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Abstract. In this paper, we prove that the incompressible inhomogeneous Navier-Stokes equations have a unique global

.o L
solution with initial data (ao, uo) in critical Besov spaces B/;(R") x B; (R") satisfying a nonlinear smallness condition
for all (p, q) € [1,2n) X [1,00), —% < % — % < % and % + % > % We also construct an initial data satisfying that nonlinear
L
smallness condition, but the norm of each component of the initial velocity field can be arbitrarily large in Bzf’l (R™) with
n <p<2n.
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1. Introduction

In this paper,we study the global well-posedness of the following incompressible inhomogeneous Navier—
Stokes equations with initial data in critical Besov spaces

pe + div(pu) =0,

(pu); + div(pu @ u) — pAu+ VI =0, (t,x) € RT x R",
divu = 0,

(psw)lt=0 = (po, uo)(x), xr € R™

Here p = p(t,z) € R* and u = u(t,z) € R" stand for the density and velocity field respectively, and II
is a scalar pressure function. The viscosity coefficient ¢ > 0 is a given positive real number. Throughout,
we assume that the space dimensions n > 2.

Global weak solutions with finite energy to system (1.1) have been built up first by the Russian school
[6]. We also refer to [18] for an overview of results on weak solutions. As is known, the key ingredient to
construct weak solutions is the following conservation law:

t
IVpu®)ll7- + 2u/0 IVu(r)|[Z2dr = [|/pouol Z--

However, the uniqueness of weak solutions is not known in general. Ladyzhenskaya and Solonnikov [17]
initiated the studies for unique solvability of system (1.1) in a bounded domain Q with homogeneous
Dirichlet boundary condition for u. Similar results were established by Danchin [12] in R™ with initial
data in the almost critical Sobolev spaces. On the other hand, from the viewpoint of physics, it is
interesting to study the case for which density is discontinuous. Recently, Danchin and Mucha [14] proved
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by using a Lagrangian approach that the system (1.1) has a unique local solution with initial data
(po,up) € L°°(R™) x H?(R™) if initial vacuum does not occur, see also some improvements in [15,21].

When the density p is away from zero, we can use the transform a def p~t —1 to turn (1.1) into:

a;+u-Va=0,

g +u-Vu+ (14 a) (VII - pAu) =0, (t,z) € RT x R, 12)
divu =0,

(a,u)]e=0 = (a0, uo)(x), z € R™.

Just as the homogeneous Navier—Stokes equations, the system (1.2) also has a scaling. Indeed, if (a,u)
solves (1.2) with initial data (ag, up), then for any A > 0,

(@, w)a(t, 2) © (@(A2, A), Au(A2, A))
also solves (1.2) with initial data (ag(A-), Aug(A-)). Moreover, the norm of (a,u) € B;l (R™) x B;l_l(R”)
is scaling invariant under this change of scale. In [11], Danchin derived the global well-poesdness of (1.2)
under the assumptions that the initial velocity is small in critical homogeneous Besov spaces, and that the
initial density is close to a positive constant. This result has been extended in [1,5], where the smallness
condition for ag is still required. Then Abidi, Gui and Zhang removed the smallness condition for ag in
[3,4]. Finally, we remark that in the very interesting paper [13], Danchin and Mucha proved the well-

.n_q
posedness of (1.1) provided that pg is close to a positive constant in the multiplier space of B;; (R").
More precisely, they proved:

Theorem 1.1 (See [13]). Let p € [1,2n), up € Bp%;l(R") with divug = 0. Assume that py belongs to the

multiplier space %(B;;l(R")) There exists a positive constant cy depending only on p and n such that
if
—1 n_y < cg, 1.3
oo =11 31, < 0 (13)
then there exists some T > 0 such that the system (1.1) has a unique local solution (p,u, VII) with p €
LE( (B2, (R™)), w e Gy([0,T); BE,  (R") 1 LL(B?,™ (R™)) and VII € LL(BZ, ' (R™)). Moreover,
if ||u0||B%_1 < cop, then T = co.

p,1

Here, /// (B;l) is the multiplier spaces consisting of all the distributions f such that v f is in B;l whenever
1 is in B

.1, endowed with the norm

def
W lgss s ol -
Y weBywllg =1 ’

