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Abstract. Weighted estimates on the Stokes flows are given by means of the Stokes solution formula in the half space,
which can be regarded as a complement and improvement on the previous known results. There are two main difficulties:
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some weighted decay results for the Navier—Stokes flows.
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1. Introduction and Main results

We are concerned with the weighted decay properties of solutions to the Stokes initial-value problem in
the half space

Ou—Au+Vp=0 in R} x (0,00),

V-u=0 in R% x (0, 00),
u(z,t) =0 on IR’ x (0, 00), (1.1)
u(xz,t) — 0 as || — oo, t>0,
u(z,0) = a(x) in R7,
where n > 2, and R} = {z = (2/,2,) € R"| x, > 0} is the upper-half space of R"; u = (ui(z,1),uz
(x,t),...,un(x,t)) and p = p(z,t) denote unknown velocity vector and the pressure respectively, while

initial data a(x) are assumed to satisfy a compatibility condition: V - a = 0 in R’} and the normal
component of a equals to zero on OR’ ; and

0 0

Throughout this article, C§°(R’}) denotes the set of all C*° real functions with compact support in
R%, and
Cou(RY) ={¢d = (¢1,...,0n) €CF(RY); V-¢=0 in R} };
LI(RY) (1 < g < o) is the closure of CF% (R%) with respect to || - [|Le(ry), Where L9(R’}) represents
the usual Lebesgue space of vector-valued functions. The norm of LI(R"}) (1 < g < 00) is denoted by
1 1
lull o) = (g [w@)9d2)a; [[lol®u(®) Loy = (Jy (0@ ule, O)Tde)s. 7 = (ma,ms,....ma),

m; (1 < i < n) are nonnegative integers, |mi| = >_I"  m;. By symbol C, it means a generic positive
constant which may vary from line to line.
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Recall the Helmholtz decomposition [13]:
L"(R}) = Ly(R}) @ L. (RY), 1<7 < oo,
where
L, (RY) = {u = (u1,ug,...,u,) € L"(R}); V-u=0, Un|8R1 = 0},
Ly (RY) = {Vpe L'(R}); p € Li(R})}.
Let A = —PA denote the Stokes operator in R”}, where P = P, is the associated bounded projection:
L"(R%}) — L7(R%),1 < r < oo. Then (see [13]) the operator —A generates a bounded analytic semigroup
{e*4} >0 in L% (R7). So the function e ~*Aa gives a unique solution of the Stokes problem (1.1) in LT (R%).
There is a great literature on the decay properties for the Stokes flow e *4a. Here we collect some
important known results. The following classical L — L" estimates are from [22]:
_ _k_mnc1_ 1
IVFe™ Aa)| Logen) < Ct72 750D fa| prgn), Va € L (RY)
with £ =0,1,..., provided that either ] <r<g¢g<ooorl<r <gqg< .
Fujigaki and Miyakawa [22] derived more rapid L"-estimate of the Stokes flow e~
a in the weighted L' space:

tA g with initial data
_ _1_n_1
leallLr@ny < Ct 27 20D ||zpal| 1 gy,

whenever 1 < r < oo.
Bae [1] considered more rapid L!- and L*-estimates with an initial data under the special assumption:
ffooo uo(y)dy; = 0 for some i = 1,2,...,n — 1, and in this case

lle™ ol

1
Lr(R1) < Ct™ 2|z uol LT (R7) for r=1, occ.

Under the symmetric assumption on the initial data a, Han [26] proved that for each 0 < o < 1 and
t>0

e alliesy < Ce ¥ [ lyilatw)ldy.
R
Han [23] established the weighted LY — L" estimates of the Stokes flows in the half space, that is

||Vk€_tACLHLQ(R1) <t 5757 5G0)||2%|

ey, 0<a<l, k=012,

provided that 1 <r < ¢ < co. For the cases of ¢ = r = 1, +00, Han [25] obtained the following weighted
estimates: Let £k =1,2,..., 0 < a < 1. Then

— —_a_k
Ve al| L1 gny < Ct 372 |[|2]%al L1 an),
and
— _kt1
IV e~ all Lo my) < Ct™ % |||zfall Lo my)-

Jin [33,34] obtained the weighted L?—L! estimates of the Stokes flows in the half space: Let 1 < ¢ < oco.
Then

|||a:'|re_tAaHLq(R1) < Ot~ 20=9)-3 |||x'|rxna||L1(R1) + o3+t ||xna||L1(R1)
for0<r<(n—1)(1— %); and
lehe ™ Aall o) < CtEOD el allpaggy) + O8O0 anall g

