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Abstract. In this paper, we consider the local regularity of suitable weak solutions to the 3D incompressible Navier–Stokes
equations. By means of the local pressure projection introduced by Wolf (in: Rannacher, Sequeira (eds) Advances in
mathematical fluid mechanics, Springer, Berlin, 2010, Ann Univ Ferrara 61:149–171, 2015), we establish a Caccioppoli type
inequality just in terms of velocity field for suitable weak solutions to this system
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This allows us to derive a new ε-regularity criterion: Let u be a suitable weak solution in the Navier–Stokes equations.
There exists an absolute positive constant ε such that if u satisfies

∫∫
Q(1)

|u|20/7dxdt < ε,

then u is bounded in some neighborhood of point (0, 0). This gives an improvement of previous corresponding results
obtained in Chae and Wolf (Arch Ration Mech Anal 225:549–572, 2017), in Guevara and Phuc (Calc Var 56:68, 2017) and
Wolf (Ann Univ Ferrara 61:149–171, 2015).
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1. Introduction

We focus on the following incompressible Navier–Stokes equations in three-dimensional space{
ut − Δu + u · ∇u + ∇Π = 0, div u = 0,

u|t=0 = u0,
(1.1)

where u stands for the flow velocity field, the scalar function Π represents the pressure. The initial velocity
u0 satisfies div u0 = 0.

In this paper, we are concerned with the local regularity of suitable weak solutions to the 3D Navier–
Stokes equations (1.1). This kind of weak solutions obeys the local energy inequality below, for a.e.
t ∈ [−T, 0] , ∫

R3
|u(x, t)|2φ(x, t)dx + 2

∫ t

−T

∫
R3

|∇u|2φdxds

≤
∫ t

−T

∫
R3

|u|2(∂sφ + Δφ)dxds +
∫ t

−T

∫
R3

u · ∇φ(|u|2 + 2Π)dxds, (1.2)

where non-negative function φ(x, s) ∈ C∞
0 (R3 × (−T, 0)).
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Before going further, we shall introduce some notations in what follows. For p ∈ [1, ∞], the notation
Lp((0, T );X) stands for the set of measurable functions on the interval (0, T ) with values in X and
‖f(t, ·)‖X belongs to Lp(0, T ). For simplicity, we write

‖f‖Lp,q(Q(r)) := ‖f‖Lp(−r2,0;Lq(B(r))) and ‖f‖Lp(Q(r)) := ‖f‖Lp,p(Q(r)),

where Q(r) = B(r) × (t − r2, t) and B(r) denotes the ball of center x and radius r.
Roughly speaking, the local regularity of suitable weak solutions is intimately connected to ε-regularity

criteria (see, e.g., [1,3,4,7,8,11–13,15–19]). Particularly, a well-known ε-regularity criterion is the follow-
ing one with p = 3: there is an absolute constant ε such that, if

‖u‖p
Lp(Q(1)) + ‖Π‖p/2

Lp/2(Q(1))
< ε, (1.3)

then u is bounded in some neighborhood of point (0, 0). This was proved by Lin in [12] (see also La-
dyzenskaja and Seregin [11]). In [10], Kukavica proposed three questions regarding this regularity criteria
(1.3)
(1) If this result holds for weak solutions which are not suitable.
(2) It is not known if the regularity criteria holds for p < 3 in (1.3).
(3) If the pressure can be removed from the condition (1.3).

Recently, Guevara and Phuc [7] answered Kukavica’s issue (2) via establishing following regularity criteria

‖u‖L2p,2q(Q(1)) + ‖Π‖Lp,q(Q(1)) < ε, 3/q + 2/p = 7/2 with 1 ≤ q ≤ 2. (1.4)

Later, He et al. [8] extended Guevara and Phuc’s results to

‖u‖Lp,q(Q(1)) + ‖Π‖L1(Q(1)) < ε, 1 ≤ 2/p + 3/q < 2, 1 ≤ p, q ≤ ∞. (1.5)

To the question (3), for a given bounded C2 domain Ω ⊆ R
3, Wolf introduced the local pressure projection

depended on domain (for the detail, see Sect. 2) Wp,Ω : W−1,p(Ω) → W−1,p(Ω) (1 < p < ∞) in [18,19]
and obtained a ε-regularity criterion without pressure below∫∫

Q(1)

|u|3dxdt < ε. (1.6)

In addition, very recently, in [3], Wolf and Chae studied Liouville type theorems for self-similar solutions
to the Navier–Stokes equations by proving ε-regularity criteria

sup
−1≤t≤0

∫
B(1)

|u|qdx < ε,
3
2

< q ≤ 3. (1.7)

Based on Kukavica’s questions and recent progresses (1.4)–(1.6), a natural issue is whether the regularity
criteria (1.3) holds for p < 3 without pressure. The goal of this paper is devoted to this. Before we state
our results, we roughly mention the novelty in [3,18,19]. For any ball B(R) ⊆ R

3, by the local pressure
projection, Wolf et al. presented the pressure decomposition

−∇Π = −∂t∇Πh − ∇Π1 − ∇Π2,

where

∇Πh = −Wp,B(R)(u), ∇Π1 = Wp,B(R)(Δu), ∇Π2 = −Wp,B(R)(u · ∇u).

After denoting v = u + ∇Πh, one gets the local energy inequality, for a.e. t ∈ [−T, 0] and non-negative
function φ(x, s) ∈ C∞

0 (R3 × (−T, 0)),∫
B(r)

|v|2φ(x, t)dx +
∫ t

−T

∫
B(r)

∣∣∇v
∣∣2φ(x, t)dxds

≤
∫ t

−T

∫
B(r)

|v|2(Δφ + ∂tφ)dxds +
∫ t

−T

∫
B(r)

|v|2u · ∇φdsds

+
∫ t

−T

∫
B(r)

φ(u ⊗ v : ∇2Πh)dsds +
∫ t

−T

∫
B(r)

Π1v · ∇φdxds +
∫ t

−T

∫
B(r)

Π2v · ∇φdxds. (1.8)
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It is worth pointing out that any usual suitable weak solutions to the Navier–Stokes system enjoys the
local energy inequality (1.8). We refer the reader to [2, Appendix A, p. 1372] for its proof. As stated in
[3,18,19], the advantage of local energy inequality (1.8) removed the non-local effect of the pressure term.
Based on this, Caccioppoli type inequalities without pressure are derived in [3,18], respectively,
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L3(Q(1)). (1.9)

