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1. Introduction

This paper is devoted to the issue of the vanishing dissipation limit for the full Navier—Stokes—Fourier sys-
tem with non-slip boundary condition. The state of a general compressible, viscous, and heat conducting
fluid can be characterized by three basic variables, the density p = p(t, z), the velocity field u = u(t, x),
and the absolute temperature ¢ = 9(t, ), where ¢ is the time, x is the spatial variable. Moreover, the
pressure p, as well as the specific energy e and the specific entropy s, is a typical thermostatic variable
attributed to a system in thermodynamic equilibrium, and they can be represented as numerical functions
of the density p and the absolute temperature ¥). The motion of a general compressible, viscous, and heat
conducting fluid with non-slip and adiabatic boundary conditions in a smooth bounded domain € C R?,
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is governed by the following problem in {(¢, )|t > 0,2 € Q}:
Op + div(pu) = 0,
Oi(pu) + div(pu ® u) + Vp(p, ) = divS(d, Vu),
O(ps(p, ) + div(ps(p, 9)u) + div <W> = w, (1.1)
u=¢q-n=0, ondf)
pli=0 = po, (pu)|t=0 = pouo, (ps(p,V))lt=0 = pos(po, Vo),
where 7 denotes the unit outward normal vector to the boundary of 2. The viscous stress S is described
by Newton’s law,

S(9, Vu) == fu(d) <Vu + VT — ;(div u)Id) + 7(0) (div u)Id,

q is the heat flux satisfying Fourier’s law,

and w stands for entropy production rate satisfying
w > % (S(ﬂ,Vu) :Vu — W) .

The pressure p = p(p, 1) contains two parts:
p(p,9) = pu(p,9) + prip, 9),

where pyr(p,9) and pr(p,9) denote the molecular pressure and radiation component respectively. Ac-
cordingly, the internal energy and specific entropy read as

6(,0, 79) = eM(p’ ?9) + eR(p’ Q9)7 8(p7 19) = SM(p’ ?9) + SR(/), 19)

respectively. At low viscosity, thermal conductivity and radiation, it is natural to think that the dissipative
terms in (1.1) will be much smaller than the nonlinear terms and the motion of the fluid is assumed to
be governed by the following compressible Euler system in {(¢,z)[t > 0,z € Q}:

0:pF + div(pFu®) =0,

A (pPu”) + div(pPu” @ uP) + Vpu (p¥,97) = 0,

A (pPsm(p®,97)) + div(pPsa(p®, 97 )u”) = 0, (1.2)
(u? - 1) |peon = 0,

PPli=0 = pf s (PP u") im0 = piug, (ps(p", 97))le=0 = 0§’ s(pb . V5),

However this approximation does not hold in general near the boundary 952, since the full Navier-Stokes—
Fourier system and the Euler system admit different boundary conditions in (1.1) and (1.2) respectively,
leading to a fast change of the flow in a neighborhood of boundary 9€2. The vanishing dissipation limit
problem for the full Navier—Stokes—Fourier equations is a physically significant but challenging problem,
due to this mismatch on the boundary.

The study of vanishing viscosity limit for solutions of the Navier—Stokes equations is one of the classical
problems in the mathematical analysis of fluid mechanics. For the incompressible Navier—Stokes equations
with non-slip boundary condition, Prandtl [10] introduced a concept of viscosity-dependent layer, that
is, boundary layer of the flow near the boundary. He also derived a simplified set of equations which is
now called the Prandtl equations to describe the motion of such layers. According to Prandtl’s theory,
the motion of the fluid in the boundary layer can be described by the Prandtl equations, and out of the
boundary layer, the fluid can be approximated as inviscid one. Till now, there have been many interesting
mathematical results on the well-posedness of the Prandtl equations, while the rigorous justification of
Prandtl’s boundary layer theory is known only for some special cases. One can see the recent survey
article [9], and the references therein.
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There is another way to analyze this vanishing viscosity problem without use of the Prandtl equations,
which was introduced by Kato in [5]. By constructing an artificial boundary layer with thickness propor-
tional to the viscosity, Kato studied the small viscosity limit of the incompressible viscous fluid with the
non-slip boundary condition, and concluded that the viscous fluid can be approximated by the inviscid
fluid in the energy space under a dissipation condition of energy in the boundary layer. Later, Wang [12]
relaxed Kato’s condition to the case only containing the tangential derivatives of the tangential or normal
velocity at the expense of increasing the thickness of the layer slightly. For the compressible Navier—Stokes
system, Sueur [11] gave a sufficient condition for the convergence to hold for the compressible viscous
flow, which can be regarded as an extension of Kato’s result in the compressible fluid. Recently, Kato’s
idea was also used to investigate the vanishing « limit for the Euler-a system[7], and the relation between
that and the vanishing viscosity limit for the Navier—Stokes equations[8]. More results and references can
be found in the survey article [9].

For the full Navier—Stokes—Fourier system, Feireisl [4] considered the vanishing dissipation limit prob-
lem with a complete slip boundary condition, and obtained a convergence result. This result is path
dependent, that means, the vanishing rates of the singular parameters are interrelated in a special way.
Our main goal in this paper is to develop the idea of [12] to study the vanishing dissipation limit of the full
Navier—Stokes—Fourier system with non-slip boundary condition. We shall obtain a sufficient condition,
which contains only the tangential or normal component of velocity and the integrability of temperature
near the boundary, for the convergence to take place in the energy space L?(Q) uniformly in time. A key
lemma what we shall use is the relative energy inequality, derived from the definition of weak solutions
to the problem (1.1). To get our main result, we construct an artificial boundary layer v in Kato’s way
and take U = u” — v as a test function into the relative energy inequality, where u” is a smooth solution
to the problem (1.2). The existence theory of weak solutions to the full Navier—Stokes—Fourier system
was given in [2]. Since the temperature can not be controlled by the relative entropy under the structural
restrictions, which are required for the well-posedness of (1.1) when radiation vanishes, our result is also
path dependent.

This paper is organized as follows. In Sect. 2, we present some preliminary results on the well-posedness
of the problems of the full Navier—Stokes—Fourier system with non-slip condition and the Euler system,
then state the main result of this paper. In Sect. 3, we introduce the relative energy inequality given in
[3] and a vital lemma. The proof of the main result will be given in Sect. 4.

2. Preliminaries and the Main Result

In the following calculation, we shall use the notation C' to denote a generic constant that may change
from line to line.

At first, in accordance with the second law of thermodynamics, the continuously differentiable ther-
modynamic functions p, e and s are interrelated through the Gibbs’ function:

9Ds(p.) = Delp. ) + (.00 (3. (21)

where the symbol D stands for the differential with respect to the variables p, ¢.

Let us first recall a definition from [2], of weak solutions to the full Naiver—Stokes—Fourier system with
non-slip conditions.

