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Abstract. We study the dynamic transition of the Swift-Hohenberg equation (SHE) when linear multiplicative noise acting
on a finite set of modes of the dominant linear flow is introduced. Existence of a stochastic flow and a local stochastic
invariant manifold for this stochastic form of SHE are both addressed in this work. We show that the approximate reduced
system corresponding to the invariant manifold undergoes a stochastic pitchfork bifurcation, and obtain numerical evidence
suggesting that this picture is a good approximation for the full system as well.
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1. Introduction

Randomness and uncertainty are ubiquitous in many branches of natural and engineering sciences. Sto-
chastic modeling taking randomness into account hence plays an important role in obtaining a realistic
quantitative and qualitative description of these real-world phenomena, including, for example, climate
dynamics [9], pricing and hedging of financial derivatives [22], filtering and control theory in engineering,
turbulence theory [1] and population models in biology [19].

The study of the asymptotic behavior and dynamic transitions for the following semi-linear stochastic
evolution equation, driven by linear multiplicative white noise in the sense of Stratonovich,

du = (Lλu + F (u))dt + σu ◦ dWt, (1.1)

has an extensive literature and applications; see e.g. [3,5,7,8,13,24], and the references therein. Here, Lλ

is a linear operator parametrized by a scalar control parameter λ, F (u) represents the nonlinear terms,
Wt is a two-sided one-dimensional Wiener process, and σ ∈ R gives a measure of the “amplitude” of
the noise. Since σ is a constant, the random noise in (1.1) is also known as scalar multiplicative noise.
If we view the noise in Eq. (1.1) as σId(u) ◦ dWt, where Id is the identity operator, then a natural way
to generalize the noise is to consider Bu ◦ dWt, where B is a bounded linear operator; see [23]. In this
article, we are interested in the case where B acts as a multiplicative operator on the eigenspaces of Lλ,
and its dynamic transition is studied using the ideas from the theory of random invariant manifolds and
reduction strategies in [6–8].

Before giving a more precise description of the operator B, we begin by describing the general frame-
work. We consider separable Hilbert spaces H and H1, with the inclusion H1 ⊂ H being dense and
compact. We are given a family Lλ of linear completely continuous fields from H1 to H, depending con-
tinuously on λ ∈ R, and we assume Lλ is a sectorial operator for each λ ∈ R. Under these assumptions, the
spectrum σ(Lλ) of Lλ consists only of eigenvalues with finite multiplicities, and there are finitely many
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eigenvalues with a given real part. Moreover, from [14], Thm.II.4.18, we know that Re σ(Lλ) is bounded
above. These two properties of Re σ(Lλ) make lexicographical ordering of σ(Lλ) possible, and we write
σ(Lλ) = {βn(λ) : n ∈ N}, with each eigenvalue βn(λ) repeated according to its algebraic multiplicity. We
will also assume that for λ in a small neighborhood of some λc, denoted by Nλc

, there exists a positive
integer m, such that the spectrum σ(Lλ) splits into the union of σc(Lλ) and σs(Lλ). That is

σ(Lλ) = σc(Lλ) ∪ σs(Lλ), λ ∈ Nλc
, with ηc > ηs, (1.2)

where
ηc := inf

λ∈Nλc

inf{Re β(λ) : β(λ) ∈ σc(Lλ)},

ηs := sup
λ∈Nλc

sup{Re β(λ) : β(λ) ∈ σs(Lλ)},
(1.3)

and σc(Lλ) consists of the first m eigenvalues (counting multiplicities) in σ(Lλ). The splitting of the
spectrum σ(Lλ) leads to a decomposition of H1 as the direct sum of Hc

1 and Hs
1 , where Hc

1 and Hs
1 are

the spaces spanned by eigenfunctions with eigenvalues in σc(Lλ) and σs(Lλ) respectively. Note that we
assume this decomposition to be independent of λ.

Although our theoretical results hold under more general conditions, a prototype of the kind of oper-
ators B we can treat is given by

Bu =
∞∑

k=1

σkPku

where {σk} ⊂ R is a bounded sequence, and Pk is the orthogonal projection onto the eigenspace corre-
sponding to a given eigenvalue in σ(Lλ). It might happen that the constants σk vanish for infinitely many
k ∈ N, an so it is in this sense that we say Bu ◦ dWt is a degenerate multiplicative noise.

Instead of approaching this problem in full abstraction, we will study it in the context of the Swift-
Hohenberg equation (SHE). SHE was first proposed in 1977 by Jack Swift and Pierre Hohenberg as a
simple model for the Rayleigh–Benard instability of roll waves [26]. This equation plays an important
role in bifurcation analysis and has been widely used as a model for the study of various phenomena in
pattern formation; see [2,10,12,16,18] and the references therein. The classical, deterministic SHE, takes
the form

∂u

∂t
= − (I + Δ)2u + λu − u3, (1.4)

where λ is a positive real number which serves as a control parameter. We also impose the following odd
periodic boundary conditions on the domain U = (− l, l) × (− l, l):

u(x1, x2, t) = u(x1 + 2l, x2, t) = u(x1, x2 + 2l, t) ∀(x1, x2) ∈ U , t ≥ 0,

u(−x1,−x2, t) = −u(x1, x2, t) ∀(x1, x2) ∈ U , t ≥ 0.
(1.5)

The problem analyzed hereafter consists of the following stochastic Swift-Hohenberg equation (SSHE)

du =
(−(I + Δ)2u + λu − u3

)
dt + Bu ◦ dWt. (1.6)

In other words, (1.6) is Eq. (1.4) perturbed by degenerate multiplicative noise in the sense described
above.

From the point of view of dynamic transitions [21], it is interesting to see the difference of transitions
when degenerate multiplicative noise is used instead of the classical scalar noise. To address the dynamic
transition of a given dissipative system, the first step is to study the linear eigenvalue problem, as outlined
in Sect. 2. With the linear stability theory established, the detailed information of the transition behavior
is then dictated by the nonlinear interactions of the system. In the deterministic case, Han and Hsia [16]
have shown that the deterministic SHE undergoes a continuous type transition as λ crosses some critical
value. This transition occurs as a result of the stabilizing effect played by the nonlinear cubic term u3.
For the stochastic case, with scalar multiplicative noise, the stabilizing effect of the cubic term also leads
to a continuous type transition, see [5] for example. However, by introducing an operator B as described
above, or any other bounded linear operator, the nonlinear term might no longer remain a source of
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stability. This is due in part to the fact that the nonlinear term e−WtBF (e−WtBv) loses its stabilizing
effect when B is not a multiplication operator, which is the main difference with the deterministic case or
the stochastic case with scalar multiplicative noise. Hence, it is not obvious that the dynamic transition
of SSHE presented here will again undergo a continuous transition. Nevertheless, as we show at the end
of Sect. 5, the reduced equations associated to SSHE with this kind of noise do undergo a continuous
transition when λ crosses a critical value.

The pathwise well-possedness of Eq. (1.1) with generalized noise Bu ◦ dW , which is essential for the
applicability of the ideas of [7,8], is also investigated in this paper. Due to the lack of pathwise a priori
estimates, which is, in a sense, due to the fact that B does not in general commute with DF , it is not
possible to establish global existence of Eq. (3.3) in Ω×H. Because of this, we present a different approach
to address this issue in Sect. 3. More precisely, we prove lower semi-continuity of the blow-up time with
respect to (ω, x), and hence establish existence of a local RDS. Moreover, we show that for every x ∈ H
there exists an event of probability one where global solutions of (3.3) exist, which thus contains all the
relevant asymptotic dynamics of the problem.

