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1. Introduction

In this paper we consider the two dimensional supercritical quasi-geostrophic (SQG) equation

θt + u · ∇θ + κΛαθ = 0,

u = R⊥θ,
(1.1)

where 0 < α ≤ 2, κ > 0, Λ =
√−Δ is the Zygmund operator, and

R⊥θ = Λ−1(−∂2θ, ∂1θ).

The equations are considered in R
2 × (0, T ) with T > ∞. The scalar function θ represents the potential

temperature and the vector function u represents the fluid velocity. Notice that if θ(x, t) solves (1.1) with
initial data θ0(x), the function θλ = λα−1θ(λx, λαt) also solves (1.1) with initial data θ0(λx). The space
which is invariant under such scaling is called a critical space. For example, Ḣ2−α and Ḃ1−α

∞,∞ are critical,
and the latter one is the largest critical space of (1.1).

Equation (1.1) with α = 1 describes the evolution of the surface temperature field in a rapidly rotating
and stably stratified fluid with potential velocity. As pointed out in [10], this equation attracts interest
of scientists and mathematicians due to two major reasons: it is a fundamental model for the actual
geophysical flows with applications in atmosphere and oceanography study; from the mathematical point
of view, the behavior of strongly nonlinear solutions to (1.1) with κ = 0 in 2D and the behavior of
potentially singular solutions to the Euler’s equation in 3D are strikingly analogous which has been
justified both analytically and numerically. For literature the readers are refereed to [10,12,26] and the
references therein.

Equation (1.1) is usually referred as supercritical, critical and subcritical SQG for 0 < α < 1, α = 1
and 1 < α ≤ 2 respectively, although it is an open problem whether a dramatic change in the behavior of
solutions occurs for the case of dissipation power less than 1. The global regularity problem of the critical
SQG equation has been very challenging due to the balance of the nonlinear term and the dissipative
term in (1.1). This problem is resolved now by Kieslev, Nazarov and Volberg [23], Caffarelli and Vasseur
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[2], Kieslev and Nazarov [22] and Constantin and Vicol [11] independently, using different sophisticated
methods.

The global regularity problem of the supercritical SQG equation (1.1) (0 < α < 1) remains open. In
[10], Constantin, Majda and Tabak established the first regularity criterion when κ = 0:

lim sup
t→T

‖θ(t)‖Hm < ∞ if and only if
∫ T

0

‖∇⊥θ(t)‖L∞ dt < ∞

for m > 2. A Prodi–Serrin type regularity criterion was obtained by Chae [3]: if the solution θ(x, t)
satisfies

θ ∈ Lr(0, T ;Lp(R2)), for
2
p

+
α

r
≤ α,

2
α

< p < ∞
then there is no singularity up to time T . Many works have been devoted to extend and improve the above
regularity criteria, for instance, see [4,13,14,19,20,30–35]. In particular, in [14] the authors proved that a
weak solution in the Hölder space Cδ with δ > 1−α is actually classical, see Theorem 2.7. The result of [4]
improved the Constantin–Majda–Tabak criterion by using Triebel–Lizorkin spaces. In [19], the authors
obtained the regularity for a weak solution θ which belongs to θ ∈ Ls((0, T );Bγ

p,∞) with γ = 2
p +1−α+ α

s ,
for 1 ≤ s < ∞ and 2 < p < ∞, which is a Prodi–Serrin type regularity criterion. Besides, the results
of [20,30,33,34] can be also considered as extensions of the Prodi–Serrin type regularity criteria. The
work of [31] impose regularity condition only on partial derivative of the solutions. While the authors
of [32,35] obtained global regularity by imposing conditions on the initial data. Moreover, in this area,
eventual regularity results for a slightly supercritical SQG and supercritical SQG are obtained in [16,27],
respectively. And later the global regularity for a slightly supercritical active scalar equation is obtained
in [17].

