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Abstract. In this paper, we propose a multi-grid decoupling method for the coupled Navier–Stokes–Darcy problem with the
Beavers–Joseph–Saffman interface condition. The basic idea of the method is to first solve a much smaller global problem
on a very coarse initial grid, then solve a linearized Newton problem and a Darcy problem in parallel on all the subsequently
refined grids. Error bounds of the approximate solution for the proposed method are analyzed, and optimal error estimates
are obtained. Numerical experiments are conducted to verify the theoretical analysis and indicate the effectiveness of the
proposed method.
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1. Introduction

The coupling of fluid flow and porous media flow has received more and more attention and has become
a very active research area in recent years. The major reason lies in its wide spectrum of real world
applications, including the environmental problem of groundwater contamination through rivers, the
industrial manufacturing of filters, the biological modeling of the coupled circulatory system with the
surrounding tissue, and so on.

The related numerical models are the coupled Stokes–Darcy model or the coupled Navier–Stokes–
Darcy model, especially the interface conditions include Beavers–Joseph–Saffman or Beavers–Joseph in-
terface conditions. Many workers pay attention to studying their mathematical analysis and numerical
methods, the readers can refer to [1,3–20,22–33,35–40]. However, most of previous works related to
the coupled Stokes–Darcy problem. In this paper, we focus on the nonlinear case, that is, the coupled
Navier–Stokes–Darcy problem. In [6], a decoupled and linearized two-grid algorithm was proposed and
investigated. To further improve the effectiveness of solving the coupled Navier–Stokes–Darcy problem,
we now extend the algorithm in [6] and propose a multi-grid decoupling method. In this method, one
only first solve a much smaller global problem on a very coarse initial grid, then solve a linearized Newton
problem and a Darcy problem in parallel on all the subsequently refined grids. Moreover, we note that
the numerical analysis in [6] only obtained the optimal order of convergence for the porous media flow
and half order lower than the optimal one for the fluid flow. In our work, we analyze the error bounds of
the approximate solution for the proposed method, and obtain the optimal error estimates for two flows.
Numerical results well agree with the theoretical predictions, and also demonstrate the effectiveness of
the proposed method.

The rest of the paper is organized as follows. In Sect. 2, the coupled Navier–Stokes–Darcy problem is
given. In Sect. 3, the multi-grid decoupling method is presented. In Sect. 4, convergence of the proposed
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method is analyzed. Finally, numerical experiment is conducted to verify the accuracy of theoretical
analysis and illustrate the effectiveness of the multi-grid method in Sect. 5.

2. Coupled Navier–Stokes–Darcy Problem

We consider a bounded region Ω ⊂ Rd (d = 2 or 3) for the coupled Navier–Stokes–Darcy model, the
domain Ω includes a fluid flow region Ωf and a porous media region Ωp. Two regions are separated by
the interface Γ = ∂Ωf ∩ ∂Ωp. Let nf and np be the unit outward normal vectors on ∂Ωf and ∂Ωp,
respectively. τi, i = 1, . . . , d − 1, are the unit tangential vectors on the interface Γ. Obviously, np = −nf

on the interface Γ.
The Navier–Stokes equations for the fluid velocity u and pressure p describe the flow in Ωf :

− νΔu + (u · ∇)u + ∇p = f1 in Ωf , (2.1)

∇ · u = 0 in Ωf . (2.2)

Here, ν is the kinetic viscosity, f1 is the external force acting on the fluid flow.
The Darcy equations for the fluid velocity up and the piezometric head ϕ govern the flow in Ωp:

up = −K∇ϕ in Ωp, (2.3)

∇ · up = f2 in Ωp. (2.4)

Here K = {Kij}d×d is the hydraulic conductivity tensor, symmetric and positive definite, denoting
permeability of the rock. In this paper, we assume K = diag(K, . . . , K) with K ∈ L∞(Ωp), K > 0. f2

describes the external forces acting on the porous media flow.
Eliminating up from (2.3)–(2.4), we have the following equation:

− ∇ · (K∇ϕ) = f2 in Ωp. (2.5)

The mixed system presented above is coupled across the following interface boundary conditions on
Γ.