Reducing a nonlinear mathematical model to a set simpler equations which are able to faithfully mimic
the main features of the original model is a long established approach in the study of dynamical systems
of nonlinear differential equations. In this technique, invariant manifolds, such as the stable, unstable and
center manifolds, have been widely used to provide geometric structure for understanding the dynamics of
nonlinear systems. Some of the pioneers in this area were Hadamard [15], Liapunov [20] and Perron [25],
and, for more recent developments, see [21] and the references therein. There have been fruitful efforts
in extending these techniques to stochastic and random dynamical system, see [7,8,13]. However, similar
reduction techniques can not be readily applied to the study of stochastic dynamical systems. The main
issue here is the incompatibility with large excursions of SPDE solutions caused by white noise, and to
the best of our knowledge, this problem has not been fully resolved.

The existence of local invariant manifolds for SPDEs is the first thing one needs to establish in
order to apply the reduction techniques mentioned above. The existence of such invariant manifolds for
SPDEs with scalar multiplicative noise has been established in [7] Cor 5.1, where the stochastic invariant
manifold function is defined on a deterministic ball. Through the relaxation on the assumption of the
random noise, the existence of local invariant manifolds for a broader class of SPDEs with multiplicative
noise of the form Bu ◦ dW , where operator B : H → H is a linear bounded operator that commutes with
the semigroup generated by Lλ, is given in Sect. 5. Such type of noise was also considered in [4]. Even
though the class of stochastic perturbations included in this case is much wider than what is consider in
[7], the result we obtained is only slightly weaker. More precisely, instead of having a stochastic invariant
manifold function defined on a deterministic ball, the function we have lives in a random ball, with radius
given by a tempered random variable. The results presented in Sects. 5 and 6 provide some justification
of the reduction analysis.

From the results we have in Sect. 4, and adapting the approximation formulas given in [7], the first order
stochastic reduction is performed in Sect. 5, by projecting SSHE onto the subspace Hc

1 . For deterministic
systems, the justification for the reduction techniques is based on a geometric phase space analysis in
which families of nearby trajectories are predicted to collapse onto a low-dimensional invariant manifold.
However, due to the large deviations that solutions of SSHE may exhibit, which are unavoidable in
stochastic systems, it is not obvious that the stochastic invariant manifold found as above will contain
all the relevant dynamics. Hence, the results in Sect. 5 should only be interpreted for those trajectories
that manage to lie inside the invariant manifold. Nevertheless, using a priori estimates for the reduced
equations, and a result in [11], we show that the reduced equations for SSHE undergo a stochastic
pitchfork bifurcation in the pullback sense, which is also known as a type I transition, as introduced for
deterministic system in [21] and the references therein.

This article is organized as follows. In Sect. 2, the functional setting of (1.4) is introduced and its linear
eigenvalue problem is studied. Well-posedness of the pathwise problem is given in Sect. 3. Existence of
local stochastic invariant manifold is addressed in Sect. 4. In Sect. 5, a low order reduced equation is
obtained using the reduction strategy in [7]. The study of stochastic transitions associated with (1.6) is
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also given in Sect. 5. By placing the noise at some relevant fast modes, numerical results of reduced SSHE
are given in Sect. 6.

2. Mathematical Setting and Linear Problem

The mathematical setting and the linearized eigenvalue problem associated with (1.4) are introduced in
this section. For the mathematical setup, we introduce the following spaces:

H =
{

u ∈ L2(U ,R) : u satisfies (1.5) and
∫

U
u dx = 0

}
,

H1 = H4(U ;R) ∩ H

(2.1)

Note that H1 and H are Hilbert spaces with compact and dense embedding H1 ↪→ H. We then write
(1.4) as

du

dt
= Lλu + F (u),

u(x, 0) = φ(x),
(2.2)

where Lλu = − (I + Δ)2u + λu.
Since (I+Δ)2 : H1 → H is a linear homeomorphism, it is clear that the operators Lλ = − (I+Δ)2+λI

constitute a family of linear completely continuous fields, depending continuously on λ ∈ R. Note also
that F (u) = −u3 is a bounded mapping satisfying F (u) = o(‖u‖H1). Next we consider the eigenvalue
problem

Lλu = β(λ)u. (2.3)
The eigenvalues and corresponding eigenvectors of Lλ are given by

βK(λ) = λ − λK , λK =
(

1 − |K|2π2

l2

)2

,

eK(x) = sin
(

k1π

l
x1 +

k2π

l
x2

)
,

(2.4)

where x = (x1, x2) and K = (k1, k2) �= (0, 0) with ki ∈ Z, i = 1, 2. Let

Z = {(k1, k2) : k1 ∈ N, k2 ∈ Z} ∪ {(0, k2) : k2 ∈ N}, (2.5)

so that {βK(λ) : K ∈ Z} is a complete set of eigenvalues of the operator Lλ while {eK : K ∈ Z} forms a
basis of H. To simplify the presentation we assume further that l2 < 3π2

2 , so that with these eigenvalues

and with λ0 =
(
1 − π2

l2

)2

, we have

β(1,0)(λ) = β(0,1)(λ) =

⎧
⎪⎨

⎪⎩

> 0 if λ > λ0,

= 0 if λ = λ0,

< 0 if λ < λ0,

βK(λ0) < 0, ∀K ∈ Z − {(1, 0), (0, 1)}.

(2.6)

We denote the eigenfunctions

e1 = e(1,0) = sin
(π

l
x1

)
and e2 = e(0,1) = sin

(π

l
x2

)
,

for the corresponding eigenvalues β(1,0)(λ) and β(0,1)(λ). Since β(1,0)(λ) and β(0,1)(λ) have the same value,
for simplicity of notation, from here onwards, we will denote them by β1(λ). We also call the above two
eigenfunctions as the resolved modes. Notice that the space H1 and H can be decomposed as

H1 = Hc
1 ⊕ Hs

1

H = Hc
1 ⊕ Hs (2.7)
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where Hc
1 is the subspace spanned by the first two eigenfunctions (with β1(λ) as its corresponding

eigenvalues), that is

Hc
1 = span{e(1,0), e(0,1)} = span{e1, e2},

and

Hs
1 = span{eK : K ∈ Z − {(1, 0), (0, 1)}},

whereas Hs is the closure of Hs
1 in H, see [8].

3. Well-Posedness for SSHE

In this section, we address the pathwise well-possedness for Stochastic Swift-Hohenberg equation (SSHE).
Local existence of SSHE is first established in Theorem 3.1 by using the metric structure of Ω = C0(R;R).
As a corollary of Lemmas 3.1 and 3.2, we see that for every initial condition, the existence of a solution
(3.3) is global for almost every ω ∈ Ω. As a consequence of the lower semi-continuity of the blow-up
time with respect to (ω, x) ⊂ Ω × H, the subset D ⊂ Ω × H where this system is globally defined thus
contains all the relevant dynamics and is a Polish space on its own. The theoretical work done in this
section is also more general than (1.6), since the multiplicative noise here is of the form Bu ◦ dW , where
B : H → H is just a linear bounded operator that commutes with the semigroup generated by Lλ.