Among the conditional regularity results mentioned above, the work of [14,19] are known to be sharp
in the case of linear drift-diffusion equations (see [28]). In the first part of the paper, we will prove a
new regularity criterion for the supercritical SQG by showing that under such new condition a viscosity
solution is in the Hölder space Cδ with δ > 1−α, and hence classical (see [14]). We will also show that our
regularity condition is weaker than all the Prodi–Serrin type regularity conditions, particularly including
the one of [19]. Our main result states as follows.

Theorem 1.1. Let 0 < α < 1. Let θ be a viscosity solution to (1.1) on [0, T ]. Assume that θ(t) is regular
on [0, T ), and ∫ T

0

‖∇θ≤Q(t)(t)‖B0∞,∞dt < ∞, for a certain number Q(t).

Then θ(t) is regular on [0, T ].

Remark 1.2. In fact the statement holds true for any weak solution satisfying the truncated energy
estimates as in [2].

The number Q(t) will be defined in Sect. 3. Roughly speaking, this criterion says, if the solution at
low modes is bounded in L1(0, T ;B1

∞,∞), then it is regular up to time T . The intuition is that the linear
dissipation term Λαθ dominates at high modes. Following the idea of the work [9] for the NSE and Euler
equation, we split the dissipation by an appropriate wavenumber λQ(t) (see notation in Sect. 2). We show
that above λQ(t), the nonlinear interaction is dominated by the linear term Λαθ; while below λQ(t), the
nonlinear interaction is controlled due to the assumption on the low modes as in Theorem 1.1.

The second part of the paper concerns the energy conservation problem for the supercritical SQG (1.1).
The well known Onsager’s conjecture (see [25]) addresses the energy conservation for the Euler equation
which states: any weak solution of the Euler equation with Hölder continuity s > 1/3 conserves energy and
dissipates energy otherwise. In [6], the authors proved that the energy is conserved for any weak solution
in the Besov space B

1/3
3,c(N) (slightly smaller than B

1/3
3,∞) in which the “Hölder exponent” is exactly 1/3.

It is also shown that the space B
1/3
3,c(N) is sharp in the context of no anomalous dissipation. Compared
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to the Euler equation, the SQG has a nonlinear term R⊥θ · ∇θ with the same degree of derivative. One
may expect that an analogous result holds for the SQG: any visicosity solution of the supercritical SQG
in B

1/3
3,c(N) satisfies energy equality. However, it is shown in [2] that any viscosity solution of the critical

SQG is in L∞([t0,∞);L∞(R2)) for every t0 > 0. This result holds for the supercritical SQG (even with
an external force) as well (see proofs in [7,8]). Thanks to this fact, we are able to prove that any viscosity
solution θ of the supercritical SQG satisfies energy equality provided θ ∈ L2(0, T ;B1/2

2,c(N)). Notice that

L2(0, T ;B1/3
3,c(N)) ⊂ L2(0, T ;B1/2

2,c(N)). The main result states as follows.

Theorem 1.3. Let θ ∈ Cw([0, T ];L2) be a viscosity solution to the supercritical SQG (1.1) with 0 < α < 1.
If additionally, we assume θ ∈ L2(0, T ;B1/2

2,c(N)), then the solution θ satisfies energy equality.

The rest of the paper is organized as follows: in Sect. 2 we introduce some notations, recall the
Littlewood–Paley decomposition theory briefly, and recall a regularity result for the supercritical SQG;
Sects. 3 and 4 are devoted to proving Theorems 1.1 and 1.3, respectively.

2. Preliminaries

2.1. Notation

We denote by A � B an estimate of the form A ≤ CB with some absolute constant C, and by A ∼ B an
estimate of the form C1B ≤ A ≤ C2B with some absolute constants C1, C2. We agree that ‖ ·‖p = ‖ ·‖Lp .
While (·, ·) stands for the L2-inner product.

2.2. Littlewood–Paley Decomposition

The techniques presented in this paper rely strongly on the Littlewood–Paley decomposition. Thus we
recall the Littlewood–Paley decomposition theory here briefly. For a more detailed description on this
theory we refer the readers to the books by Bahouri et al. [1] and Grafakos [21].

In this subsection, u denotes a general function, which should not be considered as the u in (1.1).
Denote λq = 2q for integers q. We choose a radial function χ ∈ C∞

0 (Rn) as

χ(ξ) =

{
1, for |ξ| ≤ 3

4

0, for |ξ| ≥ 1.