for0 <r <n(l— %) Using embedding results for LI(R’; )—space without weight in the weighted L% (R";)
context for the general weight function w from the Muckenhoupt class, Frohlich [21] established a kind of
estimates on e~ 'r« in DZP(RM) := D((I + A,)®). Recently Chang and Jin [20] derived a rapid decay
rate of the Stokes flows in space and time when the initial data decreases fast enough and satisfies some
additional condition. Kobayashi and Kubo [30] considered the Navier—Stokes equations in half-space and
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in LP space with Muckenhoupt weight and showed the LP — LY estimates of Stokes semigroup with a type
of weight. The range of p, ¢ in Theorem 2.1 in [30] is 1 < p < ¢ < oo, and the weighted estimates of only
zero order and first spatial derivatives of the Stokes flows are treated. While in the following Theorem 1.1,
p,q can be relaxed to be 1 < p < g < oo, 1 <p < g < oo, and the weighted estimates of arbitrary spatial
derivatives of the Stokes flows are given. In addition, The method in [30] is different from ours. Presicely,
Ukai’s solution formula on the Stokes problem in the half space is used for proving Theorem 2.1 in
[30], however Solonnikov’s solution representation on the Stokes flows in the half space is employed to
establish Theorem 1.1 in our paper. The three kinds of classical weight functions defined in (1.2) clearly
show how the decay rates of the Stokes flow are affected, which is needed in the study of viscous fluids. For
further results on the Stokes flows, please refer to relevant literature [2—4,27-29,31,45] and the references
therein. The main result (i.e. Theorem 1.1) in this article can be regarded as a complement, extension
and improvement of some mentioned known conclusions on the Stokes flows.

Theorem 1.1. Let a = (a1,az,...,a,) satisfy V-a =0 in R} (n > 2), a, \3R1 =0. Then fori=1,2,3,
andt >0

lws:i Ve~ al Loz < orF 30D lwaiallLrn), W] =0,1,2,...,
provided that either 1 <r < q < oo or 1 <r < q < oo. Here C = C(n,q,r,m,a,3), and the weighted
functions wy; (v =, B, i = 1,2,3) are defined as follows for x = (', x,) € R}

wp(z) =z, y=a,8, for —2<p<a<n(l-1);
wya(z) =27, y=a,8, for — "—1 <B<a<(n-1)(1-1); (1.2)
w"lg(x):x:ryw 'Y:a767 fo,r_*<ﬁ<a<1—*

The second aim is to apply the results of Theorem 1.1 to establish the weighted decay properties on
solutions to the Navier—Stokes problem:

O —Au+ (u-V)u+Vp=0 in R} x (0,00),

V-u=0 in R} x (0,00),

u(z,t) =0 on OR” x (0,00), (1.3)
u(z,t) — 0 as |z] — o0, t >0,

u(z,0) = ug in R%,

where the convection term (u - V)u = 377 u;0;u.

A vector function u is called a weak solution of (1.3) if u € L>(0, 00; L2(R%.)) (N L?,.([0, 00); HS (R™))
satisfies problem (1.3) in the sense of distributions. Moreover, the energy 1nequahty holds for almost all
t € [0, 00) including ¢ = 0:

t
(Ol e +2 / V()3 gy s < lluol3gas).

Furthermore we call v is a strong solution of (1.3) if the Serrin’s condition holds: v € L%(0, 00; L™ (R ))
With%+$§1,2§q<oo,n<r§oo.
The (weak or strong) solution u of problem (1.3) can be written as follows:

u(t) = e Hug — te_(t_s)A u(s) - V)u(s)ds.
(t) 0/0 P(u(s) - V)u(s)d

Note that for ¢t > s > 0, e~ =94 P(u(s) - V)u(s) is also a Stokes flow with the initial data P(u(s) -
V)u(s). That is, set w(t) = e~ ¢=)AP(u(s) - V)u(s), t > s > 0, then

Ow—Aw+ V=0 in R? x (s,00),
V-w=0 in R X (s,00),
w(x,t) =0 on GR" X (8,00),

w(w,t)|i=s = P(u(s) - V)u(s) in R7.
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The above arguments reveal that the conclusions on the Stokes flows are very necessary in studying
problem (1.3). In recent years, much attention has been paid to the Navier-Stokes equations. Caffarelli,
Kohn and Nirenberg [14], Lin [32], Chae [15-19], Bae and Choe [4], Bae and Jin [5-9], Brandolese [10,11],
Brandolese and Vigneron[12], Fujigaki and Miyakawa [22], Schonbek [35-40] studied problem (1.3), and
many important and interesting results on regularity and decay properties are obtained, which brings
about a deeper understanding on the internal structure and interaction mechanism to this kind of classical
system.

Theorem 1.2. Assume ug € L2(R%) (n > 2). There exists a number 1y > 0 such that if |Juo| Lr@®y) < 1Mo
(smallness condition is unnecessary if n = 2), problem (1.3) possesses a unique strong solution u. Suppose
ug satisfies

11+ [z])(luol + [Vuo[) |21 @z) + 11+ [z (fuol + [Vuo])| L @n) < oo
Letl<r<g<oo,0<a—p< 1—n(;—%) o <min{1l,n(1-1)}. Additionally assume lwaivollzr®e) +
|wai Vol Lrry) < oo, ©=1,2,3. Then fort >0

lwg: V7 u(t) Laqer) < Ct El),
where |m| = 0,1, and w,; (v =, B, i =1,2,3) are defined in (1.2).