Definition 2.1. Let 2 C R? be a bounded Lipschitz domain. For any T' >0, we say that a trio {p, ", u}
is a weak solution of the problem (1.1) for the Naiver—Stokes—Fourier system with non-slip boundary
condition on [0, T, if
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1
p, div u, plul?, p, pe, ps, 198 Vu, g2 VY € L'((0,T) x Q),

PUaPSUaE GLI((OvT) XQ)aSEL (( )XQ)v
Vu € LY((0,T); L*()),9 € L*((0,T) x Q), V¥ € L*((0,T) x Q),
p(t,x) >0, ¥(t,z) > 0 for a.a.(t,z) € (0,T) x Q, uloq =0,

for certain o > 1, and
(i) the identity

[ oo soteyde = [ poot0.de = [ [ 0016+ pu- T)aadt
holds for any ¢ € C1([0,T] x ) and any o € [0,77;
(ii) the identity

| ooyt ot yde = [ puuan(0, )i

= /J / (pu- 0y + pu @ u: Vo + p(p, ¥)diveg — eS(9, Vu) : Vo)dxdt
0o Jo

holds for any ¢ € C([0,T] x ;R?), ¢|sq = 0, and any o € [0,T];
(iii) the identity

[ moston 901000, = [ pstp.0)(o. o0, i+ [ ’ | o

-/ ’ / (ps(p, )04+ ps(p, O)u - Vo + W) dudt
0 Q

holds for any ¢ € C*([0,7] x Q), and any o € [0,T];
(iv) the total energy is conserved:

[ (5ot + 0.0 (0.2 = [ (Goolucl + poeton.00) ) o (22

for any o € [0,T].

To quote an existence result of weak solutions given in [2], we give several assumptions on the state
of functions in the Navier-Stokes—Fourier equations. Suppose that transport coefficients in (1.1) take the
form

A) ~ p(1+9), 0<7() S pl+73), p>0, (2:3)
and
R(0) ~ k(1 4+9) 4+ a¥® k,a > 0, (2.4)
where “a < b” means a < Cb for a positive constant C, “a ~ b” means a < b and b < a. Assume that the
pressure p = p(p, ) can be written in the form

p(p, ) = prm(p,9) + pr(p, V), (2.5)
where
5 a
palp.) =057 (L) and palp. ) = 50" (26)
with
P € C0,00) N C?*(0,00), P(0) =0, P'(Z) > 0 for all Z > 0. (2.7)

In addition, the internal energy has the from

6(/)7 19) = eM(p’ 19) + eR(p’ 7‘9)7 (28)
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where, in agreement with (2.1)

395 p 94
W) = ——P(L W) =a—. 2.9
eM(p7 ) 9 P (19%)7 eR(pa ) a o ( )
The entropy s has the expression,
4a 93
s(p, ) = sp(p, V) + sr(p,¥), where sg(p,d) = 3, (2.10)
In accordance with the thermodynamic stability of the fluid system, we suppose
0 <c<agenm(p, V) <C, 0pp(p,V¥) >0, for all p,9 > 0. (2.11)
By virtue of the first inequality in (2.11), we have
SpP(Z)-P(2)Z
0<c< 3 (2) (2) < C for all Z > 0. (2.12)
This implies that the function Z — PZ(? is decreasing, and we suppose that
3
P(Z
lim (5 ) =P, >0. (2.13)
Z—oo 3
Finally, in agreement with the third law of thermodynamics, we suppose that
33P(Z)-P(2)Z
sm(p,9) =S % ,SN(Z2) =23 (2) (2) <0, lim S(Z)=0. (2.14)
V2 2 Z? Z—00

Under the above assumptions, the existence of weak solutions to the problem (1.1) has been obtained
in [2]:

Proposition 2.1. Let Q C R3 be a bounded domain of calss C*V v € (0,1). Assume that the initial data
(po, Vo, uo) satisfy

po >0, 9 >0, po € L3(Q), pos(po, Vo) € L'(Q), (2.15)
pouo = 0 a.a. on the set {x € Q|po(x) = 0},

2 1
/ podz >0, / Md% < oo, Fy= / <Po|uo|2 + Poe(Poaﬂo)) dx < oo,
Q Q o o \2

the thermodynamic functions p,e,s and the transport coefficients u,n, k obey the structural hypotheses
(2.3)~(2.14), then for any T > 0, there exists a weak solution {p,d,u} of the problem (1.1) for the
Navier-Stokes—Fourier equations on [0,T]. Moreover,

9 € L((0,T); LY(Q)) N L*(0,T; WH2(Q)), u € L*(0,T; Wy ?(Q)),
p € Cu((0,T]; L3 () N C([0,T); LN(R), pu € Cu([0,T); L (),
p(t,x) >0, I(t,z) >0 for a.a.(t,x) € (0,T) x Q,
We say that (pP, 97, u¥) is a classical solution of the Euler system (1.2) in (0,7 x Q if
PP 0F uP e C([0,T] x Q), pP(t,x) >p>0, vE > 9 >0,

for all (¢t,z) € [0,T] x ©, and (pf,9F, uF) satisfies (1.2). The following existence of a smooth solution to
the problem (1.2) for the Euler equations can be found in many works, cf.[1,6]:

Proposition 2.2. Let s > 3. Suppose that (pE, 95 ,ul) € H*(Q), satisfies the compatibility conditions up to
order s — 1. Then there exist a positive Ty such that the problem (1.2) has a unique solution (p¥, 9% u®)
on [0,Ty] such that

(p”, 97, u") € My ([0, To]: H*(9)).
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Denote by
I .= {.’E € Q|dQ(IL') < 6}.
with dq(x) := dist(z,0Q). The main result of this paper is as follows:

Theorem 2.1. Assume T > 0 and (pP,9F u¥) is the classical solution of the problem (1.2) for the Euler

equations corresponding to an initial data (p%,9E,ul’) on [0,T] as given in Proposition 2.2 such that

pF € (o, 7], v € [9,9], where p <p, ¥ <9 are positive constants. For the viscosity and heat conduction
coefficients u, k,a € (0,1) given in (2.4)~(2.5), with the relations a ~ % and k = O(a3), let (o}, 0%, ult)
be an initial data such that the problem (1.1) for the full Navier—Stokes—Fourier system has a weak solution
(pH, 9" ut) on [0,T] as given in Proposition 2.1. Assume that p}y and 9f are bounded with positive lower
and upper bounds, moreover the initial datum satisfy

tn (110 = 98 oy + 11 = 0F ooy + [ oflu = uPac) = (2.16)
then we have
sup (n o = sy + 9 =0 liagoy + [ Pl - uEFdx) (1) -0, (2.17)
+€[0,T) Q

when p — 0, if for some 1 < A < o0,

19| 20,7227 (0s)) < C (2.18)
and one of the following two conditions
) B 2
uiTl / (p(un)> dxdt — 0 when p— 0, (2.19)
[0,T]xTs do
and
_ 1 2
,u% / (p(u7)> dzxdt — 0 when p— 0, (2.20)
[0,T]xTs dg

holds, where u" - n and u* - 7 denote the normal and the tangential components of ut respectively, and
§ — 0 when pn — 0, with p = o(61F%).

3. Relative Energy

As in [3], we introduce the following relative energy £([p, 9]|[5,7]) of (p,9) with respect to (p,9):

E(lp, (5. 9)) = Hy(p,9) — ,H;(5,9) (0 — p) — Hy(, D), (3.1)
where Hj(p,?) is a thermodynamic potential termed ballistic free energy
H;(p,9) = pe(p,d) — Dps(p, ).
Next we introduce a relative energy inequality which will be used to prove our main result:

Proposition 3.1. Let T > 0 and (p*,9*,ut) be a finite energy weak solution of the problem (1.1) for
the full Naiver—Stokes—Fourier system on [0,T] associated to an initial data (ply, 9%, uly). Then, for any
smooth test functions (r,©,U), r and © bounded below away from zero in [0,T] X Q and Ulsq = 0, we
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have the following relative energy inequality:
1
[ (5ot = 0P + £, 041 0D) ) (0)da

BoOTYRY) - VYH
// ( 19”,VUM):VU“—Q(19 ’Vgu) v >dxdt

< [ (Gobiut = 0ol + £t 9511, 0D )
+ /U/ PO U + (u* - V)U) - (U — u*)dadt — /U/ p(pt, 9*)divUdxdt
// S, Vub) : VUdadt — // B (s(p", ) — s(r, 0)) (D10 + u - VO)dudt

// = W VGdfcdH// ((1 )atpr(a) :u“ Vp(r, @)) dedt  (3.2)

for any o € [0,T], where (ro,Op, Up)(x) = (r,0,U)|1=0-

The proof of this proposition can be found in [3].
At the end of this section, we introduce two important inequalities, which will be used in the next
section.