Let

ϕ(ξ) = χ(
ξ

2
) − χ(ξ), and ϕq(ξ) =

{
ϕ(λ−1

q ξ) for q ≥ 0,

χ(ξ) for q = −1.

For a tempered distribution vector field u we define a Littlewood–Paley decomposition⎧⎪⎨
⎪⎩

h = F−1ϕ, h̃ = F−1χ,

uq := Δqu = F−1(ϕ(λ−1
q ξ)Fu) = λn

q

∫
h(λqy)u(x − y)dy, for q ≥ 0,

u−1 = F−1(χ(ξ)Fu) =
∫

h̃(y)u(x − y)dy.

Recall that the following identity

u =
∞∑

q=−1

uq

holds in the distribution sense. Essentially the sequence of the smooth functions ϕq forms a dyadic
partition of the unit.
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To simplify the notation, we denote

u≤Q =
Q∑

q=−1

uq, ũq = uq−1 + uq + uq+1.

By the definition of ϕq, we have

supp (ûq) ∩ supp (ûp) = ∅ if |p − q| ≥ 2.

By the Littlewood–Paley decomposition we define the inhomogeneous Besov spaces Bs
p,r.

Definition 2.1. Let s ∈ R, and 1 ≤ p, r ≤ ∞. Then

‖u‖Bs
p,r

= ‖uq‖p +
∥∥∥(

λs
q‖uq‖p

)
q∈N

∥∥∥
lr(N)

is the inhomogeneous Besov norm. The inhomogeneous Besov space Bs
p,r is the space of tempered distri-

butions u such that the norm ‖u‖Bs
p,r

is finite.

Specially, a tempered distribution u belongs to Bs
p,∞ if and only if

‖u‖Bs
p,∞ = sup

q
λs

q‖uq‖p < ∞.

Definition 2.2. We define B
1/2
2,c(N) as the class of all tempered distributions u for which

lim
q→∞ λ1/2

q ‖uq‖2 = 0.

The space B
1/2
2,c(N) is endowed with the norm inherited from B

1/2
2,∞.

We recall two inequalities for the dyadic blocks of the Littlewood–Paley decomposition in the following.

Lemma 2.3 (Bernstein’s inequality) [24]. Let n be the space dimension and r ≥ s ≥ 1. Then for all
tempered distributions u,

‖uq‖r � λ
n( 1

s − 1
r )

q ‖uq‖s.

Lemma 2.4. Assume 2 < l < ∞ and 0 ≤ α ≤ 2. Then

l

∫
Rn

uqΛαuq|uq|l−2 dx � λα
q ‖uq‖l

l.

For a proof of Lemma 2.4, see [5,15,29].

2.3. Weak Solution, Viscosity Solution and Hölder Regularity

We recall the standard definition of weak solutions, viscosity solutions, and a regularity result for the
supercritical SQG.

Definition 2.5. A Leray–Hopf weak solution of (1.1) on [0, T ] (or [0,∞) if T = ∞) is a function θ ∈
Cw([0, T ];L2(R2)) with θ(x, 0) = θ0, satisfying, for all test functions φ ∈ C∞

0 ([0, T ] ×R
2) with ∇x · φ = 0∫ t

0

(θ(s), ∂sφ(s)) + κ(Λα/2θ(s),Λα/2φ(s)) + (θ(s) · ∇φ(s), θ(s))ds

= (θ(t), φ(t)) − (θ0, φ(0))

and moreover, the following energy inequality

‖θ(t)‖22 + 2κ

∫ t

t0

‖∇θ(s)‖22ds ≤ ‖u(t0)‖22
is satisfied for almost all t0 ∈ (0, T ) and all t ∈ (t0, T ].
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Definition 2.6. A weak solution θ(t) on [0, T ] is called a viscosity solution if there exist sequences εn → 0
and θn(t) satisfying

∂θn

∂t
+ un · ∇θn + κΛθn + εnΔθn = 0,

un = R⊥θn,

such that θn → θ in Cw([0, T ];L2).