Remark. The assumption: 0 < a—f < 1—n(L - 7) implies that £ — 252 —2(1 — 5) > 0, which guarantees
that the strong singularity does not appear in calculatmg the term in (3.5) for |mi| = 1. That is
¢
|77 | a—
/ (t—s)_7_TB 77777 i)ds < 400 with |mi| = 1.
t

2. Weighted Estimates on the Stokes flows

The Stokes flow e~*a of problem (1.1) can be represented as follows for z € R and ¢ > 0 (see [41,42])
[e~ta)(z) = M(z,y,t)a(y)dy, (2.1)
RY
where M = (M;;)i j=12,..n is defined as follows for 1 <4,j <n
Mij(x,y,t) = 0ij(Gi(z —y) = Gilz = y7)) + Mjj(2,y,1).

Here
OE(x — 2)
M (z,y,t) =4(1 n ——Gy(z —y")dz,
”(ZL' Yy ) J 6.73]/ /]R" ) axl t(z y) z
z|2
v = (Y1,Y2, - s —Yn), Ge(w) = (47t) " Z e~ i is the Gaussian kernel, and
I'(% 1
— (2) = — if n > 3,
E(z)={ 2n—=2)m% |z
— log 2| ifn=2,
2m

is the fundamental solution of the Laplace equation. In addition, the following estimate holds for M*
(Ly,f) = (M{;’(xayvt))nxna xr = (xlzxn)> Y= (Z/,Z/n) € Ri:

1050.L O M*(,y, £)| < Ot (2 + VO~ (|2' — y/| + &y + Yo + VI~ HEEID - (2.9)

where 7 = (my,ma, ..., Mu_1,m,) = (M ,my), €= L1l ... ln_1,0n) = ' L,).
Define the linear operator Ty in the whole space R™ (m > 1) as follows:

(T3 f)(2) = / W) 4 0<x<m. (2.3)

x —y[*
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Let A = m, there holds for 1 <p < oo and -t <8 <m(l — %) (see [43])

< | (|<Tmf><x>|x|ﬁ)”dx> < Ap,ﬁ( /| (|f<x>|x|ﬁ)pdx) ; (24)

On the operator T with 0 < A < m, we have the following weighted inequality, which can be found in
[44].

Lemma 2.1. Let 0 < A <m (m >1), 1 <r < oo, —%<6§a<m(1—%), and%zl%—&m_ﬂ—l. If

r

r < q < oo, then there exists C = C(m,q,r, A\, a0, ) such that the operator Ty defined in (2.3) satisfies

1

( / <|<TAf><x>|m|ﬁ)qu>q<c< / (If(a:)|:c|"‘)rd:c>r.
R™ Rm

Remark. In this article, the integer m in (2.3), (2.4), (2.21), (2.22) and in Lemma 2.1 will be sometimes
valued at n, sometimes n — 1 and sometimes 1 as required.

Set
f(y)dy /
S x:/ , = (2,z,) € R.
(55)() g (127 =y + 20 +yn +1)" () € B
Lemma 2.2. Let n > 2. Then the operator S satisfies for i =1,2,3

lwgiS fllLay) < Cllwai fllzr@n) (2.5)

<o orl <r<gq<oo Here C = C(n,q,ra/(), and the weighted

provided that either 1 < r < q
1,2,3) are defined in (1.2).

functions wy; (v =a,fB,i=

Proof. Case 1. r = q € (1,00). Note that there holds for z € R}

£ (y)ldy
_fWldy
: / CEYEDE

£ (0)ldy
S/n (z—yl+1r

()l dy
< /R A (2.6)

P O

where f, denotes the even extension of f from R} to R™:

;o W) iy >0,
f*(y ’ n) B { f(y/a _yn) if y, < 0.

If a>p.
Set Ay =n — (a — ), then Ay € (0,n) for =2 < f <a<n(l - %) Using (2.6) and Lemma 2.1 with
m = n yields

lwsrSfllLany = 12?5 fllLany < [12]°Tx, full Laeny
< Cll|z|* fllLany < Clllz|* fllagn) = Cllwar fllLawe)- (2.7)
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Using the Young inequality yields that

1
a

lws2S fllLaco, o) = I2'| (/ ISf(:r)Iden)
0

!
< C‘.’El|5/ ||f(/y7 )IHL‘?(O,-‘:-OCl) dy/
re-1 (|27 =y + 1)