‖u‖2

L3, 185 Q( 1
2 )
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L2(Q( 1
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L
3q

2q−3 ,q
(Q(1))

+ C‖u‖
3q

2q−3

L
3q

2q−3 ,q
(Q(1))

,
3
2

< q ≤ 3. (1.10)

Our first result is to derive a new Caccioppoli type inequality in terms of the velocity field only

Proposition 1.1. Assume that u is a suitable weak solutions to the Navier–Stokes equations (1.1). There
holds
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L2(Q( 1
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20
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20
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. (1.11)

This Caccioppoli type inequality allows us to obtain our main result

Theorem 1.2. Let the pair (u,Π) be a suitable weak solution to the 3D Navier–Stokes system (1.1) in
Q(1). There exists an absolute positive constant ε such that if u satisfies

‖u‖L20/7(Q(1)) < ε, (1.12)

then, u ∈ L∞(Q(1/16)).

Remark 1.1. This theorem is an improvement of corresponding results in (1.4)–(1.7).

We give some comments on the proof of Proposition 1.1 and Theorem 1.2. Though the non-local
pressure disappears in the local energy inequality in (1.8), the velocity field u losses the kinetic energy
‖u‖L∞,2 . In contrast with works [3,18], owing to ‖u‖2

L3, 185 (Q( 1
2 ))

appearing in Caccioppoli type inequalities

in (1.9)–(1.10) and without the kinetic energy of u, it seems to be difficult to apply the argument used in
[3,7,8,18] directly to obtain (1.11). To circumvent these difficulties, first, we observe that every nonlinear
term contains at least v in the local energy inequality (1.8). Meanwhile, v = u + ∇Πh enjoys all the
energy, namely, ‖v‖L∞L2 and ‖∇v‖L2L2 , where Πh is a harmonic function. Hence, it would be natural
to absorb v by the left hand of local energy inequality (1.8). Second, this together with the iteration
Lemma 2.2 allows us to establish the Caccioppoli type inequality for ‖u‖2

L
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7 , 154 Q( 1
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L2(Q( 1
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instead of ‖u‖2

L3, 185 Q( 1
2 )

+ ‖∇u‖2
L2(Q( 1

2 ))
. However, this is not enough to yield the desired result, which

is completely different from that in [7,8]. To this end, in the spirit of [3], we adopt Caccioppoli type
inequality (1.8) and induction arguments developed in [1,3,13,16] to complete the proof of Theorem 1.2.
Third, to the knowledge of authors, all previous authors in [1,3,13,16] invoked induction arguments for∫∫

Q̃k
−−− |v|3 ≤ ε

2/3
1 . To bound the term

∫∫ |v|2∇Πh · ∇φdτ in local energy inequality (1.8) by
∫∫

Q̃k
−−− |v|3 ≤ ε

2/3
1 ,

one needs ∇Πh ∈ Lp(I; ‖ · ‖) with p ≥ 3, where I is an time interval. Since ∇Πh is controlled by u, we
have to get u ∈ Lp(I; ‖·‖) with p ≥ 3. However, from (1.11), we have u ∈ Lp(I; ‖·‖) with p < 3, therefore,
induction arguments with

∫∫
Q̃k

−−− |v|3 ≤ ε
2/3
1 , seems to break down in our case. As said above, since we have

all the energy of v, we work with ∫∫
Q̃k

−−− |v| 10
3 ≤ ε

2/3
1 ,

instead of
∫∫

Q̃k
−−− |v|3 ≤ ε

2/3
1 in induction arguments. Finally, this enables us to achieve the proof of Theo-

rem 1.2.
The remainder of this paper is structured as follows. In Sect. 2, we explain the detail of Wolf’s the

local pressure projection Wp,Ω and present the definition of local suitable weak solutions. Then, we recall
some interior estimates of harmonic functions, an interpolation inequality, two classical iteration lemmas
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and establish an auxiliary lemma utilized in induction arguments. The Caccioppoli type inequality (1.11)
is derived in Sect. 3. Section 4 is devoted to the proof of Theorem 1.2.

Notations Throughout this paper, we denote

B(x, μ) := {y ∈ R
n||x − y| ≤ μ}, B(μ) := B(0, μ), B̃(μ) := B(x0, μ),

Q(x, t, μ) := B(x, μ) × (t − μ2α, t), Q(μ) := Q(0, 0, μ), Q̃(μ) := Q(x0, t0, μ),

rk = 2−k, B̃k := B̃(rk), Q̃k := Q̃(rk).

Denote the average of f on the set Ω by fΩ. For convenience, fr represents fB(r) and ΠB̃k
is denoted by

Π̃k. |Ω| represents the Lebesgue measure of the set Ω. We will use the summation convention on repeated
indices. C is an absolute constant which may be different from line to line unless otherwise stated in this
paper.

2. Preliminaries

We begin with Wolf’s the local pressure projection Wp,Ω : W−1,p(Ω) → W−1,p(Ω) (1 < p < ∞). More
precisely, for any f ∈ W−1,p(Ω), we define W−1,p(f) = ∇Π, where Π satisfies (2.1). Let Ω be a bounded
domain with ∂Ω ∈ C1. According to the Lp theorem of Stokes system in [5, Theorem 2.1, p. 149], there
exists a unique pair (b,Π) ∈ W 1,p(Ω) × Lp(Ω) such that

− Δb + ∇Π = f, div b = 0, b|∂Ω = 0,

∫
Ω

Πdx = 0. (2.1)

Moreover, this pair is subject to the inequality

‖b‖W 1,q(Ω) + ‖Π‖Lq(Ω) ≤ C‖f‖W −1,q(Ω).

Let ∇Π = Wp,Ω(f) (f ∈ Lp(Ω)), then ‖Π‖Lp(Ω) ≤ C‖f‖Lp(Ω), where we used the fact that Lp(Ω) ↪→
W−1,p(Ω). Moreover, from ΔΠ = div f , we see that ‖∇Π‖Lp(Ω) ≤ C(‖f‖Lp(Ω) + ‖Π‖Lp(Ω)) ≤ C‖f‖Lp(Ω).
Now, we present the definition of suitable weak solutions of Navier–Stokes equations (1.1).