When we have such operator B, the solution to the linear equation

du = Lλudt + Bu ◦ dW, u(0) = x (3.1)

can be given explicitly as U(t, ω, x) = eWt(ω)BetLλx.
It is then clear that U : R+ × Ω × H → H is (B(R+) × F × B(H),B(H)) measurable, forms a cocycle

over the Metric Dynamical System (MDS) (Ω, θ,P), for each ω the map is continuous, and for each x
it is an adapted process that solves the SPDE (3.1) in the strong sense. This suggests we formulate the
nonlinear equation

du = (Lλu + F (u))dt + Bu ◦ dW, u(0) = x (3.2)

as a pathwise fixed-point problem

φ(t, ω, x) = U(t, ω, x) +
∫ t

0

U(t − s, θsω, F (φ(s, ω, x)))ds. (3.3)

For a similar approach see [23].
Since we intend to use the topological structure of Ω = C0(R;R), it is convenient at this stage to recall

that Ω is a complete metric space, with the metric

d(ω1, ω2) =
∞∑

n=1

2−n ‖ω1 − ω2‖L∞(−n,n)

1 + ‖ω1 − ω2‖L∞(−n,n)

and then we can reformulate the problem with the corresponding notation,

φ(t, ω, x) = eω(t)BetLλx +
∫ t

0

e(ω(t)−ω(τ))Be(t−τ)LλF (φ(τ, ω, x))dτ. (3.4)

Although this abstract approach is possible under more general conditions, we restrict ourselves to the
case when F satisfies F (0) = 0, F ∈ C1(Hα,H) and

|DF (u)|L(Hα,H) ≤ c1|u|p−1
α , ∀u ∈ Hα,

for some p > 1 and α ∈ (0, 1/p).
Note that the above condition holds for F (u) = −u3 with p = 3 and α = 1/4.
In what follows we also fix η0 > supλ∈Λ supk �βk(λ).
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We recall that, given a Banach space X and α ∈ R,

Cα((0, δ];X) =
{

u ∈ C((0, δ];X) : sup
0<t≤δ

tα|u(t)|X < ∞
}

is a Banach space with norm

‖u‖Cα((0,δ];X) = sup
0<t≤δ

tα|u(t)|X .

Similarly,

Eα = {u ∈ C([0, δ];H) ∩ Cα((0, δ];Hα) : ‖u‖L∞(0,δ;H) + ‖u‖Cα((0,δ];Hα) < ∞}
is a Banach space with norm ‖u‖Eα

= ‖u‖L∞(0,δ;H) + ‖u‖Cα((0,δ];Hα).
We now prove that (3.4) has a local solution.

Theorem 3.1. For every r1 > 0, r2 ∈ (0, 1) there exist δ(r1, r2),K(r1, r2) > 0 such that
(1) For every (x, ω) ∈ BH(0, r1) × BΩ(0, r2), (3.3) has a unique solution

φ(·, ω, x) ∈ C([0, δ];H) ∩ Cα((0, δ];Hα).

(2) For x1, x2 ∈ BH(0, r1) and ω1, ω2 ∈ BΩ(0, r2) it holds

‖φ(·, ω1, x1) − φ(·, ω2, x2)‖Eα
≤ K(|x1 − x2| + d(ω1, ω2)).

(3) If ω ∈ Cγ for some γ ≤ (p − 1)α, then

φ(·, ω, x) − e·L+ω(·)Bx ∈ Cp(pα−γ)((0, δ];H1).

In particular, φ(·, ω, x) ∈ L2(0, δ;H1/2) provided p(pα − γ) < 1, which holds when p = 3, α = 1/4
and γ ∈ (5/12, 1/2).

The techniques used in the proof are rather standard in the theory of parabolic equations. We present
here a proof in order to show the role the random parameter ω plays in the resolution.

Proof. Existence
Fix T > 0 so that r2 < 2−T , and let R2 > 0 be large enough so that r2 ≤ 2−T R2

1+R2
. This guarantees

that supt∈[0,T ] |ω(t)| ≤ R2 for all ω ∈ Ω with d(ω, 0) ≤ r2.
For every δ ∈ (0, T ] and R1 > 0, to be chosen, we consider the complete metric spaces X ⊂ Eα and

Y ⊂ Ω given by

X = {v ∈ Eα ‖v‖Eα
≤ R1}.

Y =

{
ω ∈ Ω : sup

t∈[0,T ]

|ω(t)| ≤ R2

}
.

Let the operator Γ = Γx : X × Y → Eα be given by

Γ(u, ω)(t) = etLλeω(t)Bx +
∫ t

0

e(t−s)Lλe(ω(t)−ω(s))BF (u(s))ds.

where x ∈ BH(0, r1) is arbitrary but fixed.
Note that, for (ui, ω) ∈ X × Y , i = 1, 2, and t ∈ (0, δ], we have

tpα|e−ω(t)B(F (u1(t)) − F (u2(t)))|0

≤ e|ω(t)||B|tpα

∫ 1

0

|DF (ru1(t) + (1 − r)u2(t))|L(Hα,H)dr|u1(t) − u2(t)|α,

where |B| = max{|B|L(H), |B|L(Hα)}, and consequently

‖e−ω(·)B(F (u1(·)) − F (u2(·))‖Cpα((0,δ];H) ≤ c1e
R2|B|Rp−1

1 ‖u1 − u2‖Cα((0,δ];Hα),

for all u1, u2 ∈ X, ω ∈ Y .
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Next we make use of the fact that, for every α ∈ (0, 1/p), there exists c2 > 0 such that the function
ψ(t) =

∫ t

0
e(t−s)Lλϕ(s)ds satisfies

δ1−pα‖ψ‖C1−pα([0,δ];H) + ‖ψ‖Cα((0,δ];Hα) ≤ c2δ
1−pαeη0T ‖ϕ‖Cpα((0,δ];H).

Thus we get, from the previous estimate,

‖Γ(u1, ω) − Γ(u2, ω)‖Eα
≤ c1c2δ

1−pαRp−1
1 e2R2|B|+η0T ‖u1 − u2‖Eα

.

Similarly, making use of the fact that |etLλx|β ≤ Kβeη0T t−β |x|0, for β = 0, α, we see that

‖Γ(u, ω)‖Eα
≤ (K0 + Kα)eR2|B|+η0T r1 + c1c2δ

1−pαRp
1e

2R2|B|+η0T .

So it suffices to choose R1 so that

(K0 + Kα)eR2|B|+η0T r1 ≤ R1

2
and δ ∈ (0, T ] so that

c1c2δ
1−pαRp−1

1 e2R2|B|+η0T ≤ 1
2
.

With this choice of R1 and δ the operator Γ(·, ω) becomes a 1/2-contraction that maps X into itself, and
thus it has a unique fixed point in X, for all ω ∈ Y .

Continuity
Let φ(·, ω, x) ∈ X denote the fixed point of Γx(·, ω). For x1, x2 ∈ BH(0, r1) we have

φ(t, ω, x1) − φ(t, ω, x2) = etLλ+ω(t)B(x1 − x2) + Γx2(φ(·, ω, x1))(t) − Γx2(φ(·, ω, x2))(t)

and thus

‖φ(·, ω, x1) − φ(·, ω, x2)‖Eα
≤ 2(K0 + Kα)eR2|B|+η0δ|x1 − x2|0.