Conservation of mass is displayed by

u · nf + up · np = 0 on Γ. (2.6)

This condition on Γ is the continuity of the normal velocity, which is a consequence of the incompressibility.
The balance of the normal forces is stated by

p − νnf
∂u

∂nf
= gϕ on Γ, (2.7)

where g is the gravitational acceleration.
For the third one, we consider the well known Beavers–Joseph–Saffman interface condition (see [34]),

− ντi
∂u

∂nf
= α

√
νg

tr(K)
u · τi 1 ≤ i ≤ (d − 1) on Γ. (2.8)

Here, α is a positive parameter and matters with the properties of the porous medium, it is experimen-
tally determined. Beavers–Joseph–Saffman interface condition is the simplified Beavers–Joseph interface
condition (see [2]) and is widely accepted and used.

For the sake of simplicity, we impose homogeneous boundary conditions on external boundary, i.e.,
u = 0 on ∂Ωf \ Γ, ϕ = 0 on ∂Ωp \ Γ.
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To present the weak formulation of the coupled model, we define the following spaces:

Hf = {v ∈ (H1(Ωf ))d : v = 0 on ∂Ωf \ Γ},

Hp = {ψ ∈ H1(Ωp) : ψ = 0 on ∂Ωp \ Γ}.

W = Hf × Hp,

Q = L2(Ωf ).

For the convenience of notation, we denote L2(Ωf/p) inner product and L2(Γ) inner product by (·, ·)f/p

and (·, ·)Γ, respectively; the corresponding norms are denoted by ‖ · ‖f/p and ‖ · ‖Γ.
The spaces Hf and Hp are equipped with the following norms: ∀u ∈ Hf and ∀ ϕ ∈ Hp,

‖u‖Hf
= ‖∇u‖f =

√
(∇u, ∇u)f ,

‖ϕ‖Hp
= ‖∇ϕ‖p =

√
(∇ϕ,∇ϕ)p.

And the space W is equipped with the following norms: ∀w ∈ W ,

‖w‖0 =
√

(u, u)f + (ϕ,ϕ)p,

‖w‖W =
√

ν(∇u, ∇u)f + g(K∇ϕ,∇ϕ)p.

In addition, we define the trilinear form

aN (l, u, v) = ((l · ∇)u, v)f ∀ l, u, v ∈ Hf . (2.9)

We shall assume that physical parameters g, ν, α and K are positive constants, f1 and f2 are smooth
enough. Then the weak formulation of the coupled Navier–Stokes–Darcy model is given by: find w =
(u, ϕ) ∈ W and p ∈ Q, such that

a(w;w, z) + b(z, p) = f(z) ∀ z = (v, ψ) ∈ W, (2.10)

b(w, q) = 0 ∀ q ∈ Q, (2.11)

where

a(w;w, z) = af (u, v) + ap(ϕ,ψ) + aΓ(w, z) + aN (u;u, v),

af (u, v) = ν(∇u,∇v)f + α

√
νg

tr(K)

d−1∑
i=1

(u · τi, v · τi)Γ,

ap(ϕ,ψ) = g(K∇ϕ,∇ψ)p,

aΓ(w, z) = g((ϕ, v · nf )Γ − (ψ, u · nf )Γ),

b(z, p) ≡ bf (v, p) = −(p,∇ · v)f ,

f(z) = (f1, v)f + g(f2, ψ)p.

In [14], we can find that the coupled problem (2.10)–(2.11) is well-posed, provided the physical pa-
rameter ν is large enough. In this paper, we follow the assumptions in [14].

3. Numerical Algorithms

Let τh be a quasi-uniform triangulation of the global domain, as well as compatible and quasi-uniform
on Γ as described in [6,16]. Denote Wh = Hfh × Hph ⊂ W and Qh ⊂ Q are the finite element subspaces
defined on the partition τh. Moreover, we assume that (Hfh, Qh) satisfy the following discrete inf-sup
condition, i.e., there exists a positive constant β independent of h, such that ∀ qh ∈ Qh,∃ vh ∈ Hfh,

bf (vh, qh) ≥ β‖vh‖Hf
‖qh‖Q. (3.1)

Then the standard finite element discrete scheme for (2.10)–(2.11) on (Wh, Qh) reads as follows.
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Algorithm 1. Standard finite element scheme.