/
A Il f(y 7')HLQ(0,+OO) ,
< Cle /R, o — g =B W (2.8)

for—"T_l<5<a<(n—1)(1—%);and

Q=

|wssSfllLa@n-1) —xﬁ(/R B |Sf(x)|qd:z:’>

< ng/ Hf(.Vyn)”LQ(]Rn—l)d :
< ng/ Hf(.7yn)||Lq(Rn—1)d ’
0 |x’ﬂ - ynl +1
[”f('ayn)HLq(Rn—l)]*
< Om dyn 2.9
s 0o /]Rl |xn —yn|17(a—ﬁ) Y ( )

for—%<ﬁ<a<1—%.
It follows from (2.8), (2.9) and Lemma 2.1 that

lwp2S fllze@ny < Cll='|I"Ta 1 (2", )l Lo(0,400) | La(rn—1
< Cl"[*1 £ (2", ) La(0,+00) | Lan—1)
< C|||$/|af\|m(ﬂa1) = C||wa2f\|Lq(R¢)7 (2.10)

where g :i=n—-1—(a—f) € (0,n—1) With—"T_l<ﬁ<a<(n—l)(l—%);and

lwgsSfllLa@ny < ClepTa, (1 yn)ll La@n—1))xllLager)
< Olllzn|*[1f G yn)llLa@n—1)lell Loy
< Cllaglf G y)llLa@n-nla@n) = Cllwas fllLamey), (2.11)
where A3 :=1— (a— ) € (0,1) with —% <fB<ac< (1—%).
If a=0.
Using (2.4), (2.6), (2.8) and (2.9), we find for i = 1,2,3
lwgiSfllLary) < lwsiln fellLagn) < CllwaifillLamn) < Cllwai f|lLawy)- (2.12)
Therefore from (2.7), (2.10)—(2.12), we conclude that for 1 <r =¢ < oo, and i =1,2,3
||WﬁiSfHL4(R1) < C||waifHLf1(R1)~
Case 2. 1 <7 < q < 0.
If -2 < §<a<n(l-1)
Thena—ﬁ<n(1—%)+% :n(l—i—%—%), and p1 :=n(l+% — 1) — (o — 3) > 0. On the other

q
hand, é =14 ’“270‘*5 — 1 yields gy < n due to r < q. Whence p; € (0,n). Note that it holds for

r=(2',z,) € R}
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|f(y)ldy
(D)l < /M (& =] +n + g+ D7

_f)ldy
S/M_ (e —y[+ 1)

S/n (w—yl+ 1"
g/ |£<(y)ldy (2.13)

g |2 —ylm”

Vol. 20 (2018)

Combining (2.13) and Lemma 2.1 with m = n, A = p1, we have

lwprSFllLagsy = l1z1°SFllawy) < Nll® Ty, fill Lacrmy

< Clllz)* fellor@ny < Clll2|* fllLr@y) = Cllwar f] (2.14)

LT (R7)-

Direct computations show that for any ¢ > 1
1

/°° dz,, ‘
Ssu
B\ Jo (& =T+ 2 +yu+ 1)

Yn >0
> dyn
+ su 2.15
p(/ <x/—y/|+xn+yn+1>nf> (219

S

<O(r —y |+ 1), valy e RV

and

Sl

/
su
m,eRE_l ro—1 (|27 =¥/ + xp + Y + 1)

N / da’
su
yremnt \ Jens (& =y T+ @+ yo + D7

S

< O(Tn 4y + 1) T, Vg, yn > 0; (2.16)

If—”T_l<5§a<(n—1)(1—%).
Then a — < (nfl)(lf%)+”T_l,and Ho 1= (nfl)(1+%f%)f(afﬁ) > 0. On the other hand,

-1 +%—1yield8 p2 <n—1 due to r < ¢q. Whence pp € (0,n —1).

a:;
1 1
If—5<5§a<l—;.

Thena—ﬁ<1—%+%,and,u3 ::1—&—%
yields pus < 1 due to r < g. Whence usz € (0,1).
%—F%.Notethatn—%>n—1>u2>0,n—"771>1>u3>0.

%—(a—ﬁ)>0.Inaddition,%:%—l—ug—l—a—ﬁ—l

Choose £ > 1 such that 1+ % =
Using (2.15), (2.16) and the Young inequality, we conclude that

lwp2SF Lo, +00) = l2'] </o |5f(:v)|qd17n>

! r
< Clw’lﬁ/ /W)l O.t20) g7
ro-1 (Jf —y/|+ 1)

/. - o
Rn—1

|z —y'[re

1
a




1162 P. Han JMFM

and

H(.UB?,SfHLq Rn— 1) =X </ |Sf qd-r)

/ £ Cyn)llor@n-1) p

1 n

(T + yn + )”7"T

<c / LGyl orn- Ny
xn+yn+1)n_7
<C ﬁ/ 7 y" ”Ly“ﬁz Hl dyn, (2.18)

where [-], denotes the even extension of [-] from R’ to R™.
Applying Lemma 2.1 to (2.17), (2.18) respectively, we find that

lwp2S fllLany < Clll2' | Tyl (2", )| 70, 400) | La@n—)
< Ol|"|*[1 f (2 >')HLr(o,+oo)||Lr(Rnfl)
< Clll2'|* fllprgy) = CllwazfllLr@n) (2.19)
for —2— 1 <B<a<(n-1)(1-1); and
lwssSFllayy < ClenTug[IFC, yudlloren-1))llor )
< Clllan] “[f Gyl pr n-1))+ | 2r @)
< Ol f Cyn)llor@e-nllor@y) = CllwasfllLr @) (2.20)

forf%<ﬂ§a<lf%
Whence from (2.14), (2.19) and (2.20), we conclude that for 1 < r < g < oo, and i = 1,2,3

||WﬁszHLQ(R ) < CllwaifllLa R?)