Standard arguments imply that for any initial data θ0 ∈ L2 there exists a viscosity solution θ(t) of
(1.1) on [0,∞) with θ(0) = θ0 (see [15], for example).

Constantin and Wu [14] proved the following regularity result for the supercritical SQG (1.1).

Theorem 2.7. Let θ be a Leray–Hopf weak solution of (1.1) with 0 < α < 1. Let δ > 1 − α and 0 < t0 <
t < ∞. If

θ ∈ L∞([t0, t];Cδ(R2)),

then

θ ∈ C∞((t0, t] × R
2).

3. Regularity Criterion

In this section we prove the regularity criterion stated in Theorem 1.1, and show that this regularity
condition is weaker than all the Prodi–Serrin type regularity conditions.

Proof of Theorem 1.1: Let θ(t) be a weak solution of (1.1) on [0, T ]. We adopt the notations and idea
from [9] and define the dissipation wavenumber as

Λ(t) = min
{
λq : λ1−α

p ‖θp(t)‖∞ < c0κ, ∀p > q ≥ 1
}

, (3.2)

where c0 is an absolute constant which will be determined later. Let Q(t) ∈ N be such that λQ(t) = Λ(t).
It follows immediately that

‖θQ(t)(t)‖∞ ≥ c0κΛ(t)−1+α,

provided 1 < Λ(t) < ∞. We consider the function

f(t) = ‖θ≤Q(t)(t)‖B1∞,∞ = sup
q≤Q(t)

λq‖θq(t)‖∞.

The idea is to prove that ‖θ(t)‖Bs
l,l

is uniformly bounded on [0, T ) for some large integer l and s ∈ (0, 1)
provided f ∈ L1(0, T ). Notice that for 0 < s < 1 and sl > 2, we have the embedding Bs

l,l ⊂ C0,s− 2
l , see

[18]. Choose large enough l such that

s − 2
l

> 1 − α, (3.3)

it then follows from Theorem 2.7 that, θ is regular on [0, T ]. In addition, we assume

1 − s − α

l
> 0 (3.4)

to carry through the estimate for ‖θ(t)‖Bs
l,l

. Notice that the two conditions (3.3) and (3.4) are compatible.
Indeed, for any α ∈ (0, 1), one can choose large enough l such that α

l < 1 − s < α − 2
l .

Now we prove ‖θ(t)‖Bs
l,l

is uniformly bounded on [0, T ). Since θ(t) is regular on (0, T ), projecting (1.1)
onto the q−th shell, testing it with lλsl

q θq|θq|l−2, summing over q ≥ −1, and applying Lemma 2.4 yields

d

dt

∑
q≥−1

λsl
q ‖θq‖l

l ≤ −Cκ
∑

q≥−1

λsl+α
q ‖θq‖l

l + l
∑

q≥−1

λsl
q

∫
R3

Δq(u · ∇θ)θq|θq|l−2 dx. (3.5)
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Using Bony’s notation ofoduct, we write

Δq(u · ∇θ) =
∑

|q−p|≤2

Δq(u≤p−2 · ∇θp) +
∑

|q−p|≤2

Δq(up · ∇θ≤p−2)

+
∑

p≥q−2

Δq(up · ∇θ̃p).

Recall the commutator notation

[Δq, u≤p−2 · ∇]θp = Δq(u≤p−2 · ∇θp) − u≤p−2 · ∇Δqθp.

Thus, we decompose the integral

l
∑

q≥−1

λsl
q

∫
R3

Δq(u · ∇θ)θq|θq|l−2 dx

= l
∑

q≥−1

∑
|q−p|≤2

λsl
q

∫
R3

Δq(u≤p−2 · ∇θp)θq|θq|l−2 dx

+ l
∑

q≥−1

∑
|q−p|≤2

λsl
q

∫
R3

Δq(up · ∇θ≤p−2)θq|θq|l−2 dx

+ l
∑

q≥−1

∑
p≥q−2

λsl
q

∫
R3

Δq(up · ∇θ̃p)θq|θq|l−2 dx

= I1 + I2 + I3.