Lemma 3.1. For any constants

0<p<p<p<p 0<¥<VI<I<A,
define

K = {(p,ﬁ)eRﬂnggﬁggﬁgﬁ}.

Then there exists a constant C depending only on K such that for any given p € [p,p], 0 € [0,7],
(1) when (p,9) € K,

E(p, 915, 9]) ~ (Ip = > + [0 = 9*),
(it) when (p, ) € [0,00) x (0,00)\ K,
E(lp N[5, D)) > Crc(1+ p+ pe(p, ¥) + |ps(p, 9)]).

Proof. The rough idea of the proof was given in [2]. For completeness, we give the detail calculation here.
Decompose E([p, V]|[p,I]) into

E(lp, 9|5, 9)) = Flp] + Glp, I,
where
F[,D} = Hﬁ(P, 7§) - apHﬁ([)? &)(p - ﬁ) - H@(ﬁv ’&)7 G[pv 19] = Hﬁ(pv 19) - H@(pa é)
Using (2.1) and (2.11) we can see that
Pl = 0, (0. ) = 0,Hy(5.0). F"lo] = 5, Hy(p.9) =~ 0,1(p.9) >0,

This implies
p — Fp] is strictly convex,

and F[p] attains its global minimum 0 at p = 5. On the other hand, using (2.1) again we deduce that
09Glp,9) = Dy Hy(p,9) = pdys(p, 9)(9 — 1) = Loge(p,9)(9 = D),

this means that G|p, -] is strictly decreasing for ¢ < ¥ and strictly increasing for ¢ > 9 for any p > 0.
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If (p,¥) € K, by using the Taylor-Lagrange formula we get
[ inf 97 Hj(p 19)] (p—p)> < Flpl < | sup 92 ,Hz(p,D)| (p—p)>.
p<p<p P<p=<p

Moreover, we have

9
Glo.9) = Hy(p.) = Hylp.9) = [ poos(p.t)(e = Dyt

which implies,

1 ~ 1 -
— | inf N —9)2< - f 9 —9)>.
5 |t P05l 0)| 0= 07 <Gt < 3| int pusio0)] (0~ )

Thus, we get the assertion given in (i).
If (p, ) € [0,00) x (0,00)\ K, since

0,E ([0 9|1, ) = 0, H(p, 0) = 0, H (5, ),

for any fixed ¥ > 0, there exists a o[#J] such that &([p,9]|[p,V]) is strictly decreasing for p < o[#J] and
strictly increasing for p > p[d], and attains its global minimum at ¢ = p[]. Notice that

00€([p. 9)|[p. 7)) = Sooe(p. ) (0 — D).

we know that £([p, ]| [p, J]) is strictly decreasing for 9 < 4 and strictly increasing for 9 > 4 when p > 0.

Since &([p, V]|[p,V]) attains its global minimum only at the point (5,9) and 9K is compact, we conclude
that

Elp N I) = | inf Ep 0l 3) >0, (33)

for all (p,v) € [0,00) x (0,00)\ K.
Notice that G[p, 9] > 0 for all p > 0,9 > 0, we have

£(lp.9)[5. ) > Flo).
If p <P, we get from (3.3) that

E([p, 9|5, ) > Cp. (3.4)
If p > 7, we define a function of p:
F(p) = Fl] - FL”]/).
Since
F (o) = o) = L) = 2G0,H(p.9) = 10,H3(7.9) ~ Hy(7.9) + H(7.9)

and F(p) = 0, we can obtain

this implies
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Combining (3.4) with (3.5), we have
E(lp,91I[5.9]) > Cp, for all (p,0) € [0,00) x (0, 00)\ K. (3.6)
If ps(p,¥) < 0, we can easily see that
Hj(p,0) = pe(p,d) +|ps(p, 9,
by using (3.3) and (3.6) we can get
E([p, 9|5, 9]) Zpe(p ) +J|ps(p, )| =18, Hg(p,9)(p — p) + Hy(p, D)
>pe(p, ) +9|ps(p, )| = CE([p, 9|15, J]),
which implies
E([p, 91|, 9]) =Cpe(p,9) + Dps(p,9)|. (3.7)
If ps(p, ) > 0, from E([p, 9]|[p,V]) > 0 we know
Hyj(p,0) = 8,Hy5(5,9)(p — p) + Hy(5, ),
this implies
1 1 1 1 _ = - -z
Hj(p,9) = 5pe(p, ) + 5Ha(p,0) 2 5 pe(p:0) + 5(9pHy5(5,9)(p — ) + Hy5(p,9)),
thus
1 . L o
Hj(p,9) 2 7 (pe(p, 0) + 0ps(p, 0)) =18, Hy5(p,9)(p — p) + Hg(p, D).
With the help of (3.3) and (3.6) we get

E([p, V]|, 9)) = Hy(p,9) — CE([p, 9|3, 9]) > i(pe(p, ) + Ups(p,9)) — CE([p, 9|5, V),
which implies
E([p, V|5, 9]) = C(pe(p, V) +Dps(p,9)). (3:8)
Summing up (3.3), (3.6), (3.7) and (3.8) we have (ii). O

Remark 3.1. If the initial datum pff and 9} are bounded with positive lower and upper bounds, then by
using Lemma 3.1 we can deduce from (2.16) that

E([po, Volllpg , 95]) — 0 as pp — 0.

4. Proof of the Main Result

In this section we will prove our main result, Theorem 2.1.
First from (2.9) and (2.13), we know

. 3. 2P(Z) 3 2
Jmear(p V) =5 Jim p3 =5 =505 Pec. (41)
Combining (2.8), (2.9), (2.11) with (4.1), we deduce
pe(p,9) > C (pg + pU + m94) . (4.2)

Let (p*, 9", ut) and (p¥, 9% uP) be weak and classical solutions to problems (1.1) and (1.2), respectively,
as given in Propositions 2.1 and 2.2. Let

B0 - [ (;pu PP +s<[p“,z9#]|[pE,ﬂE]>) dr.
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It is easy to deduce that
E(t) € L*°(0,T). (4.3)

For simplicity of notations, we drop the index p in the following calculation.
We introduce a Kato type “fake” boundary layer, by defining

vi=¢ (dﬂ(z)> UE|897

0
with
£€C[0,00), &0)=1, [€llp=<oo, [§& [lze<oo, supp&C[0,1)
and § = 6(u) tending to zero as u — 0, which will be determined later.
It is obvious to see that v has the following properties:

vn =0, [[v]lLe(jo,11x0) = O(1),
||3tU||Loo([o,T]xQ) =0(1), [|div U||L°°([O,T]><Q) =0(1),
10-vr | Lo (0,11x2) = O(1), [|0nv7]| Lo jo,11x02) = O(6 ™), (4.4)

where v,, and v, denote the normal and the tangential components of v, 9, and 0, denote the normal
and the tangential derivatives respectively.
Set (r,0,U) = (pP,9F ,uF —v). Since U|sq = 0, by applying Proposition 3.1 we obtain

