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Abstract. Consider the Navier–Stokes flow in 3-dimensional exterior domains, where a rigid body is translating with pre-
scribed translational velocity −h(t)u∞ with constant vector u∞ ∈ R

3\{0}. Finn raised the question whether his steady
solutions are attainable as limits for t → ∞ of unsteady solutions starting from motionless state when h(t) = 1 after
some finite time and h(0) = 0 (starting problem). This was affirmatively solved by Galdi et al. (Arch Ration Mech Anal
138:307–318, 1997) for small u∞. We study some generalized situation in which unsteady solutions start from large motions
being in L3. We then conclude that the steady solutions for small u∞ are still attainable as limits of evolution of those fluid
motions which are found as a sort of weak solutions. The opposite situation, in which h(t) = 0 after some finite time and
h(0) = 1 (landing problem), is also discussed. In this latter case, the rest state is attainable no matter how large u∞ is.
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1. Introduction and Results

Let us consider a viscous incompressible flow past an obstacle in 3D, which is a translating rigid body
with a prescribed velocity −hu∞, where u∞ ∈ R

3\{0} is a constant vector and the function h = h(t)
describes the transition of the translational velocity of the body. In the frame attached to the body, the
motion of the fluid obeys the exterior problem for the Navier–Stokes system

∂tu + u · ∇u = Δu − ∇pu − hu∞ · ∇u,

divu = 0,

u|∂Ω = −hu∞,

u → 0 as |x| → ∞,

(1.1)

where Ω denotes the exterior of the body in R
3 with smooth boundary ∂Ω. The unknown functions are

the velocity field u = (u1(x, t), u2(x, t), u3(x, t)) and the associated pressure pu = pu(x, t).
Suppose both the fluid and the body are initially at rest, that is, u(·, 0) = 0 and h(0) = 0. If the body

starts to move from the rest state until the terminal velocity −u∞ at an instant T0 > 0 and, afterwards,
h(t) = 1 for t ≥ T0, then the large time behavior of the solution u(x, t) to (1.1) subject to the initial
condition u(·, 0) = 0 would be related to the steady problem

us · ∇us = Δus − ∇pus
− u∞ · ∇us,

divus = 0,

us|∂Ω = −u∞,

us → 0 as |x| → ∞.

(1.2)
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Indeed, in this situation, Finn [15] raised the question whether u(x, t) converges to us(x) as t → ∞
in a sense as long as u∞ ∈ R

3\{0} is small enough (Finn’s starting problem). If that is the case, the
steady flow us(x) is said to be “attainable” by following the terminology of Heywood [23], who gave
a partial answer to the starting problem. Note that the steady problem (1.2) with sufficiently small
u∞ ∈ R

3\{0} possesses a unique solution us, what is called the physically reasonable solution, due to
Finn [16] himself. On account of its anisotropic behavior with wake property, the solution us(x) enjoys
better summability us ∈ Lq(Ω) for every q > 2 (than the case where the body is at rest), see (3.2) below,
however, still infinite energy us /∈ L2(Ω) because the net force exerted by the fluid to ∂Ω cannot vanish
when the external force is absent, see Finn [14] and Galdi [18]. It is reasonable to look for a solution
u(x, t) of the form u(x, t) = h(t)us(x) + v(x, t) and to expect u(t) ∈ L2(Ω) since u(0) = 0, however, in
this case, v(t) /∈ L2(Ω) follows from us /∈ L2(Ω) and thus the energy method is not enough to construct
the perturbation v(t). Thus the problem had remained open until Kobayashi and Shibata [29] developed
the Lq-Lr decay estimate of the Oseen semigroup, see (2.5)–(2.6) below. Finally, by making use of this
estimate, the starting problem from the rest state was completely solved by Galdi et al. [19].

In the present paper we intend to provide further contributions to this issue for its better understand-
ing. It would be worth while studying more possibilities of attainablity of the steady flow us. The aim is
to find out many solutions to (1.1), which converge to us as t → ∞, even if starting from large motions
of both the fluid and the body, that is, the initial velocity

u(x, 0) = u0(x) (1.3)

can be large with infinite energy and h(0) is large, too. We take u0 from L3(Ω), as usual, or even from
L3,∞

0 (Ω), the completion of C∞
0 (Ω) in the Lorentz space (weak-L3 space) L3,∞(Ω), together with the

compatibility conditions
divu0 = 0, ν · (u0 + h(0)u∞)|∂Ω = 0, (1.4)

where ν stands for the outer unit normal to ∂Ω and the latter condition is understood in the sense of
normal trace. The function h = h(t) is assumed to satisfy

h ∈ C1,θ([0,∞)) for some θ ∈ (0, 1), (1.5)
h(t) = 1 on [T0,∞) for some T0 > 0. (1.6)

The main result on the starting problem reads as follows.

Theorem 1.1. There exists a constant δ > 0 with the following property: If u∞ ∈ R
3\{0} fulfills |u∞| ≤ δ,

then, for every u0 ∈ L3,∞
0 (Ω) with (1.4) and for every function h(t) satisfying (1.5)–(1.6), problem (1.1)

subject to (1.3) admits at least one solution u(x, t) which enjoys

‖u(t) − us‖L∞(Ω) = O(t−1/2) (1.7)

as t → ∞, where us is a unique solution to (1.2).

We stress that the small constant δ in Theorem 1.1 is independent of u0 and h. Our global solution is
a sort of weak solution, to be precise, it is of the form

u(x, t) = h(t)us + ˜U(x, t) + w(x, t), (1.8)

where ˜U(x, t) is an auxiliary function (regular enough for t > 0), while w(x, t) is the so-called Leray–Hopf
weak solution [25,31,36]. The idea to solve the Navier–Stokes initial value problem with large initial data
in L3 (or L3,∞

0 ) is due to Maremonti [34], in which a solution to (1.1) with u∞ = 0 subject to (1.3) is
constructed in the form u(t) = e−tAu0 +w(t) with a Leray–Hopf weak solution w(t), where e−tA denotes
the Stokes semigroup. The similar approach was adopted also by [2,39]. In the case under consideration
of this paper, the pair

v(x, t) := u(x, t) − h(t)us(x), pv(x, t) := pu(x, t) − h(t)pus
(x)
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should obey

∂tv + v · ∇v + h (us · ∇v + v · ∇us) = Δv − ∇pv − hu∞ · ∇v + g,

div v = 0,

v|∂Ω = 0,

v → 0 as |x| → ∞,

v(·, 0) = v0 := u0 − h(0)us (1.9)

with the forcing term
g(x, t) := −h′us + (h − h2)(us + u∞) · ∇us, (1.10)

where h′ = dh
dt . There would be several possibilities of choice of the auxiliary function ˜U(x, t) in (1.8),

which plays the same role as e−tAu0 in [34]. With any choice of ˜U(x, t) at hand, we subtract this function
from v(x, t) to see that the remaining part w(x, t) := v(x, t)− ˜U(x, t) together with the associated pressure
pw satisfies

∂tw + w · ∇w + ˜U · ∇w + w · ∇˜U + h (us · ∇w + w · ∇us)
= Δw − ∇pw − hu∞ · ∇w + f,

div w = 0,

w|∂Ω = 0, (1.11)
w → 0 as |x| → ∞,

w(·, 0) = w0 := v0 − ˜U(·, 0),

for some vector field f = f(x, t) as the new forcing term whenever

div ˜U = 0, ˜U |∂Ω = 0, ˜U → 0 (|x| → ∞).

Besides these conditions, the auxiliary function ˜U(x, t) must be taken so that f ∈ L2
loc([0,∞);H−1(Ω))

as well as w0 ∈ L2(Ω) in order to look for w(x, t) as the Leray–Hopf weak solution with the strong energy
inequality

1
2
‖w(t)‖2

L2(Ω) +
∫ t

s

‖∇w‖2
L2(Ω)dτ

≤ 1
2
‖w(s)‖2

L2(Ω) +
∫ t

s

〈(hus + ˜U) ⊗ w,∇w〉dτ +
∫ t

s

〈f, w〉dτ (1.12)

for s = 0, a.e. s > 0 and all t ≥ s. As the auxiliary function, in this paper, we will take the solution of
the non-autonomous Oseen initial value problem in the whole space R

3 together with a correction term,
see (3.12) and (3.14). Then the forcing term f(x, t) is given by (4.1) together with (3.15).

For the proof of attainability (1.7) of the steady flow, a crucial step is to find out a large instant t̄ > 0
such that w(t̄) is small enough in L3(Ω). It is then possible to construct a global strong solution from t̄
with some decay properties, particularly L∞-decay like O(t−1/2), which can be identified with the weak
solution w(t) by the strong energy inequality (1.12). Indeed this strategy itself is quite classical since the
celebrated paper by Leray [31], but there are some details to make ‖w(t̄)‖L3(Ω) small at a suitable t̄. This
is by no means obvious since the RHS of (1.12) is growing for t → ∞. One would raise the question
whether Theorem 1.1 still holds for u0 ∈ L3,∞(Ω) [that is strictly larger than L3,∞

0 (Ω)]. For such data,
unfortunately, the behavior of the auxiliary function ˜U(t) near t = 0 is critical and this prevents us from
constructing the weak solution w(t).

It is also interesting to consider the opposite situation (landing problem), in which the body is initially
translating with velocity −u∞ and it stops at an instant T0 and is kept afterwards at rest, that is,

h(t) = 0 on [T0,∞) for some T0 > 0; h(0) = 1. (1.13)
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The following result on the landing problem tells us that the rest state is attainable no matter how large
u∞ is.

Theorem 1.2. For every u∞ ∈ R
3\{0}, u0 ∈ L3,∞

0 (Ω) with (1.4) and h(t) satisfying (1.13) as well as
(1.5), problem (1.1) subject to (1.3) admits at least one solution u(x, t) which enjoys

‖u(t)‖L∞(Ω) = O(t−1/2) (1.14)

as t → ∞.

The idea of the proof of Theorem 1.2 is the same as the one for the starting problem. For every
u∞ ∈ R

3\{0} the steady problem (1.2) admits at least one solution us(x) with finite Dirichlet integral
∇us ∈ L2(Ω) (the Leray class), see Leray [30]. It also follows from the result of Babenko [1], Galdi [17,18],
Farwig and Sohr [13] that any solution of the Leray class eventually becomes the physically reasonable
solution in the sense of Finn [15,16]. Since we would have several solutions unless u∞ is small, we fix
a steady flow us(x) arbitrarily among them and look for the solution u(x, t) to (1.1) of the form (1.8).
It would be interesting to ask sharper L∞-decay like o(t−1/2) in (1.14) as well as (1.7); in fact, this is
possible for (1.1) with u∞ = 0 subject to (1.3) when u0 ∈ L3,∞

0 is small enough, see [33]. On account
of the presence of the forcing term [especially ˜U · ∇˜U , see (4.1)], it does not seem to be clear whether
‖w(t)‖L∞(Ω) = o(t−1/2), however, one could take another way in which one constructs directly a strong
solution v(t) on [t̄,∞) with a suitable t̄ for (1.9), instead of w(t), such that ‖v(t)‖L∞(Ω) = o(t−1/2) as
t → ∞.

This paper concerns the attainability, while the stability of the steady flow was extensively studied,
see for instance [10,28,41] and the references therein. The paper is organized as follows. After some
preliminaries in the next section, we choose the auxiliary function ˜U(x, t) in (1.8) and derive several
properties in Sect. 3. In Sect. 4 we construct a weak solution w(t) to the initial value problem (1.12)
and deduce the strong energy inequality (1.12). In Sect. 5 we make use of the Lq-Lr decay estimate of
the Oseen semigroup [29] to construct a strong solution to (1.12) on [t̄,∞) whenever w(t̄) is small in
L3(Ω). We further show that this solution is identified with the weak solution on [t̄,∞). The final section
is devoted to finding t̄ > 0, at which ‖w(t̄)‖L3(Ω) is actually small enough, to accomplish the proof of
Theorems 1.1 and 1.2.