Definition 2.1. A pair (u, Π) is called a suitable weak solution to the Navier–Stokes equations (1.1)
provided the following conditions are satisfied,

(1) u ∈ L∞(−T, 0; L2(R3)) ∩ L2(−T, 0; Ḣ1(R3)), Π ∈ L3/2(−T, 0;L3/2(R3));
(2) (u, Π) solves (1.1) in R

3 × (−T, 0) in the sense of distributions;
(3) The local energy inequality (1.8) is valid and ∇Πh is a harmonic function. In addition, ∇Πh,∇Π1

and ∇Π2 meet the following fact

‖∇Πh‖Lp(B(R)) ≤ ‖u‖Lp(B(R)), (2.2)

‖∇Π1‖L2(B(R)) ≤ ‖∇u‖L2(B(R)), (2.3)

‖∇Π2‖Lp/2(B(R)) ≤ ‖|u|2‖Lp/2(B(R)). (2.4)

We list some interior estimates of harmonic functions Δh = 0, which will be frequently utilized later. Let
1 ≤ p, q ≤ ∞ and 0 < r < ρ, then, it holds

‖∇kh‖Lq(B(r)) ≤ Cr
n
q

(ρ − r)
n
p +k

‖h‖Lp(B(ρ)). (2.5)

‖h − hr‖Lq(B(r)) ≤ Cr
n
q +1

(ρ − r)
n
q +1

‖h − hρ‖Lq(B(ρ)). (2.6)

The proof of estimate (2.5) rests on the mean value property of harmonic functions. This together with
mean value theorem leads to inequality (2.6). We leave the detail to the readers. In addition, for readers’
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convenience, we recall an interpolation inequality. For each 2 ≤ l ≤ ∞ and 2 ≤ k ≤ 6 satisfying 2
l + 3

k = 3
2 ,

according to the Hölder inequality and the Young inequality, we know that

‖u‖Lk,l(Q(μ)) ≤ C‖u‖1− 2
l

L2,∞(Q(μ))‖u‖ 2
l

L6,2(Q(μ))

≤ C‖u‖1− 2
l

L2,∞(Q(μ))(‖u‖L2,∞(Q(μ)) + ‖∇u‖L2(Q(μ)))
2
l

≤ C(‖u‖L2,∞(Q(μ)) + ‖∇u‖L2(Q(μ))). (2.7)

Next, we present two well-known iteration lemmas.

Lemma 2.1 [6, Lemma 2.1, p.86]. Let φ(t) be a nonegative and nondecreasing function on [0, R]. Suppose
that

φ(r) ≤ A
[( r

ρ

)α

+ κ
]
φ(ρ) + Bρβ

for any 0 < r ≤ ρ ≤ R, with A,B, α, β nonnegative constants and β < α. Then for any γ ∈ (β, α), there
exists a constant κ0 such that if κ < κ0 we have for all 0 < r ≤ ρ ≤ R

φ(r) ≤ C
{( r

ρ

)β

φ(ρ) + Brβ
}

.

where C is a positive constant depending on A,α, β, γ.

Lemma 2.2 [6, Lemma V.3.1, p.161]. Let I(s) be a bounded nonnegative function in the interval [r,R].
Assume that for every σ, ρ ∈ [r,R] and σ < ρ we have

I(σ) ≤ A1(ρ − σ)−α1 + A2(ρ − σ)−α2 + A3 + 
I(ρ)

for some non-negative constants A1, A2, A3, non-negative exponents α1 ≥ α2 and a parameter 
 ∈ [0, 1).
Then there holds

I(r) ≤ c(α1, 
)[A1(R − r)−α1 + A2(R − r)−α2 + A3].

The following lemma is motivated by [3, Lemma 2.9, p. 558].

Lemma 2.3. Let f ∈ Lq(Q(1)) with q > 1 and 0 < r0 < 1. Suppose that for all (x0, t0) ∈ Q(1/2) and
r0 ≤ r ≤ 1

2 ∫∫
Q̃(r)

|f − f B̃(r)|q ≤ Cr4. (2.8)

Let ∇Π = Wq,B(1)(∇ · f). Then for all (x0, t0) ∈ Q(1/2) and r0 ≤ r ≤ 1
4 , it holds∫∫

Q̃(r)

|Π − ΠB̃(r)|q ≤ Cr4

Proof. From the definition of pressure projection Wq,B(1), we know that

‖Π‖Lq(B(1)) ≤ C‖f − fB(1)‖Lq(B(1)). (2.9)

Let φ(x) = 1, x ∈ B̃( 3r
4 ), φ(x) = 0, x ∈ B̃c(r).

Note that

ΔΠ = divWq,B(1)(∇ · f).

We set Π = Π(1) + Π(2), where

ΔΠ(1) = divWq,B(1)(∇ · [φ(f − f B̃(r))]),

therefore, as a consequence, it holds

ΔΠ(2) = 0, x ∈ B̃(3r/4).

In view of classical Calderón–Zygmund theorem, we have

‖Π(1) − Π(1)B̃(r)
‖Lq(B̃(r)) ≤ C‖f − f B̃(r)‖Lq(B̃(r)). (2.10)
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Combining this and hypothesis (2.8), we get

‖Π(1) − Π(1)B̃(r)
‖Lq(Q̃(r)) ≤ Cr

4
q .

The interior estimates of harmonic functions (2.6) and the triangle inequality guarantee that, for θ < 1/2,∫
B̃(θr)

|Π(2) − Π(2)B̃(θr)
|qdx

≤ C(rθ)3+q

( r
2 )3+q

∫
B̃(r/2)

|Π(2) − Π(2)B̃(r/2)
|qdx

≤ Cθ3+q

∫
B̃(r/2)

|Π − ΠB̃(r/2)|qdx + C

∫
B̃(r/2)

|Π(1) − Π(1)B̃(r/2)
|qdx.

This and inequality (2.10) imply∫∫
Q̃(θr)

|Π(2) − Π(2)B̃(θr)
|qdxds ≤ Cθ3+q

∫∫
Q̃(r/2)

|Π − ΠB̃(r/2)|qdxds + Cr4.