/Q (;pu —U? +&([p, ﬁ][pEJ?E])) dx + /OU/Q % (S(ﬁ,Vu) :Vu — W) dxdt

< [ (Gooluo = U0 + Eon, Bl (0., 050, )
—i-/O/Qp(atU + (u-V)U) - (U — u)dzdt —/O/Qp(p, V)div Udxdt
+ /U/ S(9, Vu) : VUdzdt — /U/ o(s(p,9) — s(p¥,95))(0,9F + u - VOF)dadt
0Jo 0Jo

[ 90V | GoE g + [ ((1 . g) Oup(p®,0) — Lo vp@E,ﬁE)) dedt.  (4.5)
0JQ v 0./0 P p

We divide the terms on the right hand side of (4.5) into four parts. The first part comes from the
initial data

B = [ (Gooluo = U0, + Eon.Dull[(0,,0%(0,) )

the second one is the mobility part,

Ri= /OU/Q p(OU + (u-V)U) - (U — u)dzdt — /OU/QpM(p, P)div Udxdt

=[] sasto.) = s (o 9)(@0" + - 90P
0JQ

# [ (1= 2 ) dsetoP.0%) = L T, 0%) ) dac.
0JQ P 4

the third part is the radiation component,

= / / pr(pyV)div Udzdt = // p(sr(p,9) — sr(p”, 97)) (09" + u - VO )dadt
0JQ 0 Ja

[ (1= 5 ownto?.0%) = Lo Vonlo,0%)) o,
0/ P P
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and the last one is the dissipation component,

Ry = / / S(¢, Vu) : VUdxdt — / / M-Vﬁdedt.
0JQ 0JQ v

In next subsections, we shall estimate each part and then get the main result finally by using the
Gronwall inequality.

4.1. Estimates of the Mobility Terms

With the Euler equation (1.2) and the Gibbs’ relation (2.1), we consider R4 in this subsection. Decompose
the first term of R as follows

/U/ AU + (- VYU) - (U — u)dadt
0JQ

= /OU/Q p(Ou® + (uP - V)uP) - (U — u)dxdt + /OU/Q plu —u®) - Vul - (U — u)dadt

— // p(Ow + (u-V)v) - (U — u)dxdt. (4.6)
0Jo
From (1.2) we have that
1
O + (u® - V)u¥ = ——5 Vpu (p®,9%),

which together with (4.6) gives that

/U/ AU + (- VYU - (U — u)dadt
0JQ

://%VpM(pE719E)~(u—U)dxdt+//p(u—uE)~VuE-(U—u)da?dt
0J/Q P 0J0Q

- /U/ PO+ (u- V) - (U — w)dwdt

2 (PP 9F) - (u — )dxdt—//dw u— U)par(pF, 9F)dxdt

+/O/Qp(u—u )-VuP - (U — u)dedt — // (O + (u-V)v) - (U — u)dxdt. (4.7)

Next we decompose the last term of Ry into two parts,

//(( >8tpM(p 0%) = pE“'VpM(pE,ﬁE)>dmdt

//( > Opm (PP, 97) +u - Vpar (p?,97)) dxdt+//pM(pE,19E)div udxdt.  (4.8)
0JQ
Combining (4.7) Wlth (4.8), it follows

// OU + (u- V)U) - (U — u)dwdt

+/o/9(<1_pE> 8tp(PEﬂ9E)_p€5u'vP(PE’79E)> dzdt

= /OU/Q <1 — p’fE) (Oepat (P, 97) + U - Vpar (p7,9%)) dadt + /OU/QpM(pE,ﬁE)div Udzdt
+ /OU/Q p((u—uf) - V)P - (U — u)dadt — /00/9 p(Ov + (u-V)v) - (U — u)dzdt. (4.9)
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‘We observe that

O (p",97) + U - Vpa (p”,97) = 8,par (07, 97) (81p" + U - Vp¥)
+ dopu (p,9F) (097 + U - VIF) .

Moreover, (2.1) implies that
1
PP 0,50 (p",97) = —praﬁpM(pEﬁE)- (4.10)

Using again (1.2) we get
op? +uf - VP = —(div uP)p". (4.11)
From (4.10) and (4.11) we can obtain that

// (1—) (Oepra (p7,07) + U - Vpar(p”,0%)) dadt
://pE(p—pE)apsM(pE,ﬁ‘E) (0,9F + U - VI¥) dadt
0Jo
o a E _
—//(pE—p)appM(pE,ﬁE)div udedt—// piEpappM(pE,ﬁE)wVpEdmdt
0J0Q o/ P
://pE(ppr)apsM(pE,ﬂE) (0,97 + U - VIF) dadt
0Jo
o o E_
—//(pE—p)appM(pE,ﬁE)div dedt—// %appM(pE,ﬂE)v-Vpdedt
0Jo
// p)0,par(p”, 97 )div vdzdt. (4.12)

Combining (4.5), (4.9) with (4.12), we conclude that
--/ / (530(p9) — 531 (07, 95)) = pEBys21 (07, 9%)(p — pP)] (B0F + U - VP )drdt
+ / / (par(p",9%) = B,pas (07, 9%) (0" — p) — pas (p, 9)) div Udadt
0/

o o E
- //(pE — p)0ppar (p”, 97 div vdxdt —// P
0Ja 0oJa

+/OU/Q'0((U_UE)V)UE(U_u)dxdt—i_/og/ﬂp(sM(pvﬁ)_SM(PE,ﬁE))(U—u)Vﬁdedt

Lo 0,pai(p”,07)V "

7
_ Z,le’ (4.13)

with obvious notions R{(l < j < 7). We shall estimate each term step by step.
Denote by

Qess = {(E S Q‘(pa ’19) € K}, Qres = Q\Qess»
with
%

Kz{(p,ﬂ)€R2|2<p<2p,2 19§219}.
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Let R} = ’leess + eres(l < j < 7), where R{ess, ’R{Tes denote the integrals in the domains Qs

and Q,., respectively. We will estimate Ri together with R? by using Lemma 3.1.
First we consider the essential part R} ., + R?, ... Using (4.10) and (4.11) again, we deduce

Dopar (p®, 97 )div u = _ﬁaﬂpM(PEaﬁE)<atpE +uf - vpP)

= pP (Oesn (p”,07) +u” - 501 (p", 7)) = pP0gsni (p",97) (0,07 + u” - VIP),
which together with (1.2) implies
Doprr (pF,0F)div uf = —pFoygsn(pF, 97)(0,9F + u¥ - voF). (4.14)
Combining (4.13) with (4.14), we conclude that
Riess less - // SM p> ) - SM(pE719E)) - pEaPSM(pE’ﬂE)(p - pE)
—pP0ysn (p,0F) (9 — 9F)] (9,97 + U - VIF)dzdt
// (par(p®,9%) = 8o (p®,0F) (0" = p)

—09pu (p¥ 19E)(19 =) —pu(p,9)) div Udzdt

// 9)dgpar (pF, 0F)div vdadt
// v - Ogsar(p?, 9F) VI drdt
=Ty +1Zs + I3+ 1y, (4.15)

with the obvious notations Z;, (1 <j <4).
With the help of the Taylor-Lagrange formula and Lemma 3.1, we have

= - /7 (p — ") (sar(p, D) = sar(p”,97)) (09" + U - VI )dadt

/ / (521 (p9) — Byt (07 9F) (0 — 0) — Bysrs (07, 97) (0 — 0F) — s (o, 07))
(0F + U - VIF)dxdt

