (5.40), we obtain
(@, 7") = F@, )|, < O+ T%) ||@,7") = @, 7)) -

This shows that F is a contraction for 7" small enough and using the Banach fixed-point theorem, we
deduce the existence and the uniqueness of a strong solution for the system (5.1)—(5.3) (with 8; = 2 = 0)
and the estimate (5.32). To deduce the result fo any T', we simply reiterate the above procedure on small
intervals [kTp, (k + 1)Tp], where Tp is such that F is a contraction. O
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6. Fixed point

In this section, we prove the main result Theorem 1.1. Using Definition 3.1, we first restate this result
after change of variables.

Theorem 6.1. 1. Let 3; >0, i = 1,2. Assume that (u°®, 7%, n') € V with
1+n">0.

There exists a time Ty > 0 (depending only on ||(u®,n°,n")||v) such that the system (3.5), (3.6) and
(3.7) admits a unique strong solution (u,p,n) € Xr for T < Tj.
2. Let 3; > 0 with By + B2 >0, i = 1,2. There exists Ry > 0 such that for any (u°,n°,n') € V with

1400 >0 and with ||(u®,n°.n")lly < Ro,

then the system (3.5), (3.6) and (3.7) admits a unique strong solution (u,p,n) € Xo 4 on (0,00) for
Y e [07 70] .

We recall that V is defined by (5.7). The above result is obtained by using a fixed-point argument.
First let us show the local in time existence. We define for all T' > 0 the space

Yr = L2(0,T; [L*(Q)]°) x W0, T5 [H?(0Q)), [L*(9Q)]°) x L*(0,T; L*(w)), (6.1)

and for R > 0, we define the set
Br.r ={(f.9,h) € Yr | |(f,3,M)ly, < R}. (6.2)
In the sequel, we denote by C' a quantity which does not depend on R and T'. We first start by assuming
(@7 0"y < R. (6.3)

Thus, applying Theorem 5.6, we know that for any (f,g,h) € Bp g, there exists a unique solution
(u,p,n) € Xr of (5.1)—(5.3). Moreover, the estimate (5.29) yields

[(w, p, )l 2, < CR, (6.4)
for some positive constant C. For the local existence, the constant R is fixed. In the next section, we
show that for T small enough, we can define F,G, H by (3.9), (3.10) and (3.14) and thus consider the
mapping ¢ defined as follows:

o :BT,R —>yT7 (fvga h) — (F(uap7n)aG(ua77)7H(uvn)) (65)

In what follows, we show that for 7" small enough, we have ®(Br,r) C Br,r and that ® 3, . is a strict
contraction.

First, we notice that (6.4) yields several other useful estimates. From (2.6), (2.7) and Lemma A.5 in
[6], there exists a constant C' independent of T such that

10l 10,7522 )y + 1M 23 0,75 5720y + 1080l Lago 1572wy + Hasa'77HH7/8(0,T;H5/4(w))

a

0% 1 5 T [ull Lo (o, 7(m572())2)

’H7/8(0,T;L8/3(w
Hull grrao,ryrr o9)2) + 1wl ms/ao rirzo0)) < CR. (6.6)
Here and in what follows, we use the following notation for the derivatives of the function n = n(t, s1, s2):

Ds,1m, 0% . n and afiSjSkn (i,7,k € {1,2}).

SjSk
For simplicity, in all what follows, we assume
T<1. (6.7)

The above assumption simplifies the estimates in the sense that we only keep the smaller power of T'. We
also denote by Cr a constant that can depend on R in a nondecreasing way (typically the sum of CR™,
m € N, C' > 0). The value of these constants may change from one appearance to another.
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6.1. Estimates on the change of variables

We first prove some useful estimates on 7,

Lemma 6.2. We have

0 0 1/2
||77 ) HLOO(O,T;LOO(w)) <C H” -1 HLoo(O,T;H?(w)) < CrT'2. (6.8)
In particular, there exists
c
Ty = o >0
such that if T < Ty, then
<C. (6.9)
H L4+ 11| oo (0,7;00 ()
We also have the following estimates
0 /4
H@Sjn — 05,1 HLOO (0,715 (@) S CrTY (6.10)
1/4
Hn n ||L°C(OT as s,ﬂ? 85 skn HLOO (0,T;L4(w)) < CRT 3 (611)
10l Lo 0,711 (w)) < CRT Yo, (6.12)
Proof. In order to prove (6.8), we write
and we combine it with (6.6) and with H?(w) — L°°