Utilizing the triangle inequality again, (2.10) and the last inequality, we have∫∫
Q̃(θr)

|Π − ΠB̃(θr)|qdxds

≤
∫∫

Q̃(θr)

|Π(1) − Π(1)B̃(θr)
|qdxds +

∫∫
Q̃(θr)

|Π(2) − Π(2)B̃(θr)
|qdxds

≤
∫∫

Q̃(r)

|f − f B̃(r)|qdxds + Cθ3+q

∫∫
Q̃(r/2)

|Π − ΠB̃(r/2)|qdxds + Cr4

≤ Cθ3+q

∫∫
Q̃(r)

|Π − ΠB̃(r)|qdxds + Cr4, (2.11)

where we used the fact that ‖g − gB(r)‖Lp(B(r)) ≤ C‖g − c‖Lp(B(r)) with p ≥ 1.
Now, applying Lemma 2.1 to (2.11) and (2.9), we see that∫∫

Q̃(r)

|Π − ΠB̃(r)|qdx ≤ Cr4

∫∫
Q̃(1/4)

|Π − ΠB̃(1/4)|qdx + Cr4

≤ Cr4

∫∫
Q(1)

|f − fB(1)|qdx + Cr4

≤ Cr4.

This completes the proof of this lemma. �

3. Proof of Proposition 1.1

This section contains the proof of Proposition 1.1.

Proof of Proposition 1.1. It suffices to show, for any R > 0,

‖u‖2

L
20
7 , 154 Q( R

2 )
+ ‖∇u‖2

L2(Q( R
2 ))

≤ CR− 1
2 ‖u‖2

L
20
7 (Q(R))

+ CR−2‖u‖4

L
20
7 (Q(R))

. (3.1)

Consider 0 < R/2 ≤ r < 3r+ρ
4 < r+ρ

2 < ρ ≤ R. Let φ(x, t) be non-negative smooth function supported in
Q( r+ρ

2 ) such that φ(x, t) ≡ 1 on Q(3r+ρ
4 ), |∇φ| ≤ C/(ρ − r) and |∇2φ| + |∂tφ| ≤ C/(ρ − r)2.

Let ∇Πh = W20/7,B(ρ)(u), then, there holds

‖∇Πh‖L20/7(Q(ρ)) ≤ C‖u‖L20/7(Q(ρ)), (3.2)

‖Π1‖L2(Q(ρ)) ≤ C‖∇u‖L2(Q(ρ)), (3.3)
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‖Π2‖
L

10
7 (Q(ρ))

≤ C‖|u|2‖
L

10
7 (Q(ρ))

. (3.4)

Thanks to v = u + ∇Πh, the Hölder inequality and (3.2), we arrive at∫∫
Q(ρ)

|v
B
|2

∣∣∣Δφ4 + ∂tφ
4
∣∣∣ ≤ C

(ρ − r)2

∫∫
Q( r+ρ

2 )

|u|2 + |∇Πh|2

≤ Cρ3/2

(ρ − r)2
(∫∫

Q( r+ρ
2 )

|u| 20
7 + |∇Πh| 20

7

) 7
10

≤ Cρ3/2

(ρ − r)2
(∫∫

Q(ρ)

|u| 20
7

) 7
10

. (3.5)

From now on, we drop the symbols ds and dxds for simple presentation. Combining Hölder’s inequality
with interpolation inequality (2.7) and Young’s inequality yields∫∫

Q(ρ)

|v|2φ3u · ∇φ

≤ C

(ρ − r)
‖vφ2‖L10/3(Q( r+ρ

2 ))‖v‖L20/7(Q( r+ρ
2 ))‖u‖L20/7(Q( r+ρ

2 ))

≤ 1
16

‖vφ2‖2
L10/3(Q( r+ρ

2 ))
+

C

(ρ − r)2
‖v‖2

L20/7(Q( r+ρ
2 ))

‖u‖2
L20/7(Q( r+ρ

2 ))

≤ 1
16

(
‖vφ2‖2

L2,∞(Q(ρ)) + ‖∇(vφ2)‖2
L2(Q(ρ))

)
+

C

(ρ − r)2
‖u‖4

L20/7(Q(ρ)). (3.6)

By virtue of interior estimate of harmonic function (2.5) and (3.2), we conclude that

‖∇2Πh‖L20/7(Q( r+ρ
2 )) ≤ (r + ρ)

21
20

(ρ − r)
41
20

‖∇Πh‖L20/7(Q(ρ))

≤ Cρ
21
20

(ρ − r)
41
20

‖u‖L20/7(Q(ρ)),

which leads to ∫∫
Q(ρ)

φ4(u ⊗ v : ∇2Πh)

≤ ‖vφ2‖L10/3(Q( r+ρ
2 ))‖u‖L20/7(Q( r+ρ

2 ))‖∇2Πh‖L20/7(Q( r+ρ
2 ))

≤ 1
16

(
‖vφ2‖2

L2,∞(Q(ρ)) + ‖∇(φ2v)‖2
L2(Q(ρ))

)
+

Cρ
21
10

(ρ − r)
41
10

‖u‖4
L20/7(Q(ρ)). (3.7)

In light of Hölder inequality, (3.3) and Young’s inequality, we deduce that∫∫
Q(ρ)

φ3Π1v · ∇φ ≤ C

(ρ − r)
‖v‖L2(Q( r+ρ

2 ))‖Π1‖L2(Q( r+ρ
2 ))

≤ C

(ρ − r)2
‖v‖2

L2(Q( r+ρ
2 ))

+
1
16

‖Π1‖2
L2(Q(ρ))

≤ Cρ3/2

(ρ − r)2
(∫∫

Q(ρ)

|u| 20
7

) 7
10

+
1
16

‖∇u‖2
L2(Q(ρ)). (3.8)

We derive from the Hölder inequality, (2.4) and Young’s inequality that∫∫
Q(ρ)

φ3Π2v · ∇φ ≤ C

(ρ − r)
‖vφ2‖

L
10
3 (Q( r+ρ

2 ))
‖Π2‖

L
10
7 (Q( r+ρ

2 ))