<c// - pE|< sup [3psni(p)llp— pP1+ sup |9psni(p,9)[10 — ﬂE|> dadt
655 p

(p,9)eK (p9)eK

+c// sup 102 sat(p, ) lo — P12+ sup (02 gsne(p,9) | — o |10 — 97|
ess (PO)EK (p,9)EK

93 g5 (p, V)[[0 — OF |Pdadt

+ sup
(p¥)EK

<c// p— PP+ |0 ﬁE\Qdmdt<C//8 p, 3][[p7, 9F]) dudt. (4.16)

Similarly, we can estimate Z on the right-hand side of (4.15) by using (4.4) to get

T,<C / / 1ar (07, 9F) — D01 (07, 9F) (07 — p) — Dopar (07, 07) (0F —9) — pas(p, 0)| dudt
sc// (o — pP 1 + 10 — 0F[2)drdt
0 ss

<c /O J/Q £(lp, 9|[o", 97])dadt. (4.17)
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Using the Young inequality, (4.4) and Lemma 3.1, we obtain

2 <c//
T'sNQ

|0 — 9P |2 dxdt + C/ |div v|*dzdt
0JIs

ess

< C// E([p, |[p", 97))dxdt + C6. (4.18)
Similarly, we have o
7, < 0/7 |0 — 9F |Pdxdt + C/U lv|*dxdt
0 JTsMNQess 0JTs
< 0/7 E([p,9]|[p¥,9F]))dzdt + C. (4.19)
Thus we get from (4.15)—(4.19) thf:t ’
Ripss + Riewe <C [ [ £llp. 0111, 0" ot + 5 (4.20)

Now we consider the residual parts R}, . + R%,... Recall that
eres + 7?’l res

-/ / (531(p, 9) — 531(07,97)) = pPDysrt (07, 97)(p — p) (00" + U - V9P )dadt

/ / (11 (0%, 9%) = 8,0 (07, 97) (0 — p) — par(p, V) div Udat. (4.21)

Since pas(p,¥) = 2penr(p,¥), by using the Young inequality, (4.2), (4.4) and Lemma 3.1, we deduce that

eres %res < C// pSM pa peM +p+ l)dl‘dt
= C// (ps(p, 0) + pe(p,9))dxdt

<c [ [ e ollp® oz (4.22)
0JQ
Combining (4.20) with (4.22), we get

Lemma 4.1. For the terms R and R? given in (4.13), we have the estimate
Ri+RI<C / / E([p,9]|[p", 9F))dadt + C6. (4.23)
0Ja

where E([p, 9]|[pF,9F]) is the relative energy defined in (3.1).

The estimates of the essential parts of R} and R} are similar to that in (4.18) and (4.19), and we can
get

RE .+ R < c// E[p,9]|[p¥,9F))dzdt + C. (4.24)
0JQ

For the residual parts of R} and R}, using Lemma 3.1 and (4.4) we have

17‘66 = // ppM(p vF )dZU vdxdt

<C’// (p+ 1)dzdt

<c /0 /Q £(lp, 9]|[p7, 95])dwdt (4.25)
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lres: //m
<C// 1)dzdt
<c| /Q &([p, 9]1[p®, 9P dadt

Combining (4.24) (4.25) with (4.26), we get

and

Po. Do (p¥,9F)V pP dzdt

Lemma 4.2. For the terms R3 and R} given in (4.13), we have the estimate
RY+RT < C//Qé'([p,19]|[pE,19E])d;vdt+C(S.
0

Now we estimate R. Decompose it into two parts:

RT = /OU/Q p((u—u®) - V)u - (U - u)dzdt

= [ [ ottw=0)- 9 - fa = ydode— [ [ plo- 9y (U~ wydnds

=T+ Ja.

It is clearly that

T gc// plu — U*dxdt.
0JQ
For [Jo, we can easily deduce from (4.4) and Lemma 3.1 that
T2 < C’// plv||u — Uldzdt + C// plu — U|dzdt
< C’// plu — U|*dxdt +/ |v|2dadt + C// pdxdt
Is Qres

< C// p\u—U|2dxdt+C// £(1p, 9|[p", 97))dadt + C.
0Ja 0Jo
Combining (4.28) with (4.29), we have
Lemma 4.3. For the term R given in (4.13), we have
RS < 0// plu — UPdzdt + C/ E[p, 9)|[p", 9F))dzdt + C6.
0Jo 0Jo

where E([p, 9]|[p¥,9F]) is the relative energy defined in (3.1).

Now we study RY. It is easy to see that

R s < C// p(sar(p, ) — sar(p®,9%))||u — Uldxdt.

407

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)
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Using the Young inequality, the Taylor-Lagrange formula and Lemma 3.1, we obtain

/ / 5319, 9) — 521(p%, 9)) lu — U\dadt

< 0/0 (/QGSS(SM(,O, 9) — sM(pE,ﬁE))?dx)é </Q ol — U|2do:) St
< C/Ug(t) </ |uU|2dx)édt

<c//5 p,9]|[p", %)) dxdt+C//p|u7U|2dxdt (4.31)

where

G(t) = </ sup |0psar(p,9)Plp— "1+ sup  [9psar(p, V)|V — 19E|2d93> :

QSSS (p,ﬁ)EK (p719)eK
By using (2.1), (2.5), (2.6), (2.11) and (2.12) we can deduce that
sar(p,0) < C (1 + [log 9] + |logpl) -

Thus with (4.2) and Lemma 3.1, we have

?TPS<C// p(sar(p,0) — sar(p?, 9F))? dxdt+C’// plu — Ul?dzdt

<C’// p—i—pﬁ—l—p%—l—C)dxdt—i—C//p|u—U\2da:dt
Q

res

<C//5 ([, 9| [p", 7)) dmdt+C//p|u—U| dadt. (4.32)
From (4.31) and (4.32) we obtain

Lemma 4.4. For the term RS given in (4.13), we have the estimate

RS < C / / E([p, 9)|[p", 0F))dadt + C / / plu — UJ2dadt. (4.33)
0JQ 0JQ

Finally we turn to study R]. For simplicity of presentation, we consider the case of boundary being
flat. As usual, one can treat the problem with a general smooth boundary, by using the technique of
localization and transforming the curved boundary into a flat one. Without loss of generality we assume
that the domain lies in the upper half plane, Q = {(z1, %2, 73)|(z1,72) € R%, 23 > 0}, with {z3 = 0}
being the boundary.

We decompose R into two parts,

= A1 + A, (4.34)

A= / / pOw - (u— U)dadt, Ay = / / p(u-V)v - (u—U)dzdt.
0JQ 0JQ

Using (4.4) and the Holder inequality, we estimate A; as follows,

Ai SC// p|8tv||u—U|dxdt+C// plu — Uldzdt
<C’// plu— U] dxdt+C’// |0 v dxdt—l—C// pdxdt
0 0JTs Qres

— 2 i B E X . .
SC/O/QpM Ul2d dt+c/0/ﬂe([p,q9]|[p L 9E))dzdt + C5 (4.35)

with
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For Ao, with the construction of v we can decompose it into

- 2 3
079 1 j=1

by denoting w = u — U. With (4.4), the Holder inequality and Lemma 3.1, we get

//pujwza vidxdt = //pijla vldxdt—l—//pU w;0jv;dadt,
Q Q
SC’//p|w\ da:dt—l—/(/ plw;| daz> </ p|Uj6jvi|2dx) dt
0J0 0o \Jo Q

SC’//p|w\2d:cdt+0//5([p,19]|[pE,19E])dxdt+C5 (4.37)
0JQ 0JQ

for 4,7 € {1,2}, by noticing that

/P|Uj6jvi\26iﬂ?:/ P\Ujajvi|2dx+/ p|U;0jv;|*da
Q

ess res

<C ldx + C pdx

FsNQess LsNQypes

< C5+C/ﬂ€([p,19]|[pE,19E])d:v.

