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Abstract. The aim of this paper is to provide, in a β-plane approximation with centripetal forces, an explicit three-dimensional
nonlinear solution for geophysical waves propagating at an arbitrary latitude, in the presence of a constant underlying
background current. This solution is linearly unstable when the steepness of the wave exceeds a specific threshold.
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1. Introduction

This paper is focused on geophysical ocean waves where both Coriolis and centripetal effects of the
Earths rotation play a significant role. In the literature, centripetal forces are typically neglected as they
are relatively much smaller than Coriolis forces. The retention of these terms in the appropriate governing
equations increases their mathematical complexity but plays a central role in facilitating the admission
of a wide-range of depth-invariant underlying currents in their solutions (see [21]). In oceanography,
the governing equations are typically simplified by invoking tangent plane-approximations—whereby the
Earth’s curved surface is locally approximated by a tangent plane—the classical form being the β-plane
approximation. The additional centripetal terms will contribute to the standard β-plane approximate
equations(in the equatorial region see [21]). Geophysical processes which occur in the equatorial region
attract a significant attention and are a fascinating topic in oceanography (see [8,13,18,39]. The β-plane
approximation applies in regions within 5◦ latitude, either side of the Equator. For ease of calculation,
within a restricted meridional of approximately 2◦ latitude, either side of the Equator, it is adequate to
use the f -plane approximation in the governing equations. There is a large literature on equatorial wave
dynamics. To model various geophysical oceanic waves and wave-current interactions in the equatorial
region, nonlinear three-dimensional Gerstner-like solutions have been derived (see [3–6,19–23,26–28,36,
37]). The geophysical dynamics of the equatorial region are complicated, the underlying currents being
highly depth-dependent; the Gerstner-like solutions do not capture strong depth variations of the flows.
The recent papers [9–11,32,33] present some exact nonlinear three-dimensional solutions that capture
strong depth variations of the flows.

It is important and very useful, to seek exact and explicit solutions which exist at an arbitrary latitude.
An f -plane approximation at an arbitrary latitude was firstly taken into account in [38]. Gerstner-type
solution was obtained in the f -plane approximation at an arbitrary latitude in [38] and recently in [12]
a depth-invariant mean current was accommodated into this solution. In [15] an extension of the exact
solution [26] for equatorial waves in the f -plane approximation was obtained at an arbitrary latitude and
in the presence of a constant underlying background current. A β-plane approximation at an arbitrary
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latitude in the presence of an underlying current and a Gerstner-like solution to this problem was very
recently provided in [2]. In this paper, we consider the β-plane governing equations at an arbitrary latitude,
modified to incorporate centripetal forces. We obtain an exact Gerstner-type solution of this problem,
that is, the solution (3.1) with the stated conditions (3.3) and (3.16), which prescribes three-dimensional
geophysical wave propagating in a relatively narrow ocean strip at an arbitrary latitude, in the presence of
a constant underlying current. The dispersion relation of the waves obtained features contributions from
the Coriolis force, the centripetal force and the underlying current. The waves propagate both eastward
and westward. We make a detailed discussion of the situations encountered in the Northern Hemisphere
and the Southern Hemisphere, for admissible following as well as adverse currents; the solution admits
both following and adverse currents of physically plausible magnitude. We mention that we do not deal
with the meridional decay of solutions. If we take this into account, then, our study is reduced only to
cases N1 and N3 in the Northern Hemisphere and to cases S1 and S3 in the Southern Hemisphere. We
remark that in these cases the waves can propagate both eastward and westward too.

The elegant short wavelength instability method (a rigorous mathematical approach to the problem of
stability for general three-dimensional inviscid incompressible flows developed independently in [1,16,35]),
suitable for Gerstner-like solutions (in the geophysical context was successfully achieved in [2,7,14,17,24,
25,29–31]), is also applied to the exact solution obtained, in order to prove a wave-steepness instability
criterion. The critical steepness is very close to 1

3 . The waves which travel from east to west are more
prone to instability than those which travel from west to east. An adverse current favours instability in
the sense that the threshold on the steepness for the wave to be unstable is decreased compared to the
case without current. Conversely, this threshold is increased by a following current.

2. The Governing Equations

We recall the governing equations of geophysical fluid motion in cylindrical coordinates, which was derived
by Constantin and Johnson in [10], and from which we derive the appropriate β-plane approximation.
The cylindrical coordinates (x, φ, z) are chosen such that the origin is located at the centre of the Earth,
the generator of the cylinder (which represents the ’straightened-out’ equator) is the x-axis with the
positive x-direction going from west to east, φ is the angle of latitude with −π

2 � φ � π
2 , and we set

z = r − R to be the variation in the locally vertical direction of the radial variable from the Earth’s
surface. The full governing equations for geophysical fluid dynamics in these cylindrical coordinates are
the Euler equations

⎧
⎪⎪⎨

⎪⎪⎩

Ut + UUx + V Uφ

R+z + WUz + 2Ω(W cos φ − V sin φ) = − 1
ρPx,

Vt + UVx + V Vφ

R+z + WV
R+z + 2ΩU sin φ + (R + z)Ω2 sin φ cos φ = − 1

ρ
Pφ

R+z ,

Wt + UWx + V Wφ

R+z + WWz − V 2

R+z − 2ΩU cos φ − (R + z)Ω2 cos2 φ = − 1
ρPz − g,

together with the equation of incompressibility

Ux +
1

R + z
Vφ +

1
R + z

∂

∂z
[(R + z)W ] = 0.