2. Preliminaries

We start with introducing notation. Given a domain D ⊂ R
3, 1 ≤ q ≤ ∞, and integer k ≥ 0, we denote

by Lq(D) and by W k,q(D) the standard Lebesgue and Sobolev spaces, respectively. We simply write the
norm ‖ · ‖q,D = ‖ · ‖Lq(D) and even ‖ · ‖q = ‖ · ‖q,Ω, where Ω is the exterior domain under consideration.
Let C∞

0 (D) be the class of smooth functions with compact support in D. We denote by W k,q
0 (D) the

completion of C∞
0 (D) in W k,q(D), and by W−1,q(D) the dual space of W 1,q′

0 (D), where 1/q′+1/q = 1 and
q ∈ (1,∞). By 〈·, ·〉 we denote various duality pairings on Ω. When q = 2, we write Hk(D) = W k,2(D),
H1

0 (D) = W 1,2
0 (D) and H−1(D) = W−1,2(D), respectively.

Let us introduce the Lorentz spaces (for details, see Bergh and Löfström [3]). Given a measurable
function f on a domain D, we set

mf (τ) = |{x ∈ D; |f(x)| > τ}| , τ > 0,

f∗(t) = inf{τ > 0; mf (τ) ≤ t}, t > 0,



Vol. 20 (2018) Navier–Stokes Flow Past a Rigid Body 775

where | · | stands for the Lebesgue measure. Let 1 < q < ∞ and 1 ≤ r ≤ ∞, then the space Lq,r(D)
consists of all measurable functions f on D which satisfy

(∫ ∞

0

{

t1/qf∗(t)
}r dt

t

)1/r

< ∞ (1 ≤ r < ∞),

sup
t>0

t1/q f∗(t) < ∞ (r = ∞).
(2.1)

Each of those quantities is a quasi-norm, however, it is possible to introduce an equivalent norm ‖ · ‖q,r,D

by use of the average function. Then Lq,r(D) endowed with ‖·‖q,r,D is a Banach space, called the Lorentz
space. We simply write ‖ · ‖q,r = ‖ · ‖q,r,Ω. Note that Lq,q(D) = Lq(D) and that Lq,r0(D) ⊂ Lq,r1(D)
if r0 ≤ r1. The space Lq,∞(D) is well known as the weak-Lq space, in which C∞

0 (D) is not dense. Let
us define the space Lq,∞

0 (D) by the completion of C∞
0 (D) in Lq,∞(D). The Lorentz space can be also

constructed via real interpolation

Lq,r(D) =
(

L1(D), L∞(D)
)

1−1/q,r

from which the reiteration theorem in the interpolation theory leads to

Lq,r(D) =
(

Lq0,r0(D), Lq1,r1(D)
)

θ,r

together with
‖f‖q,r,D ≤ C‖f‖1−θ

q0,r0,D‖f‖θ
q1,r1,D (2.2)

for all f ∈ Lq0,r0(D) ∩ Lq1,r1(D) ⊂ Lq,r(D) provided that

1 < q0 < q < q1 < ∞,
1
q

=
1 − θ

q0
+

θ

q1
, 1 ≤ r0, r1, r ≤ ∞.

We have the Lorentz–Hölder and Lorentz–Sobolev inequalities, but the only cases we need in this paper
are

‖fg‖r,s,D ≤ ‖f‖3,∞,D‖g‖q,s,D,
1
r

=
1
3

+
1
q
, q, r ∈ (1,∞), (2.3)

‖g‖q∗,s ≤ C‖∇g‖q,s,
1
q∗

=
1
q

− 1
3
, q ∈ (1, 3), (2.4)

where 1 ≤ s ≤ ∞. In what follows the same symbols for vector and scalar function spaces are adopted as
long as there is no confusion.

Let us introduce the solenoidal function spaces over the exterior domain Ω. The space C∞
0,σ(Ω) consists

of all divergence free vector fields whose components are in C∞
0 (Ω). Let 1 < q < ∞. We denote by Lq

σ(Ω)
the completion of C∞

0,σ(Ω) in Lq(Ω). Then it is characterized as

Lq
σ(Ω) = {u ∈ Lq(Ω); div u = 0, ν · u|∂Ω = 0},

where ν · u|∂Ω stands for the normal trace of u. The space Lq(Ω) of vector fields admits the Helmholtz
decomposition

Lq(Ω) = Lq
σ(Ω) ⊕ {∇p ∈ Lq(Ω); p ∈ Lq

loc(Ω)
}

which was proved by Miyakawa [37] and by Simader and Sohr [42]. When q = 2, it is the orthogonal
decomposition. We have the same result for the whole space R

3 as well.
By using the projection P: Lq(Ω) → Lq

σ(Ω) associated with the decomposition above, we define the
Stokes operator A by

Dq(A) = W 2,q(Ω) ∩ W 1,q
0 (Ω) ∩ Lq

σ(Ω), Af = −PΔf.

When q = 2, it is a nonnegative self-adjoint operator in L2
σ(Ω) and

〈A1/2f,A1/2g〉 = 〈∇f,∇g〉, for f, g ∈ D2(A1/2) = H1
0,σ(Ω),

where the space H1
0,σ(Ω) denotes the completion of C∞

0,σ(Ω) in H1(Ω). Due to Solonnikov [43], Giga [21]
and Farwig and Sohr [12], we know the generation of an analytic semigroup (the Stokes semigroup)
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{e−tA}t≥0 on Lq
σ(Ω). Furthermore, it is uniformly bounded ‖e−tAf‖q ≤ C‖f‖q by the result of Borchers

and Sohr [5]. Given a constant vector u∞ ∈ R
3, let us define the Oseen operator Au∞ by

Dq(Au∞) = Dq(A), Au∞f = −P [Δf − u∞ · ∇f ] .

Then, by a simple perturbation argument, see Miyakawa [37], it is verified that the operator −Au∞ also
generates an analytic semigroup (the Oseen semigroup) {e−tAu∞ }t≥0 on Lq

σ(Ω). In [29] Kobayashi and
Shibata (see also Enomoto and Shibata [9,10]) developed the Lq-Lr estimates

‖e−tAu∞ f‖r ≤ Ct−α‖f‖q (1 < q ≤ r ≤ ∞, q �= ∞), (2.5)

‖∇e−tAu∞ f‖r ≤ Ct−α−1/2‖f‖q (1 < q ≤ r ≤ 3), (2.6)

for all t > 0, where α = (3/q − 3/r)/2. They also showed that, for each K > 0, the constant C =
C(K; q, r) > 0 in (2.5)–(2.6) can be taken uniformly with respect to u∞ ∈ R

3 satisfying |u∞| ≤ K.
Therefore, their result includes the Lq-Lr estimates of the Stokes semigroup as a special case, however,
even before, both (2.5) and (2.6) (case u∞ = 0) had been established by Iwashita [26], Chen [7] (case
r = ∞) and Maremonti and Solonnikov [35]. For later use, let us give a supplement about the Oseen
operator, which is m-accretive in L2

σ(Ω). Since both 1 + Au∞ and 1 + A are invertible, we have

‖Af‖2 ≤ C‖(1 + Au∞)f‖2, ‖Au∞f‖2 ≤ C‖(1 + A)f‖2,

for f ∈ D2(A). Then the Heinz–Kato inequality for m-accretive operators implies that

‖∇f‖2 = ‖A1/2f‖2 ≤ C‖(1 + Au∞)1/2f‖2 (2.7)

for all f ∈ D2(A
1/2
u∞) = D2(A1/2) = H1

0,σ(Ω) with some constant C = C(|u∞|) > 0.
We next consider the boundary value problem for the equation of continuity

div w = f in D, w|∂D = 0,

where D is a bounded domain in R
3 with Lipschitz boundary ∂D. Let 1 < q < ∞. Given f ∈ Lq(D)

with compatibility condition
∫

D
f = 0, there are a lot of solutions, some of which were found by many

authors, see Galdi [18, Notes for Chapter III]. Among them a particular solution discovered by Bogovskii
[4] is useful to recover the solenoidal condition in a cut-off procedure on account of some fine properties
of his solution. The operator f �→ his solution w, called the Bogovskii operator, is well defined as follows
(for details, see Galdi [18], Borchers and Sohr [6]): there is a linear operator B: C∞

0 (D) → C∞
0 (D)3 such

that, for 1 < q < ∞ and k ≥ 0 integers,

‖∇k+1
Bf‖q,D ≤ C‖∇kf‖q,D (2.8)

with some C = C(D, q, k) > 0 and that

div Bf = f if
∫

D

f(x) dx = 0, (2.9)

where the constant C is invariant with respect to dilation of the domain D. By continuity, B is extended
uniquely to a bounded operator from W k,q

0 (D) to W k+1,q
0 (D)3. It is obvious by real interpolation that

several estimates in the Lorentz norm similar to (2.8) are available as well; for instance, we have

‖∇Bf‖q,∞,D ≤ C‖f‖q,∞,D, (2.10)

for every f ∈ Lq,∞(D) and q ∈ (1,∞). By Geissert, Heck and Hieber [20, Theorem 2.5], B can be also
extended to a bounded operator from W 1,q′

(D)∗ to Lq(D)3, that is,

‖Bf‖q,D ≤ C‖f‖W 1,q′ (D)∗ , (2.11)

where 1/q′ + 1/q = 1. Note that this is not true from W−1,q(D) to Lq(D)3, see Galdi [18, Chapter III].
Finally, we mention a sort of commutator estimate between B and the Laplacian. Let f ∈ W 2,q(D). We
fix η ∈ C∞

0 (D) to find
‖ΔB[ηf ] − B[Δ(ηf)]‖q,D ≤ C‖f‖q,D. (2.12)
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Indeed this is rather restricted form, but it is enough for later use, see Lemma 3.3. By the condition
above on the domain D, see Galdi [18, Lemma III.3.4], analysis can be reduced to the case in which D
is star-shaped with respect to a ball B, where B ⊂ D. In this case, the solution found by Bogovskii [4] is
of the form (in 3D case)

B[ηf ](x) =
∫

D

Γκ(x − y, y)(ηf)(y)dy

with

Γκ(z, y) = z

∫ ∞

1

κ(y + τz)τ2dτ,

where κ ∈ C∞
0 (B) is fixed so that

∫

B
κ = 1. Set

Bj [ηf ](x) =
∫

D

Γ∂jκ(x − y, y)(ηf)(y)dy (j = 1, 2, 3).

Then we have

∂jB[ηf ] − B[∂j(ηf)] = Bj [ηf ]

for each j = 1, 2, 3, and, thereby,

ΔB[ηf ] − B[Δ(ηf)] =
∑

j

Bj [∂j(ηf)] +
∑

j

∂jBj [ηf ].

Since the operator Bj satisfies the same estimates as in (2.8) and (2.11) in spite of
∫

B
∂jκ �= 1 [which is

related only to whether (2.9) holds], the formula above leads to (2.12).

3. Auxiliary Function

In this section we construct an auxiliary function ˜U(x, t) in (1.8). We begin with knowledge about the
steady problem (1.2). Due to Finn [16], Galdi [18], Farwig [11] and Shibata [41], there are constants
δ0 > 0, C = C(q) > 0 and C ′ = C ′(r) > 0 such that the steady problem (1.2) admits a unique solution

us ∈ Lq(Ω) ∩ C∞(Ω), ‖us‖q ≤ C|u∞|1/2, ∀q ∈ (2,∞],

∇us ∈ Lr(Ω), ‖∇us‖r ≤ C ′|u∞|1/2, ∀r ∈ (4/3,∞], (3.1)
provided 0 < |u∞| ≤ δ0.

Specifically, the rate |u∞|1/2 above was deduced by Shibata as a consequence of his anisotropic pointwise
estimates [41, Theorem 1.1]. For the starting problem, we take this solution us. For the landing problem,
there is at least one solution to (1.2) having finite Dirichlet integral for every u∞ ∈ R

3\{0} (see [30])
and, from now on, we fix a solution us; then, it possesses the summability properties in (3.2), no matter
which we may choose, see Galdi [18, Section X.6].