Case 3. 1 =7 < q < .
We first establish a useful estimate. Let m > 1, 1 < ¢ < oo, f% <f<a<0, > % — (a—B). We

claim that there exists a constant C' = C(m, A, a, 3, q) such that for f € L}(R™), g € L#(Rm)

f(y)g(x)
/m /'rn |$|7ﬁ(|x—y|+1)/\|y|adydﬂf

The inequality (2.21) can be written equivalently as follows

/ fy)dy
ree 2|70 (le =yl + DAyl ||

We limit ourselves to non-negative f and g, without loss of generality. Write the produce space R™ xR™
into three disjoint regions F4, E5, F3, where

Ey ={(z,y) € R™ x R™; L|y| < |z| < 2|y},
By ={(z,y) e R™ x R™; |z| < L[y},
E3 ={(z,y) € R™ x R™; |y| < 3|z[}.

_ f(y)g(z)
b / / a7 F(lz -yl + 1)A|y|“dydx’

< Ol @ llgl 52 gony- (2.21)

< Cllfllpr@m)- (2.22)
a(Rm)

Set




Vol. 20 (2018) Estimate on Stokes Flow 1163

and

f(y)g(z)
Ly, :// dydx, k=1,2,3.
B 17|z =y + DAyl

Then L = Ly + Ly + L3. Whence it is sufficient to prove that

Li < Ol a9l 2y e B =1:2.3.

Since L, is taken over Fy, 1|yl < |z| < 2|y| in this case. Therefore |z — y| < |z| + |y| < 3|z|. By the
hypothesis of —% <fB<a<0,wehave 0 <a—-p(8< %, and

o — y|*77 < 397 PJa]*7F < 30T Pyl

Combining with the assumption: A > % — (a — ), we find that

f(y)g(z)
b= C//E FE (P
f(y)g()
<o [ L i
g

(z)
<C||f||L1(Rm) 5up/ TPz g £ 1) dx

—q(a—p —qA
gHLTzl(Rm)ySel]}g,, (/m =y~ @B |z — y| + 1)1 dx)

q
< C”fHLl(R’")”g”Lq 1(Rm)</|<1|z|q(aﬁ)dz+/l 1Z|Q(aﬁ)q)\dz>
z|< 2>

1 o]
S C”fHLl(Rm)”gHqul(Rm)(/(; Sm—l—q(a—ﬁ)ds_i_/l Sm—l—q(a—ﬂ)—qu8>
< Clfllremligll, oo

m

1
a

< C|fllzr@m)

1

Q=

L7 &y (2.23)

In By, |2| < 3lyl; thus [z —y| > [y| — |z| > L[y|, and (Jz — y| + 1)~ < 2V(Jy| + 1)~ where

% —(a—p) =X €(0,)). Therefore

f@)g(2)
L= C/ /E 2B (] + DV ga P

<C | flyyl+ 1)‘X|y|“"</ g(w)lxlﬂdx> dy
R el <4yl

)

< Ol fllpr@my sup <(|y| + 1)_X|y|_a/
yeER™ \

z|<|y|

g(w)laflﬁdw>

1

q
< O lasam gl g oy s | (ol + 1) y|a< /. ||x|Bde>
ISy

, lyl
9l 75 @y S22, (lyl +1)~* yl‘“(/0 sm‘”ﬁqu)

1
q

< Ol fllzrm)
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< Clfller@mllgll sup ((\y| +1) |y|%—(a—6))

g
La—1 (R™) yERM

m
< Ol llgll due to i (AN +a—p)=0. (2.24)

L
La=T (Rm)

In Ey, [yl < 3laf; so |o —y| > |z| = |yl = lzf, and (jo —y[ + 1) < 2¥(|2| + 1), where
A>N =2 —(a—p)>"2+F>0 Whence

n’l
f(y)g() -
Ls < C/ /E 2= (Jz] + )V ga Y

<C f(y)lyl‘a</| - |g(a/‘)lﬂclﬁ(lﬂﬁ\ + 1)_Xdaf> dy

Rm™

< Cllfllesgamy sup (m-a / g<x>x|ﬂ-”dx)
yeR™ |z|=]y]

< Cll e @mllgll 527 o SO Iyl‘”‘</| smima ‘B)d8>
yeRrR™ Y

1
q

< C“fHLl(Rm)||9||LTEI(WL) s;ﬁ{p (|y|_°‘|y T +,6)
yER™
m
< CHfHLl(Rm)”g”qugl(Rm) due to o (N +a—8)=0. (2.25)

From (2.23)—(2.25), we conclude that the inequality (2.21) is valid.
Now we proceed to consider Case 3. 1 =7 < g < oc.
Suppose —% < B < a <0. Note that for x = (2/,2,) € R}

ly|“|f(y)|dy
o 2P = Y[+ @+ oy + 1) |yl

< [ s
— -0 nlq |
ry |27l =yl +1)"y|

ly|[ £ (y)|dy
= /IR" |z~ (Jz — y| + 1)yl (2.26)