Here (U, V,W ) is the fluid velocity field, P is the pressure, ρ is the water’s density, t is the time, g = 9.8
m/s2 is the standard gravitational acceleration at the Earth’s surface and the geophysical parameters:
Ω = 7.29 × 10−5 rad/s the rotational speed of the Earth and R = 6378 km the radius of the Earth (we
assume that the shape of the Earth is a perfect sphere).

The Coriolis parameters, defined by:

f = 2Ω sin φ, f̂ = 2Ωcos φ

depend on the variable latitude φ. At the Equator f = 0, f̂ = 2Ω, at the North Pole we have f = 2Ω,
f̂ = 0, close to 45◦ latitude in the Northern Hemisphere the values are f = f̂ = 10−4 s−1 and close to 45◦

latitude in the Southern Hemisphere f = −f̂ = −10−4 s−1 (see [18]). For surface water waves propagating
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zonally in a relatively narrow ocean strip less than a few degrees of latitude wide, that is, φ + α, with α
very small, it is adequate to use the f - or β-plane approximations. Within the f -plane approximation the
Coriolis parameters are treated as constants. Within the traditional β-plane approximation, we consider
that, at the fixed latitude φ, f̂ is constant and f has a linear variation with the latitude. Defining y = Rα
and retaining only terms of linear order in the expansion of sin(φ + α), this linear variation has the form
f + βy, with

β =
f̂

R
=

2Ωcos φ

R
.

Furthermore the radius R is very large relative to the vertical variations z, hence z
R → 0. In terms

of the Cartesian coordinate system (x, y, z), we get the following β-plane approximation equations for
geophysical fluid dynamics with centripetal terms:

⎧
⎪⎨

⎪⎩

Ut + UUx + V Uy + WUz + f̂W − (f + βy)V = − 1
ρPx,

Vt + UVx + V Vy + WVz + (f + βy)U + f̂2

4 y + f̂f
4 R = − 1

ρPy,

Wt + UWx + V Wy + WWz − f̂U − f̂2

4 R = − 1
ρPz − g,

(2.1)

together with the equation of mass conservation

ρt + Uρx + V ρy + Wρz = 0, (2.2)

and with the condition of incompressibility

Ux + Vy + Wz = 0. (2.3)

Denoting the free surface by η(x, y, t) and letting Patm be the constant atmospheric pressure, the relevant
boundary conditions at the free surface are the kinematic boundary condition

W = ηt + Uηx + V ηy on z = η(x, y, t), (2.4)

which implies that fluid particles on the free surface remain on the surface for all time, and the dynamic
boundary condition

P = Patm on z = η(x, y, t), (2.5)
which decouples the water flow from the motion of the air above. Finally, we assume that the water is
infinitely deep, with the flow converging rapidly with depth to a uniform zonal current, that is,

(U, V,W ) → (−c0, 0, 0) as z → −∞. (2.6)

3. Exact Solution

We will use the Lagrangian framework for the exact solution. In the Lagrangian framework, the Eulerian
coordinates of fluid particles x = (x, y, z) at the time t are expressed as functions of Lagrangian labelling
variables (q, s, r) which specify the fluid particle. We suppose that the position of a particle at time t is
given as ⎧

⎨

⎩

x = q − c0t − 1
kek[r−h(s)] sin[k(q − ct)],

y = s,
z = r + 1

kek[r−h(s)] cos[k(q − ct)],
(3.1)

in which k is the wavenumber and c0 is a constant underlying current such that for cc0 > 0 the current is
adverse, while for cc0 < 0 the current is following. For later considerations, we take, on physical grounds,

|c0| <
g

f̂
− f̂R

4
, f̂ �= 0. (3.2)

The right hand side in (3.2) is always positive. Indeed, the parameter f̂ is positive and since Ω2R ≈ 3×10−2

m/s2, we have g � Ω2R > Ω2 cos φ2R.
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We will prove that the system (3.1) defines an exact solution of the β-plane governing equations
(2.1)–(2.6), where the travelling speed c and the function h depending on s are determined below. The
Lagrangian labelling variables are given by real values of q ∈ R, s ∈ [−s0, s0] and r ∈ (−∞, r0] such that

r − h(s) ≤ r0 < 0 (3.3)

to ensure that the flow has the appropriate decay properties.
For notational convenience, we set

ξ = k[r − h(s)], θ = k(q − ct).

The Jacobian matrix of the transformation (3.1) is given by

J =

⎛

⎜
⎝

∂x
∂q

∂y
∂q

∂z
∂q

∂x
∂s

∂y
∂s

∂z
∂s

∂x
∂r

∂y
∂r

∂z
∂r

⎞

⎟
⎠ =

⎛

⎝
1 − eξ cos θ 0 −eξ sin θ
hse

ξ sin θ 1 −hse
ξ cos θ

−eξ sin θ 0 1 + eξ cos θ

⎞

⎠ ,

from which we know that the determinant of the Jacobian is 1−e2ξ, which is non-zero under the condition
(3.3), and hence the transformation (3.1) is well defined.