≤ 1
16

‖v‖2

L
10
3 (Q( r+ρ

2 ))
+

C

(ρ − r)2
‖Π2‖2

L
10
7 (Q(ρ))
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≤ 1
16

(
‖vφ2‖2

L2,∞(Q(ρ)) + ‖∇(φ2v)‖2
L2(Q(ρ))

)
+

C

(ρ − r)2
‖u‖4

L20/7(Q(ρ)). (3.9)

The Cauchy–Schwarz inequality and (3.5) allows us to obtain that∫∫
Q(ρ)

|∇(vφ2)|2 ≤ 2
( ∫∫

Q(ρ)

|∇v|2φ4 + 4
∫∫

Q(ρ)

|∇φ|2|v|2φ2
)

≤ 2
∫∫

Q(ρ)

|∇v|2φ4 +
Cρ3/2

(ρ − r)2
( ∫∫

Q(ρ)

|u| 20
7

) 7
10

. (3.10)

Substituting (3.5)–(3.9) into (1.8) and using (3.10), we infer that

sup
−ρ2≤t≤0

∫
B(ρ)

|vφ2|2 +
∫∫

Q(ρ)

∣∣∇(vφ2)
∣∣2

≤ 1
4

(
‖vφ2‖2

L2,∞(Q(ρ)) + ‖∇(vφ2)‖2
L2(Q(ρ))

)
+

{
C

(ρ − r)2
+

Cρ
21
10

(ρ − r)
41
10

}
‖u‖4

L20/7(Q(ρ))

+
Cρ3/2

(ρ − r)2
‖u‖2

L20/7(Q(ρ)) +
1
16

‖∇u‖2
L2(Q(ρ)),

that is,

sup
−ρ2≤t≤0

∫
B(ρ)

|vφ2|2 +
∫∫

Q(ρ)

∣∣∇(vφ2)
∣∣2 ≤

{
C

(ρ − r)2
+

Cρ
21
10

(ρ − r)
41
10

}
‖u‖4

L20/7(Q(ρ))

+
Cρ3/2

(ρ − r)2
‖u‖2

L20/7(Q(ρ)) +
1
16

‖∇u‖2
L2(Q(ρ)), (3.11)

Together with interior estimate of harmonic function (2.5) and (3.2) implies that

‖∇Πh‖2

L
20
7 , 154 (Q(r))

≤ Cr
8
5

(ρ − r)
21
10

‖∇Πh‖2

L
20
7 Q(ρ)

≤ Cr
8
5

(ρ − r)
21
10

‖u‖2

L
20
7 (Q(ρ))

.

With the help of the triangle inequality, interpolation inequality (2.7) and the last inequality, we get

‖u‖2

L
20
7 , 154 (Q(r))

≤‖v‖2

L
20
7 , 154 (Q(r))

+ ‖∇Πh‖2

L
20
7 , 154 (Q(r))

≤C
{

‖v‖2
L2,∞(Q(r)) + ‖∇v‖2

L2(Q(r))

}
+

r
8
5

(ρ − r)
21
10

‖u‖2

L
20
7 (Q(ρ))

≤
{ C

(ρ − r)2
+

Cρ
21
10

(ρ − r)
41
10

}
‖u‖4

L20/7(Q( r+ρ
2 ))

+
{ Cρ3/2

(ρ − r)2
+

Cr
8
5

(ρ − r)
21
10

}
‖u‖2

L20/7(Q(ρ)) +
1
16

‖∇u‖2
L2(Q(ρ)).

Employing (2.5) and (2.3) once again, we have the estimate

‖∇2Πh‖2
L2(Q(r)) ≤ Cr3

(ρ − r)3+2·1 ‖∇Πh‖2
L2(Q( r+ρ

2 ))
≤ Cr3ρ3/2

(ρ − r)5
‖u‖2

L20/7(Q(ρ)).

This together with the triangle inequality and (3.11) leads to

‖∇u‖2
L2(Q(r)) ≤ ‖∇v‖2

L2(Q(r)) + ‖∇2Πh‖2
L2(Q(r))
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≤
{ C

(ρ − r)2
+

Cρ
21
10

(ρ − r)
41
10

}
‖u‖4

L20/7(Q(ρ))

+
{ Cρ3/2

(ρ − r)2
+

Cr3ρ3/2

(ρ − r)5
}

‖u‖2
L20/7(Q(ρ)) +

1
16

‖∇u‖2
L2(Q(ρ)). (3.12)

Eventually, we infer that

‖u‖2

L
20
7 , 154 (Q(r))

+ ‖∇u‖2
L2(Q(r))

≤
{ C

(ρ − r)2
+

Cρ
21
10

(ρ − r)
41
10

}
‖u‖4

L20/7(Q(ρ))

+
{ Cρ3/2

(ρ − r)2
+

Cr3ρ3/2

(ρ − r)3+2·1 +
Cr

8
5

(ρ − r)
21
10

}
‖u‖2

L20/7(Q(ρ)) +
3
16

‖∇u‖2
L2(Q(ρ)).

Now, we are in a position to apply lemma 2.2 to the latter estimate to find that

‖u‖2

L
20
7 , 154 (Q( R

2 ))
+ ‖∇u‖2

L2(Q( R
2 ))

≤ CR− 1
2 ‖u‖2

L
20
7 (Q(R))

+ CR−2‖u‖4

L
20
7 (Q(R))

.

This achieves the proof of this proposition. �

4. Induction Arguments and Proof of Theorem 1.2

In this section, we begin with a critical proposition, which can be seen as the bridge between the previous
step and the next step for the given statement in the induction arguments. Next, we finish the proof of
Theorem 1.2.