From (2.26), (2.22) with m = n, A = n, we derive that

/ ly|*| f.(y)|dy
-0 _ n|y,|a
re [~ =yl Dl e

< Clllyl* fellrgny < Cllly* fllrwy) = Cllwar fllzrwey)- (2.27)
Now suppose —”T_l < B < a < 0. Observe that for z = (2/,2,) € R}

Y11 (Y, yn)|dy' dyn
T |x’|—5(|x’ - y/| + Tn +Yn + 1)n|y/|a

watl (S1)(@)] < /

R

lws1Sfllpan) <

wml(S) < [
R
Using the Young inequality yields for any z’ € R"~!
W1 @5 )L 0,008y
ol (8D zsooe) < [ =
reot ! | 7O (|2 — g/ + 1)y |

1Y 1N )L 0,00) Ay
gr-1 |2/ | 7B(|l2" — | + 1)Ly |

<C

(2.28)
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Combining (2.28), (2.22) with m =n — 1, A =n — 1, we derive

/ [y 1N Y5 ) 1 0,00)dY
ro—1 |2 [7O(|2 — |+ 1)n =ty

lwe2Sfllzamy) <

La(Rn=1)
< CNY " Fllzrn) = Cllwaz fllLr @y)- (2.29)
Finally if —% < f <a<0. Then
Ynlf (W' yn)ldy
n (|2 =y + @+ Y + 1)y
Applying the Young inequality to the above inequality yields for any x,, > 0
YnllfCoyn) 2 @n-1)) dyn
ol (SHC )l < [ 25 )
Ry 2" (2 +yn + 1) 7 yg
Ynllf Coyn)llLr@n-1))dyn
B 20 (|20 — yal + 1)y2
- O/ Gyl @1l dyn
B Tl P (|20 — yn| + 1)[yn|®
It follows from (2.30), (2.22) with m =1, A =1 that

/ el f G yn)ll Lt gn—1)) ] «dyn
R [Tn| (|0 — ynl + 1)|ynl®

Va= (2 2,) €RY.

wssl (SP)(@)] < /

<C

(2.30)

lwesSfllzamy) <
La(R1)
< CNynllf syl -1y ]l 21 my
< Cllyplf Cyn)lzr a1yl gy = CllwasfllLrry)- (2.31)
Therefore from (2.27), (2.29) and (2.31), we conclude that for 1 =7 < ¢ < 0o, and i =1,2,3
||WﬁiSfHLQ(R1) < C||waifHLq(R1)~
From the above arguments on the three cases, we complete the proof of Lemma 2.2. O
Set
v(z,t) = M*(z,y, t)a(y)dy, == (2" 2z,) eRY, t>0. (2.32)
R%
Lemma 2.3. Let n > 2, then there exists C' = C(n,q,r,«,3) such that the function v defined in (2.32)
satisfies fort > 0,i=1,2,3
m _a=B_mn(1_1y_lm|
||wﬂivmv(',t>||Lq(]Ri) < (Ot 2 5(:—3)— 3 ||Waia||L““(]R1)7 ‘ml =0,1,2,...,
provided that either 1 < r < g < oo orl <r < q < oco. Here the weighted functions wg; (i =1,2,3) are
given in (1.2).

’

Proof. Let = (my,ma,...,my) = (m/,my), T = (2, T) = (2%, %%). Using the estimate (2.2), we have
for x = (¢/,2,) € R, t >0
Vot < [ IVEM (@) la)ldy

R}

= C/ (@n + VO (|2 =y |+ 20+ yo + VO aly)|dy

+

_ n4|@| T, ey
o [ () (i
e \Vi ViV

—n—|m/|
Tn Yn
ERRN d
Doleit) oty




1166 P. Han

:Ct—@/
R

<ot %

— ~ o~ —n—|m/| ~
@+ ) (0 =g+ T+ T 1) la(VEpIdy
.

a(VED)Idg

Ry (17— /| + 5+ + 1)1
< Ct '3 Sa(ViF),

where the operator S is defined in Lemma 2.2.
Combining (2.33) and Lemma 2.2, we conclude that for i = 1,2,3, and ¢t > 0

1

lwai V™ v(+, )| pa(rry) = (/}R" |w5i(az)vmv(x,t)|qu>

+

<o % /
R}

= ot~ e /
R

<o Tty ( / |wm<ma<\/iwd§)
R}

_ o Bt g /
R

|7 oa— T
=0 F TR wgial oy,

1
q

|wsi(2)Sa(VtT) |qu>

|wﬁi(5)5a(\/f%)|qd%> q

n
+

r

|wai(y)a(y) Irdy>

n
+

Now we consider the following standard linear parabolic problem in the half space:
0w —Aw =0 in R} x (0,00),
w(z,t) =0 on IR’ x (0, 00),
w(z,t) — 0 as || — o0, t>0,
w(z,0) =b(x) in R7}.