Given u0 ∈ L3,∞
0 (Ω) with (1.4), we set v0 = u0 − h(0)us ∈ L3,∞

0 (Ω) which fulfills ν · v0|∂Ω = 0 as
well as div v0 = 0, see (1.9). We take the extension v̄0 of v0 by setting zero outside Ω; then, we have
v̄0 ∈ L3,∞

0 (R3) with div v̄0 = 0. We fix R > 0 such that

R
3\Ω ⊂ BR := {x ∈ R

3; |x| < R}, (3.2)

and take a cut-off function φ0 ∈ C∞
0 (B2R) so that φ0(x) = 1 in BR. Set

ḡ(x, t) = (1 − φ0(x))g(x, t),

G(y, t) = ḡ

(

y + u∞
∫ t

0

h(τ)dτ, t

)

,
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where g is given by (1.10). Then it follows from (3.2) that ḡ(t) belongs to Lq(R3) ∩ C∞(R3) for every
q ∈ (2,∞] and, therefore, so does G(t). We also have

div ḡ = (1 − φ0)(h − h2)
∑

j

(∂jus) · ∇usj − g · ∇φ0,

and, thereby, div G(t) ∈ Lq(R3) for every q ∈ [1,∞], which together with the Hardy–Littlewood–Sobolev
inequality implies that

Q(·, t) :=
( −1

4π| · | ∗ div G

)

(·, t) ∈ Lq(R3), ∀q ∈ (3,∞),

where ∗ stands for the convolution on R
3. Set

PR3G(t) = G(t) − ∇Q(t)

which satisfies
‖PR3G(t)‖q,R3 ≤ ‖G(t)‖q,R3 + ‖∇Q(t)‖q,R3

≤ C‖G(t)‖q,R3 = C‖ḡ(t)‖q,R3 ≤ C‖g(t)‖q ≤ CMq
(3.3)

for every q ∈ (2,∞) with

Mq = |h′|∞‖us‖q + (|h|∞ + |h|2∞)(‖us‖∞ + |u∞|)‖∇us‖q, (3.4)

where

|h|∞ = sup
t≥0

|h(t)|, |h′|∞ = sup
t≥0

|h′(t)|.

By using the heat semigroup

etΔ = (4πt)−3/2e−|·|2/4t ∗ (·),
we set

V (t) =
∫ t

0

e(t−τ)Δ (PR3G) (τ)dτ,

W (t) = etΔv̄0 + V (t).
(3.5)

Then the pair W (y, t), Q(y, t) solves the Stokes initial value problem

∂tW = ΔW − ∇Q + G, div W = 0 (y ∈ R
3, t > 0),

W → 0 as |y| → ∞,

W (y, 0) = v̄0(y). (3.6)

By (1.5) we know

G ∈ Cθ([0,∞);Lq(R3)), ∀q ∈ (2,∞],

which implies that
W ∈ C1((0,∞);L3,∞(R3) ∩ Lq

σ(R3)), ∀q ∈ (3,∞),

∇2W ∈ C((0,∞);L3,∞(R3) ∩ Lq(R3)), ∀q ∈ (3,∞).
(3.7)

We also find
∇W ∈ Cμ

loc

(

(0,∞);L3,∞(R3) ∩ Lq(R3)
)

, ∀q ∈ (3,∞), ∀μ ∈ (0, 1/2). (3.8)

We then make the change of variable as

U(x, t) = W

(

x − u∞
∫ t

0

h(τ)dτ, t

)

,

P (x, t) = Q

(

x − u∞
∫ t

0

h(τ)dτ, t

)

,

(3.9)
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to see from (3.7)–(3.8) that
⎧

⎨

⎩

U ∈ C1
(

(0,∞);L3,∞(R3) ∩ Lq
σ(R3)

)

, ∀q ∈ (3,∞),
∇2U ∈ C

(

(0,∞);L3,∞(R3) ∩ Lq(R3)
)

, ∀q ∈ (3,∞),
∇U ∈ Cμ

loc

(

(0,∞);L3,∞(R3) ∩ Lq(R3)
)

, ∀q ∈ (3,∞), ∀μ ∈ (0, 1/2),
(3.10)

and that the pair (3.9) satisfies the non-autonomous Oseen initial value problem

∂tU = ΔU − ∇P − hu∞ · ∇U + ḡ, div U = 0 (x ∈ R
3, t > 0),

U → 0 as |x| → ∞, (3.11)
U(x, 0) = v̄0(x).

Let us take another cut-off function φ ∈ C∞
0 (B3R) so that φ(x) = 1 in B2R. Our auxiliary function is

then given by
˜U(x, t) = (1 − φ(x))U(x, t) + B [U(·, t) · ∇φ] (x) = U(x, t) + E(x, t), (3.12)

see (3.16) below, where B denotes the Bogovskii operator in the bounded domain AR = B3R\BR. Since
div U = 0, we observe

∫

AR
U · ∇φ = 0, which yields div ˜U = 0. By (3.10) we find that

⎧

⎪

⎨

⎪

⎩

˜U ∈ C1((0,∞);L3,∞(Ω) ∩ Lq
σ(Ω)), ∀q ∈ (3,∞),

∇2
˜U ∈ C((0,∞);L3,∞(Ω) ∩ Lq(Ω)), ∀q ∈ (3,∞),

∇˜U ∈ Cμ
loc((0,∞);L3,∞(Ω) ∩ Lq(Ω)), ∀q ∈ (3,∞), ∀μ ∈ (0, 1/2),

(3.13)

and that
∂t
˜U = Δ˜U − ∇P − hu∞ · ∇˜U + g − F, div ˜U = 0 (x ∈ Ω, t > 0),

˜U |∂Ω = 0,

˜U → 0 as |x| → ∞,

˜U(·, 0) = (1 − φ)v0 + B[v0 · ∇φ],

(3.14)

with
F (x, t) := φ0g − ∂tE + ΔE − hu∞ · ∇E, (3.15)

where
E = −φU + B[U · ∇φ]. (3.16)

For later use, we collect some properties of U and ˜U .

Lemma 3.1. Let j = 0, 1. The function U given by (3.9) enjoys

‖U(t)‖∞,R3 ≤ C(‖v0‖3,∞ + M3) t−1/2,

‖∇jU(t)‖r,R3 ≤ C(‖v0‖3,∞ + M3) t−1/2+3/2r−j/2, ∀r ∈ (3,∞),

‖∇jU(t)‖3,∞,R3 ≤ C(‖v0‖3,∞ + M3) t−j/2

(3.17)

for all t > 0, where M3 is as in (3.4), and

‖U(t)‖r,R3 = o(t−1/2+3/2r), ∀r ∈ (3,∞],

‖U(t)‖3,∞,R3 = o(1),
(3.18)

as t → ∞.

Proof. Since

‖∇jU(t)‖r,R3 = ‖∇jW (t)‖r,R3 , ‖∇jU(t)‖3,∞,R3 = ‖∇jW (t)‖3,∞,R3 ,

it suffices to show the desired properties for W (t) given by (3.5). By the Hausdorff–Young inequality and
by real interpolation, we easily see that

‖∇jetΔv̄0‖r,R3 ≤ Ct−1/2+3/2r−j/2‖v0‖3,∞, ‖∇jetΔv̄0‖3,∞,R3 ≤ Ct−j/2‖v0‖3,∞,
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for 3 < r ≤ ∞. We use the assumption (1.6) and (3.3) with q = 3 to observe

‖∇jV (t)‖r,R3 ≤ CM3

∫ T0

0

(t − τ)−1/2+3/2r−j/2dτ ≤ CM3T0 t−1/2+3/2r−j/2 (3.19)

for t ≥ 2T0, while
‖∇jV (t)‖r,R3 ≤ CM3T

1/2+3/2r−j/2
0 (3.20)

for t ∈ (0, 2T0] (except for the case (j, r) = (1,∞)). Similarly, we obtain

‖∇jV (t)‖3,∞,R3 ≤ CM3T0t
−j/2

for t ≥ 2T0 and

‖∇jV (t)‖3,∞,R3 ≤ CM3T
1−j/2
0

for t ∈ (0, 2T0]. This shows (3.17).
The sharp behavior (3.18) was observed by [32], but let us give the proof for completeness. For

v0 ∈ L3,∞
0 (Ω) and every ε > 0, one can take v0ε ∈ C∞

0 (Ω) ⊂ C∞
0 (R3) such that

‖v0ε − v̄0‖3,∞,R3 = ‖v0ε − v0‖3,∞ ≤ ε. (3.21)

Then we have

‖etΔv̄0‖3,∞,R3 ≤ C‖v0ε‖1,R3 t−1 + Cε,

yielding lim supt→∞ ‖etΔv̄0‖3,∞,R3 ≤ Cε, which also implies

‖etΔv̄0‖r,R3 ≤ Ct−1/2+3/2r‖e
t
2Δv̄0‖3,∞,R3 = o(t−1/2+3/2r)

as t → ∞. In (3.19) one can use (3.3) with p ∈ (2, 3) to replace M3 by Mp; then,

‖V (t)‖r,R3 ≤ CMpT0 t−3/2p+3/2r,

‖V (t)‖3,∞,R3 ≤ CMpT0 t−3/2p+1/2,

for t ≥ 2T0, which proves (3.18). �

Corollary 3.1. Let j = 0, 1. The function ˜U given by (3.12) enjoys

‖˜U(t)‖r ≤ C(‖v0‖3,∞ + M3) t−1/2+3/2r, ∀r ∈ (3,∞], (3.22)

‖∇˜U(t)‖r ≤ C(‖v0‖3,∞ + M3) t−1+3/2r(1 + t)1/2−3/2r, ∀r ∈ (3,∞), (3.23)

‖∇j
˜U(t)‖3,∞ ≤ C(‖v0‖3,∞ + M3) t−j/2, (3.24)

for all t > 0, where M3 is as in (3.4), and

‖˜U(t)‖r = o(t−1/2+3/2r), ∀r ∈ (3,∞],

‖˜U(t)‖3,∞ = o(1),
(3.25)

as t → ∞.
Let t̄ ∈ [T0,∞), where T0 is as in (1.6) or (1.13), then

‖˜U(t)‖r ≤ C(t − t̄)−1/2+3/2r‖U(t̄)‖3,∞,R3 , ∀r ∈ (3,∞],

‖∇˜U(t)‖3,∞ ≤ C(t − t̄)−1/2‖U(t̄)‖3,∞,R3 ,
(3.26)

for all t > t̄.

Proof. On account of (2.8) (combined with the Gagliardo–Nirenberg inequality for r = ∞) we have

‖˜U(t)‖r ≤ C‖U(t)‖r,R3 ,

‖∇˜U(t)‖r ≤ C‖∇U(t)‖r,R3 + C‖U(t)‖∞,AR
.

for r ∈ (3,∞] as well as the similar inequalities for ‖∇j
˜U(t)‖3,∞, see (2.10). Then Lemma 3.1 concludes

(3.22), (3.24), (3.23) and (3.25).
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By (1.6) or (1.13) we have G(y, t) = 0 for t ≥ T0 and, therefore, deduce from (3.6) that W (t) =
e(t−t̄)ΔW (t̄). In view of (3.9) and (3.12) we find

‖˜U(t)‖r ≤ C‖W (t)‖r,R3 ≤ C(t − t̄)−1/2+3/2r‖W (t̄)‖3,∞,R3 ,

for 3 < r ≤ ∞. Similarly, we have

‖∇˜U(t)‖3,∞ ≤ C‖∇W (t)‖3,∞,R3 + C‖W (t)‖∞,R3 ≤ C(t − t̄)−1/2‖W (t̄)‖3,∞,R3 .

These estimates together with ‖W (t̄)‖3,∞,R3 = ‖U(t̄)‖3,∞,R3 imply (3.26). �

Remark 3.1. Actually, ˜U(t) does not possess any singular behavior near t = t̄, however, it is convenient
to use (3.26) in the proof of Proposition 5.1.

We will be faced with some troubles a few times arising from the behavior of ˜U(t) such as ‖˜U(t)‖2
∞ ≤

Ct−1 near t = 0, see (3.22). In order to get around this unpleasant situation, it is convenient to carry out
the following simple approximation procedure.