3.1. The Pressure Function

Let us now write the Euler equation (2.1) in the form
⎧
⎪⎨

⎪⎩

DU
Dt + f̂W − (f + βy)V = − 1

ρPx,
DV
Dt + (f + βy)U + f̂2

4 y + f̂f
4 R = − 1

ρPy,
DW
Dt − f̂U − f̂2

4 R = − 1
ρPz − g,

(3.4)

where D
Dt stands for the material derivative. From (3.1) we can compute the velocity and acceleration of

a particle as
⎧
⎪⎨

⎪⎩

U = Dx
Dt = −c0 + ceξ cos θ,

V = Dy
Dt = 0,

W = Dz
Dt = ceξ sin θ,

(3.5)

and
⎧
⎪⎨

⎪⎩

DU
Dt = kc2eξ sin θ,
DV
Dt = 0,
DW
Dt = − kc2eξ cos θ,

respectively. We can therefore write (3.4) as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Px = − ρ(kc2eξ sin θ + f̂ ceξ sin θ),

Py = − ρ
[
(f + βs)(−c0 + ceξ cos θ) + f̂2

4 s + f̂f
4 R

]
,

Pz = − ρ
(
−kc2eξ cos θ + f̂ c0 − f̂ ceξ cos θ − f̂2

4 R + g
)

.

(3.6)

The change of variables
⎛

⎝
Pq

Ps

Pr

⎞

⎠ = J

⎛

⎝
Px

Py

Pz

⎞

⎠

transforms (3.6) into
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pq = − ρ
(
kc2 + f̂ c − f̂ c0 + f̂2

4 R − g
)

eξ sin θ,

Ps = − ρ
[
hs(kc2 + f̂ c)e2ξ + H(s)eξ cos θ −

(
fc0 + βc0s − f̂2

4 s − f̂f
4 R

)]
,

Pr = − ρ
[
−(kc2 + f̂ c)e2ξ −

(
kc2 + f̂ c − f̂ c0 + f̂2

4 R − g
)

eξ cos θ

+
(
f̂ c0 + g − f̂2

4 R
)]

,

(3.7)

where

H(s) = fc + cβs − f̂ c0hs +
f̂2

4
Rhs − ghs.

Now we give some suitable conditions on the pressure function P such that (3.7) holds and (3.1) is
indeed an exact solution of the governing equations (2.1)–(2.6). Since the condition (2.5) enforces a time
independence in the pressure function at the surface, it is necessary to eliminate terms containing φ in
(3.7) by setting

kc2 + f̂ c − f̂ c0 +
f̂2

4
R − g = 0, (3.8)

and

H(s) = fc + cβs − f̂ c0hs +
f̂2

4
Rhs − ghs = 0. (3.9)

It follows from (3.9) that we can choose

h(s) =
cβ

2
(
f̂ c0 + g − f̂2

4 R
)s2 +

fc

f̂c0 + g − f̂2

4 R
s. (3.10)

From (3.2), we get that

f̂ c0 + g − f̂2

4
R > 0 (3.11)

With the constraints (3.8) and (3.9), we can solve the pressure function as

P (r, s) = ρ

(

f̂ c0 + g − f̂2

4
R

)⎡

⎣
e2ξ

2k
+

c0

c
h(s) − f̂2s2 + 2f̂fRs

8
(
f̂ c0 + g − f̂2

4 R
) − r

⎤

⎦

− ρ

(

f̂ c0 + g − f̂2

4
R

)(
e2kr0

2k
− r0

)

+ Patm. (3.12)

The constant terms in (3.12) have been chosen to ensure the conditions (2.4) and (2.5) hold on the free
surface.

From the dispersion relation (3.8), for c0 �= c, we get

c± =
−f̂ ±

√

f̂2 + 4k
(
f̂ c0 + g − f̂2

4 R
)

2k
, (3.13)

in which Δ = f̂2 + 4k
(
f̂ c0 + g − f̂2

4 R
)

> 0 following (3.11). If c = c+ > 0, the wave travels from west to
east and if c = c− < 0, the wave travels from east to west.
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3.2. The Free-Surface Interface

We now focus on the expression (3.12) of the pressure function and the fulfilment of the boundary
conditions (2.4) and (2.5). In Lagrangian variables, the kinematic boundary condition (2.4) holds if at
each fixed latitude s the free surface is given by specifying a value of r, the label q being the free parameter
of the curve that represents the wave profile at this latitude. With (3.12) in view, this is achieved if we
show that, at each fixed s, there exists a unique solution r(s) ≤ r0 < 0 such that P (r(s), s) = Patm, which
is equivalent to

η(r(s), s) =
e2kr0

2k
− r0, (3.14)

in which

η(r, s) =
e2ξ

2k
+

c0

c
h(s) − f̂2s2 + 2f̂fRs

8
(
f̂ c0 + g − f̂2

4 R
) − r.

For s = 0, the choice r(0) = r0 works in (3.14). For the case s �= 0, by (3.3), we have

ηr = e2k[r−h(s)] − 1 < 0,

which means that η is decreasing in r. Moreover, it is obvious that

lim
r→−∞ η(r, s) = +∞.