Now let us study another two terms of As given in (4.36), that is,

Bl //pU3w183v1dxdt 82 //pu;),wgagvgdl‘dt

The first way to estimate B; is as follows. By using (4.4), the Young inequality and the Poincaré

inequality, we have
// e wldgag’l}ldl‘dt
Q

<05 / 122 e 10 | 2 ot

02 ou
<om=|Z2

ny
< O N5 aoryern + % [ 1owunlaed.

for any fixed n > 0. Obviously,

u//|Vw|2d:cdt§u//|Vu|2d:cdt—|—,u// |Vv\2dzdt+u//|VuE|2dxdt
0Ja 0Ja 0Jrs 0Ja
su// Vul*dedt + CE + O,
0Ja Y

thus we have

B, < 7/ / \Vul2dedt + C’g e (4.38)

On the other hand, to estimate 31 we can decompose it into two parts,

B, ://pusulagvldxdt—//pu3U153U1d»Tdt~ (4.39)
0JQ 0JQ
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For the first term on the right side of (4.39), by using (4.4), the Young inequality and the Poincaré
inequality we have

//pugulagvldxdt:// P usdgOzv1dadt
0Ja

puU
<05 [ 152 uacp Osaloardt

5 pu np [
< =I5 B oimery + 5 [ 100wt (4.40)

Next we study the second term on the right hand side of (4.39). First from the definition of weak solution
of (1.1), we know that the identity

/O(I/Q(Pat(b—Fpu-Vd))dxdt— /Qp(g,.)qs(gv.)dx_/QpOQS(O?,)dx (4.41)

holds for any ¢ € C1([0,T] x ;R) and any o € [0,T]. Noticing that vu¥ € C1([0,T] x (;R), we take
¢ = viul’ in (4.41) and get

/Qp(a N(vuf) (o, )dz—/ﬂpo(vlul )(0,-)dx = /0/ (pO(v1uf) + pu - V(vyul))dzdt,

which implies

//pu?,ul Osvidzdt = / plo, ) (vuf)(o, )dxf/po(vlul dxf//pat vyul’)dadt
//qu[?g vlul da:dt—//pulal vlul )dxdt

—//qugm@gu{;dxdt. (4.42)
0

Similarly, we have the identity

7 1 1 1 [
// pusv10svdrdt = 7/p(0',')1}%(0’,')d1'—7/ pov3 (0, -)dx — f// pO;(vi)dxdt
0Ja 2 Ja 2 Ja 2JoJa
— //pu2v182v1dxdt—//pulvlawldajdt (4.43)
0Ja 0Jo

by choosing ¢ = v? in (4.41). Thus, from (4.42) and (4.43) we have by noticing U; = u¥ — vy,

//pu?,Ulagvldxdt:/ p(a,-)(vluf;)(a,-)dm—// pw2ds(v1ul)dzdt + R (4.44)
0Jo Ts 0JTs

R = —/ po(v1ut)( / / pO;(v1ul )dxdt

I's s
1

—7/ p(o,)v? (o, -)dx —|—7/ pov2(0,)dx + = / / pO¢(vi)dxdt

2 s s
/ / pw101( v1u1 d:rdt—/ / pwgvlagul dxdt
F5 Fé

+/ / pw2’l}1821}1d$dt +/ / pwlvlﬁlvlda:dt
0 F5 0 F&

7/ / pUgag(vluf)dxdtf/ / pUlal(vluf)dxdtf/ / pUsv1 Ozut dadt
0 F5 0 F5 0 Fé

with



Vol. 20 (2018) On the Vanishing Dissipation Limit for the Full Navier—Stokes—Fourier System 411

+ / / pU2U18201d$dt + / / pUlvlalvldxdt.
0 F5 0 Fé

From (4.4), we can deduce that

/ p(o,)(vrut) (o, )da = P(U,‘)(Uluf)(Uw)diH/ p(o,)(vrut) (o, -)da
T's I'sNQess FsNQres

AN 3
lde +C (/ dex) </ 1dx>
TsNQres Ts

I[o", 9E))dx 4 C(n)é. (4.45)

IN

IN

/
16
and

// pwgag(vluf)dxdt§0/</ p|w|2dm> (/ pd:c) dt
0JIs 0 Q s
SC’//p|w|2d:rdt+C'//5([p,19]|[pE,19E])dxdt+C5. (4.46)
0Ja 0Ja

We can estimate each term of R given in (4.44) in a way similar to (4.45) and (4.46) and get

//pU3U183111da:dt<C//p|w| dmdt—l—C//é' p,9)|[p”, 9F))dzdt

v / E(p. 9)|[0", 9F))dz + C(n)s. (4.47)

Plugging (4.40) and (4.47) into (4.39), we get
6% pus nu [ 7
By < C(n)—|=—|3: = D3us]|3 20 dt C// *dxdt
V< OO TN B o + 5 [ Nosuslayie +C [ [ pluar

+gn [ Ep.0lIP. 9 )do +C / / E([p. 90", 9"])ddt + C()o. (4.48)

Similar estimates can be obtained for Bs.
Combining (4.35)—(4.38), (4.48) with (4.34) it follows

Lemma 4.5. For the term R given in (4.13), we have the estimates

RZSC//p|u—U|2dxdt+ C//S([p,ﬁ]\[pE,ﬁE])dxdt+Zu// Vul2dwdt
0JQ 0JQ

pu n
C(n *H ||L2 (o,11xr5) T C(n )5 +C6+Cp (4.49)
and

R < c// p|u—U|2dxdt+C'/ 5([p,19]\[pE,19E])dxdt+Qu// |Vu|*dxdt (4.49")
Q Q Q

pu7’

IS T gy + 50 [ € AP 9" o + Clns + 06

where E([p, 9]|[pF,9F]) is the relative energy defined in (3.1), and 1 is an arbitrary positive constant.

Summarizing the results from Lemma 4.1 to Lemma 4.5, we obtain
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Proposition 4.1. For the term Ry given in (4.5), we have

R SC’//p|u—U|2dxdt+C//5([p,19]|[pE,19E])dacdt+Zu// IVl dudt
0JQ 0JQ

C(n >—||”“ 2oy + CONG +Co+ Cp (4.50)
and
Ri1 < 0/0/ plu — U|*dzdt + O/OU/Q E([p,V)|[p¥, 9F))dxdt + Z“/OU/Q |Vu|*dzdt (4.50")
pu T

3 %
C(n )*H ||L2([O,T]><F5) + 177/95([% 9|[p", 9" ])dz + C(ﬂ)g + Co.

where E([p, 9]|[pF,9F]) is the relative energy defined in (3.1), and 1 is an arbitrary positive constant.