Lemma 3.2. Let ε > 0. Then there is a function
˜Uε ∈ L∞(0,∞;Lq(Ω))

with

∇˜Uε ∈ L∞(0,∞;Lq(Ω))

for every q ∈ (3,∞] such that

sup
t>0

‖˜Uε(t) − ˜U(t)‖3,∞ ≤ Cε,

sup
t>0

t1/2−3/2q‖˜Uε(t) − ˜U(t)‖q ≤ Cε,

sup
0<t≤1

t1−3/2q‖∇˜Uε(t) − ∇˜U(t)‖q ≤ Cε,

for every q ∈ (3,∞).

Proof. We use v0ε in (3.21). We replace v̄0 by v0ε in (3.5) to define Wε, which leads to ˜Uε by (3.12) via
(3.9). Then we have

‖˜Uε(t) − ˜U(t)‖q ≤ C‖Wε(t) − W (t)‖q,R3 = C‖etΔ(v0ε − v̄0)‖q,R3 ,

‖˜Uε(t) − ˜U(t)‖3,∞ ≤ C‖Wε(t) − W (t)‖3,∞,R3 = C‖etΔ(v0ε − v̄0)‖3,∞,R3 ,

and
‖∇˜Uε(t) − ∇˜U(t)‖q ≤ C‖∇Wε(t) − ∇W (t)‖q,R3 + C‖Wε(t) − W (t)‖q,AR

= C‖∇etΔ(v0ε − v̄0)‖q,R3 + C‖etΔ(v0ε − v̄0)‖q,R3 ,

as well as
‖˜Uε(t)‖q ≤ C‖Wε(t)‖q,R3 ≤ C‖etΔv0ε‖q,R3 + C‖V (t)‖q,R3 ,

‖∇˜Uε(t)‖q ≤ C‖∇Wε(t)‖q,R3 + C‖Wε(t)‖q,AR

≤ C‖etΔ∇v0ε‖q,R3 + C‖etΔv0ε‖q,R3 + C‖V (t)‖W 1,q(R3),

for every q ∈ (3,∞]. Concerning ‖∇jV (t)‖q,R3 for j = 0, 1, we have (3.19) and (3.20) except for the case
(j, q) = (1,∞), in which ‖∇V (t)‖∞,R3 can be estimated similarly by use of (3.3) with q ∈ (3,∞). The
proof is thus complete. �

Remark 3.2. Both ˜Uε and ∇˜Uε belong to L∞(0,∞;Lq(Ω)) for every q > 2 since we have (3.3) for such
q, however, for later use, the only cases we need are q = ∞ and q = 6.

We next deduce some estimates and regularity of the function F .
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Lemma 3.3. The function F given by (3.15) satisfies

‖F (t)‖2 ≤ C(‖v0‖3,∞ + M3) t−1/2, (3.27)

‖F (t)‖H−1(Ω) ≤ C(‖v0‖3,∞ + M3)(1 + t)−1/2, (3.28)

|〈F (t), ϕ〉| ≤ C(‖v0‖3,∞ + M3)(1 + t)−1/2‖∇ϕ‖2, ∀ϕ ∈ H1
0 (Ω), (3.29)

for all t > 0, where M3 is as in (3.4), and thereby

F ∈ L2(0, T ;H−1(Ω)) (3.30)

for every T ∈ (0,∞). Furthermore,
F ∈ Cμ

loc((0,∞);L2(Ω)) (3.31)
for every μ ∈ (0, 1/2) with μ ≤ θ, where θ is as in (1.5).

Let q ∈ (1, 3) and t̄ ∈ [T0,∞), where T0 is as in (1.6) or (1.13). Then

‖F (t)‖q ≤ C(t − t̄)−1/2‖U(t̄)‖3,∞,R3 (3.32)

for all t > t̄.

Proof. Using the Eq. (3.12), we split F into

F (x, t) = F1 + F2 + F3 + F4 + F5

with
F1 = φ(g − ∇P ) − B[(g − ∇P ) · ∇φ],
F2 = −2∇φ · ∇U,

F3 = −(Δφ)U + h(u∞ · ∇φ)U − hu∞ · ∇B[U · ∇φ],

F4 = hB[(u∞ · ∇U) · ∇φ],

F5 = −B[ΔU · ∇φ] + ΔB[U · ∇φ].

Here, we have used φ0g + φḡ = φg. It is easily seen from (3.3) that

‖F1‖2 ≤ C‖g(t)‖3 + C‖∇Q(t)‖3,R3 ≤ CM3.

Note that

F1 = 0 (t ≥ T0)

by (1.6) or (1.13). We also have

‖F2‖2 ≤ C‖∇U(t)‖2,AR
≤ C‖∇U(t)‖3,∞,R3 ,

‖F2‖H−1(Ω) + ‖F3‖2 ≤ C‖U(t)‖2,AR
.

Thanks to (2.11), we obtain

‖F4‖2 ≤ C‖(u∞ · ∇U) · ∇φ‖H1(AR)∗ ≤ C‖U(t)‖2,AR
.

The last term is further modified as

F5 = F51 + F52,

where
F51 = −B[Δ(U · ∇φ)] + ΔB[U · ∇φ],

F52 = B [2∇U · ∇(∇φ) + U · ∇(Δφ)] .

From (2.11) as well as (2.8) we observe

‖F52‖2 ≤ C‖U(t)‖2,AR
.

By virtue of (2.12) we find

‖F51‖2 ≤ C‖U(t)‖2,AR
.
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All the computation above tells us that

|〈F (t), ϕ〉| ≤ ‖F1 + F3 + F4 + F5‖2‖ϕ‖2,Ω3R
+ C‖U(t)‖2,AR

‖ϕ‖H1(Ω3R),

the latter of which comes from F2, where Ω3R = Ω ∩ B3R. Since ‖ϕ‖2,Ω3R
≤ C‖∇ϕ‖2 for ϕ ∈ H1

0 (Ω), we
get

|〈F (t), ϕ〉| ≤ C‖U(t)‖2,AR
‖∇ϕ‖2.

Using

‖U(t)‖2,AR
≤
{

C‖U(t)‖3,∞,R3 ,
C‖U(t)‖∞,R3 ,

we conclude (3.27)–(3.29) from (3.17).
Estimates above in L2(Ω) imply that

‖F (t) − F (s)‖2 ≤ C‖g(t) − g(s)‖3 + C‖∇U(t) − ∇U(s)‖2,AR

+ C‖U(t) − U(s)‖2,AR
+ C|h(t) − h(s)|,

which leads us to (3.31) on account of (1.5), (1.10) and (3.10).
Finally, let q ∈ (1, 3), t̄ ∈ [T0,∞) and t > t̄. Since estimates above in L2(Ω) replaced by Lq(Ω) hold

true, we have

‖F (t)‖q ≤ C‖∇U(t)‖q,AR
+ C‖U(t)‖q,AR

≤ C‖∇U(t)‖3,∞,R3 + C‖U(t)‖∞,R3 .

Then the same reasoning as in the proof of (3.26) yields (3.32). �

4. Weak Solution

Let us take the auxiliary function ˜U(x, t) given by (3.12) and look for a solution to (1.1) of the form
(1.8). Then (1.9) and (3.14) imply that w(x, t) should obey (1.12) with

f = F − ˜U · ∇˜U − h(us · ∇˜U + ˜U · ∇us),

w0 = φv0 − B[v0 · ∇φ] ∈ L2
σ(Ω),

(4.1)

where pw = pv − P is the pressure associated with w, while F is given by (3.15). By (2.2), (2.3), (2.4),
(3.22) and (3.24) we have

‖˜U · ∇˜U‖2 ≤ ‖˜U‖6,2‖∇˜U‖3,∞ ≤ C(‖v0‖3,∞ + M3)2 t−3/4,

‖us · ∇˜U‖2 ≤ C‖us‖6,2(‖v0‖3,∞ + M3) t−1/2,

‖˜U · ∇us‖2 ≤ C(‖∇us‖6,2 + ‖∇us‖2)(‖v0‖3,∞ + M3)(1 + t)−1/2,

for all t > 0. These estimates together with (3.27) imply

κf := sup
t>0

t3/4(1 + t)−1/4‖f(t)‖2 < ∞. (4.2)

By (3.22) and (3.25) we know

‖˜U ⊗ ˜U + h(˜U ⊗ us + us ⊗ ˜U)‖2

{≤ Ct−1/4 for all t > 0,
= o(t−1/4) as t → ∞,

(4.3)

which together with (3.30) yields
f ∈ L2(0, T ;H−1(Ω)) (4.4)

for every T ∈ (0,∞). Furthermore, by (1.5), (3.13) and (3.31) we find

f ∈ Cμ
loc((0,∞);L2(Ω)), (4.5)

for every μ ∈ (0, 1/2) with μ ≤ θ.
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In this section we show the existence of weak solution with the strong energy inequality (1.12). Let
us recall the definition of the Leray–Hopf weak solution [25,31,36].

Definition 4.1. We say that w(x, t) is a weak solution to (1.12) with (4.1) if

w ∈ L∞(0, T ;L2
σ(Ω)) ∩ L2(0, T ;H1

0,σ(Ω)) ∩ Cw([0,∞);L2
σ(Ω))

for all T ∈ (0,∞) together with limt→0 ‖w(t) − w0‖2 = 0 and w satisfies (1.12) for s = 0 as well as

〈w(t), ϕ(t)〉 +
∫ t

s

[

〈∇w,∇ϕ〉 + 〈{h(u∞ + us) + ˜U} · ∇w,ϕ〉

− 〈(hus + ˜U) ⊗ w,∇ϕ〉 + 〈w · ∇w,ϕ〉
]

dτ

= 〈w(s), ϕ(s)〉 +
∫ t

s

[

〈w, ∂τϕ〉 + 〈f, ϕ〉
]

dτ (4.6)

for all 0 ≤ s < t < ∞ and ϕ, which is of class

ϕ ∈ C([0,∞);L2
σ(Ω)) ∩ L∞

loc([0,∞);L3,∞(Ω)),

∇ϕ ∈ L2
loc([0,∞);L2(Ω)), ∂tϕ ∈ L2

loc([0,∞);L2
σ(Ω)).

(4.7)

We will follow in principle the argument of Miyakawa and Sohr [38], whose idea partially goes back
to Leray [31]. Set

Jk = e− 1
k A, (k = 1, 2, . . .)

and consider the approximate problem

∂tw + Aw + P[Sw + (Jkw) · ∇w] = Pf,

w(0) = w0,
(4.8)

where

Sw = {h(u∞ + us) + ˜U} · ∇w + w · ∇(hus + ˜U).

The following lemma provides a solution with the a priori estimate.

Lemma 4.1. For each k = 1, 2, . . ., problem (4.8) admits a unique global strong solution w = wk of class

wk ∈ C([0,∞);L2
σ(Ω)) ∩ C((0,∞);D2(A)) ∩ C1

(

(0,∞);L2
σ(Ω)

)

subject to limt→0 ‖wk(t) − w0‖2 = 0, which satisfies

‖wk(t)‖2
2 +

∫ t

0

‖∇wk‖2
2dτ ≤ Y (t) (4.9)

for all t > 0 with

Y (t) :=
(

‖w0‖2
2 + C‖f‖2

L2(0,t;H−1(Ω))

)

eCNt,

N := 1 + |h|2∞‖us‖2
∞ + ‖˜Uε0‖2

L∞(0,∞;L∞(Ω)),
(4.10)

where ˜Uε0 is the function given by Lemma 3.2 for some ε0 > 0.