Since
1 € DY) = H(w) = C°(@),
there exists € > 0 such that 1+ 7" > 2¢. Using (6.8), we obtain (6.9) if 7" is small enough.
We set & = 95,1 — 0s,1° and £*(z,-) = £(2T),-), z € [0,1]. Then we combine (A.1), the embedding
H3/%(0,1) =< L>(0,1), Lemma A.1 in [6] and (6.6) to obtain
||§||Loo(o,T;H3/2(w)) = ||€*||Loc(o,1;H3/2(w)) <C ||f*||H3/4(0,1;H3/2(w)) < th*J3/4 2,(0,1),H3/2(w))
= CT &)spa 2001920 < CT 00,1l v o 0/20yy < CTH R
Then, we deduce (6.10) and (6.11) by using H*/?(w) — L*®(w) and H'/?(w) — L*(w).
Finally, (6.12) is a consequence of (6.6) and (2.7). O

Now, we show some estimates on the changes of variables X and Y defined by (3.2). We recall that
a;x is given by (3.8).

Lemma 6.3. Assume (6.7).

lair(X) = ikl oo 0,751 (0)) T IVY(X) — I3||L°°(0 Ti[Lo ()] < CrT™. (6.14)
Haik(X)HLoo(o,T;Lw(Q)) T IVY (X oo 0,152 ()19) < Cr- (6.15)
da; >Y;
H ik H < CRrTY4, (6.16)
8y] L°°(O,T;L4(Q)) OO0z, Lo (0,T;L4(Q))
0%a;
Lk (X) < COp. (6.17)
Ox;
L= (0,T;L2(2))
106 (X))l La o, 7512 ()12) < Cr- (6.18)

10kt (X)) 1o 0,112 () < CRTC. (6.19)
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Proof. By definition [see (3.1) and (3.2)], we recall that
1 0
Valta) = o O0T2) oy ) —a =12,
1 + 77(757 X1, $2)

As a consequence, the estimate on VY (X) — I3 reduces to the estimate of the following terms

Y- Y-
‘S(X) , j=1,2 and '3(X)—1 . (6.20)
Oz L0 (0,T;L°° () d3 L=(0,T;L>=(Q))
We have
IYs n’ —n
By using (6.8) and (6.9), we deduce
Y-
‘ 2(x)-1 < CrT'2. (6.22)
Oz3 Lo9(0,T3L°°(92))
On the other hand, for j = 1,2, we have
aYB (85 -770 - 8&'"7) (77 — 770)
—(X)=ys—F——"" + y30s. N —— 6.23
and thus, using (6.4), (6.3), (6.8) and (6.10),
‘ %(X) < CTYAR 4+ CTY2R? < CrTY*.
Ox; L (0,T;L>(Q))

Hence, we obtain (6.14) and thus (6.15).
We have for k, j € {1,2},
82Y (ags.nO*a‘gs 77) aS' 788' 0 8% —88k 0
S (X) = gz e +y383k77—( - ]770) B = B ) 770)
Oz d; (141 (1 +n)(1+7°%) (14 m)(1+7°)
2

0%.s,M 05,1051
+ys(n—n°) <(1 AT 2(1 T n)2> : (6.24)

+ ySaS]’n

Then, we obtain
0%Y3

2
8xk 8l‘j (98

jskn - 6§jSkUOH

<C<]

+1° =1l e 07250 ) (‘ %

- 5’sj77||Loe(o7T;L°°(w))

‘ + R2) )
L (0,T;5L4(w))

Using (6.11), (6.10) and (6.8), we obtain (6.16). The other cases for k,j are easier to do and we skip
them. X
The third derivative % involves the following terms

+ R||0s. 70"
L= (0,T;L*(w)) L= (0,T;L4(w)) H 83

.

93 sos” 95103 5, n° 95, 1°0% 4.1 0 s 95103 5,1
Y35 U3 . Y3 : Y3 —* Y3 ——o
Ln® 7 @+ +n0)" (140 +n°) B (L+m)?

y: 8s,-7788k7788177 " 8$j7783k7783l770

THm? T P21+
Thus, using (6.4), (6.10), (6.11), (6.8) and (2.7), we obtain (6.17).
We have
0
6tY(X) = —Ys3 al €3

1+n
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and thus
10:Y (XN Lago, 12 2y S Cr IO a0, 7,150 () -
Thus, using (6.3) and (6.6), we obtain (6.18).