4.2. Estimates of the Radiation Terms

We will estimate the radiation component R in this subsection. Recall that

— /U/ pr(p,9)div Udzdt — /U/ p(sr(p, ) — sr(p?, 9E))(0,9F 4 u - VIF)dxdt

// ((1—> dewr(p”,9") ~ pEu-VpR(pE,ﬁE)) dadt, (4.51)

From (2.6) and (2.10), we know dypr(p¥,9F) = pFsr(p?,9¥), thus we obtain that
L (1= 5 ) amnto,0%) = L Tont,0%) ) daat
//8tpRp 9F d:cdt—// (Opr(p",97) + u- Vpr(p®,97)) dadt
//atpR p",9") da:dtf// L Dgpr(p®,07) (0,07 +u - VOP) dadt

2//8tpR(pE,19E)dxdt—//psR(pE,ﬂE) (0:9F + u- V) dudt. (4.52)
0Ja 0Ja

By (2.6), (2.10), from (4.51) and (4.52) we obtain
—//pR(pJ?)diU dedt—// psr(p, ) (0F +u - VOF)dxdt
0Jo 0JQ

+//atpR(pE,ﬂE)dxdt:R;+R§, (4.53)
0JQ

- / / 94 div Udadt — / / 49 550,07 ddt + / / 29, (19E4> ddt,
0Ja3 oJa 3 0Ja3
/ / 93 - VP dedt.

where

and
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From (4.2), (4.4) and Lemma 3.1, it is easy to deduce that

Ry < C// a¥*dzdt + Ca
0

7 E oF
SC’/O/QE([p,ﬂH[p ,9%))dxdt 4+ Ca.

We decompose R3 into
R RZess + RQres’

4
R3,.. = — / / —193 VoEdzdt, RE,., = — / / 2293 - VoPdadt.

By (2.2) we have
4a 93
R3,.. < C// o s p? |u|dzdt

o 6 \2 3
< Ca/ (/ ﬂdm) </ p|u|2d:c) dt < Ca,
0 \JQeus P Q

and by the Holder inequality we obtain

R3S, < C// a¥®|u|dzdt
SC/ (/ a§ﬂ4da:> (/ |u|4dx> dt.
0 Qres Q

Since the Sobolev imbedding and the Poincaré inequality imply

with

[ullzae) < ClIVullL2(9),
we deduce from (4.57) that

R < Clmatu [ [ ool 0mpae ) ars By [ 19udsa
0 Q 4 0JQ
< Clpakp / / £ (o, 9]|[o", 07 ))dedt + / / Vuldrdt,
0Ja 4" Jo Ja

by using the Cauchy inequality, (4.2), (4.3) and Lemma 3.1.
Combining all the estimates above, we can deduce that

Proposition 4.2. For the radiation term Ro given in (4.5), we have the estimate

Ra < C(n) (1+a%/f1)/O/QS([p719]|[pE719E])dmdt+gu/O/Q\VuFda:dt—kCa.

for an arbitrary n > 0, where E([p, 9]|[p¥,VF]) is the relative energy defined in (3.1).

4.3. Estimates of the Dissipation Terms

With the form of the transport coefficients (2.3) and (2.4), we consider R3.
R3 =Rj+R3

R§=//S(0,Vu):Vdedt, R2:—// M-Véﬁdmdt
0JQ 0

where

413

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)
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It is easy to have
RL < Cu//(1+19)|Vu\|VU|dxdt
0JQ

< Cu//(l+19)|Vu\|VuE|dxdt+Cu//(1+19)|Vu||Vv|dxdt
0JQ 0JQ
= (1 + Co,

with the obvious notations C;, (1 < j < 2). For C1, we use the Young inequality to get

Qu/a/ \Vu|2dxdt+0(n)u/g/(l+19)2dxdt
w// Vul2dadt + C( //192dxdt+(]( i

Thanks to Lemma 3.1, we get

,u//l?zdxdt // 192dacdt+u// 9 dxdt
0oJa Qess Qres

g0u+ua—%// (a¥* + 1)dzdt

7%// [p, 9]|[p", 9F))dzdt + Cp.

Ci

I A

I /\

Thus we deduce from (4.61) that

C < // |Vu|?dzdt + C(n) %//5 p, 9]|[p", 0F])dadt + C(n)p.

For Co, by using (4.4) we know that

C, < Qu// |vU|2dxdt+c(n)u5*2// (1+ 9)2dwdt
8 0JQ 0JT;
<1, / / |Vul2dwdt + C (1) ud 2 / 92dwdt + C(n)us .
8 0JQ 0JTs

By using the Holder inequality, we have

,u572/ ﬁzdmdt:,u(VQ//
0JT;s 0 JITsNQess

_ -1
< Cpd™t + Cpus ™ 3|9l 22 0 7122 (0 )

92 dadt + s> / / 92 dudt
0JIT'sNQ

res

for any 1 < A < co. Thus from (4.63) we can deduce that

no[7 R
CQ < gu/o/ﬂ ‘VU|2d$dt+C(77)ILL(S ! i‘||?9||%2(()7f11;112>\(1‘l5))
+C(n)pus ™t
Combining (4.62), (4.64) with (4.60), we get

RS < 4u//\Vu\2dzdt+C’ 7%// [p, 9]|[pF, 9F])dxdt

+C(ps =73 ||19HL2(0,T;L2)\(1"5)) +C(n)us™" + C(n)p.

JMFM

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)
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Now we consider R2. With (2.4) we know
[ea 1 o
R3 < C’n// — V|| VIE |dzdt + Cn// V|| VIF | dadt
0JQ v 0JQ
+Ca// 92| V|| VI |dxdt = Dy + Do + D3, (4.66)
0JQ

with the obvious notations D;, (1 < j < 3). Using the Cauchy inequality7 we estimate D as follows:

D1<C'/-f// da:dt<m-€//
Q Q

For D,, by using the Holder inequality and Lemma 3.1 we have

DQ<T,K//|V dadt + C(n //ﬂda:dt
19| o
<k B2 dadt + Cln)k ddxdt + C(n)k ddxdt
Q Qess Qres

<77/<;//|V19|ddﬁ+0 Z// a194+1d33dt+0()
<n,<;// [, dt + C(n *%//5 ([, 9|[p", 7)) dadt + C (). (4.68)

Similarly, we have

D3<77a//19|V19| dadt + C(n //193dmdt

dxdt + C(n)k. (4.67)

-

Sna//19|V19| dxdt+0(n)ai//5([p,19]|[pE,q9E])dxdt+C(n)a. (4.69)
Summing up (4.66)—(4.69) we get
R2<77/<a Vﬂ dzdt +n // Vol dxdt+77a//19|V19| dxdt
+C) (m*uaz / / E(lp, |[p%, 9F)dadt + C(n)k + C(n)a. (4.70)
0JQ

Combining (4.65) with (4.70) we get

Proposition 4.3. For the dissipation term Rs3 given in (4.5), we have the estimate

o |V19|2
Rs < 4 \Vu\ dxdt +nk d:cdt +nkK 7dxdt

+na/ 9 |VO| dadt + C(n )(ua P ket pad / E(lp, 0[PP, 95)) dwdt
0 Q

+ Cud X320 028 (my)) + Cpd ™ + Clmu + Cn)s + Cn)a. (4.71)

for any fivzed X > 1 and n > 0, where E([p,V]|[pF,9F]) is the relative energy defined in (3.1).