Motivated by [10,16,20] concerning the global well-posedness of (1.2) with the third component of the
initial velocity field being large, we aim to relax the smallness condition in [20] so that (1.2) is still globally
well-posed. We remark that the smallness condition we are going to present is somewhat similar to that
in [9, Theorem 1.2]. Moreover, although the initial data satisfies the smallness condition we presented,
the initial velocity could be large in every direction (see Theorem 1.3).

def

In the sequel, we denote by S,,(¢) 4l gutA the heat flow, and by S(t) = S1(t). We look for the global

solution u of the form up + @, where up(t) def S, (t)ug solves the free heat equation dyup — pAup =0
with initial data ug. Moreover, by classical estimate for heat flow (see Lemma 2.4 below), it is easy to
observe that

lurll (JR*;Bffl) +N||UF||L1<R+;B§1+1> < CHUoHBi—u (1.4)

.n_1
whenever ug € By, (R") for 1 <p < oo.
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Let us state our main results.

Theorem 1.2. Let (p,q) € [1,2n) x [1,00), =1 <

]% % . Then there exist positive

“ IA

1,1
P, g
constants ¢1 and Cy such that, for any data (ao,uo) € B, 1(R") x B, (R") satisfying divug =0 and

5 (sl -+ ) exp{a ool s 1/ | < s (1.5

q

with Cp = ||lup - qul|L1(R+ B;_l), the system (1.2) has a unique global solution (a,u, VII) with a €

Cy([0,00); BE(R™)), u € Cy([0,00); BY, ' (R™)) N Ll(RﬂBﬂl(Rn)) and VII € L\(R*; B[ (R)).
Moreover, there holds
1
U R U nq n_q n < — . .
lall . <R+ 53 ) +MHU||L1<R+;B;1+ ) + ||VH”L1(R+;B;1 ) +pllall (R+ B ) < gap (1.6)

Remark 1.1. (a) We should mention that if the initial data ag € Bfl (R™) and ug = (ull,uy) € BE;l(R”)
satisfy the following smallness condition (see [20])

(uIIaoll ol )exp{oonuon i }w

q 1 p p 1
with ¢g small enough and Cy large enough, then (1.5) is fulfilled. The key observation is that divug =0
implies 0, u = —divyulk, so that

o0
c h
Cr<C [ url g sl o + bl sl g0t < S ol gl

n_q.
P
p,1 p,1 p,1 p,1 P

,1

(b) If the viscosity coefficient depends on the density by a regular positive function u = u(p), then
the diffusion term in the momentum equation of (1.2) reads (1 + a) div(ji(a)(Vu + V "u)), where fi(a) =
(5 +a) In this case, our theorem remains true under the stronger condition ¢ < p.

Motivated by Chemin and Gallagher [9], we give the following theorem to ensure that Theorem 1.2 is
relevant.

Theorem 1.3. Let n > 3, p € (n,2n), a,e € (0,1) and ¢, be in the Schwartz space ¥ (R™). Define
divergence free vector fields by

e —1 i
UO,E(-r) d:f(gl#?(82 . 8n—1¢57 8183 “ee 871—1¢87 e ’61 e 6n_38n—1¢87
_ (n — 2)61 . an—2¢670)’

of (—loge)t
wo () d:fe(lj%(o, 3 0,0n . DOt —Ds ... D1 0F),
where
def T c def T Ty
¢E(Z) = COos (?) ¢(.’L‘), T/’ (IE) = COos (?1) 7/) (‘Tla vy In—2, ?17xn) . (17)

Then there exists a positive constant C such that for any e small enough, the divergence free vector field
Ug,e () def w(voe +woe)(x) satisfies
C~'pu(—loge)t < HUOEII 20 < Cu(—loge)i, i=1,...,n, (1.8)

pl

and

M\»—l

(1.9)

R+; Bp

|5 (t)uo,e - VSu(t)Uo,eHLl( n 1) < Cue’(—loge)z,

with v = (2n — a)(% - 5) €(0,1).
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Remark 1.2. Let ag be in the unit sphere of B;l (R™). Theorem 1.3 ensures that the initial data (eag, uo,¢)
with € small enough verifies the nonlinear smallness condition (1.5), thus, generates a unique global
solution to (1.2). However, (1.8) ensures that ug . can be arbitrarily large in every direction.