On the other hand, for x ∈ BH(0, r1) fixed and ω1, ω2 ∈ Y , we have

Γ(u, ω1)(t) − Γ(u, ω2)(t) = (e(ω1(t)−ω2(t))B − I)Γ(u, ω2)

+ eω1(t)B

∫ t

0

e(t−s)Lλ(e−ω1(s)B − e−ω2(s)B)F (u(s))ds

This can be estimated using the same arguments as above, whence

‖φ(·, ω, x1) − φ(·, ω, x2)‖Eα
≤ e2R2|B||B|‖ω1 − ω2|L∞(0,δ)(R1 + c1c2δ

1−pαRp
1e

η0T )

≤ (e2R2|B| + 1)|B|R1‖ω1 − ω2‖L∞(0,δ)

and, for ω1, ω2 ∈ Y , it holds that |ω1 − ω2|L∞(0,δ) ≤ (2R2 + 1)2δd(ω1, ω2), from where the result follows.
Uniqueness
This is a standard argument so we only give a sketch. Let v1 and v2 be two solutions defined on [0, δ].

Let

t0 = sup{t ∈ [0, δ] v1(t, ω, x) = v2(t, ω, x)}.

Suppose t0 < δ, and let y = v1(t0, ω, x) = v2(t0, ω, x).
By leaving R2 unchanged, and choosing R′

1 > sup[t0,t0+ε] |vi(t)|, for 0 < ε < δ − t0 fixed, we can repeat
the argument above with R1 replaced by R′

1 and r1 replaced by r′
1 = |y|, so that the problem has a

unique solution among all functions bounded in [t0, t0 + δ′] by R′
1, at least for some short time δ′ > 0.

This implies that v1(t) = v2(t) in [t0, t0 + δ′], which contradicts the definition of t0.
Higher regularity
We make use of the following weighted Hölder spaces, defined for γ ∈ (0, 1) and μ ∈ R, by

Cγ
γ+μ((0, δ];X) = {u ∈ Cμ((0, δ];X) : ‖u‖Cγ

γ+μ((0,δ];X) < ∞}
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where X is a Banach space, and

‖u‖Cγ
γ+μ((0,δ];X) = ‖u‖Cμ((0,δ];X) + sup

0<ε<δ
εμ+γ [u]Cγ([ε,δ];X).

These spaces have the property that, for ϕ ∈ Cγ
γ+μ((0, δ];H) ∩ Cpα((0, δ];H), the function ψ(t) =∫ t

0
e(t−s)Lλϕ(s)ds satisfies

‖ψ‖C1−α
pα ((0,δ];Hα) ≤ c3e

η0T ‖ϕ‖Cpα((0,δ];H)

and

‖ψ‖Cγ
γ+μ((0,δ];H1) ≤ c3e

η0T ‖ϕ‖Cγ
γ+μ((0,δ];H),

where c3 depends only on α ∈ (0, 1/p), γ, μ ∈ (0, 1).
Moreover, the map t �→ etAx belongs to Cγ

γ+α((0, δ];Hα).
The above properties imply that, when ω ∈ Cγ , u = φ(·, ω, x) can be written as u = eω(·)B(u1 + u2),

where u1 ∈ Cγ
γ+α((0, δ];Hα) and u2 ∈ C1−α

pα ((0, δ];Hα) are given by

u1(t) = etLx, u2(t) =
∫ t

0

e(t−s)Le−ω(s)BF (u(s))ds.

Since γ ≤ (p−1)α = (pα−1)+(1−α) < 1−α, we have the inclusion C1−α
pα ⊂ Cγ

pα, and since pα−γ ≥ α, we
also have Cγ

γ+α ⊂ Cγ
pα. Thus u1, u2 ∈ Cγ

pα((0, δ];Hα), and eω(·)B ∈ Cγ([0, δ];L(Hα)), so we get u ∈ Cγ
pα.

It is easily verified that ‖F (u(·))‖Cγ
γ+pσ((0,δ];H) ≤ c1‖u‖p

Cγ
γ+σ((0,δ];Hα)

, and e−ω(·)B ∈ Cγ([0, δ];L(H1)),

so, with σ = pα − γ, we obtain u2 ∈ Cγ
γ+p(pα−γ)((0, δ];H1). �

The existence of a maximally defined solution is now standard: for a fixed x ∈ H and ω ∈ Ω, let
I(ω, x) be the union of all the intervals [0, a] for which there exists a solution φa of (3.3) in C([0, a];H).
Let δ(ω, x) = sup I(ω, x), and define φ(t, ω, x) = φa(t, ω, x) for t ∈ [0, a] if [0, a] ⊂ I(ω, x). By uniqueness
φ(·, ω, x) : [0, δ(ω, x)) → H is well defined.

A close examination of the proof above shows that if a solution is defined in some interval [0, a), and
limt↑a u(t) exists in H, then it can be extended to an interval [0, a + δ). In fact, a standard argument
shows that whenever δ(ω, x) < ∞ it must be the case that limt↑δ(ω,x) |φ(t, ω, x)|0 = ∞. That is to say, if
a solution is strictly local then it must blow up in H norm.

The following result is concerned with the continuity of the maximally defined solution with respect
to the data, and the semi-continuity of the blow-up time.

Lemma 3.1. For every (ω, x) ∈ Ω × H and a < δ(ω, x) there exist r1, r2 > 0 such that a < δ(ω′, y) for
all y ∈ BHα

(x, r1) and ω′ ∈ BΩ(ω, r2). Furthermore, there exists L > 0 such that the maximally defined
solution satisfies

|φ(t, ω, x) − φ(t, ω′, y)| + tα|φ(t, ω, x) − φ(t, ω′, y)|α ≤ L(|x − y|0 + d(ω, ω′))
∀t ∈ [0, a], y ∈ BH(x, r1), ω′ ∈ BΩ(ω, r2).

In particular, δ : Ω × H → (0,∞] is lower semi-continuous.

Proof. Since the set {φ(t, ω, x) : t ∈ [0, a]} is compact, we can choose R1 > 0 large enough so that it is
contained in BH(0, R1). We then fix any R2 ∈ (0, 1) such that that ω ∈ BΩ(0, R2). By choosing R1 larger
if necessary, we can assume that dist({φ(t, ω, x) : t ∈ [0, a]}, ∂BH(0, R1)) = 2d > 0.

In this setting we can apply (3.1), thus obtaining, for every y ∈ BH(0, R1) and ω′ ∈ BΩ(0, R2), the
existence of a solution φ(t, ω′, y) defined for t ∈ [0, δ(R1, R2)] ⊂ [0, a].

Let ti = iδ, for i = 0, . . . , n, with (n − 1)δ ≤ a < nδ, and assume n > 2 (otherwise there is nothing
to prove). For xi = φ(ti+1, ω, x), i = 0, . . . , n − 1, consider the balls Bi = BH(xi, d). By choice of d, all
these balls are inside BH(0, R1). Let r0 = max{K, 1}−nd/2, where K is the constant given by (3.1).