Thus equation (3.14) has a unique solution if the following inequality holds

lim
r→r0

η(r, s) =
e2k[r0−h(s)]

2k
+

c0

c
h(s) − f̂2s2 + 2f̂fRs

8
(
f̂ c0 + g − f̂2

4 R
) − r0

<
e2kr0

2k
− r0,

which is equivalent to the inequality

A(s) :=
e2kr0

2k

[
e−2kh(s) − 1

]
+

c0

c
h(s) − f̂2s2 + 2f̂fRs

8
(
f̂ c0 + g − f̂2

4 R
) < 0. (3.15)

We will look for the geophysical waves satisfying
{

r′(s) < 0, s > 0,
r′(s) > 0, s < 0.

(3.16)

Differentiating (3.14) with respect to s, we obtain that

r′(s)
[
e2k[r(s)−h(s)] − 1

]
− h′(s)

[
e2k[r(s)−h(s)] − c0

c

]
− f̂2s + f̂fR

4
(
f̂ c0 + g − f̂2

4 R
) = 0,

and therefore we get

r′(s) =

[
c0 − ce2k[r(s)−h(s)]

]
h′(s)

c − f̂2s+f̂fR

4
(
f̂c0+g− f̂2

4 R
)

1 − e2k[r(s)−h(s)]

=

[
c0 − ce2k[r(s)−h(s)]

]
(βs + f) − f̂2

4 s − f̂fR
4

[
1 − e2k[r(s)−h(s)]

] (
f̂ c0 + g − f̂2

4 R
) .
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Then, the inequalities (3.16) become
⎧
⎪⎪⎨

⎪⎪⎩

[
c0 − ce2k[r(s)−h(s)]

]
(βs + f) − f̂2

4 s − f̂fR
4 < 0, s > 0,

[
c0 − ce2k[r(s)−h(s)]

]
(βs + f) − f̂2

4 s − f̂fR
4 > 0, s < 0,

(3.17)

since (3.3) and (3.11) hold.
It follows from (3.16) and the fact r(0) = r0 that r(s) < r0 for s �= 0. Since (3.3) holds and h(0) = 0,

we obtain that for s �= 0,
h(s) > 0, or h(s) < 0 close enough to zero. (3.18)

Note that h(s) > 0 is equivalent to
cs(βs + 2f) > 0, (3.19)

and h(s) < 0 is equivalent to
cs(βs + 2f) < 0. (3.20)

Up to now, we have obtained the restrictions (3.15)–(3.17)–(3.18) required for the hydrodynamical pos-
sibility of the flow.

Let us see for which values of the uniform current c0 the required restrictions (3.15) and (3.17) are
satisfied. We will make a separate case discussion in the Northern Hemisphere and in the Southern
Hemisphere.

I. Northern Hemisphere

For the Northern Hemisphere, we have that f̂ > 0, f > 0 and β > 0. We have four different cases.

Case N1. cc0 > 0, that is, the current is adverse, and h(s) > 0.
The condition cc0 > 0 is obtained if:

(a) the solution c = c+ > 0 and the uniform current 0 < c0 < g

f̂
− f̂R

4 .

It follows from (3.19) that h(s) > 0 if and only if s > 0 or s < − 2f
β . From the physical viewpoint, the

possibility s < − 2f
β can be excluded, therefore s > 0. The inequalities (3.15) and (3.17) become

A(s) < 0, s > 0 (3.21)
[
c0 − c+e2k[r(s)−h(s)]

]
(βs + f) − f̂2

4
s − f̂fR

4
< 0, s > 0, (3.22)

respectively. We note that A(0) = 0. Thus, to ensure the inequality (3.21) holds, the necessary condition
is

A′(s) =
βs + f

f̂c0 + g − f̂2

4 R

[
c0 − c+e2k[r0−h(s)]

]
− f̂2s + f̂fR

4
(
f̂ c0 + g − f̂2

4 R
) < 0, (3.23)

for s > 0 small enough. The inequality (3.23) is equivalent to

c0 − c+e2k[r0−h(s)] <
f̂2s + f̂fR

4(βs + f)
. (3.24)

For s small enough, the right hand side of (3.24) becomes f̂R
4 . Therefore, for a given uniform current c0

with

0 < c0 < c+e2kr0 +
f̂R

4
,

(3.24) holds for some s ∈ (0, s1] and accordingly (3.22) holds for s ∈ (0, s0] with s0 < s1. We observe
that, at the Equator, the right hand side of the inequality (3.24) becomes ΩR

2 ≈ 2.33 × 10−2 m/s.