Find wh = (uh, ϕh) ∈ Wh and ph ∈ Qh, such that

a(wh;wh, zh) + b(zh, ph) = f(zh) ∀ zh = (vh, ψh) ∈ Wh, (3.2)

b(wh, qh) = 0 ∀ qh ∈ Qh. (3.3)

The problem (3.2)–(3.3) is a coupled and nonlinear problem, solving it directly would have many
difficulties, especially in numerical implementation. These difficulties increase as the mesh size decreases.
In [6], a decoupled and linearized two-grid algorithm was proposed. In the method, for the interface
boundary term, a coarse grid approximation was used; for the trilinear term, a Newton type linearization
was applied. To further improve the efficiency of solving the coupled Navier–Stokes–Darcy problem, we
extend the method above to the following linearized multi-grid method.

Algorithm 2. Multi-grid decoupling scheme.

1. On a relative coarse grid with mesh size H, solve the coupled problem (3.2)–(3.3): find wH =
(uH , ϕH) ∈ WH and pH ∈ QH , such that

a(wH ;wH , zH) + b(zH , pH) = f(zH) ∀ zH = (vH , ψH) ∈ WH , (3.4)

b(wH , qH) = 0 ∀ qH ∈ QH . (3.5)

2. On a fine grid with mesh size h1, solve two independent subproblems in parallel: one is the linear
Newton problem and the other is the Darcy problem.

In the fluid region Ωf , find uh1 ∈ Hfh1 ⊃ HfH , ph1 ∈ Qh1 ⊃ QH such that

af (uh1 , vh1) + aN (uH ;uh1 , vh1) + aN (uh1 ;uH , vh1) + bf (vh1 , p
h1)

= (f1, vh1)f + aN (uH ;uH , vh1) − g(ϕH , vh1 · nf )Γ ∀ vh1 ∈ Hfh1 , (3.6)

bf (uh1 , qh1) = 0 ∀ qh1 ∈ Qh1 . (3.7)

In the porous media region Ωp, find ϕh1 ∈ Hph1 ⊃ HpH such that

ap(ϕh1 , ψh1) = g(f2, ψh1)p + g(ψh1 , uH · nf )Γ ∀ψh1 ∈ Hph1 . (3.8)

3. For i = 1, 2, . . . , I, on the fine grid with mesh size (hi+1), solve the following two subproblems in
parallel.

In the fluid region Ωf , find uhi+1 ∈ Hfhi+1 ⊃ Hfhi
, phi+1 ∈ Qhi+1 ⊃ Qhi

such that for
∀ vhi+1 ∈ Hfhi+1 and ∀qhi+1 ∈ Qhi+1

af (uhi+1 , vhi+1) + aN (uhi ;uhi+1 , vhi+1) + aN (uhi+1 ;uhi , vhi+1) + bf (vhi+1 , p
hi+1)

= (f1, vhi+1)f + aN (uhi ;uhi , vhi+1) − g(ϕhi , vhi+1 · nf )Γ, (3.9)

bf (uhi+1 , qhi+1) = 0. (3.10)

In the porous media region Ωp, find ϕhi+1 ∈ Hphi+1 ⊃ Hphi
such that

ap(ϕhi+1 , ψhi+1) = g(f2, ψhi+1)p + g(ψhi+1 , u
hi · nf )Γ ∀ψhi+1 ∈ Hphi+1 . (3.11)

It is easily seen that one only requires to solve a small global problem on a very coarse initial grid, and
then on a series of refined grids solve a linearized Navier–Stokes subproblem and a Darcy subproblem,
which are independent of each other on the same fine grid and hence can be solved in parallel. Moreover,
in the next section, we will show that the proposed multi-grid method has the same accuracy as the
standard finite element method, when the mesh sizes hi+1 and hi are taken properly.
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4. Convergence Analysis

In this section, we shall analyze the errors between (uhi+1 , phi+1 , ϕhi+1) obtained by the problem (3.9)–
(3.11) and (u, p, ϕ) obtained by the problem (2.10)–(2.11).

Before further analysis, we assume (u, p, ϕ) satisfies:

u ∈ (H2(Ωf ))d, p ∈ H1(Ωf ), ϕ ∈ H2(Ωp), (4.1)

and thus finite element spaces of first order approximation O(h̃), h̃ = H,hi are available in following
analysis for the fluid and porous media regions.

For the sake of simplicity, we denote by C a generic positive constant which may depend on physical
parameters but is independent of mesh size. Moreover, it may have different values at different occasions.