If |x − y| + d(ω, ω′) ≤ r0, then by (3.1), part(2):

|φ(t, ω, x) − φ(t, ω′, y)| ≤ K(|x − y| + d(ω, ω′)) ≤ max{K, 1}−n+1d/2 ≤ d/2,
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for all t ∈ [0, δ]. So φ(δ, ω′, y) ∈ Bi for some i, and then φ(δ, ω′, y) ∈ BH(0, R1) as well. By (3.1), φ(·, ω′, y)
can be extended uniquely to [0, 2δ).

Because of the choice of r0, this procedure can be repeated until φ(·, ω′, y) has been extended to
[0, (n − 1)δ), at which point we get that φ((n − 1)δ, ω′, y) still lies BH(0, R1), so it can be extended by δ
once more, which gives that δ(ω′, y) > a.

Choosing, say, r1 = r2 = r0
2 , the estimate holds with L = K(R1, R2). �

For fixed (ω, x) ∈ Ω × H, it is readily verified that

φ(t + s, ω, x) = etLλeWt(θsω)φ(s, ω, x) +
∫ t

0

e(t−τ)LλeWt−τ (θsω)BF (φ(τ + s, ω, x))dτ,

for t + s < δ(ω, x). By uniqueness, this implies that φ(t + s, ω, x) = φ(t, θsω, φ(s, ω, x)) whenever 0 ≤
t + s < δ(ω, x), and moreover

δ(ω, x) = t + δ(θtω, φ(t, ω, x)), ∀t ∈ [0, δ(ω, x))

so the cocycle property holds under the natural restrictions.
It follows immediately from the previous lemma that, for each x ∈ H, the set Ω(x) = {ω ∈ Ω :

δ(ω, x) = ∞} is a Gδ (hence, in particular, measurable). Furthermore, we have the next lemma.

Lemma 3.2. Assume F (u) = −u3. Then P(Ω(x)) = 1 for every x ∈ H.

Proof. By part (3) of Theorem 1, and the almost sure Hölder continuity of paths the Wiener process, we
can assume without loss of generality that ω ∈ Cγ , where γ ∈ (5/12, 1/2).

By replacing the nonlinearity F by Fn(u) = ζ
(

|u|
n

)
F (u), where ζ : R → [0, 1] is smooth and satisfies

ζ(s) = 1 for |s| ≤ 1 and ζ(s) = 0 for |s| ≥ 2, we obtain a globally defined family of solutions to the fixed
point problems

φn(t, ω, x) = etLλeWt(ω)Bx +
∫ t

0

e(t−s)LλeWt−s(θsω)BFn(φn(s, ω, x))ds.

Indeed, Fn satisfies

|Fn(u)| ≤ c1ζ

( |u|
n

)
(|u|1/2|u| + |u|4|u|1/2) ≤ c1(n4 + n)|u|1/2, ∀u ∈ H1/2

and such a linear growth condition can be used in a standard fashion to derive exponential estimates in
time from Gronwall’s inequality.

Now, for fixed x ∈ H and n > |x|, it is clear that φ(t, ω, x) = φn(t, ω, x) for all t ∈ [0, τn(ω, x)), where

τn(ω, x) = inf{t > 0 : |φn(t, ω, x)| ≥ n}.

Note that this implies that δ(ω, x) ≥ supn τn(ω, x).
The function (t, ω) → |φn(t, ω, x)| is continuous, hence measurable. Moreover, since φn is obtained

using a contraction mapping argument, it can also be given by an iteration procedure, which implies that
it is adapted to the natural filtration of the Wiener process. In particular, τn is a stopping time.

Part (3) of Theorem 1 implies that φn(·, ω, x) ∈ L2(0, T ;H1/2) ∩ C([0, T ];H) for all ω ∈ Cγ , so the
process un(t) = φn(t, ·, x) is a weak solution of the SPDE

dun = (Lλun + F (un))dt + Bun ◦ dW, un(0) = x.

Thus we can apply Ito formula to |un|2 to obtain

E|un(t ∧ τn)|2 = |x|2 + 2E
∫ t∧τn

0

[(Lλun, un) + σ2|Pun|2 + (Fn(un), un)]ds

Using that (Lλu, u) ≤ β1(λ)|u|2 ≤ η0|u|2, and (Fn(u), u) ≤ −|D|−1|u|4 for all u with |u| ≤ n, we see that

E|un(t ∧ τn)|2 ≤ |x|2 + 2E
∫ t∧τn

0

[(η0 + σ2)|un|2 − |D|−1|un|4]ds
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and then

n2
P(τn ≤ t) ≤ |x|2 + (η0 + σ2)2|D|t.

Since τn is non-decreasing in n, an application of Borel Cantelli shows that

P

(
sup

n
τn ≤ t

)
= 0,

and since t > 0 was arbitrary, we get that δ(·, x) = ∞ almost surely. �
This result ensures that the set D = {(ω, x) ∈ Ω × H : δ(ω, x) = ∞} contains all the relevant

dynamics of the system. Note that D is a Polish space, and is invariant under the action of the skew-flow
Θt(ω, x) = (θtω, φ(t, ω, x)), t ≥ 0. It would be desirable to show that D actually contains a set of the form
Ω0 × H, where Ω0 is θ-invariant and has full measure. However, the lack of pathwise a priori estimates
precludes us from obtaining such result.

4. Existence of a Local Stochastic Invariant Manifold

In this section, we will study the existence of local invariant manifolds for a broad class of SPDEs with
multiplicative noise of the form Bu ◦ dW , where B : H → H is a linear bounded operator that commutes
with the semigroup generated by Lλ. Hence, the noise we consider here is more general than what is
studied in [7] and [8]. Because of this, one can expect the result presented here to be weaker than what is
in the references mentioned above. However, we will show that the result obtained for this boarder class
of random noise is only slightly weaker than those with scalar multiplicative noise. The existence of such
local invariant manifold leads us to an explicit reduction procedure for Eq. (1.6) to the corresponding
local invariant manifold. This lower-dimensional reduced system describes the long time dynamics of the
original system in a lower dimensional space, which will be the subject of discussion in the next section.

The notion of a local random invariant manifold given here is a natural generalization of the classical
local invariant manifold for deterministic dynamical systems, see [17], Def 6.1.1 for the latter concept. For
the random case, “local” has to be understood in terms of both the time variable t, as well as the phase-
space variable x. To be precise, a RDS φ(t, ω) on a Hilbert space H, associated to a random differential
equation is locally invariant in the sense that for almost all ω and each u0 ∈ M̊loc(ω), with M̊loc(ω)
being the interior of Mloc(ω), there exists tu0,ω > 0, such that φ(t, ω)u0 ∈ M̊loc(θtω) for all t ∈ [0, tu0,ω).

The result on the existence of local invariant manifolds is stated as follows.

Theorem 4.1. Assume that Lλ is the linear operator specified in (2.2), which satisfies (1.2)–(1.3). Suppose
that the nonlinearity F ∈ C1(Hα;H) is such that F (u) = O(|u|p) and DF (u) = O(|u|p−1) with p > 1.
Then there exists a positive random variable ρ : Ω → (0,∞), tempered below, and a family of Lipschitz
functions h(ω, ·) : B(0, ρ(ω)) ∩ Hc → Hs, such that

du = (Lλu + F (u))dt + Bu ◦ dW, u(0) = x,

admits a local random invariant Lipschitz manifold Mloc
λ of dimension m defined as the graph of a local

random invariant manifold function hλ(ω, x) that is

Mloc
λ (ω) = {x + hλ(ω, x) : x ∈ Hc

1 , ‖x‖α ≤ ρ(ω)} (4.1)

for all λ ∈ Nλc
.