Proposition 4.1. Assume that
∫∫

Q̃(r)
|v| 10

3 ≤ r5N with rk ≤ r ≤ rk0 . There is a constant C such that the
following result holds. For any given (x0, t0) ∈ R

n × R
− and k0 ∈ N, we have for any k > k0,

sup
−r2

k≤t−t0≤0

∫
B̃k

− |v|2 + r−3
k

∫∫
Q̃k

|∇v|2

≤ C sup
−r2

k0
≤t−t0≤0

∫
B̃k0

− |v|2 + C

k∑
l=k0

rl

(∫∫
Q̃l

−−− |v| 10
3

) 9
10

+ C

k∑
l=k0

r
3
10
l

( ∫∫
Q̃l

−−− |v| 10
3

) 3
5
(∫∫

Q̃3

|u| 20
7

) 7
20

+ C

k∑
l=k0

r
13
10
l

( ∫∫
Q̃l

−−− |v| 10
3

) 3
5
(∫∫

Q̃3

|u| 20
7

) 7
20

+ C

k∑
l=k0

r
3
5
l

(∫∫
Q̃l

−−− |v| 10
3

) 3
10

( ∫∫
Q̃3

|u| 20
7

) 7
10

+ C

k∑
l=k0

rl

(∫∫
Q̃l

−−− |v| 10
3

) 3
10

( ∫∫
Q̃3

|∇u|2
) 1

2
+ C

k∑
l=k0

r
3
2
l

( ∫∫
Q̃l

−−− |v| 10
3

) 3
10

{
N3/5

+ N
3
10

( ∫∫
Q̃3

|u| 20
7

) 7
20

+
( ∫∫

Q̃3

|u|20/7
) 7

10
}

.

Proof. Without loss of generality, we suppose (x0, t0) = (0, 0). We denote the backward heat kernel

Γ(x, t) =
1

4π(r2
k − t)3/2

e
− |x|2

4(r2
k

−t) .

In addition, consider the smooth cut-off functions below

φ(x, t) =

⎧⎨
⎩

1, (x, t) ∈ Q(rk0+1),

0, (x, t) ∈ Qc

(
3
2
rk0+1

)
;
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satisfying

0 ≤ φ, φ2 ≤ 1 and r2
k0

|∂tφ(x, t)| + rl
k0

|∂l
xφ(x, t)| ≤ C.

To proceed further, we list some properties of the test function φ(x, t)Γ(x, t). A detailed proof can be
found in Kukavica [9, Proof of Lemma 1, p.720].

(i) There is a constant c > 0 independent of rk such that, for any (x, t) ∈ Q(rk),

Γ(x, t) ≥ cr−3
k .

(ii) For any (x, t) ∈ Q(rk0), we have

|Γ(x, t)φ(x, t)| ≤ Cr−3
k , |∇φ(x, t)Γ(x, t)| ≤ Cr−4

k , |φ(x, t)∇Γ(x, t)| ≤ Cr−4
k .

(iii) For any (x, t) ∈ Q(3rk0/4)\Q(rk0/2), one can deduce that

Γ(x, t) ≤ Cr−3
k0

, ∂iΓ(x, t) ≤ Cr−4
k0

,

which yields that

|Γ(x, t)∂tψ(x, t)| + |Γ(x, t)Δψ(x, t)| + |∇ψ(x, t)∇Γ(x, t)| ≤ Cr−5
k0

.

(iv) For any (x, t) ∈ Ql\Ql+1,

Γ ≤ Cr−3
l+1, ∇Γ ≤ Cr−4

l+1.

Now, setting ϕ1 = φΓ in the local energy inequality (1.8) and utilizing the fact that Γt + ΔΓ = 0, we
see that∫

B1

|v|2φ(x, t)Γ +
∫ t

−r2
k0

∫
B1

∣∣∇v
∣∣2φ(x, s)Γ

≤
∫ t

−r2
k0

∫
B1

|v|2(ΓΔφ + Γ∂tφ + 2∇Γ∇φ)

+
∫ t

−r2
k0

∫
B1

|v|2v · ∇(φΓ) − |v|2∇Πh · ∇φ

+
∫ t

−r2
k0

∫
B1

Γφ(v ⊗ v − v ⊗ ∇Πh : ∇2Πh) +
∫ t

−r2
k0

∫
B1

Π1v · ∇(Γφ) +
∫ t

−r2
k0

∫
B1

Π2v · ∇(Γφ)

where

∇Π1 = W2,B1(Δu), ∇Π2 = −W 20
7 ,B1

(∇ · (u ⊗ u)).

First, we present the low bound estimates of the terms on the left hand side of this inequality. Indeed,
with the help of (iv), we find ∫

Bk

|v|2φΓ ≥ C

∫
Bk

− |v|2,

and ∫ t

−r2
k0

∫
B1

φΓ|∇v|2 ≥ r−3
k

∫∫
Qk

|∇v|2.

Having observed that the support of ∂tφ is included in Q( 3rk0
4 )/Q( rk0

2 ), we get∫ t

−r2
k0

∫
B1

|v|2
∣∣∣ΓΔφ + Γ∂tφ + 2∇Γ∇φ

∣∣∣ ≤ C sup
−r2

k0
≤t≤0

∫
Bk0

− |v|2.

Hölder’s inequality and (iv) enable us to write that∫∫
Qk0

|v|2v · ∇(φΓ)dτ
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≤
k−1∑
l=k0

∫∫
Ql/Ql+1

|v|3|∇(φΓ)| +
∫∫

Qk

|v|3|∇(φΓ)|

≤
k∑

l=k0

r−4
l

∫∫
Ql

|v|3

≤C
k∑

l=k0

rl

( ∫∫
Ql

−−− |v| 10
3

) 9
10

.

Following the lines of reasoning which led to the last inequality, we have
∫∫

Qk0

|v|2∇Πh · ∇(φΓ)

≤
k∑

l=k0

r−4
l

∫∫
Ql

|v|2|∇Πh|

≤ C

k∑
l=k0

r
3
10
l

( ∫∫
Ql

−−− |v| 10
3

) 3
5
( ∫∫

Q3

|u| 20
7

) 7
20

. (4.1)

Likewise, we have
∫∫

Qk0

|v|2|∇2Πh|(φΓ)

≤
k∑

l=k0

r−3
l

∫∫
Ql

|v|2|∇2Πh|

≤ C
k∑

l=k0

r
13
10
l

( ∫∫
Ql

−−− |v| 10
3

) 3
5
( ∫∫

Q3

|u| 20
7

) 7
20

.

Using Hölder’s inequality again, (iv), (2.5) and (2.3), we infer that
∫∫

Qk0

φΓ|v||∇Πh||∇2Πh|

≤ C

k∑
l=k0

r−3
l

( ∫∫
Ql

|v| 10
3

) 3
10

( ∫∫
Ql

|∇Πh| 20
7

) 7
20

(∫∫
Ql

|∇2Πh| 20
7

) 7
20

≤ C

k∑
l=k0

r
3
5
l

( ∫∫
Ql

−−− |v| 10
3

) 3
10

(∫∫
Q3

|u| 20
7

) 7
10

.