The paper is organized as follows. In Sect. 2, we present some basic facts on Littlewood—Paley analysis.
The next section is devoted to the proof of Theorem 1.2 by applying some appropriate weighted norms
(see Propositions 3.1, 3.2). In the last section, we shall complete the proof of Theorem 1.3, which follows
the lines of that of Chemin and Gallagher [9].

Notation For two operators A and B, we denote [A, B] = AB — BA, the commutator between A and B.
The letter C stands for a generic constant whose meaning is clear from the context. We sometimes write
a < binstead of a < Cb. The Fourier transform of u is denoted either by @ or .Zu, the inverse by .# ~tu.

For X a Banach space and I an interval of R, we denote by C(I; X) the set of continuous functions
on I with values in X, and by Cy(I; X) the subset of bounded functions of C(I;X). For g € [1,400],
L%(I; X) stands for the set of measurable functions on I with values in X, such that ¢t — || f(¢)||x belongs
to L4(I). For short, we sometimes write L1 (X) instead of L((0,T); X).

2. Littlewood—Paley Theory

In this section, we recall some basic facts on Littlewood—Paley theory (see [7] for instance). Let x, ¢ be two
smooth radial functions valued in the interval [0,1], the support of x be the ball Z = {£ € R : |¢]| < %}
while the support of ¢ be the annulus ¢ = {£ € R" : 3 < [¢] < 8}, and satisfy

d (279 =1 for &eR™\{0};
JEL
XE)+ (279 =1 for &eR™

Jj=0

Denote by h e g ~ly and ez ~1y, the homogeneous dyadic blocks Aj and the homogeneous
low-frequency cutoff operators S; are defined for all j € Z by

Aju= (277 D)u = 2" / h(2y)u(z — y)dy,

n

Sju=x(27/Dyu = 2" / h(2y)u(z — y)dy.

Denote by Y};(R") the space of tempered distributions u such that
lim S’ju:O in 7.

j——o0
Then we have the formal decomposition
U= ZAju, Yu € 7, (R™).
jEz
Moreover, the Littlewood—Paley decomposition satisfies the property of almost orthogonality:
AAju=0 if [k—j]>2, and Ap(S;_1udv) =0 if [k—j] > 5.
Definition 2.1. Let s € R and 1 < p,r < co. The homogeneous Besov space B;”T(R") consists of all the
distributions u in %:(R”) such that

def

lull 5,

‘(QJ'SHAJ"U,HLP)J.GZHZT < 0.
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Remark 2.1. Let s e R, 1 < p,r < oo and u € LS’};(R”) Then there exists a positive constant C' such
that u belongs to B; . (R™) if and only if there exists {c;,} ez such that ¢;, > 0, [|cj.[[i- = 1 and
1Ajullze < Ceju2™*lulls, Vi €L

If r =1, we denote by d; def Cj1-

To gain a better description of the regularization effect to the transport-diffusion equation, we should
use the Chemin-Lerner type norms (see [7]):

Definition 2.2. Let s € R and 0 < T < 4o00. We define

™

T -
def i A
S 9irs A .
lellzg s, % (S ( | 1asuen dt)

jEL
forpe[l,x], r,o € [1,00), and with the standard modification for r = co or o = oo.
Let us recall the fundamental properties for the Besov spaces.
Lemma 2.1. Let € C R™ be an annulus and B C R"™ be a ball. There exists a positive constant C' such
that for any 0 <k € Z, any A > 0, any 1 < p,q < oo with ¢ > p, and any function v € LP, we have
supp@ € A% = | D*ullp. € S 0%ul|pe < CHHINFG D) |l o,
|| =k
supp @ C X6 = C " \¥||u||» < || D ulle < CFFIN¥|u| 1o
On the other hand, it has been demonstrated that the Bony’s decomposition [7,8] is very effective to
deal with nonlinear problems. Here, we recall the Bony’s decomposition in the homogeneous context:

wv = Tyv + Tyu + R(u,v),

where
- def . A . def A X X def A
T, = E Si—1uljv, R(u,v) = E Ajulju, and Ajv = E Ao
ez et i —jl<1

Lemma 2.2. Let 1 < p,q < oo, s1 < %, $9 < nmin{%, %} and s1 + so > nmax{0, % + % — 1}. Then