(b) the solution c = c− < 0 and the uniform current − g

f̂
+ f̂R

4 < c0 < 0.
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In this case, − 2f
β < s < 0. Since we consider a relatively narrow ocean strip, we can restrict to − f

β < s < 0,
and therefore βs + f > 0. The inequalities (3.15) and (3.17) become

A(s) < 0, −f

β
< s < 0 (3.25)

[
c0 − c−e2k[r(s)−h(s)]

]
(βs + f) − f̂2

4
s − f̂fR

4
> 0, −f

β
< s < 0, (3.26)

respectively. To ensure the validity of (3.25), the necessary condition is

A′(s) =
βs + f

f̂c0 + g − f̂2

4 R

[
c0 − c−e2k[r0−h(s)]

]
− f̂2s + f̂fR

4
(
f̂ c0 + g − f̂2

4 R
) > 0, (3.27)

for − f
β < s < 0 with |s| small enough. The inequality (3.27) is equivalent to

c0 − c−e2k[r0−h(s)] >
f̂2s + f̂fR

4(βs + f)
. (3.28)

For |s| small enough, the right hand side of (3.28) becomes f̂R
4 . Therefore, if

c−e2kr0 +
f̂R

4
< 0, (3.29)

then, for a given uniform current c0 with

c−e2kr0 +
f̂R

4
< c0 < 0,

(3.28) holds for some s ∈ [−s1, 0) and accordingly (3.26) holds for s ∈ [−s0, 0) with s0 < s1.

Case N2. cc0 > 0, that is, the current is adverse, and h(s) < 0.
The condition cc0 > 0 is obtained if:

(a) the solution c = c+ > 0 and the uniform current 0 < c0 < g

f̂
− f̂R

4 .

It follows from (3.20) that h(s) < 0 if and only if − 2f
β < s < 0. We can restrict − f

β < s < 0, and therefore
βs+ f > 0. The inequalities (3.15) and (3.17) become (3.25) and (3.26), with c+ instead of c−. The same
reasoning as in the N1(b) applies to this case, hence, we get that, for a given uniform current c0 with

c+e2kr0 +
f̂R

4
< c0 <

g

f̂
− f̂R

4
,

the corresponding inequalities hold for s ∈ [−s0, 0) with s0 small enough.
(b) the solution c = c− < 0 and the uniform current − g

f̂
+ f̂R

4 < c0 < 0.
In the same manner as in N1(a), we get that, for a given uniform current c0 with

− g

f̂
+

f̂R

4
< c0 < c−e2kr0 +

f̂R

4
,

(3.15) and (3.17) hold for s ∈ (0, s0] with s0 small enough.

Case N3. cc0 < 0, that is, the current is following, and h(s) > 0.
In this case, (3.15) is obviously satisfied. Now we see what happens with the inequality (3.17). The
condition cc0 < 0 is obtained if:

(a) the solution c = c+ > 0 and the uniform current − g

f̂
+ f̂R

4 < c0 < 0.

In this situation, the term c0 − c+e2k[r(s)−h(s)] < 0. Just as in the case N1(a), we can exclude s < − 2f
β ,

and we get s > 0. We thus get that the inequality (3.17) is satisfied for all s > 0.
(b) the solution c = c− < 0 and the uniform current 0 < c0 < g

f̂
− f̂R

4 .
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Then, the term c0 − c−e2k[r(s)−h(s)] > 0 and from (3.10) and (3.11) it follows that h(s) > 0 if and only
if − 2f

β < s < 0. Since we consider a relatively narrow ocean strip, we can restrict to − f
β < s < 0, where

the inequality (3.17) holds.

Case N4. cc0 < 0, that is, the current is following, and h(s) < 0.
The condition cc0 < 0 is obtained if:

(a) the solution c = c+ > 0 and the uniform current − g

f̂
+ f̂R

4 < c0 < 0.

In this case, − 2f
β < s < 0, we can restrict to − f

β < s < 0, and therefore βs + f > 0. The inequalities
(3.15) and (3.17) become (3.25) and (3.26), with c+ instead of c−. In order to satisfy these inequalities,
we get that, for s small enough, the uniform current c0 has to satisfy

0 < c+e2kr0 +
f̂R

4
< c0,

which is in contradiction with c0 < 0. Thus, this is a nonvalid case.
(b) the solution c = c− < 0 and the uniform current 0 < c0 < g

f̂
− f̂R

4 .
In the same manner as in N1(a), s > 0 and the inequalities (3.15) and (3.17) become (3.21) and (3.22),
with c− instead of c+. For s small enough, these inequalities hold for uniform currents c0 with

c0 < c−e2kr0 +
f̂R

4
.

If (3.29) is satisfied, then, the above inequality is in contradiction with c0 > 0, and the case is invalid.

II. Southern Hemisphere

In this case, we have that f̂ > 0, f < 0 and β > 0. Similar arguments to that in the Northern Hemisphere
apply in the four cases considered.