Set χl = 1 on |x| ≤ 7/8rl and χl = 0 if |x| ≥ rl. χk0Γ = Γ on Qk0 By the support of (χl −χl+1), we derive
from (iv) that |∇((χl − χl+1)φΓ)| ≤ Cr−4

l+1. With the help of (iv) again, we see that |∇(χkφΓ)| ≤ Cr−4
k .

Therefore, it holds

∫∫
Qk0

v · ∇(φΓ)Π1 =
k−1∑
l=k0

∫∫
Ql

v · ∇((χl − χl+1)φΓ)Π1 +
∫∫

Qk

v · ∇(χkφΓ)Π1

=
k−1∑
l=k0

∫∫
Ql

v · ∇((χl − χl+1)φΓ)(Π1 − Π1l) +
∫∫

Qk

u · ∇(χkφΓ)(Π1 − Π1k)
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≤ C

k−1∑
l=k0

r−4
l+1

∫∫
Ql

|v||Π1 − Π1l| + r−4
k

∫∫
Qk

|v||Π1 − Π1k|

= : I + II. (4.2)

The Hölder inequality, (2.4) and (2.6) give

I ≤C
k−1∑
l=k0

r−4
l+1

( ∫∫
Ql

|v| 10
3

) 3
10

( ∫∫
Ql

|Π1 − Π1l|2
) 1

2
rl

≤C
k−1∑
l=k0

rl

(∫∫
Ql

−−− |v| 10
3

) 3
10

( ∫∫
Q3

|Π1 − Π13|2
) 1

2

≤C
k−1∑
l=k0

rl

(∫∫
Ql

−−− |v| 10
3

) 3
10

( ∫∫
Q3

|Π1|2
) 1

2

≤C

k−1∑
l=k0

rl

(∫∫
Ql

−−− |v| 10
3

) 3
10

( ∫∫
Q3

|∇u|2
) 1

2
, (4.3)

and

II ≤Crk

( ∫∫
Ql

−−− |v| 10
3

) 3
10

(∫∫
Q3

|∇u|2
) 1

2
,

which turns out that
∫∫

Q̃k0

v · ∇(φΓ)Π1 ≤ C

k∑
l=k0

rl

( ∫∫
Ql

−−− |v| 10
3

) 3
10

(∫∫
Q3

|∇u|2
) 1

2
.

Note that
u ⊗ u = v ⊗ v − v ⊗ ∇Πh − ∇Πh ⊗ v + ∇Πh ⊗ ∇Πh. (4.4)

For rk ≤ r ≤ rk0 , we compute directly that∫∫
Q(r)

|v ⊗ v − v ⊗ vl|10/7 ≤
∫∫

Q(r)

|v|20/7 ≤ Cr5
(∫∫

Q(r)

−−− |v| 10
3

)6/7

≤ Cr5N6/7. (4.5)

The Hölder inequality and (2.5) ensure that∫∫
Q(r)

|v ⊗ ∇Πh − v ⊗ ∇Πhl|10/7 ≤ C

∫∫
Q(r)

|v ⊗ ∇Πh|10/7

≤ C
( ∫∫

Q(r)

|v| 10
3

) 3
7
( ∫∫

Q(r)

|∇Πh| 20
7

) 1
2
r

5
14

≤ Cr4
( ∫∫

Q(r)

−−− |v| 10
3

) 3
7
(∫∫

Q3

|u| 20
7

) 1
2

≤ Cr4N
3
7

( ∫∫
Q3

|u| 20
7

) 1
2
. (4.6)

In view of Poincaré inequality for a ball, Hölder’s inequality, (2.5) and (2.3), we arrive at∫∫
Q(r)

|∇Πh ⊗ ∇Πh − ∇Πh ⊗ ∇Πhl|10/7

≤ Cr10/7
( ∫∫

Q(r)

|∇Πh|20/7
) 1

2
( ∫∫

Q(r)

|∇2Πh|20/7
) 1

2
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≤ Cr
31
7

( ∫∫
Q1

|∇Πh|20/7
) 1

2
( ∫∫

Q3

|∇Πh|20/7
) 1

2

≤ Cr
31
7

( ∫∫
Q3

|u|20/7
)
. (4.7)

We deduce from (4.4)–(4.7) that∫∫
Q(r)

|u ⊗ u − (u ⊗ u)r|10/7 ≤ Cr5N6/7 + r4N
3
7

(∫∫
Q3

|u| 20
7

) 1
2

+ Cr
31
7

( ∫∫
Q3

|u|20/7
)

≤ Cr4
{

N6/7 + N
3
7

( ∫∫
Q3

|u| 20
7

) 1
2

+ C
( ∫∫

Q3

|u|20/7
)}

. (4.8)

With (4.8) in hand, we can apply Lemma 2.3 to obtain that∫∫
Q(r)

|Π2 − Π2B(r)|10/7 ≤ Cr4
{

N6/7 + N
3
7

( ∫∫
Q3

|u| 20
7

) 1
2

+ C
( ∫∫

Q3

|u|20/7
)}

. (4.9)

Particulary, for any k ≤ l ≤ k0, it holds∫∫
Ql

|Π2 − Π2Bl
|10/7 ≤ Cr4

l

{
N6/7 + N

3
7

( ∫∫
Q3

|u| 20
7

) 1
2

+ C
( ∫∫

Q3

|u|20/7
)}

. (4.10)

By the Hölder inequality, we see that

r−4
l

∫∫
Ql

|v||Π2 − Π2B(r)| ≤ Cr−4
l

(∫∫
Ql

|v| 10
3

) 3
10

(∫∫
Ql

|Π2−(Π2)Bl
| 10

7

) 7
10

. (4.11)

Plugging (4.9) into (4.11), we have∫∫
Qk0

v · ∇(φΓ)Π2

≤ C

k−1∑
l=k0

r−4
l+1

∫∫
Ql

|v||Π2 − Π2l| + r−4
k

∫∫
Qk

|v||Π2 − Π2k|

≤ C
k∑

l=k0

r
3
10
l

( ∫∫
Ql

−−− |v| 10
3

) 3
10

{
N6/7 + N

3
7

( ∫∫
Q3

|u| 20
7

) 1
2

+ C
( ∫∫

Q3

|u|20/7
)} 7

10
.