For the trilinear term aN (l;u, v) defined by (2.9), we have the following estimate:

|aN (l, u, v)| ≤ C‖∇l‖f‖∇u‖f‖∇v‖f . (4.2)

The following lemma [7,38] gives the convergence of the standard finite element method, which is
useful for our analysis.

Lemma 4.1. For the coupled problem (3.2)–(3.3), we have the following error estimates

‖w − wh‖0 + h(‖w − wh‖W + ‖p − ph‖f ) ≤ Ch2. (4.3)

For the second step solution (uh1 , ph1 , ϕh1), we have the following result.

Theorem 4.1. For (uh1 , ph1 , ϕh1), the following error estimate holds:

‖∇(ϕh1 − ϕh1)‖p ≤ CH2, (4.4)

‖∇(uh1 − uh1)‖f + ‖ph1 − ph1‖f ≤ CH2, (4.5)

where (uh1 , ph1 , ϕh1) is the solution of (3.2)–(3.3) with a mesh of size h1.

Proof. It follows from [6], we have the estimate (4.4).
Now, we will state H1 error for the velocity and L2 error for the pressure in energy norms.
Taking zh = (vh1 , 0) in (3.2) and qh = qh1 in (3.3), and combining with the problem (3.6)–(3.7), for

∀ vh1 ∈ Hfh1 and ∀ qh1 ∈ Qh1 , we have

af (uh1 − uh1 , vh1) + bf (vh1 , ph1 − ph1) + [aN (uh1 ;uh1 , vh1) − aN (uH ;uh1 , vh1)

− aN (uh1 ;uH , vh1) + aN (uH ;uH , vh1)] = −g(ϕh1 − ϕH , vh1 · nf )Γ, (4.6)

bf (uh1 − uh1 , qh1) = 0. (4.7)

Note that,

aN (uh1 ;uh1 , vh1) − aN (uH ;uh1 , vh1) − aN (uh1 ;uH , vh1) + aN (uH ;uH , vh1)

= aN (uH ;uh1 − uh1 , vh1) + aN (uh1 − uh1 ;uH , vh1) + aN (uh1 − uH ;uh1 − uH , vh1). (4.8)

By letting vh1 = uh1 − uh1 , qh1 = ph1 − ph1 in the problem (4.6)–(4.7), we can get

ν‖∇(uh1 − uh1)‖2
f ≤ |aN (uH ;uh1 − uh1 , uh1 − uh1) + aN (uh1 − uh1 ;uH , uh1 − uh1)|

+ |aN (uh1 − uH ;uh1 − uH , uh1 − uh1)| + |g(ϕh1 − ϕH , (uh1 − uh1) · nf )Γ|. (4.9)

For the trilinear terms in the right side of (4.9), we can obtain that

|aN (uH ;uh1 − uh1 , uh1 − uh1) + aN (uh1 − uh1 ;uH , uh1 − uh1)| ≤ C√
2ν

‖∇(uh1 − uh1)‖2
f , (4.10)

and
|aN (uh1 − uH ;uh1 − uH , uh1 − uh1)| ≤ CH2‖∇(uh1 − uh1)‖f . (4.11)
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To estimate the interface term in the right side of (4.9), we introduce an auxiliary problem in Ωp: find
ξ ∈ H1(Ωp) such that, ⎧⎨

⎩
−∇ · (K∇ξ) = 0 in Ωp,
K∇ξ · np = (uh1 − uh1) · np on Γ,
ξ = 0 on ∂Ωp\Γ.

(4.12)

Then the weak formulation of problem (4.12) reads as follows: find ξ ∈ Hp such that for ∀ η ∈ Hp,

(K∇ξ,∇η)p = (η, (uh1 − uh1) · np)Γ.