Case S1. cc0 > 0, that is, the current is adverse, and h(s) > 0.
The condition cc0 > 0 is obtained if:

(a) the solution c = c+ > 0 and the uniform current 0 < c0 < g

f̂
− f̂R

4 . By (3.19), h(s) > 0 if and only

if s < 0 or s > − 2f
β . From the physical viewpoint, the possibility s > − 2f

β can be excluded, therefore
s < 0. The inequalities (3.15) and (3.17) become

A(s) < 0, s < 0 (3.30)
[
c0 − c+e2k[r(s)−h(s)]

]
(βs + f) − f̂2

4
s − f̂fR

4
> 0, s < 0, (3.31)

respectively. To ensure the validity of (3.30), the necessary condition is

A′(s) =
βs + f

f̂c0 + g − f̂2

4 R

[
c0 − c+e2k[r0−h(s)]

]
− f̂2s + f̂fR

4
(
f̂ c0 + g − f̂2

4 R
) > 0, (3.32)

for s < 0 with |s| small enough. The inequality (3.32) is equivalent to

(βs + f)
[
c0 − c+e2k[r0−h(s)]

]
>

f̂2s + f̂fR

4
. (3.33)

For |s| small enough, (3.33) tends to f
(
c0 − c+e2kr0

)
> f̂fR

4 , and taking into account that now f < 0,
we get that for a given uniform current c0 with

0 < c0 < c+e2kr0 +
f̂R

4
,

(3.33) and (3.31) hold for some s ∈ [−s0, 0).
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(b) the solution c = c− < 0 and the uniform current − g

f̂
+ f̂R

4 < c0 < 0. The inequalities (3.15) and
(3.17) become

A(s) < 0, 0 < s < −f

β
(3.34)

[
c0 − c+e2k[r(s)−h(s)]

]
(βs + f) − f̂2

4
s − f̂fR

4
< 0, 0 < s < −f

β
, (3.35)

respectively. Then, if (3.29) is satisfied, for a given uniform current c0 with

c−e2kr0 +
f̂R

4
< c0 < 0,

(3.15) and (3.17) hold for s ∈ (0, s0] with s0 small enough.

Case S2. cc0 > 0, that is, the current is adverse, and h(s) < 0.
The condition cc0 > 0 is obtained if:

(a) the solution c = c+ > 0 and the uniform current 0 < c0 < g

f̂
− f̂R

4 . It follows from (3.20) that

h(s) < 0 if and only if 0 < s < − 2f
β . We can restrict 0 < s < − f

β , and therefore βs + f < 0. The
inequalities (3.15) and (3.17) become

A(s) < 0, 0 < s < −f

β
(3.36)

[
c0 − c+e2k[r(s)−h(s)]

]
(βs + f) − f̂2

4
s − f̂fR

4
< 0, 0 < s < −f

β
, (3.37)

respectively. In the same manner, (3.36) holds if

A′(s) =
βs + f

f̂c0 + g − f̂2

4 R

[
c0 − c+e2k[r0−h(s)]

]
− f̂2s + f̂fR

4
(
f̂ c0 + g − f̂2

4 R
) < 0, (3.38)

for s > 0 small enough. The inequality (3.38) is equivalent to

(βs + f)
[
c0 − c+e2k[r0−h(s)]

]
<

f̂2s + f̂fR

4
. (3.39)

For s small enough, (3.39) tends to f
(
c0 − c+e2kr0

)
< f̂fR

4 , and we get that for a given uniform current
c0 with

c+e2kr0 +
f̂R

4
< c0 <

g

f̂
− f̂R

4
,

(3.39) and (3.37) hold for some s ∈ (0, s0], with s0 small enough.
(b) the solution c = c− < 0 and the uniform current − g

f̂
+ f̂R

4 < c0 < 0.
We get that, for a given uniform current c0 with

− g

f̂
+

f̂R

4
< c0 < c−e2kr0 +

f̂R

4
,

(3.15) and (3.17) hold for s ∈ [−s0, 0) with s0 small enough.

Case S3. cc0 < 0, that is, the current is following, and h(s) > 0.
The condition cc0 < 0 is obtained if:

(a) the solution c = c+ > 0 and the uniform current − g

f̂
+ f̂R

4 < c0 < 0.

In this case, just as in the case S1(a), we can exclude s > − 2f
β , and we get s < 0. Then the inequalities

(3.15) and (3.17) are obviously satisfied for all s < 0.
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(b) the solution c = c− < 0 and the uniform current 0 < c0 < g

f̂
− f̂R

4 .

In this case, 0 < s < − 2f
β , and we can restrict 0 < s < − f

β , therefore βs + f < 0. Then the inequalities
(3.15) and (3.17) are obviously satisfied for all 0 < s < − f

β .

Case S4. cc0 < 0, that is, the current is following, and h(s) < 0.
This case can be handled in the same way as the case N4. It follows that this is a non valid case.
Summing up, we have got the following theorem.

Theorem 3.1. For a narrow strip [−s0, s0], with s0 > 0 small enough, at an arbitrary latitude s in the
Northern Hemisphere or in the Southern Hemisphere, the solution (3.1) with the stated conditions (3.3)
and (3.16), defines an exact solution to the governing equations (2.1)–(2.6) if:

• the current c0 is adverse, it satisfies the inequality |c0| < |c|e2kr0 + f̂R
4 and the function h(s) (which

enforces a strong exponential decay of particle oscillation in the meridional direction) is positive;
• the current c0 is adverse, it satisfies the inequality |c|e2kr0 + f̂R

4 < |c0| < g

f̂
− f̂R

4 and the function
h(s) is negative;

• the current c0 is following, it satisfies |c0| < g

f̂
− f̂R

4 and the function h(s) is positive; in the Northern
Hemisphere, for flows with positive wave speed c = c+ > 0, the range for the fixed latitude is s > 0,
and for flows with negative wave speed c = c− < 0, we are restricted to latitudes in the region
− f

β < s < 0; in the Southern Hemisphere for flows with positive wave speed c = c+ > 0, the range
for the fixed latitude is s < 0, and for flows with negative wave speed c = c− < 0, we are restricted
to latitudes in the region 0 < s < − f

β .