Finally, collected these estimates leads to (4.17). �

With Proposition 4.1 at our disposal, we will now present the proof of Theorem 1.2.

Proof of Theorem 1.2. By the interior estimate (2.5) of harmonic function and (3.2), we have

‖∇Πh‖L∞(B̃(1/8)) ≤ C‖∇Πh‖L20/7(B(1)) ≤ C‖u‖L20/7(B(1)). (4.12)

Assume for a while we have proved that, for any Lebesgue point (x0, t0) ∈ Q(1/8),

|v(x0, t0)| ≤ C. (4.13)

We derive from (4.12) and (4.13) that

‖u‖L20/7,∞(Q̃(1/8)) ≤ ‖∇Πh‖L20/7,∞(Q̃(1/8)) + ‖v‖L20/7,∞(Q̃(1/8)) ≤ C‖u‖L20/7(Q(1)).

By the well-known Serrin regularity criteria in [14], we know that (0, 0) is a regular point. Therefore, it
remains to prove (4.13). In what follows, let (x0, t0) ∈ Q(1/8) and rk = 2−k. According to the Lebesgue
differentiation theorem, it suffices to show∫∫

Q̃k

−−− |v| 10
3 ≤ ε

2/3
1 , k ≥ 3. (4.14)
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First, we show that (4.14) is valid for k = 3. Indeed, from (3.11) in Sect. 3, (3.1) and hypothesis 1.12, we
know that

sup
−( 3

8
)2≤t≤0

∫
B( 3

8
)
|v|2 +

∫∫
Q( 3

8
)

∣∣∇v
∣∣2

≤ C‖u‖4
L20/7(Q( 1

2
)) + C‖u‖2

L20/7(Q( 1
2
)) +

1

16
‖∇u‖2

L2(Q( 1
2
))

≤ Cε
7/10

. (4.15)

In light of Sobolev embeddings and the Young inequality, we see that
( ∫∫

Q( 3
8 )

|v| 10
3

) 3
10 ≤ C

(
sup

−( 3
8 )2≤t<0

∫
B( 3

8 )

|v|2
)1/2

+ C
( ∫∫

Q( 3
8 )

|∇v|2
)1/2

. (4.16)

It turns out that ∫∫
Q̃3

−−− |v| 10
3 ≤ Cε

7
6 .

This proves (4.14) in the case k = 3. Now, we assume that, for any 3 ≤ l ≤ k,
∫∫

Q̃l

−−− |v| 10
3 ≤ ε2/3.

Furthermore, there holds, for any rk ≤ r ≤ r3∫∫
Q̃(r)

−−− |v| 10
3 ≤ Cε2/3.

For any 3 ≤ i ≤ k, by Proposition 4.1 with N = Cε2/3, (1.12) and the above induction hypothesis, we
find that

sup
−r2

i ≤t−t0≤0

∫
B̃i

− |v|2 + r−3
i

∫∫
Q̃i

|∇v|2

≤ C sup
−r2

3≤t−t0≤0

∫
B̃3

− |v|2 + C
k∑

l=3

rl

( ∫∫
Q̃l

−−− |v| 10
3

) 9
10

+ C
i∑

l=3

r
3
10
l

( ∫∫
Q̃l

−−− |v| 10
3

) 3
5
(∫∫

Q1

|u| 20
7

) 7
20

+ C
i∑

l=3

r
13
10
l

( ∫∫
Q̃l

−−− |v| 10
3

) 3
5
(∫∫

Q1

|u| 20
7

) 7
20

+ C
i∑

l=3

r
3
5
l

( ∫∫
Q̃l

−−− |v| 10
3

) 3
10

(∫∫
Q1

|u| 20
7

) 7
10

+ C
i∑

l=3

rl

(∫∫
Q̃l

−−− |v| 10
3

) 3
10

( ∫∫
Q1

|∇u|2
) 1

2

+ C

i∑
l=3

r
3
10
l

( ∫∫
Q̃l

−−− |v| 10
3

) 3
10

{
N3/5 + N

3
10

( ∫∫
Q1

|u| 20
7

) 7
20

+
( ∫∫

Q1

|u| 20
7

) 7
10

}

≤ Cε
7
10 + C

i∑
l=3

rlε
3
5 + C

i∑
l=3

r
3
10
l ε

2
5 ε

7
20 + C

i∑
l=3

r
13
10
l ε

2
5 ε

7
20
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+ C

i∑
l=3

r
3
5
l ε

1
5 ε

7
10 + C

i∑
l=3

rlε
1
5 ε

7
20 + C

i∑
l=3

r
3
10
l ε

1
5

{
ε

2
5 + ε

11
20 + ε

7
10

}

≤ Cε
11
20 . (4.17)

Invoking the Gagliardo–Nirenberg inequality, we deduce that∫
B̃k+1

|v| 10
3 dx ≤ C

( ∫
B̃k

|v|2
) 2

3
[( ∫

B̃k

|∇v|2
)1/2

+ r−1
k

( ∫
B̃k

|v|2
)1/2]2

,

which means∫∫
Q̃k+1

|v| 10
3 ≤C

(
sup

−r2
k≤t−t0<0

∫
B̃k

|v|2
) 2

3
(∫∫

Q̃k

|∇v|2
)

+
(

sup
−r2

k≤t−t0<0

∫
B̃k

|v|2
)5/3

.

This inequality, combined with (4.17), implies that

1
r5
k+1

∫∫
Q̃k+1

|v| 10
3 ≤C

( 1
r3
k

sup
−r2

k≤t−t0<0

∫
B̃k

|v|2
) 5

3

+ C
( 1

r3
k

sup
−r2

k≤t−t0<0

∫
B̃k

|v|2
) 3

2
(
r−3
k

∫∫
Q̃k

|∇v|2
)

≤Cε
11
12 . (4.18)

Collecting the above bounds, we eventually conclude that∫∫
Q̃k+1

−− |v| 10
3 ≤ ε2/3.

This completes the proof of this theorem. �
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