Proof. We study the fixed point problem directly in the original system. Namely, we work with the
operator

Γξ(u)(t) = etLc+WtBPcξ −
∫ 0

t

e(t−τ)Lc+(Wt−Wτ )BPcF (u(τ))dτ

+
∫ t

−∞
e(t−τ)Ls+(Wt−Wτ )BPsF (u(τ))dτ, t ∈ (−∞, 0].



Vol. 20 (2018) Stochastic SHE with Degenerate Multiplicative Noise 1363

In order to obtain existence of a local invariant manifold, we replace the non-linear term by one with a
random cut-off, namely, we consider

Fρ(ω, u) = ζ

( |u|α
ρ(ω)

)
F (u),

where ρ(·) > 0 is to be chosen, and ζ ∈ C∞
c (R), with 0 ≤ ζ ≤ 1, |ζ ′| ≤ 2, ζ(s) = 1 for |s| ≤ 1 and ζ(s) = 0

for |s| > 2.
Then, for F ∈ C1(Hα;H), with F (0) = 0, DF (0) = 0, we see that Fρ ∈ C1(Hα;H), with

DFρ(ω, u)v =
1

ρ(ω)
ζ ′

( |u|α
ρ(ω)

)
(u, v)α

|u|α F (u) + ζ

( |u|α
ρ(ω)

)
DF (u)v.

From the estimates |F (u)|0 ≤ c1|u|pα, and |DF (u)|α,0 ≤ c2|u|p−1
α , with p > 1, we deduce that

|Fρ(ω, u)|0 ≤ c1ρ(ω)p−1|u|α,

|Fρ(ω, u1) − Fρ(ω, u2)|0 ≤ (2c1 + c2)ρ(ω)p−1|u1 − u2|α.

We introduce the Banach space

Cη =
{

u ∈ C((−∞, 0];Hα) : ‖u‖η = sup
t≤0

e−ηt|u(t)|α
}

.

Then we have

e−ηt|Γξ(u)(t)|α ≤ Ke(ηc−η)t+|Wt(ω)|B||Pcξ|α

+ K

∫ 0

t

e(ηc−η)(t−τ)e|Wt−τ (θτ ω)||B|e−ητ |PcFρ(θτω, u(τ))|0dτ

+ K

∫ t

−∞
e(ηs−η)(t−τ)(t − τ)−αe|Wt−τ (θτ ω)||B|e−ητ |PsFρ(θτω, u(τ))|0dτ

Consider the tempered random variables r±
ε : Ω → [1,∞) given by

r+
ε (ω) = sup

t≥0
e−εt+|Wt(ω)||B|, r−

ε (ω) = sup
t≤0

eεt+|Wt(ω)||B|.

Using the previous estimates for Fρ and the above definitions, with 0 < ε < min{ηc − η, η − ηs}, we find
that

e−ηt|Γξ(u)(t)|α ≤ Ke(ηc−η−ε)tr−
ε (ω)|Pcξ|

+ c1K‖u‖η

∫ 0

t

e(ηc−η−ε)(t−τ)r−
ε (θτω)ρ(θτω)p−1dτ

c1K‖u‖η

∫ t

−∞
e(ηs−η+ε)(t−τ)(t − τ)−αr+

ε (θτω)ρ(θτω)p−1dτ.

A similar computation gives

e−ηt|(Γξ(u1)(t) − Γξ(u2)(t))|α

≤ (2c1 + c2)K‖u1 − u2‖η

∫ 0

t

e(ηc−η−ε)(t−τ)r−
ε (θτω)ρ(θτω)p−1dτ

+ (2c1 + c2)K‖u1 − u2‖η

∫ t

−∞
e(ηs−η+ε)(t−τ)(t − τ)−αr+

ε (θτω)ρ(θτω)p−1dτ.

This suggests that we choose a ρ of the form

ρ(ω) = δ1/(p−1) min{r+
ε (ω)−1/(p−1), r−

ε (ω)−1/(p−1)}
for some δ > 0.
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Then the above estimates show that Γξ : Cη → Cη is well defined, and moreover

‖Γξ(u)‖η ≤ Kr−
ε (ω)|Pcξ| + c1Kδ‖u‖η

(
1

(ηc − η − ε)
+

Γ(1 − α)
(η − ηs − ε)1−α

)
,

‖Γξ(u1) − Γξ(u2)‖η ≤ (2c1 + c2)Kδ‖u1 − u2‖η

(
1

(ηc − η − ε)
+

Γ(1 − α)
(η − ηs − ε)1−α

)
.

Then Γξ is a 1/2- contraction provided

δ ≤ 1
2(2c1 + c2)K

(
1

(ηc − η − ε)
+

Γ(1 − α)
(η − ηs − ε)1−α

)−1

.

For this choice of δ and hence ρ, it follows that Γξ has a unique fixed point in Cη, say uξ(·, ω), and then the
local invariant manifold is given by the graph of h(ω, ·) : B(0, ρ(ω))∩Hc → Hs, where h(ω, ξ) = Psuξ(ω, 0).

Note that the fixed point of the operator found above satisfies

|uξ1(t, ω) − uξ2(t, ω)|α ≤ 2Keηct|eWt(ω)BPc(ξ1 − ξ2)|α,

which shows that h(ω, ·) is 2K-Lipschitz.
Measurability of h(·, ξ) is immediate from the fact that the fixed point of a contracting map can be

realized through any sequence of iterates, which allows to express h(·, ξ) as a pointwise limit of measurable
functions.

In fact, it can be shown, using the same tools as in the local existence theorem, that h depends
continuously in ω in the appropriate topology, and restricted to the subspace of Ω where r±

ε are finite. �

With the same ideas it can also be shown that the stochastic invariant manifold Mλ(ω) has the
exponentially forward and pullback attractiveness properties, see [7], Sect. 4.2.

5. Stochastic Reduced Equations

In [7], the authors have derived theorems on the existence of local random invariant manifolds for Eq.
(1.1). Approximation formulas for the local random invariant manifold functions have also been given,
see Theorem 6.1 in [7]. We adapted the approximation formulas and performed a low order stochastic
reduction based on the strategy proposed in the above reference. The low order stochastic reduction
equations obtained in this section will shed light on the stochastic bifurcations associated with Eq. (1.6).
Note that, from Sect. 2,the critical space Hc

1 is two dimensional, hence the reduced system is also of
dimension 2.

We write the projection operator B : H1 → Hs
1 as

Bu =
∑

K∈Z
σK

(u, eK)
|eK |2 eK , (5.1)

Writing u = u1e1 + u2e2 + us, where us ∈ Hs
1 , we obtain

du1 = β1(λ)u1 +
1

2l2

∫

U
F (u1e1 + u2e2 + us)e1dx + σ(1,0)u1 ◦ dW

du2 = β1(λ)u2 +
1

2l2

∫

U
F (u1e1 + u2e2 + us)e2dx + σ(0,1)u2 ◦ dW.