(3.6)

Using the commutator notation, I1 can be further decomposed as

I1 = l
∑

q≥−1

∑
|q−p|≤2

λsl
q

∫
R3

[Δq, u≤p−2 · ∇]θpθq|θq|l−2 dx

+ l
∑

q≥−1

λsl
q

∫
R3

u≤q−2 · ∇θqθq|θq|l−2 dx

+ l
∑

q≥−1

∑
|q−p|≤2

λsl
q

∫
R3

(u≤p−2 − u≤q−2) · ∇Δqθpθq|θq|l−2 dx

= I11 + I12 + I13,

where we used
∑

|q−p|≤2 Δqθp = θq. One can see that I12 = 0, using integration by parts and the fact
divu≤q−2 = 0. By the definition of Δq,

[Δq, u≤p−2 · ∇]θq =λ3
q

∫
R3

h(λq(x − y)) (u≤p−2(y) − u≤p−2(x)) ∇θq(y) dy

= − λ3
q

∫
R3

∇h(λq(x − y)) (u≤p−2(y) − u≤p−2(x)) θq(y) dy.

By Young’s inequality, for 1 ≤ r ≤ ∞,

‖[Δq, u≤p−2 · ∇]θq‖r

� ‖∇u≤p−2‖r‖θq‖∞

∣∣∣∣λ3
q

∫
R3

|x − y|∇h(λq(x − y)) dy

∣∣∣∣
� ‖∇u≤p−2‖r‖θq‖∞.
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Thus, by taking p = q, I11 can be estimated as,

|I11| � l
∑

q≥−1

λsl
q ‖[Δq, u≤q−2 · ∇]θq‖l‖θq‖l−1

l

� l
∑
q>Q

λsl
q ‖θq‖∞‖θq‖l−1

l

∑
p≤q−2

λp‖up‖l

+ l
∑

−1≤q≤Q

λsl
q ‖θq‖∞‖θq‖l−1

l

∑
p≤q−2

λp‖up‖l

≡ A + B,

while using the fact ‖u‖p � ‖θ‖p, it follows

A � c0κl
∑
q>Q

λsl−1+α
q ‖θq‖l−1

l

∑
p≤q−2

λp‖up‖l

� c0κl
∑
q>Q

λ
sl+α− sl+α

l
q ‖θq‖l−1

l

∑
p≤q−2

λ
sl+α

l
p ‖up‖lλ

−1+ sl+α
l

q−p

� c0κl
∑
q>Q

λsl+α
q ‖θq‖l

l + c0κl
∑
q>Q

⎛
⎝ ∑

p≤q−2

λ
sl+α

l
p ‖up‖lλ

−1+ sl+α
l

q−p

⎞
⎠

l

� c0κl
∑

q≥−1

λsl+α
q ‖θq‖l

l

due to the fact 1 − s − α
l > 0 in assumption (3.4); and

B � lf(t)
∑

−1≤q≤Q

λsl−1
q ‖θq‖l−1

l

∑
p≤q−2

λp‖up‖l

� lf(t)
∑

−1≤q≤Q

λsl
q ‖θq‖l−1

l

∑
p≤q−2

λp−q‖up‖l

� lf(t)
∑

−1≤q≤Q

λsl
q ‖θq‖l

l.

The term I13 is estimated as,

|I13| � l
∑

q≥−1

λsl
q

∫
R3

|uq||∇θq||θq|l−1 dx

� l
∑
q>Q

λsl+1
q ‖uq‖l‖θq‖∞‖θq‖l−1

l + l
∑

−1≤q≤Q

λsl+1
q ‖uq‖l‖θq‖∞‖θq‖l−1

l

� c0κl
∑
q>Q

λsl+1−1+α
q ‖uq‖l‖θq‖l−1

l + lf(t)
∑

−1≤q≤Q

λsl
q ‖uq‖l‖θq‖l−1

l

� c0κl
∑
q>Q

λsl+α
q ‖θq‖l

l + lf(t)
∑

−1≤q≤Q

λsl
q ‖θq‖l

l.