By Lax–Milgram theorem [21], the solution ξ of above problem is existent and unique. Then taking η = ξ
in the above equation, we have∥∥∥K 1

2 ∇ξ
∥∥∥2

p
≤ C‖ξ‖L2(Γ)‖uh1 − uh1‖L2(Γ) ≤ C‖K 1

2 ∇ξ‖p‖∇(uh1 − uh1)‖f ,

which implies
‖K 1

2 ∇ξ‖p ≤ C‖∇(uh1 − uh1)‖f . (4.13)

Moreover, when Γ is smooth enough, and (uh1 − uh1) · np ∈ H
1
2 (Γ), ξ ∈ H2(Ωp) and

‖ξ‖H2(Ωp) ≤ C‖∇(uh1 − uh1)‖f . (4.14)

Therefore, we have

|g(ϕh1 − ϕH , (uh1 − uh1) · nf )Γ|
= |g(ϕh1 − ϕH ,K∇ξ · np)∂Ωp

|
= |g(ϕh1 − ϕH ,∇ · (K∇ξ))p + g(K∇(ϕh1 − ϕH),∇ξ)p|
= |g(K∇(ϕh1 − ϕH),∇ξ)p|
≤ |ap(ϕh1 − ϕh1 , ξ)| + |ap(ϕh1 − ϕH , ξ)|. (4.15)

Using (4.4) and (4.13), we get

|ap(ϕh1 − ϕh1 , ξ)| ≤ C‖∇(ϕh1 − ϕh1)‖p

∥∥∥K 1
2 ∇ξ

∥∥∥
p

≤ CH2‖∇(uh1 − uh1)‖f . (4.16)

For the last term in the right side of (4.15), we can obtain that,

ap(ϕh1 − ϕH , ξ) = ap(ϕh1 − ϕH , ξ − ψH) ∀ψH ∈ HpH ,

where, we used the fact that

(K∇(ϕh1 − ϕH),∇(ψH))p = 0 ∀ψH ∈ HpH .

Hence,

|ap(ϕh1 − ϕH , ξ)| = inf
∀ ψH∈HpH

|ap(ϕh1 − ϕH , ξ − ψH)|

≤ C‖∇(ϕh1 − ϕH)‖p inf
∀ ψH∈HpH

‖∇(ξ − ψH)‖p

≤ C(‖∇(ϕh1 − ϕh1)‖p + ‖∇(ϕh1 − ϕH)‖p) · H‖ξ‖H2(Ωp)

≤ CH2‖∇(uh1 − uh1)‖f . (4.17)

Combining (4.15) with (4.16) and (4.17) leads to

|g(ϕh1 − ϕH , (uh1 − uh1) · nf )Γ| ≤ CH2‖∇(uh1 − uh1)‖f . (4.18)

By applying (4.10), (4.11) and (4.18) into (4.9), we get

‖∇(uh1 − uh1)‖f ≤ CH2. (4.19)
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Next, from (4.6), (4.4) and (4.19) , we can derive that

|b(vh1 , ph1 − ph1)|
≤ |af (uh1 − uh1 , vh1)| + |g(ϕh1 − ϕH , vh1 · nf )Γ|

+ |aN (uH ;uh1 − uh1 , vh1) + aN (uh1 − uh1 ;uH , vh1) + aN (uh1 − uH ;uh1 − uH , vh1)|
≤ C(‖∇(uh1 − uh1)‖f + ‖∇(uh1 − uH)‖2

f + ‖∇(ϕh1 − ϕh1)‖p)‖∇vh1‖f

≤ CH2‖∇vh1‖f . (4.20)

In view of the discrete inf-sup condition (3.1), we have

‖∇(ph1 − ph1)‖f ≤ CH2. (4.21)

Then (4.5) follows from (4.19) and (4.21). �

Together Lemma 4.1, Theorem 4.1 and triangle inequalities, we can easily obtain the following theorem.

Theorem 4.2. The solution (uh1 , ph1 , ϕh1) defined by the problem (3.6)–(3.8) satisfies

‖∇(ϕ − ϕh1)‖p ≤ C(h1 + H2), (4.22)

‖∇(u − uh1)‖f + ‖p − ph1‖f ≤ C(h1 + H2). (4.23)

Now, we will give the convergence results for the final step solution (uhi+1 , phi+1 , ϕhi+1) of the proposed
multi-grid method.