JMFM

(2.33)

(2.34)

A direct calculation shows that the solution of problem (2.34) can be represented as w(z,t) = [e!2b](z),

and for x = (2/,2,) €RY}, ¢t >0

€30 (2) = / (Ge( — ) — Gola’ — o/ + ya))b(v)dy

n
+

= [ Gz —y)b.(y)dy

Rﬂ,
= | GG -V, FT=-—, j=-L.
Rn Vit Vi
To proceed, we need a variant inequality of (2.4). Set

3 _ f(y)dy n
1= [ G TeR

Checking the proof process of Lemma 2.2, we find that the similar result holds. That is,

Let n > 2, then there exists C' = C(n, g, r, a, ) such that the operator S satisfies for i = 1,2,3

||w,3iSf||LQ(Rn) < CHwaif||L7‘(R”)

(2.35)

(2.36)
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provided that either 1 <r < g <ooor1l<r < g <oco. Here wy; (y =a,f,i=1,2,3) are given in (1.2).

Lemma 2.4. Let n > 2, then the solution [e!™b](z) of problem (2.84) satisfies fort >0, i=1,2,3

a=f _nol_1y_ |™]
=

HCU[ﬁvm[etAb]HLq(Ri) S Ct— 2z "2\r /7 |wainLr(Ri), |m| = O, ]_,27 ceey

provided that either 1 < r < g < oo or1 <r < ¢q < co. Here the weighted functions w; (v = o, 3,1 =
1,2,3) are given in (1.2).

Proof. Note that for each A\ > 0, there exists C' = C(n, 11, \) such that

VIGi(2)] = (4m) 3|WTe 4 | < Ce 5 S 2 <CL+]z))Y, VzeR™

y<|m|

Whence there holds for any = = (2/,2,) € R} and t >0
VIS < [ IVEGE — Dl (VDI

_1m m ~ ~
=t | |VFGI@ = 9)l[b-(Vig)ldy

]Rn
L [ b (V)G
= f g
= C+ 5 (Sb. (V) @). (2.37)

Combining (2.36) and (2.37), we conclude that for ¢ = 1,2,3, and ¢ > 0

q

n

s V™ 28] oy < CEF (/ Iww(x)(glb*(\/f))(@qux)

_ q
|7

<o B ( / |wm<z><§b*<¢%->|><%>|4d%>

_Iml B, n Ty .
<Ot 2 Tata (/ |wai ()b (VD) dy)
R‘n,

3=

_ |l B—a i n _n r
=Ct z t7z T 2T</R |wai (y)[[0«(y)] dy)

7] _a=B_nc1_1

< o B 50D Jwaibl -
O
Proof of Theorem 1.1. Note that the solution of the Stokes problem (1.1) can be written as follows (see
[41,42))

e Ha = e —v(z,t),

where e'“a is the solution of the parabolic problem (2.34) with b = a, and v is defined in (2.32) with the
initial data a.

By means of Lemmas 2.3, 2.4, we conclude that for : =1,2,3, and ¢ > 0

lws: Ve all Lagn) < wpi Ve all Lagn) + lwpi V0 ()] Logen)
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3. Application to the Navier—Stokes Flows

In this section, we apply the estimates on the Stokes flows to solutions of problem (1.3), and establish
the weighted decay properties of the nonstationary Navier—Stokes flows.

Let g = N f denote the solution of the elliptic problem with the homogeneous Neumann boundary
condition:

—Ag=f in R}, 0Ouglory =0.

Then (see [24])

N = /O F(r)dr, (3.1)
where
F(t)f(z) = /R (Gi(a" =y 20 — yn) + Ge(2’ — Y 0+ ya)] f(y)dy.

Moreover for any u € L2(R%) (" Hg(R"}),

P(u-Vu=(u-V)u+ i VNO;0;(uiuy). (3.2)

1,j=1

Lemma 3.1. Let n > 2. There holds for any u € Cg%,(R'})

1Y wor VN0, (uiv) | Lagery < CllvV@arVuljer @) + Ivoarulier@y)), k=123,
ij=1
provided that either 1 <r < g<ooorl <r <q< oco. Moreover 0 < a—f<1-— n(% — é) And the
weighted functions wyy (v = «, 8, k=1,2,3) are given in (1.2).