Proof. We fix T ∈ (1,∞) arbitrarily, and let us construct a solution on (0, T ]. We first establish the local
existence of solutions. Let T∗ ∈ (0, 1] and set

ET∗ =
{

w ∈ C((0, T∗];H1
0,σ(Ω));

‖w‖ET∗ := sup
0<t≤T∗

(

‖w(t)‖2 + t1/2‖∇w(t)‖2

)

< ∞
}
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which is a Banach space endowed with norm ‖ · ‖ET∗ . We set

(Φw)(t) = H(t) −
∫ t

0

e−(t−τ)A
P[Sw + (Jkw) · ∇w](τ)dτ,

where

H(t) = e−tAw0 +
∫ t

0

e−(t−τ)A
Pf(τ)dτ,

and intend to solve the integral equation w = Φw in ET∗ by using (2.5)–(2.6) (for the Stokes semigroup).
For w ∈ ET∗ , we easily find

Φw ∈ Cμ
loc((0, T∗];Lq

σ(Ω)), ∀q ∈ [2,∞), ∀μ ∈ (0, μ0),

∇Φw ∈ Cμ
loc((0, T∗];Lq(Ω)), ∀q ∈ [2, 6), ∀μ ∈ (0, μ0 − 1/2),

(4.11)

where μ0 = 3
2q + 1

4 . By (4.2) we have H ∈ ET∗ with

‖H(t) − w0‖2 ≤ ‖e−tAw0 − w0‖2 + Cκf t1/4(1 + t)1/4,

‖H‖ET∗ ≤ C0

(

‖w0‖2 + κf

√
T
)

.

Let w ∈ ET∗ , then we have

‖∇j

∫ t

0

e−(t−τ)A
P[(Jkw) · ∇w](τ)dτ‖2 ≤ C

∫ t

0

(t − τ)−j/2‖Jkw‖∞‖∇w‖2dτ

≤ C1k
3/4
√

T∗ t−j/2‖w‖2
ET∗

for t ∈ (0, T∗] and j = 0, 1. Let ε > 0. We fix r ∈ (3,∞) and employ ˜Uε in Lemma 3.2 to find

‖∇j

∫ t

0

e−(t−τ)A
PSw(τ)dτ‖2

≤ C

∫ t

0

(t − τ)−j/2
(

|h|∞‖u∞ + us‖∞ + ‖˜Uε‖∞
)

‖∇w‖2dτ

+ C

∫ t

0

(t − τ)−3/2r−j/2‖˜Uε − ˜U‖r‖∇w‖2dτ

+ C

∫ t

0

(t − τ)−j/2
(

|h|∞‖∇us‖∞ + ‖∇˜Uε‖∞
)

‖w‖2dτ

+ C

∫ t

0

(t − τ)−3/2r−j/2‖∇˜Uε − ∇˜U‖r‖w‖2dτ

≤ {

C
(ε)
2 (

√

T∗ + T∗) + C ′
2ε
}

t−j/2‖w‖ET∗

for t ∈ (0, T∗] and j = 0, 1. As a consequence, we obtain

‖Φw‖ET∗ ≤ C0

(

‖w0‖2 + κf

√
T
)

+ C1k
3/4
√

T∗‖w‖2
ET∗

+
(

2C
(ε)
2

√

T∗ + C ′
2ε
)‖w‖ET∗

as well as

lim sup
t→0

‖(Φw)(t) − w0‖2 ≤ Cε‖w‖ET∗

for w ∈ ET∗ . The latter for arbitrary ε > 0 yields

lim
t→0

‖(Φw)(t) − w0‖2 = 0. (4.12)

We next choose ε = 1/8C ′
2 in the former, so that 2C(ε)

2

√
T∗ + C ′

2ε ≤ 1/4 when T∗ ≤ (1/16C
(ε)
2 )2. We set

ET∗,ρ = {w ∈ ET∗ ; ‖w‖ET∗ ≤ ρ}
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with

ρ = 2C0

(

‖w0‖2 + κf

√
T
)

, T∗ = min
{(

4C1k
3/4ρ

)−2

, (16C
(ε)
2 )−2, 1

}

. (4.13)

Then w ∈ ET∗,ρ implies Φw ∈ ET∗,ρ. Furthermore, we find

‖Φw1 − Φw2‖ET∗ ≤ 3
4
‖w1 − w2‖ET∗

for w1, w2 ∈ ET∗,ρ. We thus get a unique fixed point w ∈ ET∗,ρ of the map Φ, which fulfills the initial
condition by (4.12). It also follows from (4.11) together with (1.5), (3.13) and (4.5) that the local solution
w(t) satisfies

P[f − Sw − (Jkw) · ∇w] ∈ Cμ
loc((0, T∗];L2

σ(Ω)), ∀μ ∈ (0, 1/2) with μ ≤ θ.

Therefore, w(t) is a strong solution of class

w ∈ C([0, T∗];L2
σ(Ω)) ∩ C((0, T∗];D2(A)) ∩ C1((0, T∗];L2

σ(Ω)).

In view of (4.13), it suffices to derive a priori estimate of strong solutions in L2(Ω) for continuation
of the solution globally in time. Let ε > 0. By (4.8) we have

1
2

d

dt
‖w(t)‖2

2 + ‖∇w(t)‖2
2 = 〈(hus + ˜U) ⊗ w,∇w〉 + 〈f, w〉. (4.14)

We use Lemma 3.2 again to find that it is bounded from above by

C‖f(t)‖2
H−1(Ω) + C

(

1 + |h(t)|2‖us‖2
∞ + ‖˜Uε(t)‖2

∞
)

‖w(t)‖2
2

+
1
4
‖∇w(t)‖2

2 + C3‖˜Uε(t) − ˜U(t)‖3,∞‖∇w(t)‖2
2.

We choose ε = ε0 such that supt>0 ‖˜Uε0(t) − ˜U(t)‖3,∞ ≤ 1/4C3 to conclude (4.9). �

Let T ∈ (0,∞). By (4.9) one can find a subsequence of {wk}, which is denoted by itself, as well as a
function

w ∈ L∞(0, T ;L2
σ(Ω)) ∩ L2(0, T ;H1

0,σ(Ω)) (4.15)

so that
wk → w weakly-star in L∞(0, T ;L2

σ(Ω)),

wk → w weakly in L2(0, T ;H1
0,σ(Ω)),

(4.16)

as k → ∞. Let us deduce further convergence of {wk}.

Lemma 4.2. Let T ∈ (0,∞), and let w be the function obtained in (4.15). There is a subsequence of {wk},
which we denote by itself, such that

lim
k→∞

sup
0≤t≤T

|〈wk(t) − w(t), φ〉| = 0, ∀φ ∈ L2
σ(Ω), (4.17)

lim
k→∞

‖wk − w‖L2(0,T ;L2(ΩL)) = 0, ∀L ∈ [R,∞), (4.18)

lim
k→∞

‖Jkwk − w‖L2(0,T ;L2(ΩL)) = 0, ∀L ∈ [R,∞), (4.19)

where ΩL = Ω ∩ BL and R is as in (3.2). Furthermore, we have

w ∈ Cw([0, T ];L2
σ(Ω)), (4.20)

lim
t→0

‖w(t) − w0‖2 = 0. (4.21)



Vol. 20 (2018) Navier–Stokes Flow Past a Rigid Body 787

Proof. We first fix φ ∈ C∞
0,σ(Ω). By (4.9) it is obvious that 〈wk, φ〉 is uniformly bounded. Let 0 ≤ s < t ≤

T , then we see from (2.3), (2.4), (3.24), (4.2), (4.8) and (4.9) that

|〈wk(t), φ〉 − 〈wk(s), φ〉|

≤
∫ t

s

[

‖∇wk‖2‖∇φ‖2 + |h|∞(|u∞| + ‖us‖∞)‖∇wk‖2‖φ‖2

+ ‖˜U‖3,∞‖∇wk‖2‖φ‖6,2 + |h|∞‖∇us‖∞‖wk‖2‖φ‖2 + ‖∇˜U‖3,∞‖wk‖2‖φ‖6,2

+ C‖wk‖1/2
2 ‖∇wk‖3/2

2 ‖φ‖6 + ‖f‖2‖φ‖2

]

dτ

≤ CY (T )1/2
{

(‖∇φ‖2 + ‖φ‖2)(t − s)1/2 + ‖φ‖2(t − s) + ‖∇φ‖2(t1/2 − s1/2)
}

+ CY (T )‖∇φ‖2(t − s)1/4 + C‖φ‖2(t1/4 − s1/4).

This shows that 〈wk, φ〉 is equi-continuous on [0, T ]. By the Ascoli–Arzelà theorem, {〈wk, φ〉} contains a
subsequence (dependent of φ ∈ C∞

0,σ(Ω)) which is uniformly convergent on [0, T ]. Since L2
σ(Ω) is separable,

the diagonal method concludes that one can further take a subsequence of {wk} (independent of φ ∈
L2

σ(Ω)), which is denoted by itself, such that (4.17) holds true. This immediately implies (4.20), and
thereby ‖w0‖2

2 ≤ lim inft→0 ‖w(t)‖2
2. On the other hand, ‖w(t)‖2

2 is bounded from above by the RHS of
(4.9), which implies that lim supt→0 ‖w(t)‖2

2 ≤ ‖w0‖2
2. We thus obtain (4.21).

Let L ∈ [R,∞), and fix a cut-off function ψ ∈ C∞
0 (B2L) satisfying ψ = 1 on BL. We utilize

the Friedrichs inequality [8, p. 489] to see that, for every ε > 0, there are finite number of elements
φ1, · · · , φm ∈ L2(Ω2L) such that

‖wk(t) − w(t)‖2
2,ΩL

≤ ‖ψ(wk(t) − w(t))‖2
2,Ω2L

≤ ε‖∇[ψ(wk(t) − w(t))]‖2
2,Ω2L

+
m
∑

j=1

|〈ψ(wk(t) − w(t)), φj〉|2 .

Using (4.9), we find
∫ T

0

‖wk(t) − w(t)‖2
2,ΩL

dt

≤ C(1 + T )Y (T ) ε +
m
∑

j=1

∫ T

0

|〈wk(t) − w(t),P(ψφj)〉|2 .

By virtue of (4.17) with P(ψφj) ∈ L2
σ(Ω) we obtain

lim sup
k→∞

∫ T

0

‖wk(t) − w(t)‖2
2,ΩL

dt ≤ CT ε,

which yields (4.18). Finally, by (4.9) we have

∫ T

0

‖Jkwk(t) − wk(t)‖2
2,ΩL

dt ≤
∫ T

0

(

∫ 1/k

0

‖ d

dτ
e−τAwk(t)‖2 dτ

)2

dt

≤ C

k

∫ T

0

‖∇wk(t)‖2
2 dt.

This combined with (4.18) completes the proof of (4.19). �

We are in a position to provide a weak solution.
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Proposition 4.1. Problem (1.12) with (4.1) admits at least one weak solution.

Proof. The solution wk to (4.8) obtained in Lemma 4.1 fulfills

〈wk(t), ϕ(t)〉 +
∫ t

s

[

〈∇wk,∇ϕ〉 + 〈{h(u∞ + us) + ˜U} · ∇wk, ϕ〉

− 〈(hus + ˜U) ⊗ wk,∇ϕ〉 + 〈(Jkwk) · ∇wk, ϕ〉
]

dτ

= 〈wk(s), ϕ(s)〉 +
∫ t

s

[

〈wk, ∂τϕ〉 + 〈f, ϕ〉
]

dτ

for all 0 ≤ s < t < ∞ and ϕ satisfying (4.7). It suffices to show (4.6) under the additional condition
ϕ ∈ L∞

loc([0,∞);L∞(Ω)); in fact, (4.6) with Jmϕ (m = 1, 2, . . .) implies (4.6) for general ϕ of class (4.7)
by passing to the limit as m → ∞. We fix T ∈ (0,∞), and let 0 ≤ s < t ≤ T . As in the standard
Navier–Stokes theory, it follows from (4.16) together with Lemma 4.2 that

lim
k→∞

∫ t

s

〈(Jkwk) · ∇wk, ϕ〉dτ =
∫ t

s

〈w · ∇w,ϕ〉dτ. (4.22)

Indeed, for every ε > 0, one can take L = L(ε, T ) ∈ [R,∞) so large, independent of k on account of (4.9),
that

∣

∣

∣

∣

∫ t

s

〈(Jkwk − w) · ∇wk, (1 − χBL
)ϕ〉dτ

∣

∣

∣

∣

≤ CY (T )

(

∫ T

0

‖ϕ(τ)‖4
6,R3\BL

dτ

)1/4

≤ ε,

where χBL
stands for the characteristic function on BL. We then find from (4.19) that

lim sup
k→∞

∣

∣

∣

∣

∫ t

s

〈(Jkwk − w) · ∇wk, ϕ〉dτ

∣

∣

∣

∣

≤ ε + lim
k→∞

∣

∣

∣

∣

∫ t

s

〈(Jkwk − w) · ∇wk, χBL
ϕ〉dτ

∣

∣

∣

∣

= ε,

which yields (4.22). Given ε > 0, we take ˜Uε in Lemma 3.2. Then we have
∣

∣

∣

∣

∫ t

s

〈˜U ⊗ (wk − w),∇ϕ〉dτ

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ t

s

〈˜Uε ⊗ (wk − w),∇ϕ〉dτ

∣

∣

∣

∣

+ CεY (T )1/2‖∇ϕ‖L2(0,T ;L2(Ω)).