Theorem 4.3. The solution (uhi+1 , phi+1 , ϕhi+1) defined by the solution (3.9)–(3.11) satisfies

‖∇(ϕhi+1 − ϕhi+1)‖p ≤ C(hi‖∇(u − uhi)‖f + ‖u − uhi‖f ), (4.24)

and,

‖∇(uhi+1 − uhi+1)‖f + ‖phi+1 − phi+1‖f

≤ C(hi‖∇(ϕ − ϕhi)‖p + hi‖∇(u − uhi)‖f + ‖∇(u − uhi)‖2
f + ‖u − uhi‖f ). (4.25)

Proof. First, we will show (4.24).
Setting h = hi+1 in the problem (3.2)–(3.3), then we have the following two coupled problems: for

∀ψhi+1 ∈ Hphi+1 ,
ap(ϕhi+1 , ψhi+1) = g(f2, ψhi+1)p + g(ψhi+1 , uhi+1 · nf )Γ, (4.26)

and for ∀vhi+1 ∈ Hfhi+1 , ∀qhi+1 ∈ Qhi+1 ,

af (uhi+1 , vhi+1) + aN (uhi+1 ;uhi+1 , vhi+1) + bf (vhi+1 , phi+1)

= (f1, vhi+1)f − g(ϕhi+1 , vhi+1 · nf )Γ, (4.27)

bf (uhi+1 , qhi+1) = 0. (4.28)

Comparing (4.26) with (3.11), and letting ψhi+1 = ϕhi+1 − ϕhi+1 , we have

ap(ϕhi+1 − ϕhi+1 , ϕhi+1 − ϕhi+1) = g(ϕhi+1 − ϕhi+1 , (uhi+1 − uhi) · nf )Γ. (4.29)

To further estimate, we introduce an auxiliary problem in fluid region Ωf : find χ ∈ H1(Ωf ), such
that ⎧⎨

⎩
−�χ = 0 in Ωf ,
χ = ϕhi+1 − ϕhi+1 on Γ,
χ = 0 on ∂Ωf\Γ.

Easily, we have

‖χ‖H1(Ωf ) ≤ C‖ϕhi+1 − ϕhi+1‖
H

1/2
00 (Γ)

≤ C‖∇(ϕhi+1 − ϕhi+1)‖p. (4.30)
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Note that uhi+1 and uhi satisfy the divergence-free property, we have,

(qhi
,∇ · (uhi+1 − uhi))f = 0 ∀ qhi

∈ Qhi
. (4.31)

Then, for ∀ qhi
∈ Qhi

, we get

(ϕhi+1 − ϕhi+1 , (uhi+1 − uhi) · nf )Γ

= (ϕhi+1 − ϕhi+1 , (uhi+1 − uhi) · nf )∂Ωf

= (χ,∇ · (uhi+1 − uhi))f + (uhi+1 − uhi ,∇χ)f

= (χ − qhi
,∇ · (uhi+1 − uhi))f + (uhi+1 − uhi ,∇χ)f . (4.32)

It follows from (4.29) and (4.32) that

‖∇(ϕhi+1 − ϕhi+1)‖2
p

≤ C inf
∀ qhi

∈ Qhi

|(χ − qhi
,∇ · (uhi+1 − uhi))f | + C|(uhi+1 − uhi ,∇χ)f |

≤ C(hi‖∇(uhi+1 − uhi)‖f + ‖uhi+1 − uhi‖f )‖χ‖H1(Ωf )

≤ C(hi‖∇(u − uhi)‖f + ‖u − uhi‖f )‖∇(ϕhi+1 − ϕhi+1)‖p, (4.33)

which yields (4.4).
Next, we will show

‖∇(uhi+1 − uhi+1)‖f ≤ C
(‖∇(ϕhi+1 − ϕhi+1)‖p + hi‖∇(ϕ − ϕhi)‖p + ‖∇(u − uhi)‖2

f

)
. (4.34)

Subtracting (3.9)–(3.10) from (4.27)–(4.28), for ∀ vhi+1 ∈ Hfhi+1 , ∀ qhi+1 ∈ Qhi+1 , gives

af (uhi+1 − uhi+1 , vhi+1) + bf (vhi+1 , phi+1 − phi+1)

= −aN (uhi ;uhi+1 − uhi+1 , vhi+1) − aN (uhi+1 − uhi+1 ;uhi , vhi+1)

− aN (uhi+1 − uhi ;uhi+1 − uhi , vhi+1) − g(ϕhi+1 − ϕhi , vhi+1 · nf )Γ, (4.35)

bf (uhi+1 − uhi+1 , qhi+1) = 0. (4.36)

Taking vhi+1 = uhi+1 − uhi+1 in (4.35) and qhi+1 = uhi+1 − uhi+1 in (4.36) leads to