(5.2)

The next step in the reduction procedure is to approximate us. Adapting Theorem 6.1 in [7] to our
setting, the approximation formula for us is given by

happ
λ (ξ, ω) =

∫ 0

−∞
e−τLs−Wτ (ω)BPsF (eτLc+Wτ Pc(B)ξ)dτ, (5.3)
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where Ls and Lc are the projections of the linear operator Lλ to Hs
1 and Hc

1 , respectively. Using the
properties of the exponential and projection operators, we can write (5.3) as

happ
λ (ξ, ω) =

∑

K∈G

[∫ 0

−∞
e−σKWτ (ω)−τPKLPKF (eτLcξ)dτ

]
eK , (5.4)

where G = Z − {(1, 0), (0, 1)}.
Hence the approximate stochastic reduced Eqs. (5.2) have the form

du1 = β1(λ)u1 +
1

2l2

∫

U
F (u1e1 + u2e2 + happ

λ (u1e1 + u2e2, θtω))e1dx + σ(1,0)u1 ◦ dW

du2 = β1(λ)u2 +
1

2l2

∫

U
F (u1e1 + u2e2 + happ

λ (u1e1 + u2e2, θtω))e2dx + σ(0,1)u2 ◦ dW.

(5.5)

In order to study the dynamics capture by (5.5), we need to compute the approximation formula given
by

happ
λ (u1e1 + u2e2, θtω). (5.6)

Notice that the orthogonal projection of F onto the stable space is given by

PsF
(
eτLc(u1e1 + u2e2)

)
=

∑

K∈G

(
F

(
eτLc(u1e1 + u2e2)

)
, eK

)

|eK |2 eK . (5.7)

Since, F (u) = −u3, we obtain
(
F

(
eτLc(u1e1 + u2e2)

)
, eK

)
= − e3τβ1(λ)[u3

1

(
e3
1, eK

)

+ 3u2
1u2

(
e2
1e2, eK

)
+ 3u1u

2
2

(
e1e

2
2, eK

)
+ u3

2

(
e3
2, eK

)
].

(5.8)

Together with these L2-inner product for K ∈ G

(
e3
1, eK

)
=

{
− 1

2 l2 if K = (3, 0)
0 otherwise,

(5.9)

(
e3
2, eK

)
=

{
− 1

2 l2 if K = (0, 3)
0 otherwise,

(5.10)

(
e2
1e2, eK

)
=

⎧
⎪⎨

⎪⎩

− 1
2 l2 if K = (2, 1)
1
2 l2 if K = (2,− 1)
0 otherwise,

(5.11)

(
e1e

2
2, eK

)
=

⎧
⎪⎨

⎪⎩

− 1
2 l2 if K = (1, 2)

− 1
2 l2 if K = (1,− 2)
0 otherwise,

(5.12)

we deduce that the orthogonal projection of F onto the stable space (5.7) has only 6 nonzero terms,
namely when eK are

e(3,0), e(2,1), e(2,−1), e(1,2), e(1,−2) and e(0,3).

We then obtain the approximation formula as

happ
λ (u1

e1

|e1| + u2
e2

|e2| , ω) =
1

8
√

2 l3

[
I(3,0)u

3
1e(3,0) + 3I(2,1)u

2
1u2e(2,1)

− 3I(2,−1)u
2
1u2e(2,−1) + 3I(1,2)u1u

2
2e(1,2)

+3I(1,−2)u1u
2
2e(1,−2) + I(0,3)u

3
2e(0,3)

]
, (5.13)
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where

I(m,n) =
∫ 0

−∞
e−σ(m,n)Wτ (ω)+3τβ1(λ)−τβ(m,n)(λ)dτ. (5.14)

For simplicity of notation, we are going to let

M6 = I(3,0), M5 = I(2,1), M4 = I(2,−1), M3 = I(1,2), M2 = I(1,−2), and M1 = I(0,3).

Putting all these together into Eq. (5.5), we obtain the stochastic reduced equations as

du1 =
[
β1(λ)u1 −

(
3

4l2
u1u

2
2 +

3
8l2

u3
1

)
+

(
3

64l4
M6u

5
1 +

9
64l4

M2u1u
4
2 +

9
64l4

M3u1u
4
2

+
9

32l4
M4u

3
1u

2
2 +

9
32l4

M5u
3
1u

2
2

)
−

(
27

256l6
M2M3u

3
1u

4
2 +

27
256l6

M2M4u
3
1u

4
2

+
9

256l6
M1M3u1u

6
2 +

9
256l6

M1M2u1u
6
2 +

9
256l6

M4M6u
5
1u

2
2 +

27
256l6

M3M5u
3
1u

4
2

+
9

256l6
M5M6u

5
1u

2
2 +

3
256l6

M2
6 u7

1 +
27

256l6
M2

2 u3
1u

4
2 +

3
256l6

M2
1 u1u

6
2

+
27

256l6
M2

4 u5
1u

2
2 +

27
256l6

M2
3 u3

1u
4
2 +

27
256l6

M2
5 u5

1u
2
2

)
+ o(‖u‖8)

]
dt + σ(1,0)u1 ◦ dW, (5.15)

and

du2 =
[
β1(λ)u2 −

(
3

8l2
u3

2 +
3

4l2
u2

1u2

)
+

(
3

64l4
M1u

5
2 +

9
64l4

M5u
4
1u2 +

9
64l4

M4u
4
1u2

+
9

32l4
M3u

2
1u

3
2 +

9
32l4

M2u
2
1u

3
2

)
−

(
3

256l6
M2

1 u7
2 +

27
256l6

M3M5u
4
1u

3
2

+
27

256l6
M2M4u

4
1u

3
2 +

9
256l6

M1M3u
2
1u

5
2 +

9
256l6

M1M2u
2
1u

5
2 +

27
256l6

M4M5u
4
1u

3
2

+
9

256l6
M5M6u

6
1u2 +

9
256l6

M4M6u
6
1u2 +

3
256l6

M2
6 u6

1u2 +
27

256l6
M2

5 u4
1u

3
2

+
27

256l6
M2

4 u4
1u

3
2 +

27
256l6

M2
3 u2

1u
5
2 +

27
256l6

M2
2 u2

1u
5
2

)
+ o(‖u‖8)

]
dt + σ(0,1)u2 ◦ dW. (5.16)

We conclude this section by analyzing, from a geometric point of view, the stochastic bifurcation associ-
ated with the explicit reduced Eqs. (5.15), (5.16). The result obtained is stated as the theorem below.

Theorem 5.1. Suppose σ(1,0) = σ(0,1) = σ0. Then, the reduced system (5.15), (5.16) undergoes a local
stochastic pitchfork bifurcation in the pullback sense. More precisely, for λ < λc the origin is a global
attractor, whereas, for λ > λc, there exists a a random pullback attractor whose size is proportional to

(∫ 0

−∞
e2β1(λ)s+2σ0Ws(ω)ds

)− 1
2

.