4.4. Convergence

We’ll prove the main result in this subsection, by using the estimates we have obtained above.
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From (4.14), by using Proposition 4.1-4.3, we obtain
/ (;p|u ~UR+ &, 19]|[,0E,19E])> dz+ /OU/Q v (Sw,vn) V- Wg)'w) dudt
< [ (Grhio = U102 + £llpn 0l (0.,97(0,9)))
w0 (14 ptad 4 pad 4 et /U(/Q %p|u _UPd + /Q (lp, 19]|[pE,19E])dx> it

0

: [ vl 7 2
— dxdt—Hm// dxdt+77a//19|V19| dxdt
0JQ
+nu// \Vu|2dzdt + C(n )7||”“ n

+C@Ng+5+u+n+@, (4.72)

+17/s

_1-1
720, 7)x15) + Cl)pd ™" *H19||i2(o,T;L2A(F5))

and
/ﬂ (;pu —UP +E(lp, ﬂ][pE,ﬂE])> dz + /OU/Q % (sw, Vu) : Vu - W;”'W) dedt (472

< [ (Grmlto = U0 + (I Dl (0..05(0.) )
+C(n) (1 —|—,u_1a% tpa? + ﬁa_%) /U</Q %p\u —Udx —&—/QE([p,ﬂ][pE,ﬁE])dx) dt

0
2 o 2 o o

Vo dxdt—&—n/@/ |V1199| dmdt+na//19|V19\2dmdt+nu// |Vu|2dadt
0oJa 0Ja 0oJa

802 p-T 3 —1-1
+ C(n)Z”TQHQLQ([O’T]XF‘;) + 177/95([@ N|[p"®, 97])dz + C(n)us ™ ||19||L2 (0,T;L2X(Ts))

+ Nk

+C(n) (%+5+u+m+a).

By virtue of Korn’s inequality and (2.3), there exist a constant C; > 0 such that

// —S(¢, Vu) Vud:vdtzClu// |Vu|*dxdt. (4.73)
0JQ

With (2.4), it is easy to deduce that

o E .
7//197.(;(19,%9) Vo
0Ja ¥ VJ
o 2 o 2 o
>Co |k Vo da:dt+n/ Vo) dxdt+a//19|V19|2dxdt , (4.74)
0JQ Y 0JQ

for some constant Co > 0. By Lemma 3.1 and (4.2) we obtain that

[ oPar= [ phPdes [ g
T's FsNQyres TsNQess

3 2
gc(/ pidx> (/ 1dx> +C6
TsNQres LsNQres

< /Q £ (o, 9)|[0". 07 ])dz + C(n)s. (4.75)
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Similarly, we deduce that

/'(épduo—sz,o2-%5qpmﬁdan«xo,ﬁE«noD)dw
Q
< E(0) + C/F polvo|*dx
EW0)+C | podx
Ts

<E(0 /5 0, 9]|[p%, 97))dz + C(n)s. (4.76)

We choose n < 2 min{C1, Cs,1} in (4.72) or (4.72"), finally find with (4.73)-(4.76) that

o E .
+ // v (S(ﬁ,Vu) :Vu — W) dxdt
oJa ¥ 0

<C (1 +pta? pat + m—%) / (E(t) + 6) dt
0

pU M 1
0 (DI o + 57 100 o ey + 40+ nbm s a4 BO) . (07)

o FE .
+ // v (S(ﬁ, Vu): Vu — W) dxdt (4.77)
oJa ¥ Y

<C (1 +puta? 4 paE mf%) / (E(t) +9)dt
0

and

0% pU-T 5
+ 0 (LN D iy + 67 M 0oy + 5 + 50+ k40 +EO))

for any o € [0, T].
Therefore, we conclude

Proposition 4.4. Assume that T > 0, (p¥, 9% u¥) is the smooth solution to the problem (1.2) of the Euler
equations on [0,T] as given in Proposition 2.2, and (pt, 9", ut) is a weak solution to the problem (1.1)
for the full Nuaiver—Stokes—Fourier equations (1.1) on [0,T] as given in Proposition 2.1. Let E be defined
as in (4.3). Then for any o € [0,T], 1 < X < oo and small § > 0, we have

gH AN 9H
// ( s(0", vur) : var — 4L ’VW) v )dazdt
0

<C (1 et 4 paE na*i) / (E(t) +9)dt
0

(H HL2(0T IxD5) T 10~ =3 o 17205020 rs)) + 5 5 +5+H+H+G+E(O)>7 (4.78)
and
o E 1% Y. K
+// U= (seom, vy : v — LSV VRN G (4.78")
0Ja O uH

<C (1 +pu a4 paE m—%)/ (E(t) 4 6) dt
0

(H HL2(OT><F5) + pd R o HL2(OTL2>‘(F5)) T +5+“+“+G+E( ))

Now, let us prove the result given in Theorem 2.1 by using the idea developed in [12].



418 Y.-G. Wang and S.-Y. Zhu JMFM

Proof of Theorem 2.1. We shall only prove the sufficiency of conditions (2.18) and (2.19) for the con-
vergence (2.17) by using the inequality (4.78), while the sufficiency of (2.18) and (2.20) can be derived
similarly by using the inequality (4.78’).

Now if a ~ p2, k= O(ai) and (2.18) holds, we can deduce from (4.78) that

n<c [ Bwic (n Bsoaiey + iy O FabRTarEO)). (@)
52 i—;i
Denote by a := -+, then & = L5 For any s > 0, define
5 + a ™1
1
)\ puuu n 2
F = .
(s)=s+ o | o 220,77 x15)
Obviously, F(s) attains its minimum at
2)\ A—1 p“u“ -n 2 3)}\7-:’11
§= Q¢ = ()\ T 1/““ [ o ”L?([O,T]XF,;)

1 bt A
Now we choose a § such that g = o(61F%). If ay > «, then 6. = (L) < (g) A1 =6, and

et

pAF plul prut
Ot + —5x Hid ‘|L2([07T]><F50t) < Qe + 2 Hid HLZ([07T]><F5)
CL>\+1 Q aA+1 Q
ct ct
BA+1 [ 2\ s, pluton sxer
o . o A—1 . 2
—uip (9 = o (2 I o
(4.80)
Since
22 oyt S
a1 ptutt o n Satt
Qe = <)\ I 1/¢L>‘+1 || dQ ||%2([0,T]><F5)) —0

1 1
as i, k,a — 0 under the assumption (2.19), we know u = actéclj* = 0(6;+A ). Moreover, from § — 0 as
w1 — 0 we get that 6. < & gives rise to 6. — 0 when g — 0. Thus, the inequality (4.79) holds for 6 = 0.

Together with (4.77), we obtain

A+1
_ Hoa . 3A+1
<c/ t)dt + C ((HMHWHQLQ([O,T]XW) +5+u+f<:+a+]E(O)>. (4.81)
Q

If ooy < v, that is

22 A-1 p“u” 3 33+1
P o 122 (j0,7)xTs) <@,

A+1
we know
e e
do ([0,T]xTs) 2\ ’
which implies
AT phoRyfiR 3A+1
o+ ZA% ||pT3||%2((O,T)><F5) < %a-

Thus we have

]E(O')SC/U ()dt+0<51+1+6+,u+/<+a+]E(0)). (4.82)
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Combining (4.81) with (4.82), we deduce that

A+1

o Aol p“u” Ny 3NFI 1
0 dg Anhe St

With Remark 3.1, we can deduce from (2.16) that E(0) — 0 as ¢ — 0. By using the classical Gronwall
inequality, from Lemma 3.1 and (4.83) we get the conclusion given in Theorem 2.1 under the conditions
(2.18) and (2.19), as & is chosen such that p = o(6'+%), and § — 0 as u — 0. O

Remark 4.1. The boundedness assumption of the initial datum pfj and ¥ given in Theorem 2.1 is used
to ensure that E(0) — 0 as g — 0. If we remove this boundedness assumption of the initial datum pff
and 9}, then it is easy to see that one has the same convergence result as given in (2.17), as long as we
impose the condition &([po, Jo]|[p&,VE]) — 0 as u — 0 in addition to the convergence assumption (2.16)
on the initial datum.
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