The terms appearing in dya;,(X) are of the form

Omds,m omds,n° 975, (1+n")0n

Ys y Y3 y Y3 ’
(1 4m)? (L+n) (1 +1°) (1+n) (14n)?
Consequently, using (6.8) and (6.10),

[0eair (X))l Lo 0,722 < CrNONN Lo 0,751 () -
The above estimate and (6.12) yield (6.19). O
Now, we need the following lemma to estimates the terms on the boundary.
Lemma 6.4. Assume (6.7). Then we have the following estimates

VY (X) = I3l oo 0,13 1272 (002))9) T+ 110ik (X) = Gikel| oo (0,7, 1132 (02

+lno = nll o o 7im3/2 022 T 176 = Tl oo (0 s r2005) < CRT'/*, (6.25)
H Dt (X) < OpTYA, (6.26)
Ox; Lo (0,T;H/2(6%))
VY (X) = I3l gro/s 0,751 (00))9) T+ 11@ik (X) = Gitell o/ 0,710 (02
+ im0 — nll gro/s o,y pno o)) + 76 — TzHst(o,T;[Loo(aQ)P) < Cr. (6.27)
dam
H Gk (X)H < Cg. (6.28)
Ox; H7/8(0,T;L8/3(89))

Proof. Relation (6.25) is a consequence of (6.21), (6.23), (1.5) and (3.11) combined with (6.11). We obtain
(6.26) by using Lemma 6.2 with (3.8).
Using (6.6) and H*/*(w) — L*°(w), we obtain

0
Hasjn - 85]"'7HH7/8(07T;L00(L‘))) < Ck. (629)
For (a1, as,a3) € N3, we also deduce that
N (9s;m)*? 0 7/8
L (9, n° — 9, m) € H3(0,T; L .
T (00 = 0, € HTN ()

Nevertheless, one has to take care about the dependence in T of the corresponding norm. In order to do
this, we notice that if

frg € H®(0,T; L (w)) N L>(0,T; L™ (w)),
then
fg € H3(0,T; L (w)) N L™(0,T; L™ (w)),
and
£l zr7/r5 0,75 150 (wyynLee (0,750 () < ClIF 775 (0,750% (@))nLo (0,15 () 191 5778 (0,7 L0 () Lo (0,750 (w))

where ||| gr7/s (0,720 (wy)nzee 0,12 w)) = /s 0,750 ) F I llpoo (0,720 ()
The last estimate is obtained by writing the definition (2.1) of the norm in H7/8(0,T; L>(w)).
Then, combining (6.29) with (6.4), we obtain that

N (9s,m)*? 0
. (0s;n" — 0s;1m) < Cg.
‘ (I+n)e= 27 7 s 0z ()

From this estimate and (6.21), (6.23), (1.5) and (3.11), we obtain (6.27).
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To prove (6.28), we use that the terms appearing in ag;'%k (X) are of the form (6.24). Combining the
above arguments with (6.6) and (6.4), we deduce the result. O

6.2. Estimates of F', G, H

Proposition 6.5. Assume F', G, H are given by (3.9), (3.14), (3.10). Then we have

1E (s 2.1 220 7202y < CRTS, (6.30)
1ty )| 20 722 0yy < CRTYY, (6.31)
G (u, 77)||L2 0,T;H/2(80)) T G (u, ’7)HH1/4(0 T;L2(8Q)) N < CrTY%. (6.32)
Proof. Using (6.14), (6.15), we obtain
ay, Y D%y, 1
i (X) 2 (X)) 2 (X) = OikOmj0j1) 5 < CpTHM4, 6.33
(a3 (X) Ox; )8333'( ) wm jl)aylaym L2(0,T;L2(9)) ) (039
18— ik (CO)Drtsi | 2o g2y < CRTY, (6.34)
and
Y 0
H((ski — Thixy) 2L < CrT'V*4, (6.35)
Oxi = Oyk ll20,iL2())