This solution represents a wave-current interaction propagating eastward or westward above a flow
which accommodates a constant underlying background current of magnitude |c0|. The free surface z =
η(x, y, t) is implicitly prescribed at s = 0 by setting r = r0 in (3.1), and for any other fixed latitude
s ∈ [−s0, s0] there exists a unique value r(s) < r0 which implicitly prescribes the free surface z = η(x, s, t)
by setting r = r(s) in (3.1).

3.3. The Vorticity

The velocity gradient tension is given as

∇U =
ckeξ

1 − e2ξ

⎛

⎝
− sin θ hs(eξ − cos θ) −eξ + cos θ

0 0 0
eξ + cos θ −hs sin θ sin θ

⎞

⎠ . (3.40)

Thus the vorticity ω = (wy − vz, uz − wx, vx − uy) is given as

ω =
(

− c2k(βs + f)

f̂ c0 + g − f̂2

4 R

eξ sin θ

1 − e2ξ
,− 2cke2ξ

1 − e2ξ
,− c2k(βs + f)

f̂ c0 + g − f̂2

4 R

e2ξ − eξ cos θ

1 − e2ξ

)
. (3.41)

We can see that the vorticity (3.41) is three-dimensional away from the equator, although the velocity
field (3.5) is two-dimensional. Moreover, the first and third components in (3.41) depends on the latitude
and the underlying current c0.



19 Page 12 of 16 J. Chu et al. JMFM

4. Instability

Small perturbations (u(t,x), p(t,x)) of the geophysical flow (U(t,x), P (t,x)) which solve the problem
(2.1), (2.3) (we set the water density ρ = 1), are governed by the following linearized equations:

ut + (U · ∇)u + (u · ∇)U + Lf,f̂ ,βu = −∇p (4.1)

∇ · u = 0 (4.2)

with Lf,f̂ ,β given by

Lf,f̂ ,β :=

⎛

⎝
0 −(f + βy) f̂

(f + βy) 0 0
−f̂ 0 0

⎞

⎠ .

No centripetal terms appear in the linearized equations (4.1)–(4.2), they have the same form as the
linearized equations governing the dynamic of the small perturbations of the geophysical flow at an
arbitrary latitude on a zonal current obtained in [2] .
The theory of short-wave instabilities consists of considering the evolution of a rapidly varying WKB
wave packet:

u(t,x) = [A(t,x) + εA(t,x)] e
i
ε Φ(t,x) + εurem(t,x, ε) (4.3)

p(t,x) = [B(t,x) + εB(t,x)] e
i
ε Φ(t,x) + εprem(t,x, ε), (4.4)

with a sharply-peaked initial disturbance u0 of the form:

u0 := u(0,x) = A(0,x)e
i
ε Φ(0,x) =: A0(x)e

i
ε Φ0(x),

ε being a small parameter, A, A vector functions and Φ, B, B scalar functions, The evolution in time
of the solutions of the linearized system (4.1)–(4.2) in the form (4.3)–(4.4), is governed, at leading order
in powers of ε, by a system of partial differential equations (the eikonal equation for the wave phase Φ
and the so-called transport equation for the amplitude vector A) (see [2] and the references therein). The
next-order terms A and B depend only on A and ∇Φ, and the remainder terms urem, prem are bounded,
in an appropriate norm, at any time t by functions that can depend on t but are independent of ε, they
being dominated by the growth of the leading order terms. See, for example, [29] for details. By defining
the local wave vector ξ := ∇Φ, it may be shown that the stability problem is reduced to a system of
ordinary differential equations that evolves along the trajectories of the basic flow U(t,x) (3.5):

dx
dt

= U(t,x), (4.5)

dξ

dt
= −(∇U)T ξ, (4.6)

dA
dt

= −(A · ∇)U − Lf,f̂ ,βA +
ξ · [2(A · ∇)U + Lf,f̂ ,βA]

‖ξ‖2
ξ, (4.7)

where ∇U is the velocity gradient matrix (3.40). The initial conditions for the ODE system (4.5)–(4.7)
are

x(0) = x0, ξ(0) = ξ0, A(0) = A0, with A0 · ξ0 = 0. (4.8)

To prove the instability of the geophysical fluid flow (3.1), it is not necessary to investigate the system
above for all initial data. We only need to chose an initial disturbance which can lead to an exponentially
growing amplitude A. Let us choose the latitudinal wave vector ξ0 = (0 1 0)T . For this initial condition,
taking into account the expression (3.40) of the velocity gradient matrix, (4.6) yields

ξ(t) = (0 1 0)T for all time t ≥ 0. (4.9)
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Hence, from (4.7), it follows that A = (A1, A2, A3) satisfies
⎧
⎪⎨

⎪⎩

Ȧ1 = −f̂A3 + (f + βs)A2 − ckeξ

1−e2ξ [−A1 sin θ + A2hs(eξ − cos θ) + A3(cos θ − eξ)],
Ȧ2 = 0,

Ȧ3 = f̂A1 − ckeξ

1−e2ξ [A1(eξ + cos θ) − A2hs sin θ + A3 sin θ)].