Since
∑

j
˜Uε,j(∇ϕj) ∈ L1(0, T ;L2(Ω)) and since ε > 0 is arbitrary, it follows from (4.16) that

lim
k→∞

∫ t

s

〈˜U ⊗ (wk − w),∇ϕ〉dτ = 0.

The convergence of the other terms is easily verified. Thus the function w obtained in (4.15) satisfies
(4.6).

It remains to show (1.12) for s = 0. By (4.14) we have

1
2
‖wk(t)‖2

2 +
∫ t

0

‖∇wk‖2
2dτ

=
1
2
‖w0‖2

2 +
∫ t

0

[〈(hus + ˜U) ⊗ wk,∇wk〉 + 〈f, wk〉]dτ
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for all t ≥ 0 and it suffices to prove

lim
k→∞

∫ t

0

〈(hus + ˜U) ⊗ wk,∇wk〉dτ =
∫ t

0

〈(hus + ˜U) ⊗ w,∇w〉dτ. (4.23)

We fix T ∈ (0,∞), and let t ∈ (0, T ). We also fix ε > 0 arbitrarily and use the function ˜Uε in Lemma 3.2
again to obtain

∣

∣

∣

∣

∫ t

0

〈(˜U − ˜Uε) ⊗ (wk − w),∇wk〉dτ

∣

∣

∣

∣

≤ CY (T )ε.

One can choose L = L(ε, T ) ∈ [R,∞), independent of k, such that
∣

∣

∣

∣

∫ t

0

〈(1 − χBL
)(hus + ˜Uε) ⊗ (wk − w),∇wk〉dτ

∣

∣

∣

∣

≤ CY (T )

(

∫ T

0

{

‖us‖6,R3\BL
+ ‖˜Uε(τ)‖6,R3\BL

}4

dτ

)1/4

≤ ε.

Hence, we obtain from (4.18) that

lim sup
k→∞

∣

∣

∣

∣

∫ t

0

〈(hus + ˜U) ⊗ (wk − w),∇wk〉dτ

∣

∣

∣

∣

≤ (CY (T ) + 1) ε + lim
k→∞

∫ T

0

‖hus + ˜Uε‖∞‖χBL
(wk − w)‖2‖∇wk‖2dτ

= (CY (T ) + 1) ε. (4.24)

On the other hand, since

‖(hus + ˜U) ⊗ w‖2 ≤ C(|h|∞‖us‖3 + ‖˜U‖3,∞)‖∇w‖2 ∈ L2(0, T ),

we have

lim
k→∞

∫ t

0

〈(hus + ˜U) ⊗ w,∇wk − ∇w〉dτ = 0.

This together with (4.24) concludes (4.23). �

We conclude this section with the proof of the strong energy inequality (1.12).

Proposition 4.2. The solution obtained in Proposition 4.1 enjoys (1.12) for s = 0, a.e. s > 0 and all
t ≥ s.

Proof. The case s = 0 has been already shown in the proof of Proposition 4.1. Let T ∈ (0,∞). To consider
the other case s ∈ (0, T ), let us take a subsequence of {wk}, which is still denoted by itself, and a set
J ⊂ (0, T ) with the Lebesgue measure |J | = 0 such that

lim
k→∞

‖wk(t) − w(t)‖2,ΩL
= 0, ∀L ∈ [R,∞), ∀t ∈ (0, T )\J, (4.25)

where ΩL = Ω ∩ BL and R is as in (3.2). This is in fact verified as follows: for each i = 1, 2, . . ., it follows
from (4.18) that one can take a subsequence of {wk}, denoted by itself, and a set Ji ⊂ (0, T ) with |Ji| = 0
such that

lim
k→∞

‖wk(t) − w(t)‖2,ΩR+i
= 0, ∀t ∈ (0, T )\Ji.

Then, by the diagonal method, we are led to (4.25) for a suitable subsequence of {wk}, where J = ∪∞
i=1Ji.

Let us go back to the approximate problem (4.8) together with the pressure pk associated with the
strong solution wk obtained in Lemma 4.1:
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∂twk + (Jkwk) · ∇wk + Swk = Δwk − ∇pk + f,

div wk = 0,

wk|∂Ω = 0, (4.26)
wk → 0 as |x| → ∞,

wk(·, 0) = w0.

In order to control the behavior of the pressure pk at infinity uniformly in k, it is convenient to split the
solution wk into three parts

wk = w1
k + w2

k + w3
k, pk = p1

k + p2
k + p3

k,

where

∂tw
1
k − Δw1

k + ∇p1
k = −hu∞ · ∇wk + f, w1

k(·, 0) = w0, (4.27)
∂tw

2
k − Δw2

k + ∇p2
k = −(Jkwk) · ∇wk, w2

k(·, 0) = 0, (4.28)

∂tw
3
k − Δw3

k + ∇p3
k = −(hus + ˜U) · ∇wk − wk · ∇(hus + ˜U), w3

k(·, 0) = 0, (4.29)

subject to

div wj
k = 0, wj

k|∂Ω = 0, wj
k → 0 as |x| → ∞

for j = 1, 2, 3.
Let us begin with (4.27). By the standard energy method together with (4.9), (4.4) and the Gronwall

argument, we have

‖w1
k(t)‖2

2 +
∫ t

0

‖∇w1
k‖2

2dτ ≤ CY (T )eT , (4.30)

and

‖∇w1
k(t)‖2

2 +
∫ t

s

‖Aw1
k‖2

2dτ ≤ ‖∇w1
k(s)‖2

2 + 2
∫ t

s

‖f‖2
2dτ + CY (T ),

for 0 < s < t ≤ T . Integration of the latter with respect to s over (0, t) together with (4.2) and (4.30)
yield

t‖∇w1
k(t)‖2

2 +
∫ t

0

τ‖Aw1
k‖2

2dτ ≤ CT ,

which implies
∫ t

s

‖Aw1
k‖2

2dτ ≤ CT

s
(4.31)

for 0 < s < t ≤ T . In view of the equation of (4.27) and by use of estimate ‖∇2g‖2 ≤ C(‖Ag‖2 + ‖∇g‖2)
for g ∈ D2(A) (see Heywood [24]), we gather (4.2), (4.9), (4.30) and (4.31) to find

sup
k

∫ T

s

‖∇p1
k‖2

2dτ < ∞.

By the embedding relation, there are constants c1
k (k = 1, 2, . . .) such that

sup
k

∫ T

s

‖p1
k + c1

k‖2
6dτ < ∞.

Hence, one finds a subsequence of {p1
k} [dependent of each s ∈ (0, T )], which one denotes by itself, as well

as p1 ∈ L2(s, T ;L6(Ω)) with ∇p1 ∈ L2(s, T ;L2(Ω)) so that

p1
k + c1

k → p1 weakly in L2(s, T ;L6(Ω)),

∇p1
k → ∇p1 weakly in L2(s, T ;L2(Ω)),

(4.32)

as k → ∞.
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We next consider (4.28), but this part is exactly the same as in [38]. From (4.9) we deduce

sup
k

∫ T

0

‖(Jkwk) · ∇wk‖5/4
5/4 dτ < ∞.

Then the maximal regularity for the Stokes system (see Solonnikov [43], Giga and Sohr [22]) leads to

sup
k

∫ T

0

‖p2
k + c2

k‖5/4
15/7 dτ ≤ C sup

k

∫ T

0

‖∇p2
k‖5/4

5/4 dτ < ∞ (4.33)

for some constants c2
k (k = 1, 2, . . .).

We turn to (4.29). We fix q ∈ (1, 2) and take p ∈ (3,∞) satisfying 3/2p + 1/q > 1. By (4.9) and by
(3.22)–(3.23) we see that

‖(hus + ˜U) · ∇wk + wk · ∇(hus + ˜U)‖r

≤ (|h|∞‖us‖p + ‖˜U‖p

)‖∇wk‖2 +
(|h|∞‖∇us‖p + ‖∇˜U‖p

)‖wk‖2

≤ C
(

1 + τ−1/2+3/2p
)‖∇wk‖2 + C

{

1 + τ−1+3/2p(1 + T )1/2−3/2p
}

Y (T )1/2,

for τ ∈ (0, T ), where r ∈ (6/5, 2) satisfies 1/r = 1/p + 1/2, and therefore

sup
k

∫ T

0

‖(hus + ˜U) · ∇wk + wk · ∇(hus + ˜U)‖q
r dτ < ∞.

By the same reasoning as above, we obtain

sup
k

∫ T

0

‖p3
k + c3

k‖q
r∗ dτ ≤ C sup

k

∫ T

0

‖∇p3
k‖q

r dτ < ∞, (4.34)

for some constants c3
k (k = 1, 2, . . .), where 1/r∗ = 1/r − 1/3.

We now fix s ∈ (0, T )\J , and let t ∈ (s, T ], where J is as in (4.25). We take a cut-off function
ψ ∈ C∞

0 (B2) such that ψ = 1 on B1 as well as ψ ≥ 0, and set ψL(x) = ψ(x/L) for L ≥ R, where R is as
in (3.2). We multiply the equation of (4.27) by ψLwk and integrate the resulting formula over Ω × (s, t)
to find

1
2
‖
√

ψLwk(t)‖2
2 +

∫ t

s

(

‖
√

ψL∇wk‖2
2 + 〈∇p1

k, ψLwk〉
)

dτ

=
1
2
‖
√

ψLwk(s)‖2
2 +

∫ t

s

(

− 〈∇ψL · ∇wk, wk〉

+ 〈p2
k + c2

k, wk · ∇ψL〉 + 〈p3
k + c3

k, wk · ∇ψL〉
+
〈 |wk|2

2
, {Jkwk + h(u∞ + us) + ˜U} · ∇ψL

〉

+ 〈(hus + ˜U) · wk, wk · ∇ψL〉 + 〈(hus + ˜U) ⊗ wk, (∇wk)ψL〉
+ 〈f, ψLwk〉

)

dτ. (4.35)

On account of (4.33) and (4.34), we observe
∣

∣

∣

∣

∫ t

s

〈p2
k + c2

k, wk · ∇ψL〉 + 〈p3
k + c3

k, wk · ∇ψL〉dτ

∣

∣

∣

∣

≤ CT ‖wk · ∇ψL‖L5(0,T ;L15/8(Ω)) + CT ‖wk · ∇ψL‖Lq′ (0,T ;L(r∗)′ (Ω))

≤ CT

(‖∇ψL‖30 + ‖∇ψL‖σ

)

, (4.36)
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where 1/q′ +1/q = 1, 1/(r∗)′ +1/r∗ = 1 and 1/σ = 5/6−1/r. Note that σ ∈ (3,∞). Making use of (2.3),
(2.4), (3.24) and (4.9), we find

∣

∣

∣

∫ t

s

(

− 〈∇ψL · ∇wk, wk〉 +
〈 |wk|2

2
, {Jkwk + h(u∞ + us) + ˜U} · ∇ψL

〉

+ 〈(hus + ˜U) · wk, wk · ∇ψL〉
)

dτ
∣

∣

∣

≤ C

∫ t

s

[ (

1 + |h|∞‖us‖3 + ‖˜U‖3,∞
)