Using (6.15) and (6.18), we obtain

8uk
En < CrTY* |0 o Ul 7o < CrTY*,
oy L2(0,T3L2(Q)) R ” t ( )HL‘*(OT [Lo=()]3 ” HL 0,7 HY(]?) S VR

Using (6.15) and (6.16), we get

aik(X)0:Y1(X)

(92Y1 8uk 8aik 8Yl ﬁuk
k() ez X oz, g, g0
J 4 L2(0,T;L2(Q)) J J Yullz(o,1;02()
Oa; 0%Y;
k 2l (X) Hu||L2(O T[Hz(Q)]?,) § CRT1/4.
6191 Lo (0,T5L4(Q)) 9z} o
o Le°(0,T;L4(Q))
(6.36)
From (6.19) and (6.6), it follows that
||ataik(X)uk||L2(07T;L2(Q)) < Hataik( )HLG(O T;L2(Q)) ||Uk||L3 0,T;L°( Q)) CRTI/ (637)
From (6.17) and (6.6)
0%aip, D*ag,
57 X STV S ) a0,y < CaT'
J L2(0,T;L2()) J Los(0,T;L2 (%))
Using standard estimates on the nonlinear terms (see, for instance, [3, p.48]), we have
w24 < CTVAR2, (6.38)
6ym L2(0,T;L2(Q))
Combining this with (6.14) yields
Y, 0
H <5ij5k15km - akl(X)aij (X)(X)) uj < CRT1/2. (639)
Ay, aym L2(0,T;L2(Q))
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Using (6.16), we have also

8aij

(X)

< Cg lwill oo 0,724 1l L2 0,7, 2% (02))
L2(0,T;L2(Q)) L= (0,T;L*(2))

< CrTV*™. (6.40)
Hence, F(u,p,n) is L0, T;[L%*(Q)]?) and using (6.33), (6.34), (6.35), (6.39), (6.37) and (6.40), we get
1F

axk

)
(2. 2o 2y < CRTYC.

We estimate now G(u,n) in W/4(0, T; [Hl/2 (09)]3, [L?(09)]3). We recall that the formula (3.14) for
G involves 78, W, V¢ [see (3.11), (3.12), (3.13)]. First we write for i = 1,2

Vi = (2uD(u)ng + B(u — TOm)) - (7’0 — 7Y 4+ [2vD(u)ng + B(u — TOn) — W] - 1, (6.41)
with
2vD(u)ng + B(u — Tom) — W],

Oy, Oy,
— Z no); <6km Ogj + Ojm—— 3 6qk>
J,m yq

Frt 0yq 0z 0yq &Uk

Opm, O0tim
—Van (a:‘j( U, + 8jk ( )um) —&-52((% —akj(X))uj, k= 1,2,3. (642)
m J

From (6.4) and trace results, we have

Ouyy,
||u||L2(07T;[H3/2(aQ)] ‘ 9 < CR.
Ya llL2 (0,112 (00))%)
Combining this with (6.25) and (6.26), we deduce
i 1/4
||V HL2(O,T;H1/2([«)Q)) < CRT / y

and thus from (3.14), we finally obtain
G (u, 77)||L2(0,T;[H1/2(6Q)]3) < CRrTY*.
For the estimate in H/4(0,T; L?(98)), we use (A.5): for instance,

Oy, 0Y,
nj(agm(X) — Ok )8 . XH
Yq OT; H'/4(0,T;L2(69))
Y,
< CTY® |Inj(apm(X) —6km)aq(X)’ Ot < CRTY®,  (6.43)
Ox; H7/8(0,T;L2(09)) dyq H1/4(0,T;L2(99))

The last inequality is obtained by using both (6.25), (6.27) and (6.6).
The other kind of terms that has to be estimated are of the form

Dagm dagm
‘ aj (X)Um < CT1/8 ag X H ||um||Hl/4(o T.08(50)) < CRTI/S,
du; HY/4(0,T;L2(8Q)) 8 HT/8(0,T;L5/3(0%)) Y
where we have used (A.5) and
aakm
X)=0 att=0.
Ge(X)=0

All the other terms are estimated similarly so that we finally deduce (6.32). The estimate (6.31) on H
can be done similarly as the estimate (6.32) for G. g
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6.3. Proof of Theorem 6.1

We are now in position to prove Theorem 6.1.