Proof. Applying Ito formula we get that
1
2
dt(u2

1 + u2
2)

=
[
β1(λ)(u2

1 + u2
2) − 3

(
1
4
u4

1 + u2
1u

2
2 +

1
4
u4

2

)
+

3
16

(
M6u

6
1 + M1u

6
2

)

− 3
32

(
M2

6 u8
1 + M2

1 u8
2

)
+

27
16

u2
1u

2
2

(
(M5 + M4)u2

1 + (M3 + M2)u2
2

)

−27
32

u2
1u

2
2

(
(M5u

2
1 + M3u

2
2)

2 + (M4u
2
1 + M2u

2
2)

2
)

+ R

]
dt + σ0(u2

1 + u2
2) ◦ dW

where R ≤ 0.
The terms with a factor of 3u2

1u
2
2 add up to
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− 1 +
9
16

(
(M5u

2
1 + M3u

2
2) + (M4u

2
1 + M2u

2
2)

)

− 9
32

(
(M5u

2
1 + M3u

2
2)

2 + (M4u
2
1 + M2u

2
2)

2
)

and the function

(x, y) �→ − 1 +
9
16

(x + y) − 9
32

(
x2 + y2

)

is bounded above by − 7
16 .

The terms with a factor of 3
4u4

1 add up to

− 1 +
1
4
M6u

2
1 − 1

8
u4

1

which is bounded above by − 7
8 .

Arguing similarly with u4
2, we get in the end

1
2
d(u2

1 + u2
2) ≤ β1(λ)(u2

1 + u2
2) − 21

32
(u2

1 + u2
2)

2 + σ0(u2
1 + u2

2) ◦ dW.

The above can be integrated explicitly to give

|u(t, θ−tω)|2 ≤
(

e−2β1(λ)t−2σ0Wt(ω)|u0(ω)|−2 +
21
16

∫ 0

−t

e2β1(λ)s+2σ0Ws(ω)

)−1

and this leads to the desired conclusion. More precisely, for β1(λ) < 0 we see that

lim
t→∞ |u(t, θ−tω)| = 0 a.s.,

and for β1(λ) > 0 we get

lim sup
t→∞

|u(t, θ−tω)| ≤
(

16
21

)1/2 (∫ 0

−∞
e2β1(λ)s+2σ0Ws(ω)ds

)− 1
2

.

�

It is noteworthy to mention that for (1.6) with scalar multiplicative noise, the attractor obtained has
a random size, however the center manifold is defined on a deterministic ball, see [7]. But as shown in the
above theorem, when the noise is concentrated on the fast modes, the opposite holds, that is, the size of
the attractor is not random (Theorem 5.1 with σ0 = 0), but the center manifold is defined on a random
ball (Theorem 4.1).

6. Numerical Results and Discussion

In this section, numerical simulations of the reduced Stochastic Swift-Hohenberg Eqs. (5.15), (5.16) are
performed by placing the noise at the most relevant fast modes and one of the slow modes. Using the
notation in Sect. 5, multiplicative noise is placed on the following modes with the following intensities.

Mode Noise intensity
e(1,0) σ(1,0) = 0.01
e(1,1) σ(1,1) = −0.5
e(0,2) σ(0,2) = 0.8
e(2,0) σ(2,0) = −0.9
e(1,−1) σ(1,−1) = 0.5
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Recall that, in Sect. 2, the length l of the interval is taken to be between zero and
√

3/2 π, so that we
have the required PES as indicated in (2.6). For the numerical simulations l is taken to be 3.835, namely,
l is below but close to its maximum value

√
3/2 π, which makes the spectral gap small and, hence, we

expect then that the interaction between high and slow modes will be more significant.
Both the full system and the reduced equations are solved using a semi-implicit Milstein method. The

full SPDE is approximated by projecting the equation onto the eigenvectors of (I+Δ)2, and truncating the
resulting system so that we keep only the first 40 modes. Note, however, that because of the polynomial
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Fig. 1. Time evolution of the projection of the solution on e(1,0)
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Second mode

Fig. 2. Time evolution of the projection of the solution on e(0,1). The relative smoothness of this curve reflects the fact
that σ(0,1) = 0
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Fig. 3. Trajectories of the stochastic and deterministic systems projected onto the Hc plane

Fig. 4. Schematic representation of the deterministic attractor on the e(1,0) − e(0,1) plane
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(u1, u2) plane

Fig. 5. Time evolution of the SPDE from an ensemble of different initial conditions projected on the e(1,0) − e(0,1) plane.
The long time behavior of the solutions resembles the structure of the deterministic system shown in Fig. 4
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Relative error in L2 of the slow modes

Fig. 6. Time evolution of the difference between solutions of the full SPDE and the reduced SDE using the same initial
conditions
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Fig. 7. Time evolution of the parametrization defect corresponding to solutions of the full SPDE and the reduced SDE
using the same initial conditions

growth of the eigenvalues the degree of accuracy of this strategy can be achieved with even less modes;
in fact, all the results obtained below remain essentially unchanged if we keep only as few as 20 modes.

Figures 1 and 2 show the amplitudes of the first and second modes of the reduced SSHE. Recall that
the first mode has multiplicative noise with intensity 0.01, while second mode is free of noise. Notice that
even though the second mode is free of noise, Fig. 1 shows that it still manages to get some feedback
from the high modes, on which the noise is intentionally chosen with a higher intensity.

Figure 3 shows a typical trajectory of the system. We set the initial data to be a point on the approx-
imated invariant manifold, with coordinates on the Hc plane given by uc(0) = 0.05e(1,0) +0.025e(0,1). For
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comparison, the dashed line shows the trajectory of the deterministic system corresponding to the same
initial data.

Since the reduced equations cannot be solved in closed form, we are not able to give a detailed
description of the geometric structure of the bifurcated random attractor. Nevertheless, the numerical
simulations show that the structure of the deterministic attractor, shown in Fig. 4, is not entirely lost. For
instance, by taking an initial condition at a point close to the origin O in the sector OCB, Fig. 3 shows
that the corresponding trajectory has the same qualitative behavior of its deterministic counterpart: at
first it is influenced by the repulsive nature of the origin, and travels in the direction of OB before the
effect of the attractive point C changes the trajectory, after which the path moves closer to the x-axis.
This suggests that the structure of the random attractor will resemble that of the deterministic case.
Figure 5 shows that this is indeed the case, in the sense that, by fixing a realization of the noise and
choosing a set initial data on different points of the Hc plane, the corresponding trajectories approach
the regions where the deterministic attractive points would have been.

Next we give two types of error analysis: first, the relative error incurred by approximating the dy-
namics of the slow modes by the reduced system, and, second, the error incurred by expressing the high
modes of the full SPDE in terms of the slow modes via the approximate invariant manifold function. In
the first case, we consider uc(t) = Pcu(t), where u(t) is the solution of (1.6), with initial datum u(0) taken
as a point on the approximate invariant manifold Mloc

λ . Namely, uc(t) consists of the first two modes of
the full solution (the slow modes). We compare this to uapp

c (t), the solution of (5.15), (5.16), that is, the
reduced SSHE equations. Figure 6 shows that the relative L2-error is very small. This shows that the
reduced system captures the behavior of the full SPDE with good accuracy.

Next, we investigate the effectiveness of happ in approximating the true invariant manifold function h
whose existence is given in Sect. 4. This is measured by the so called parametrization defect, Q(T, ω;u0),
given by

Q(T, ω;u0) =

∫ T

0
‖us(t, ω;u0) − happ(uc(t, ω;u0), θtω)‖2dt

∫ T

0
‖us(t, ω;u0)‖2dt

, (6.1)

see (4.29) [8]. Notice that Q = 1 when happ ≡ 0, so that Q < 1 implies that happ is a better approximation
compared to the Galerkin method, which amounts to neglect all interactions between the fast and slow
modes (Fig. 7).
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