‖wk‖2‖∇wk‖2 + |h|∞|u∞|‖wk‖2
2

+ ‖wk‖3/2
2 ‖∇wk‖3/2

2

]

dτ ‖∇ψL‖∞

≤ C
{

Y (T )(T 1/2 + T ) + Y (T )3/2T 1/4
}

‖∇ψL‖∞, (4.37)

from which together with (4.36), we see that (4.35) yields

1
2
‖
√

ψLwk(t)‖2
2 +

∫ t

s

(

‖
√

ψL∇wk‖2
2 + 〈∇p1

k, ψLwk〉
)

dτ

≤ 1
2
‖
√

ψLwk(s)‖2
2 +

∫ t

s

(

〈(hus + ˜U) ⊗ wk, (∇wk)ψL〉 + 〈f, ψLwk〉
)

dτ

+CT (‖∇ψL‖30 + ‖∇ψL‖σ + ‖∇ψL‖∞). (4.38)

We now let k → ∞ along the subsequence above. Since s ∈ (0, T )\J , we know by (4.25) that
limk→∞ ‖√

ψLwk(s)‖2 = ‖√
ψLw(s)‖2. We split

∫ t

s

(

〈(hus + ˜U) ⊗ wk, (∇wk)ψL〉 − 〈(hus + ˜U) ⊗ w, (∇w)ψL〉
)

dτ

into two parts I + II, where

|I| =
∣

∣

∣

∣

∫ t

s

〈(hus + ˜U) ⊗ (wk − w), (∇wk)ψL〉
∣

∣

∣

∣

≤ CY (T )1/2

(

|h|∞‖us‖∞ + sup
s≤τ≤t

‖˜U(τ)‖∞

)

‖wk − w‖L2(0,T ;L2(Ω2L)),

while

|II| =
∣

∣

∣

∣

∫ t

s

〈(hus + ˜U) ⊗ w, (∇wk − ∇w)ψL〉
∣

∣

∣

∣

→ 0 (k → ∞)

is easily verified by (4.16). Since ‖˜U(τ)‖∞ ≤ Cs−1/2 for τ ≥ s > 0 by (3.22), Lemma 4.2 implies that
limk→∞ I = 0, too. From (4.16), (4.17), (4.18) and (4.32) as well as the observation above we deduce that
(4.38) leads to

1
2
‖
√

ψLw(t)‖2
2 +

∫ t

s

(

‖
√

ψL∇w‖2
2 + 〈∇p1, ψLw〉

)

dτ

≤ 1
2
‖
√

ψLw(s)‖2
2 +

∫ t

s

(

〈(hus + ˜U) ⊗ w, (∇w)ψL〉 + 〈f, ψLw〉
)

dτ

+CT (‖∇ψL‖30 + ‖∇ψL‖σ + ‖∇ψL‖∞). (4.39)

Here,wehave
∣

∣

∣

∣

∫ t

s

〈∇p1, ψLw〉dτ

∣

∣

∣

∣

=
∣

∣

∣

∣

−
∫ t

s

〈p1, w · ∇ψL〉dτ

∣

∣

∣

∣

≤ ‖∇ψL‖3

∫ t

s

‖w‖L2(AL)‖p1‖L6(AL)dτ,
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where AL = B2L\BL. By the Lebesgue convergence theorem, we see that
∫ t

s
· · · → 0 as L → ∞. Therefore,

by passing to the limit as L → ∞ in (4.39), we arrive at (1.12) for all s ∈ (0, T )\J and t ∈ (s, T ]. �

5. Strong Solution

Let t̄ ∈ (T0,∞), where T0 is as in (1.6) [resp. (1.13)] for the starting (resp. landing) problem. In this
section we construct a strong solution to (1.12) with (4.1) on the interval [t̄,∞) under a certain smallness
condition on w(t̄). And then, it is identified on [t̄,∞) with the weak solution obtained in the previous
section.

The first two propositions in this section are independent of the argument in the previous section. By
(1.6) problem (1.12) on [t̄,∞) is formally converted into the integral equation

w = Ψw (t ≥ t̄) (5.1)

with

(Ψw)(t) = H(t) −
∫ t

t̄

T (t − τ)P
[

(us + ˜U) · ∇w

+w · ∇(us + ˜U) + w · ∇w
]

(τ)dτ,

H(t) = T (t − t̄)w(t̄) + Hf (t),

Hf (t) =
∫ t

t̄

T (t − τ)Pf(τ)dτ,

where the term us · ∇w + w · ∇us is absent for the landing problem and

T (t) =
{

e−tAu∞ (starting problem),
e−tA (landing problem).

We take a small w(t̄) from L3
σ(Ω) and look for a solution in a closed ball

Eρ = {w ∈ E; ‖w‖E ≤ ρ} (5.2)

of the Banach space

E =

{

w ∈ C((t̄,∞);L6
σ(Ω) ∩ L∞(Ω)); ∇w ∈ C((t̄,∞);L3(Ω)),

‖w‖E := sup
t∈(t̄,∞)

φw(t) < ∞, lim
t→t̄+0

φw(t) = 0

} (5.3)

endowed with norm ‖ · ‖E , where

φw(t) := (t − t̄)1/2
(‖w(t)‖∞ + ‖∇w(t)‖3

)

+ (t − t̄)1/4‖w(t)‖6.

Since we need the smallness of |u∞| to get a unique steady flow us for the starting problem, see (3.2), we
may assume at the beginning that |u∞| ≤ δ0. This is not needed for the landing problem.

Let us start with the following lemma on Hf (t).

Lemma 5.1. Let
4
3

< q <
3
2

< r < 3.

Then we have Hf ∈ E and

‖Hf‖E ≤ γ(1 + ‖∇us‖q + ‖∇us‖r)
(‖U(t̄)‖3,∞,R3 + ‖U(t̄)‖2

3,∞,R3

)

, (5.4)

with some constant γ = γ(q, r) > 0. For the landing problem, the term ‖∇us‖q + ‖∇us‖r is absent.
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Proof. We derive only (5.4) since the continuity in t [as in (4.11)] and limt→t̄+0 φHf
(t) = 0 are easily

verified so that Hf ∈ E (the latter follows from the fact that f(t) does not possess any singular behavior
near t = t̄). We divide the external force, see (4.1), into two parts:

f = f0 − ˜U · ∇˜U, f0 = F − (us · ∇˜U + ˜U · ∇us) (t ≥ t̄).

By (3.26) we obtain

‖us · ∇˜U + ˜U · ∇us‖p ≤ C(t − t̄)−1/2‖∇us‖p‖U(t̄)‖3,∞,R3

for all t > t̄ and p ∈ (4/3, 3), which combined with (3.32) leads to

‖f0(t)‖p ≤ Cmp(t − t̄)−1/2‖U(t̄)‖3,∞,R3 (5.5)

for the same p as above, where we put mp = 1+‖∇us‖p for notational simplicity (mp = 1 for the landing
problem). We fix q and r such that

4
3

< q <
3
2

< r < 3

and split Hf0(t) into

Hf0(t) =

(

∫ (t̄+t)/2

t̄

+
∫ t

(t̄+t)/2

)

T (t − τ)Pf0(τ)dτ =: Hf0,1(t) + Hf0,2(t).

We are going to employ (2.5) and (2.6). From (5.5) we deduce

‖Hf0,1(t)‖∞ + ‖∇Hf0,1(t)‖3 ≤ C

∫ (t̄+t)/2

t̄

(t − τ)−1‖f0(τ)‖3/2dτ

≤ Cm3/2(t − t̄)−1/2‖U(t̄)‖3,∞,R3 (t > t̄)

and
‖Hf0,2(t)‖∞ + ‖∇Hf0,2(t)‖3

≤ C

∫ t

(t̄+t)/2

(t − τ)−3/2r‖f0(τ)‖rdτ

≤ Cmr(t − t̄)1/2−3/2r‖U(t̄)‖3,∞,R3 (t̄ < t ≤ t̄ + 2).

To estimate Hf0,2(t) for t > t̄ + 2, we further split it into

Hf0,2(t) =
∫ t−1

(t̄+t)/2

+
∫ t

t−1

=: Hf0,21(t) + Hf0,22(t).

Then we find

‖Hf0,21(t)‖∞ + ‖∇Hf0,21(t)‖3 ≤ C

∫ t−1

(t̄+t)/2

(t − τ)−3/2q‖f0(τ)‖qdτ

≤ Cmq(t − t̄)−1/2‖U(t̄)‖3,∞,R3 (t > t̄ + 2),

and

‖Hf0,22(t)‖∞ + ‖∇Hf0,22(t)‖3 ≤ C

∫ t

t−1

(t − τ)−3/2r‖f0(τ)‖rdτ

≤ Cmr(t − t̄)−1/2‖U(t̄)‖3,∞,R3 (t > t̄ + 2).

It is easy to estimate ‖Hf0(t)‖6 without any splitting by use of (5.5) for p = 3/2. The other term ˜U · ∇˜U
should be treated separately because it does not belong to Lq(Ω) with q ≤ 3/2; however, the treatment
is easier without any splitting on account of the faster decay

‖˜U · ∇˜U‖2 ≤ C(t − t̄)−3/4‖U(t̄)‖2
3,∞,R3 (t > t̄)

which follows from (2.2), (2.3) and (3.26). The proof is complete. �
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The following proposition provides a solution to (5.1) with some decay properties. Indeed we know
by (3.18) that (5.8) below is accomplished for large t̄, but this will be taken into consideration together
with the other smallness condition (5.7) in the proof of the main theorems.

Proposition 5.1. Let
4
3

< q <
3
2

< r < 3.

There are constants δj = δj(q, r) > 0 (j = 1, 3) and δ2 > 0 (independent of q, r) such that if

|u∞| ≤ δ0, ‖∇us‖q + ‖∇us‖r ≤ δ1, (5.6)

w(t̄) ∈ L3
σ(Ω), ‖w(t̄)‖3 ≤ δ2, (5.7)

‖U(t̄)‖3,∞,R3 ≤ δ3, (5.8)

where δ0 is as in (3.2), then Eq. (5.1) admits a unique solution

w ∈ E ∩ C([t̄,∞);L3
σ(Ω)), (5.9)

see (5.3), subject to

lim
t→t̄+0

‖w(t) − w(t̄)‖3 = 0, ‖w(t)‖3 ≤ C‖w(t̄)‖3 (t ≥ t̄).

For the landing problem, the condition (5.6) is redundant.

Proof. We follow the method of Kato [27] by use of (2.5) and (2.6). Let w ∈ E. Then the continuity of
Ψw [as in (4.11)] and limt→t̄+0 φΨw(t) = 0 as the properties of elements of E are easily verified. By using

∇us ∈ Lq(Ω) ∩ Lr(Ω), us ∈ Lq∗(Ω) ∩ Lr∗(Ω),

where 1/q∗ = 1/q − 1/3 and 1/r∗ = 1/r − 1/3, and by splitting the integral over (t̄, t) in the same way
as in the proof of Lemma 5.1 (see also Chen [7], Enomoto and Shibata [10]), the term us · ∇w + w · ∇us

can be treated. From this together with (5.4) [in which ‖U(t̄)‖2
3,∞,R3 is replaced just by ‖U(t̄)‖3,∞,R3 if

assuming that it is less than one, see (5.8) with (5.10) below] and (3.26) we deduce

‖Ψw‖E ≤ c1‖w(t̄)‖3 + 2γ(1 + ‖∇us‖q + ‖∇us‖r)‖U(t̄)‖3,∞,R3

+ c2

(‖∇us‖q + ‖∇us‖r + ‖U(t̄)‖3,∞,R3

)‖w‖E + c3‖w‖2
E ,

where the only term one uses the Lorentz norm is w · ∇˜U , that is,

‖w · ∇˜U‖2,6 ≤ ‖w‖6‖∇˜U‖3,∞,

see (2.3), which is combined with L2,6-Lr estimate (r = 3, 6,∞) of the semigroup; indeed, such estimate
is a simple consequence of (2.5) and (2.6) by real interpolation. Similarly, we have

‖Ψw1 − Ψw2‖E ≤ c2

(‖∇us‖q + ‖∇us‖r + ‖U(t̄)‖3,∞,R3

)‖w1 − w2‖E

+ c3(‖w1‖E + ‖w2‖E)‖w1 − w2‖E

for w1, w2 ∈ E, where c2 and c3 are the same constants as above. Let us take

ρ = 2
{

c1‖w(t̄)‖3 + 2γ(1 + ‖∇us‖q + ‖∇us‖r)‖U(t̄)‖3,∞,R3

}

and w ∈ Eρ, see (5.2). We set

δ1 =
1

8c2
, δ2 =

1
16c1c3

, δ3 = min
{

δ1,
1

32γ(1 + δ1)c3

}

. (5.10)

Then the conditions (5.6), (5.7) and (5.8) imply ρ ≤ 1/4c3, so that

‖Ψw‖E ≤ ρ for w ∈ Eρ,

‖Ψw1 − Ψw2‖E ≤ 3
4
‖w1 − w2‖E for w1, w2 ∈ Eρ.
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We thus obtain a unique solution w ∈ Eρ to (5.1). The proof of additional properties of w(t) in the
statement is standard and may be omitted. �

Indeed the solution obtained in Proposition 5.1 is a strong solution with values in L3
σ(Ω), but we need

the following L2-strong solution for later use rather than the L3-strong solution.