Therefore, we have

|I1| � c0κl
∑

q≥−1

λsl+α
q ‖θq‖l

l + lf(t)
∑

−1≤q≤Q

λsl
q ‖θq‖l

l. (3.7)

While for I2,

|I2| � l
∑
q>Q

λsl
q ‖uq‖∞‖∇θ≤q−1‖l‖θq‖l−1

l + l
∑

−1≤q≤Q

λsl
q ‖uq‖∞‖∇θ≤q−1‖l‖θq‖l−1

l .



198 M. Dai JMFM

Notice that ‖uq‖∞ � ‖θq‖∞ for any q, we conclude that I2 has the same estimate as I11. Thus,

|I2| � c0κl
∑

q≥−1

λsl+α
q ‖θq‖l

l + lf(t)
∑

−1≤q≤Q

λsl
q ‖θq‖l

l. (3.8)

While I3 is estimated as

|I3| �

∣∣∣∣∣∣l
2

∑
q≥−1

λsl
q

∑
p≥q

∫
R3

Δq(upθp)∇θqθ
l−2
q dx

∣∣∣∣∣∣
� l2

∑
p≥−1

∑
−1≤q≤p

λsl
q

∫
R3

|Δq(upθp)||∇θq||θq|l−2 dx

� l2
∑
p>Q

‖up‖l‖θp‖∞
∑

−1≤q≤p

λsl+1
q ‖θq‖l−1

l

+ l2
∑

−1≤p≤Q

‖up‖l‖θp‖∞
∑

−1≤q≤p

λsl+1
q ‖θq‖l−1

l

≡C + D.

Similar analysis gives that

C � c0κl2
∑
p>Q

λ−1+α
p ‖up‖l

∑
−1≤q≤p

λsl+1
q ‖θq‖l−1

l

� c0κl2
∑
p>Q

λ
sl+α

l
p ‖up‖l

∑
−1≤q≤p

λ
sl+α− sl+α

l
q ‖θq‖l−1

l λ
1−α+ sl+α

l
q−p

� c0κl2
∑

p≥−1

λsl+α
p ‖up‖l

l

since 1 − α + sl+α
l > 0;

D � l2f(t)
∑

−1≤p≤Q

λ−1
p ‖up‖l

∑
−1≤q≤p

λsl+1
q ‖θq‖l−1

l

� l2f(t)
∑

−1≤p≤Q

λs
p‖up‖l

∑
−1≤q≤p

λs(l−1)
q ‖θq‖l−1

l λ1+s
q−p

� l2f(t)
∑

−1≤p≤Q

λsl
p ‖up‖l

l

for arbitrary s > 0. Thus, we have

|I3| � c0κl2
∑

p≥−1

λsl+α
p ‖up‖l

l + l2f(t)
∑

−1≤p≤Q

λsl
p ‖up‖l

l. (3.9)

Combining (3.5)–(3.9) gives that
d

dt

∑
q≥−1

λsl
q ‖θq‖l

l ≤ −Cκ(1 − c0l
2)

∑
q≥−1

λsl
q ‖Λ

1
2 θq‖22 + l2f(t)

∑
−1≤q≤Q

λsl
q ‖θq‖l

l.

Therefore, one can choose small enough c0 such that c0l
2 < 1/2. It then follows from the Gronwall’s

inequality that

‖θ(t)‖Bs
l,l

≤ l2‖θ(0)‖Bs
l,l

exp
(∫ t

0

f(s) ds

)
.

Thus θ has a finite norm in Bs
l,l since f ∈ L1(0, T ). It completes the proof of Theorem 1.1.

Recall that in [19], the authors obtained the regularity for the supercritical SQG provided θ ∈
Ls((0, T );Bγ

p,∞) with γ = 2
p + 1 − α + α

s , for 1 ≤ s < ∞ and 2 < p < ∞.
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In the following lemma, we show that the regularity condition f ∈ L1(0, T ) is weaker than the Prodi–
Serrin criterion from [19]. It can be shown similarly that this condition is weaker than all the other
Prodi–Serrin criteria mentioned in the introduction.