Proof of Theorem 6.1. First let us prove the local in time existence. We recall that ® is given by (6.5),
with Yr given by (6.1). From (6.30), (6.32), (6.31), we obtain

1®(£.3.h)lly, < CrT'.

Thus, for T small enough, we obtain that ®(Br r) C Br g, where By g is defined by (6.2). With compu-
tations similar as the ones done in the two previous subsections, we also obtain that for 7" small enough,
®|p;. is a contraction. Using the Banach fixed-point theorem, we deduce the existence and uniqueness
of (u,p,n) solution of the system (3.5), (3.6) and (3.7) provided that T is small enough.

For the second part of Theorem 6.1, the application ® is defined in a similar way as (6.5) but with
T = oo and

Vao = L2(0,00: [LA(Q)F) x W40, 005 [H 2@, [L*(OQ)) x L2(0,00: L2(w)).  (6.44)

Here v € [0,79], where 7y is given by Theorem 5.4. In that case, we show that for R small enough
®(Boo,r) C Boo,r and that @ Beo.r 18 a strict contraction. The estimates are similar to the previous case,
but are simpler: for instance, Lemma 6.2 is replaced by the following estimates:

<C Il L (0,0053(wy) < CR- (6.45)

2
||77||L$°(0,00;L°°(w)) + HasjnHL?yo(O,oo;Lm(w)) + ‘ 85j3k77 L2°(0,003L4 (w))

In particular, there exists Ry > 0 so that, if R < Ry, then
’ 1
We can then define the changes of variables X and Y by (3.3), and obtain similar estimates as in Lemma

1+n
6.3, Lemma 6.4 and Proposition 6.5.
This yields

<C. (6.46)

L>(0,T;L%(w))

12(f,9,h)lly. <CR?, (6.47)
and

o5V 80— e(r@. 5@ 0@ | <R [(1O.50,00) ~ (52,5 AD)| L (648

oo oo

for (f,3,h), (f,3®, h) € B, r. Then, we use the Banach fixed point by taking R small enough and
we deduce the global existence and uniqueness of a strong solution (u, p,n) € X - for the system (3.5),
(3.6) and (3.7) provided that R is small enough. O
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Appendix A: Technical results

In this section, we give some technical estimates that have been elaborated in [6]. Given a function &, we
define for z € [0,1], £*(z) = &(2T). Assume X is a Banach space. If £ € H*(0,T'; X), then £* € H*(0,1; %)
and

|_€*J $,2,(0,1),x — T(Qs_l)/Z |_§J $,2,(0,T),%- (Al)
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Assume o9 € (1/2,1] and o1 € [0, 03]. Using the above result, there exists a constant independent of T'
such that for any & € H?2(0,T; X) and £(0) = 0, then

1€l 71 0,m,2) < CT7 74 MI€ll oz 0,1,2) - (A.2)

We also recall the following result on the interpolation estimates (with constants independent of T'),
see [6, Lemma A.5]: assume o € [0,1], u3 > 0, puo > 0 and p = opg + (1 — o)ug. Then there exists a
constant C' independent of T such that for any function uw € H (0,75 H* () N L2(0,T; H*2(12)), we
have

o 1—0o
HUHH“(O,T;HM(Q)) <C HUHHl(o,T;Hm(Q)) HUHL?(O,T;HHz Q) - (A.3)
1 1-
On the other hand, for p, ¢ € [1,+0o0] and — = 7 + Q, we have
r p
o l—0o
lll pr o, 1102y < C Nll Lo 0, 1100 () 18l pago, s mrie2 () 5 (A4)

for w € LP(0,T; H* (Q2)) N L9(0, T; H*2(2)).
We give also a useful formula (see [6, Lemma A.7]) for the product of functions: assume that X;, X
and X3 are Banach spaces such that

1f9llx, S CUfllx, 9llx,, VFe€ X, VgeXa

Let us assume o € (1/2,1], s € [0,1/2], Ty > 0. Then there exists a constant C' such that for any T' < Tp
we have

Hu1u2||Hs(0,T;353) <cresle HU1||H5(07T;351) ||U2||Ha(o,T;352) + ||U2(O)Hx2 ||u1||Hs(o7T;3el) . (AD)

for all u; € H*(0,T;%;) and us € H?(0,T; X2).
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