For the chosen initial vector ξ0 = (0 1 0)T and the condition of orthogonality in (4.8), we must have
A2(0) = 0. Thus, the second equation in the above system yields

A2(t) = 0 for all t ≥ 0.

Thus, the system reduces to the following two-dimensional system
(

Ȧ1

Ȧ3

)

= M(t)
(

A1

A3

)

, (4.10)

with

M(t) =

⎛

⎝
ckeξ

1−e2ξ sin θ −f̂ + ckeξ

1−e2ξ (eξ − cos θ)

f̂ − ckeξ

1−e2ξ (eξ + cos θ) − ckeξ

1−e2ξ sin θ

⎞

⎠ .

By rotating the canonical Cartesian basis with the angle α = kct
2 about the vector ξ(t) from (4.9), the

system (4.10) can be transformed to an autonomous linear system:
(

˙̃A1

˙̃A3

)

= D

(
Ã1

Ã3

)

, (4.11)

where D the time-independent matrix

D =

⎛

⎝
ckeξ

1−e2ξ sin(kq) −f̂ − ckeξ

1−e2ξ cos(kq) + cke2ξ

1−e2ξ − kc
2

f̂ − ckeξ

1−e2ξ cos(kq) − cke2ξ

1−e2ξ + kc
2 − ckeξ

1−e2ξ sin(kq)

⎞

⎠ ,

and Ã1, Ã3, the components of the vector A(t) in the new basis. The solution to the non-autonomous
system (4.10) is obtained by multiplying the rotation matrix with the solution to the autonomous system
(4.11). The rotation matrix being time periodic, the behaviour in time of the amplitude vector A is
determined by the eigenvalues of the matrix D, which satisfy the following equation

λ2 =
(2f̂ + 3kc)2e2ξ − (2f̂ + kc)2

4(1 − e2ξ)
.

Therefore, taking into account (3.3), if

eξ >
2f̂ + kc

2f̂ + 3kc

(3.13)
=

3f̂ ±
√

f̂2 + 4k
(
f̂ c0 + g − f̂2

4 R
)

f̂ ± 3
√

f̂2 + 4k
(
f̂ c0 + g − f̂2

4 R
) , (4.12)

then, the amplitude A increases unboundedly in time, the exponential growth rate being

λ =
1
2

√

(2f̂ + 3kc)2e2ξ − (2f̂ + kc)2

1 − e2ξ
.

By (3.1), the steepness of the longitudinal wave profile, defined as the amplitude multiplied by the wave
number, is eξ. We have proved the following wave-steepness instability criterion:

Theorem 4.1. At arbitrary latitude, the geophysical waves (3.1) are linearly unstable if their steepness

exceeds the value
3f̂±

√

f̂2+4k
(
f̂c0+g− f̂2

4 R
)

f̂±3

√

f̂2+4k
(
f̂c0+g− f̂2

4 R
) .
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In the absence of the underlying current, for c0 = 0, this value becomes

3f̂ ±
√

f̂2 + 4k
(
g − f̂2

4 R
)

f̂ ± 3
√

f̂2 + 4k
(
g − f̂2

4 R
) . (4.13)

Since f̂ �
√

f̂2 + 4k
(
g − f̂2

4 R
)
, the threshold (4.13) is

3 f̂√

f̂2+4k
(
g− f̂2

4 R
) + 1

f̂√

f̂2+4k
(
g− f̂2

4 R
) + 3

>≈ 1
3

for c = c+ > 0,

3 f̂√

f̂2+4k
(
g− f̂2

4 R
) − 1

f̂√

f̂2+4k
(
g− f̂2

4 R
) − 3

<≈ 1
3

for c = c− < 0.

These considerations suggest that waves which travel from east to west are more prone to instability than
those which travel from west to east.
In the presence of the current c0 �= 0, we get

3 f̂√

f̂2+4k
(
f̂c0+g− f̂2

4 R
) + 1

f̂√

f̂2+4k
(
f̂c0+g− f̂2

4 R
) + 3

>≈ 1
3

for c = c+ > 0,

3 f̂√

f̂2+4k
(
f̂c0+g− f̂2

4 R
) − 1

f̂√

f̂2+4k
(
f̂c0+g− f̂2

4 R
) − 3

<≈ 1
3

for c = c− < 0.

In particular, we deduce that an adverse current with cc0 > 0 favours instability in the sense that the
threshold on the steepness for the wave to be unstable is decreased compared to the case without current.
Conversely, this threshold is increased by a following current with cc0 < 0.

Let us also note that, for equatorial waves, f̂ = 2Ω, we recover the result obtained in [17], that is, the
right-hand side of (4.12) has the expression

3Ω ± √
Ω2 + k(2Ωc0 + g − Ω2R)

Ω ± 3
√

Ω2 + k(Ωc0 + g − Ω2R)
.

For waves near the North Pole, f̂ = 0, the right-hand side of (4.12) becomes 1
3 and we recover the result

[34] for Gerstner’s wave.
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