Lemma 3.1. Let θ(t) be a weak solution to (1.1) on [0, T ]. If θ ∈ Ls((0, T );Bγ
p,∞) with γ = 2

p +1−α+ α
s ,

for 1 ≤ s < ∞ and 2 < p ≤ ∞, then f ∈ L1(0, T ).

Proof. Let U = [0, T ] ∩ {t : Λ(t) > 1}. One can see that, by the definition of Λ(t) in (3.2) and the
Bernstein’s inequality ∫

[0,T ]nU

f(t) dt �
∫
[0,T ]nU

‖θ(t)‖2 dt < ∞.

Using (3.2) and the Bernstein’s inequality again, we have∫
U

f(t) dt =
∫

U

sup
q≤Q

λq‖θ(t)‖∞ dt

≤
∫

U

Λ(t)α− α
s sup

q≤Q
λ
1−α+α

s
q ‖θ(t)‖∞ dt

≤
∫

U

Λ(t)α− α
s sup

q≤Q
λ

2
p+1−α+α

s
q ‖θ(t)‖p dt

≤
(∫

U

Λα(t) dt

)1− 1
s

‖θ‖Ls(0,T ;Bγ
p,∞)

≤ c(κ)
(∫

U

Λα+s−sα(t)‖θQ(t)‖s
p dt

)1− 1
s

‖θ‖Ls(0,T ;Bγ
p,∞)

≤ c(κ)
(∫

U

Λα+ 2s
p +s−sα(t)‖θQ(t)‖s

p dt

)1− 1
s

‖θ‖Ls(0,T ;Bγ
p,∞)

≤ c(κ)‖θ‖s
Ls(0,T ;Bγ

p,∞),

which finishes the proof. �
Remark 3.2. In [19], the authors were not able to obtain the regularity in the case of p = ∞, that is
when θ ∈ Ls((0, T );Bγ

∞,∞) with γ = 1 − α + α
s , for 1 ≤ s < ∞. Lemma 3.1 and Theorem 1.1 imply that

the regularity can be obtained provided θ is in such spaces.

4. Energy Conservation

In this section we prove Theorem 1.3. Formally, multiplying Eq. (1.1) by θ and integrating over space
and time yields the energy equality∫

R2

1
2
|θ(t)|2 dx + κ

∫ t

0

∫
R2

|Λα/2θ|2 dxdτ =
∫
R2

1
2
|θ(0)|2 dx.

To prove a weak solution θ satisfies the energy equality on [0, T ], it is enough to show that the energy
flux vanishes,

lim sup
Q→∞

∫ T

0

∫
R2

uθ · ∇(θ≤Q)≤Q dxdt = 0,

which can be shown similarly as in [8] (Sect. 3). For completeness, we present a brief proof in the
following by using Littlewood–Paley decomposition method.
Denote

rQ(u, θ) =
∫
R2

hQ(y) (u(x − y) − u(x)) (θ(x − y) − θ(x)) dy.
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Then

(uθ)≤Q = rQ(u, θ) − u>Qθ>Q + u≤Qθ≤Q.

The energy flux can be written as

ΠQ =
∫
R2

(uθ) · ∇(θ≤Q)≤Q dx

=
∫
R2

(uθ)≤Q · ∇θ≤Q dx

=
∫
R2

rQ(u, θ) · ∇θ≤Qdx −
∫
R2

u>Qθ>Q · ∇θ≤Q dx.

Here we used the fact that
∫
R2 u≤Qθ≤Q ·∇(θ≤Q) dx = 0 since u is divergence free. Since θ ∈ L∞(t0,∞;L∞)

for all t0 > 0 (see [2], or [7]), there exists a constant C such that ‖θ(t)‖∞ ≤ C for all t > t0. Thus,
combining the estimate

‖u(· − y) − u(·)‖2 �
∑
p≤Q

|y|λp‖up‖2 +
∑
p>Q

‖up‖2,

we have

‖rQ(u, θ)‖2 ≤
∫
R2

hQ(y)‖u(· − y) − u(·)‖2‖θ(· − y) − θ(·)‖∞ dy

�
∫
R2

hQ(y)

⎛
⎝∑

p≤Q

|y|λp‖up‖2 +
∑
p>Q

‖up‖2
⎞
⎠ dy

�
∑
p≤Q

λ−1
Q λp‖up‖2 +

∑
p>Q

‖up‖2.