ν‖∇(uhi+1 − uhi+1)‖2
f

≤ |aN (uhi ;uhi+1 − uhi+1 , uhi+1 − uhi+1) + aN (uhi+1 − uhi+1 ;uhi , uhi+1 − uhi+1)|
+ |aN (uhi+1 − uhi ;uhi+1 − uhi , uhi+1 − uhi+1)| + |g(ϕhi+1 − ϕhi , uhi+1 − uhi+1) · nf )Γ|

≤ C

(
1√
2ν

‖∇(uhi+1 − uhi+1)‖2
f + ‖∇(uhi+1 − uhi)‖2

f‖∇(uhi+1 − uhi+1)‖f

)

+ |g(ϕhi+1 − ϕhi , (uhi+1 − uhi+1) · nf )Γ|, (4.37)

which yields

‖∇(uhi+1 − uhi+1)‖2
f ≤ C(‖∇(u − uhi)‖2

f‖∇(uhi+1 − uhi+1)‖f + |g(ϕhi+1 − ϕhi , (uhi+1 − uhi+1) · nf )Γ|).
(4.38)

To estimate the interface term in the above inequality, we introduce the following problem: find
ζ ∈ H1(Ωp) such that, ⎧⎨

⎩
−∇ · (K∇ζ) = 0 in Ωp,
K∇ζ · np = (uhi+1 − uhi+1) · np on Γ,
ζ = 0 on ∂Ωp\Γ.

(4.39)

This problem is similar to the problem (4.12), therefore,∥∥∥K 1
2 ∇ζ

∥∥∥
p

≤ C‖∇(uhi+1 − uhi+1)‖f . (4.40)
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When Γ is smooth enough, we have

‖ζ‖H2(Ωp) ≤ C‖∇(uhi+1 − uhi+1)‖f . (4.41)

Then, for ∀ψhi
∈ Hphi

, we can obtain from (4.40) and (4.41) that

|g(ϕhi+1 − ϕhi , (uhi+1 − uhi+1) · nf )Γ|
= |g(ϕhi+1 − ϕhi , (K∇ζ) · np)∂Ωp

|
= |g(ϕhi+1 − ϕhi ,∇ · (K∇ζ))p + g(K∇(ϕhi+1 − ϕhi),∇ζ)p|
= g|(K∇(ϕhi+1 − ϕhi),∇ζ)p|
= g|(K∇(ϕhi+1 − ϕhi+1),∇ζ)p| + g|(K∇(ϕhi+1 − ϕhi),∇(ζ − ψhi

))p|
≤ C(‖∇(ϕhi+1 − ϕhi+1)‖p‖∇ζ‖p + ‖∇(ϕhi+1 − ϕhi)‖p · hi‖ζ‖H2(Ωp))

≤ C(‖∇(ϕhi+1 − ϕhi+1)‖p + hi‖∇(ϕ − ϕhi)‖p)‖∇(uhi+1 − uhi+1)‖f . (4.42)

By using (4.38) and (4.42), we get (4.34).
Finally, thanks to (4.35) and the above estimations, we get

|bf (vhi+1 , phi+1 − phi+1)|
≤ |aN (uhi ;uhi+1 − uhi+1 , vhi+1) + aN (uhi+1 − uhi+1 ;uhi , vhi+1)|

+ |aN (uhi+1 − uhi ;uhi+1 − uhi , uhi+1 − uhi+1)| + g|(ϕhi+1 − ϕhi+1 , vhi+1 · nf )Γ|
≤ C(‖∇(uhi+1 − uhi+1)‖f + ‖∇(uhi+1 − uhi)‖2

f

+ ‖∇(ϕhi+1 − ϕhi+1)‖p + hi‖∇(ϕhi+1 − ϕhi)‖p)‖∇vhi+1‖f ,

which, together with the discrete inf-sup condition and the inequality (4.34), gives

‖phi+1 − phi+1‖f

≤ C(|∇(uhi+1 − uhi+1)‖f + ‖∇(ϕhi+1 − ϕhi+1)‖p + hi‖∇(ϕ − ϕhi)‖p + ‖∇(u − uhi)‖2
f ). (4.43)

Then (4.25) follows from (4.34), (4.43) and (4.24). �

Applying Lemma 4.1, Theorem 4.3 and the triangle inequalities, we can immediately get the following
theorem.