Proposition 5.2. Let w(t) be the solution to (5.1) obtained in Proposition 5.1. We further assume that
w(t̄) ∈ L2

σ(Ω).
1. The solution is of class

w ∈ C([t̄,∞);L2
σ(Ω)) ∩ C((t̄,∞);D2(A)) ∩ C1((t̄,∞);L2

σ(Ω)) (5.11)

subject to limt→t̄+0 ‖w(t) − w(t̄)‖2 = 0. It also satisfies the equation

∂tw + Aw + P[(u∞ + us + ˜U) · ∇w + w · ∇(us + ˜U) + w · ∇w] = Pf (5.12)

in L2
σ(Ω) and the energy equality

1
2
‖w(t)‖2

2 +
∫ t

t̄

‖∇w‖2
2dτ

=
1
2
‖w(t̄)‖2

2 +
∫ t

t̄

[

〈(us + ˜U) ⊗ w,∇w〉 + 〈f, w〉
]

dτ

(5.13)

for all t ≥ t̄ as well as
∇w ∈ L2

loc([t̄,∞);L2(Ω)). (5.14)
For the landing problem, the steady flow us is absent in (5.12) and (5.13).

2. If, in addition, w(t̄) ∈ H1
0,σ(Ω), then we have

w ∈ L2
loc([t̄,∞);L∞(Ω)), ∇w ∈ L∞

loc([t̄,∞);L2(Ω)),

∂tw, Aw ∈ L2
loc([t̄,∞);L2

σ(Ω)).
(5.15)

Proof. Concerning the first assertion, it suffices to show that

P[f − (us + ˜U) · ∇w − w · ∇(us + ˜U) − w · ∇w](t)

is locally Hölder continuous in t on the interval (t̄,∞) with values in L2
σ(Ω) as well as summable near

t = t̄ with values there. The latter is obvious, for ‖f(t)‖2, ‖˜U(t)‖6 and ‖∇˜U(t)‖3,∞ do not possess any
singular behavior near t = t̄, see (3.22), (3.24) and (4.2). It is easy to verify the Hölder continuity locally
on (t̄,∞) of w(t) with values in Lq

σ(Ω) for q ≥ 3 and that of ∇w(t) with values in L3(Ω). This together
with (3.13) and (4.5) lead to the desired result.

For deduction of the second assertion, we use the standard energy method for (5.12) combined with

sup
t̄≤t≤T

‖∇w(t)‖2 ≤ cT , ∀T ∈ (t̄,∞),

which follows from estimates of the integral equation (5.1) together with (2.7) by use of w(t̄) ∈ H1
0,σ(Ω),

to find
d

dt
‖∇w(t)‖2

2 + ‖Aw(t)‖2
2

≤ C
(

‖u∞ + us‖2
∞ + ‖˜U(t)‖2

∞ + ‖∇us‖2
3 + ‖∇˜U(t)‖2

3,∞ + c2
T + c4

T

)

‖∇w(t)‖2
2

+ C‖f(t)‖2
2

for all t ∈ (t̄, T ], where T ∈ (t̄,∞) is fixed. Note that the coefficient of ‖∇w‖2
2 as well as ‖f‖2

2 in the RHS
above belongs to L∞(t̄, T ). We thus employ (5.14) to see that

∇w ∈ L∞(t̄, T ;L2(Ω)), Aw ∈ L2(t̄, T ;L2
σ(Ω)).

By the Eq. (5.12) and by

‖w‖2
∞ ≤ C‖Aw‖2‖∇w‖2 + C‖∇w‖2

2
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(see Heywood [24]), we conclude the others in (5.15) as well. �

The following proposition plays an important role in the proof of the main theorems. For the weak
solution constructed in the previous section, the existence of t̄ satisfying the requirement below will be
shown in the following section.

Proposition 5.3. Let t̄ ∈ (T0,∞), where T0 is as in (1.6) or (1.13). Let w(t) be a weak solution to (1.12)
on [t̄,∞) with (1.12) for s = t̄, and w(t̄) satisfy (5.7) as well as w(t̄) ∈ H1

0,σ(Ω). Assume further (5.6)
and (5.8). By w̃(t) we denote the strong solution on [t̄,∞) to (1.12) with initial condition w̃(t̄) = w(t̄),
which is obtained in Proposition 5.2. Then we have

w(t) = w̃(t) on [t̄,∞),

and thereby

‖w(t)‖∞ = O(t−1/2) as t → ∞.

For the landing problem, the condition (5.6) is redundant.

Proof. We follow the argument of Serrin [40]. In view of (5.9), (5.11), (5.14) and (5.15) one can take the
strong solution w̃(t) as a test function, see (4.7), in the relation (4.6) (with s = t̄) for the weak solution
w(t). We gather the resulting formula, (5.12), (5.13) for w̃(t) and (1.12) (with s = t̄) for w(t) to find

1
2
‖w(t) − w̃(t)‖2

2 +
∫ t

t̄

‖∇w − ∇w̃‖2
2dτ

≤
∫ t

t̄

〈(w̃ + ˜U + us) ⊗ (w − w̃),∇w − ∇w̃〉dτ

for all t ≥ t̄. By (5.15) together with (3.22) we know

w̃ + ˜U + us ∈ L2
loc([t̄,∞);L∞(Ω)).

Hence, we deduce from the inequality

‖w(t) − w̃(t)‖2
2 ≤

∫ t

t̄

‖w̃ + ˜U + us‖2
∞‖w − w̃‖2

2dτ

that both solutions must coincide for t ≥ t̄. Thus, the large time behavior of the weak solution w(t)
follows from (5.9). �

6. Proof of Main Theorems

We are now in a position to prove the main theorems. Let w(t) be the weak solution to (1.12) with (4.1)
obtained in Proposition 4.1. Let us start with the energy inequality (1.12) for s = 0. By (3.29) we have

|〈f, w〉| ≤
{

C(1 + t)−1/2 + ‖˜U ⊗ ˜U + h(˜U ⊗ us + us ⊗ ˜U)‖2

}

‖∇w‖2.

Given small ε > 0, to be determined later, see (6.8), we deduce from (4.3) that there is Tε > 0 such that

‖˜U ⊗ ˜U + h(˜U ⊗ us + us ⊗ ˜U)‖2
2 ≤ εt−1/2, ∀t ≥ Tε,

which implies that
∣

∣

∣

∣

∫ t

0

〈f, w〉dτ

∣

∣

∣

∣

≤ 1
4

∫ t

0

‖∇w‖2
2dτ + C

∫ t

0

dτ

1 + τ
+ C

∫ Tε

0

τ−1/2dτ + 2ε

∫ t

Tε

τ−1/2dτ

(6.1)
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for all t > Tε. As for the second term of the RHS of (1.12), we observe
∣

∣

∣

∣

∫ t

0

〈(hus + ˜U) ⊗ w,∇w〉dτ

∣

∣

∣

∣

≤ c0

∫ t

0

(

|h(τ)|‖us‖3 + ‖˜U(τ)‖3,∞
)

‖∇w‖2
2dτ.

Thanks to (3.25), there is T1 ∈ (T0,∞) such that

‖˜U(t)‖3,∞ ≤ 1
8c0

∀t ≥ T1,

where T0 is as in (1.6) or (1.13). Suppose that the steady flow us is so small that

‖us‖3 ≤ 1
8c0

. (6.2)

Then we get
∣

∣

∣

∣

∫ t

0

〈(hus + ˜U) ⊗ w,∇w〉dτ

∣

∣

∣

∣

≤ 1
4

∫ t

T1

‖∇w‖2
2dτ + C (|h|∞‖us‖3 + ‖v0‖3,∞ + M3)

∫ T1

0

‖∇w‖2
2dτ

(6.3)

for all t > T1. From (1.12) for s = 0 together with (6.1) and (6.3) we find

‖w(t)‖2
2 +

∫ t

0

‖∇w‖2
2dτ ≤ Kε + C log(1 + t) + 8ε

√
t (6.4)

for all t > max{Tε, T1}, and, therefore,
∫ 2t

t

‖∇w‖2
2dτ ≤ Kε + C log(1 + 2t) + 8ε

√
2t (6.5)

for all t > max{Tε/2, T1/2}, where

Kε = ‖w0‖2
2 + C (|h|∞‖us‖3 + ‖v0‖3,∞ + M3)

∫ T1

0

‖∇w‖2
2dτ + C

√

Tε.

Let us recall the condition (5.8) in the previous section. By (3.18) there is

T2 > max{Tε, T1} (6.6)

such that
‖U(t)‖3,∞,R3 ≤ δ3, ∀t ≥ T2, (6.7)

where δ3 is the constant in Proposition 5.1. By Proposition 4.2 we know that there is a set J ⊂ (0,∞)
with the Lebesgue measure |J | = 0 such that w(t) satisfies (1.12) for all s ∈ (0,∞)\J and t > s. On
account of (6.5) as well as (6.4), for every t > T2, one can find t̄ ∈ (t, 2t)\J such that

‖∇w(t̄)‖2
2 ≤ 2

t

(

Kε + C log(1 + 2t) + 8ε
√

2t
)

,

‖w(t̄)‖2
2 ≤ Kε + C log(1 + 2t) + 8ε

√
2t,

which yield

‖w(t̄)‖4
3 ≤ C‖∇w(t̄)‖2

2‖w(t̄)‖2
2 ≤ c∗

t

[

{Kε + log(1 + 2t)}2 + ε2t
]

.

Let δ2 > 0 be the constant in Proposition 5.1. We first choose and fix ε > 0 such that

c∗ε2 ≤ δ4
2

2
. (6.8)

For such ε > 0, we take T2 satisfying (6.6)–(6.7) and then find T3 ∈ (T2,∞) so that

c∗
t

{Kε + log(1 + 2t)}2 ≤ δ4
2

2
∀t ≥ T3.
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Let us fix t ≥ T3 (> T2), for which we find t̄ ∈ (t, 2t)\J such that w(t̄) ∈ H1
0,σ(Ω) with

‖w(t̄)‖3 ≤ δ2. (6.9)

Suppose that the steady flow us is so small that (5.6) as well as (6.2) holds. By (3.2) there is a constant
δ ∈ (0, δ0] such that the condition |u∞| ≤ δ implies both of them. Then, by virtue of (6.9) together with
(6.7), all the assumptions in Proposition 5.3 are fulfilled. We thus obtain the decay property

‖w(t)‖∞ = O(t−1/2) as t → ∞
which together with (3.25) leads us to (1.7) in view of (1.8). For the landing problem, it is obvious to
obtain (1.14) without any smallness condition on the steady flow us. We have thus completed the proof
of both Theorems 1.1 and 1.2. �
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