Therefore, applying Bernstein’s inequality we obtain that∣∣∣∣
∫
R2

rQ(u, θ) · ∇θ≤Q dx

∣∣∣∣ ≤ ‖rQ(u, θ)‖2‖∇θ≤Q‖2

�
∑
p≤Q

λ−1
Q λp‖up‖2

∑
p′≤Q

λp′‖θp′‖2

+
∑
p>Q

‖up‖2
∑

p′≤Q

λp′‖θp′‖2

:= I + II.

Due to the fact ‖up‖2 � ‖θp‖2 for all p ≥ −1, I and II are estimated as, by using Hölder’s inequality,
Young’s inequality and Jensen’s inequality

I �
∑
p≤Q

λ−1
Q λp‖θp‖2

∑
p′≤Q

λp′‖θp′‖2

�
∑
p≤Q

λ
1
2
p−Qλ

1
2
p ‖θp‖2

∑
p′≤Q

λ
1
2
p′−Qλ

1
2
p′‖θp′‖2

�

⎛
⎝∑

p≤Q

λ
1
2
p−Qλ

1
2
p ‖θp‖2

⎞
⎠

2

+

⎛
⎝ ∑

p′≤Q

λ
1
2
p′−Qλ

1
2
p′‖θp′‖2

⎞
⎠

2

�
∑
p≤Q

λ
1
2
p−Qλp‖θp‖22 +

∑
p′≤Q

λ
1
2
p′−Qλp′‖θp′‖22,



Vol. 19 (2017) Regularity Criterion and Energy Conservation 201

and

II �
∑
p>Q

‖θp‖2
∑

p′≤Q

λ2
p′‖θp′‖2

�
∑
p>Q

λ
1
2
Q−pλ

1
2
p ‖θp‖2

∑
p′≤Q

λ
1
2
p′−Qλ

1
2
p′‖θp′‖2

�

⎛
⎝∑

p>Q

λ
1
2
Q−pλ

1
2
p ‖θp‖2

⎞
⎠

2

+

⎛
⎝ ∑

p′≤Q

λ
1
2
p′−Qλ

1
2
p′‖θp′‖2

⎞
⎠

2

�
∑
p>Q

λ
1
2
Q−pλp‖θp‖22 +

∑
p′≤Q

λ
1
2
p′−Qλp′‖θp′‖22.

On the other hand, we have the similar estimate∣∣∣∣
∫
R2

u>Qθ>Q · ∇θ≤Q dx

∣∣∣∣ �
∑
p>Q

‖θp‖2
∑

p′≤Q

λp′‖θp′‖2

�
∑
p>Q

λ
1
2
Q−pλ

1
2
p ‖θp‖2

∑
p′≤Q

λ
1
2
p′−Qλ

1
2
p′‖θp′‖2

�

⎛
⎝∑

p>Q

λ
1
2
Q−pλ

1
2
p ‖θp‖2

⎞
⎠

2

+

⎛
⎝ ∑

p′≤Q

λ
1
2
p′−Qλ

1
2
p′‖θp′‖2

⎞
⎠

2

�
∑
p>Q

λ
1
2
Q−pλp‖θp‖22 +

∑
p′≤Q

λ
1
2
p′−Qλp′‖θp′‖22.

Therefore
|ΠQ| �

∑
p≤Q

λ
1
2
p−Qλp‖θp‖22 +

∑
p>Q

λ
1
2
Q−pλp‖θp‖22 =

∑
p≥−1

λ
− 1

2
|p−Q|λp‖θp‖22.

Since θ ∈ L2(0, T ;B1/2
2,c(N)), we have

lim sup
Q→∞

∫ T

0

|ΠQ| dt � lim sup
Q→∞

∫ T

0

λQ‖θQ‖22 dt = 0.

It completes the proof of Theorem 1.3.
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