Proof. In the proof of Lemma 2.4, we have proved that for n > 2, and i =1,2,3

a—B _no1l_1y\_ |7

|wai V" Gy * flllLaeny < Ct™ 2 207 D772 [lwai fllLr@ny, 7] =0,1,2,..., (3.3)

provided that either 1 < r < ¢ < oo or 1 <r < ¢ < co. And the weighted functions wy; (y = o, 3, i =
1,2,3) are given in (1.2).
Note that 3 — 252 — (1 — %) > 0 by the assumption: 0 < o — 3 <1—n(t - %) Combining (3.1)

and (3.3), we get for k =1,2,3

n n [ee)
Z wpk VNO;0; (u;uj) = Z wng/ F(1)0;0j(uju;)dr
i,j=1 La(RY) 1,5=1 0 La(R7T)
1 n
< / Z wngGT * [618](u1u])]* dr
0 |li,5=1 La(RY)
- / > wakdid; VG x wi dr
=1

La(R%)



Vol. 20 (2018) Estimate on Stokes Flow 1169

L7 (R™)

= C(H\/wakVUHQL%(M) + vaaku||2L2r(R1))7
where w;; = (uiuj) if 1 <i,j <n—1ori=j=mn; wp = (wu,)" if 1 <i<n—1; wy; = (upuy)* if

1<j<n—1. () (-)« denote the odd and even extensions of (-) from R’} to R". O

Remark. Taking a =3, ¢ =r € (1,00) in Lemma 3.1, we get for n > 2, k=1,2,3

> wak VN 0:; (uiuy) < OIV@akVullter gy + | Voartlfer @), ¥ u € O35 (RY),
nI=t Lr(RY)
where the weighted functions wai(x) (K = 1,2,3) are given as follows for x = (2, z,,) € R}

war(z) = |z|* for —2 <a<n(l-1)

waz(z) = [2/|* for -2 <a<(n—-1)(1-21);
was(z) =28 for —l<a<1-1

Lemma 3.2 [22,28]. Assume ug € L2(R") (n > 2). There exists a number no > 0 such that if lluollLnmy) <

no (smallness condition is unnecessary if n = 2), problem (1.1) admits a unique strong solution w.
Additionally if ug satisfies

1L+ [z ([uol + [Vuol)ll 2wy + 11 + [])(Juol + [Vuo|) || oo ry) < o0
Then there holds for 1 <r < oo, k=0,1, andt >0
e V*u(t)|

here wy; (i =1,2,3) are defined as follows for x = (¢, x,) € R :

wy1(2) = |27, wya(z) = 27, was(z) = 2],

where
1
0<7<min{17n(1—)} if k=0; and 0<y<1 if k=1.
T

Proof of Theorem 1.2. The strong solution u of problem (1.3), which is given in Lemma 3.2, can be
represented as follows

u(t) = e g — te_(t_S)A u(s) - V)u(s)ds.
(0 -/ P(u(s) - V)u(s)d

LetOSoz—ﬂ<l—n(l—%),wherel<r§q<oo.

T

From Theorem 1.1, and the Remark in Lemma 3.1, we have for k =1,2,3, and t > 0

lwsr V™ u()| Laqan) < lwprV™e™ 4ol Lo

t
+ / ”wﬂkvmef(tfs)AP(u(S) . V)u(S)HLq(Ri)dS
0

|77 | -
<05 T EGD |wapuoll )

_ml_a=B_ne1_1
+C [ t—s)"2 7 7D |wapP(uls) - V)u(s)||zrry)ds
0
< Ct_‘iy_%ﬁ_%(%_%)”wakud L7 (R7)
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¢ —B_n
+C | (t—s)7 2 77 7 E0T D (Jlwar(u(s) - V)u(s)| Lr@n)
+ Hwak Z V./\/&B](uzu])(sﬂ LT(Ri))dS
ij=1

X ([waru(s)] Lr @) llu(s) | Lo @) + lwarVuls)] @) IVuls)] e @) ) ds.

JMFM

(3.4)

Case 1. 0 < o < min{1,n(1 — 1)}. Applying Lemma 3.2 to estimate the two terms: [|waru(s)||- ®%)

lwarVu(s)|

|wa: V™ u(t )||L<z (R?)

<ot TS50 +Ct—‘*2l—%[—5(:—5) /5(1 + 5)7—6—%(1—3«
0
t _
+CQ _|_t)§*§*5(1*%)/ (t — 8)*'%‘*%‘3*%(%*5)&9
%
< Ct*%*%*é(ifi).
Case 2. a < 0. Taking a = 0 in (3.5), we find for 5 <0,i=1,2,3,and t >0
s V()| pogeny < CH 7 T FTEGTD, i = 0,1,
Especially taking % =1-€e(0<e<1)in (3.6) ylelds 4 <0,i=1,2,3,and t >0
lws: V7 ut)]| on)y < o/ R L e N I
Recall the assumption on the initial data wug, we have for i = 1,2,3, and s > 0
[waku(s) ()o@ + lwar Vuls)llLr@e) [Vu(s) | Lo ry)
<C(+ s)—%—i—*““)“‘
Combining (3.4) and (3.7) yields for 8 < a < 0,i=1,2,3, and t > 0
[wsi V™ u(t)| La(rry)
e, e it TCE))
L t
A A L e T Rt
0 3
< o B 22300 4 o B o230 /5(1+5)7‘%'7%~<1——
0

< ctr T 3Gg) by taking e > 0 sufficiently small.
From (3.5) and (3.8), we complete the proof of Theorem 1.2.

+ e

2 ds

Lr(R}) in (3.4). It follows from Theorem 1.1, and Lemma 3.2 that for i = 1,2,3, and ¢t > 0
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