Theorem 4.4. For i = 1, 2, . . . , I, the following error estimates hold:

‖∇(ϕ − ϕhi+1)‖p ≤ C(hi+1 + hi‖∇(u − uhi)‖f + ‖u − uhi‖f ), (4.44)

and

‖∇(u − uhi+1)‖f + ‖p − phi+1‖f

≤ C(hi+1 + hi‖∇(ϕ − ϕhi)‖p + hi‖∇(u − uhi)‖f + ‖∇(u − uhi)‖2
f + ‖u − uhi‖f ). (4.45)

5. Numerical Experiment

Let the computational domain Ωf = (0, 1)×(1, 2) and Ωp = (0, 1)×(0, 1) with the interface Γ = (0, 1)×{1}.
The exact solution satisfying the coupled Navier–Stokes–Darcy problem is⎧⎨

⎩
u =

[
x2(y − 1)2 + y,− 2

3x(y − 1)3 + 2 − π sin(πx)
]T

,
p = [2 − π sin(πx)] sin

(
π
2 y

)
,

ϕ = [2 − π sin(πx)][1 − y − cos(πy)].

The external force f1 and the source term f2 follow the exact solution. For the sake of simplicity, the
physical parameters ν, g,K and α are set to 1. The finite element spaces we chosen are the well-known
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Table 1. The convergence performance of the standard finite element method

h ‖∇(ϕ − ϕh)‖p Rate ‖∇(u − uh)‖f Rate ‖p − ph‖f Rate CPU

1
4

1.59477 − 1.94324 − 1.69231 − 0.312

1
16

0.375153 1.04 0.360627 1.21 0.150438 1.74 16.583

1
64

0.092468 1.01 0.091558 0.99 0.039472 0.96 1395.01

Table 2. The convergence performance of the multi-grid method

hi ‖∇(ϕ − ϕhi )‖p ‖∇(u − uhi )‖f ‖p − phi‖f CPU

H = 1
2

2.54989 3.07155 2.12104 0.093

h1 = 1
4

1.57518 1.5484 1.26509 0.032

h2 = 1
16

0.377258 0.370801 0.164897 0.483

h3 = 1
256

0.023431 0.022552 0.009187 211.926
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Fig. 1. Flow velocity profiles along the vertical centerline

Mini elements (P1b − P1) for fluid region and the linear Lagrangian elements (P1) for porous media
region.

For comparison of the approximation accuracy, we first consider the standard finite element method,
the errors between the exact solution and the numerical solutions of the standard finite element method
are listed in Table 1. Observed that, the errors are of the order of O(h).

Next, we compute the errors between the exact solution and the third step solutions of the multi-grid
decoupling method. h0 = H = 1/2 are set, hi and hi−1 (i = 1, 2, 3) satisfy hi = h2

i−1. The correspond-
ing numerical results are showed in Table 2. By a comparison, we can clearly see that the accuracy of
the solutions computed by the multi-grid method is comparable to that obtained by the standard finite
element method. To further illustrate the effectiveness of the proposed method, we also list the computa-
tional time. Compared with the standard finite element method, our method could save a large amount
of computational time.

The second experiment, we consider a modified driven cavity flow with the Dirichlet boundary condi-
tions for the Navier–Stokes region:
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Fig. 2. Flow velocity profiles along the horizontal centerline

{
u = [sin(πx), 0]T on (0, 1) × 2,
u = [0, 0] on 0 × (1, 2) ∪ 1 × (1, 2).

Take the physical parameters g, ν, α equal to 1, and K= I. Let f1 = 0 in Ωf , f2 = 0 in Ωp, and ϕ = 0
on ∂Ωp Γ. In Figs. 1 and 2, we show the velocity profiles along the vertical and horizontal centerlines
obtained from Algorithm 1 (SFEM), and Algorithm 2 (Multi-Grid). As seen from figures, they are almost
identical each other.

In a word, we propose a multi-grid decoupling method for the coupled Navier–Stokes–Darcy problem.
Numerical results suggest that our proposed method does not degrade the accuracy of the solutions.
Moreover, using our method, only a much smaller global problem is solved on a very coarse initial grid,
then one only need to solve a linearized Newton problem and a Darcy problem in parallel on all the
subsequently refined grids. Therefore, the multi-grid decoupling method can save much more time than
the standard finite element method.
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