IIGbHB;TSQ—g S llal

g 6l Via,b) € By (R™) x By (RY). (2.1)

Proof. This lemma is proved in [20] in the case when ¢ < p. We shall only prove (2.1) for ¢ > p. Applying
Bony’s decomposition, we have

ab=T,b+ Tya + R(a, b).
Then applying Lemma 2.1, we get for s; < %

1A;(Tb) e S D0 ISj—1allp=l|Ajb]l e S dj27 227D g

~Y
3" —jl<4

1o 10115
Bq,1 Bp,17

and for s < %

n

1A;(Ta)llr S D" NAjallpallSyabll, pe S dj27 it

~
5/ —jl<4

|al

s 0l 522, -
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If%+l>1:%+ﬁ,weinfer

1A (R(a,0)) e S 279750 37 [ Agal| o | Agobl| o

3'>j=3

S2nj(17%)||a”133}1||b||B;21 Z dj/2_j'(sl+32—n(§+§—1))
' 3'>5-3

S d 27D lal| g 1B s,

1def g
q T

1

for sy + s9 > n(;l) +5- 1). Finally, in the case when zl) + < 1, notice that s; + s9 > 0, one has

L ni(l_1 . ~

I1A; (R(a,b))||l» 279G > || Ajallpa||Ajib Lo
i'>5-3

< d;2 e g

e 10l 22 -

This completes the proof of the lemma. O

To prove our theorems, we shall also use the following lemmas, the proof of which could be found in
[7].

Lemma 2.3. Let 1 <p,g<o0, s<1 Jrnmin{%, é}, a€ Bgﬁl(R") and u € szjl(R"). Assume that
1 1 1 1
8>—nmin{,1—}, or s>—1—nmin{,1—} if divu=0.
p q p q

Then there holds
[lu-V,AjlallLe S djTjSIIuIIBﬁlHallfa;l-

Lemma 2.4. Let € C R" be an annulus. Then there exists a positive constant c, such that for any
1<p<ooand >0, we have

supp @i C A% = ||S(t)ul|pr < e )

|u|| e
Lemma 2.5. Let s >0 and 1 < p,r < co. There exists a positive constant C' such that

C™h il gz < (€18 @)ull oo |

B

for all u € BI;,%S(R”).

3. Proof of Theorem 1.2

This section is devoted to complete the proof of Theorem 1.2. The key ingredient is to estimate some
linear equations by applying the following weighted norms [20]:

T
def
Jally 0 [ Ol

where f(t) € Ll (RT), f(t) >0 and (X, || - ||x) is a normed space.

loc
In the sequel, we take the weighted function f(t) = ||uF(t)HB%+1 and define

p,1

ax(t,7) S ot ) exp {—A/Otf(t’)dt/} (3.1)

with A > 0.
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The first linear equation we are concerned is the free transport equation.

L . n_q .n4q
Proposition 3.1. Let ap € B,/ (R") andu € LF (B, (]R”))QL%F(B;”;r (RM) with1 <p<o0,1 <gqg< o0
and % — % < % Then the transport equation

a+u-Va=0, (tz)e(0,T]xR", (3.2)

has a unique solution a € C([0,T]; qu’l (R™)) with initial data ag. Moreover, there exists a constant C > 0
such that

||aAHZ?O (Ei) +(A— C)HGAHL;J‘ (Bi)

< n n U n Yt T). .
C<||aoBq%+||a||Ltw<Bq%>||uA||L%<B:1+1>>, c0.1) 53

Proof. Both the existence and uniqueness of a solution to (3.2) essentially follow from estimate (3.3). For
simplicity, we just present the a priori estimate for smooth enough solution of (3.2). With the notation
of ay, (3.2) is reduced to

Oray + Af(t)ax +u-Vay =0, (t,z)e[0,T]xR"
Applying Aj to the above equation and taking the L? inner product of the resulting equation with

|Ajax|972Ajay, we obtain

1d, . TS o
gaHAja)\H%q +AfOAjax, = g/R d1vu|Aja,\|’1dnc—|—/]R [u-V,Ajlax |Ajay|? QAja,\dx.

From this, using Remark 2.1 and Lemma 2.3, we get
d . . Cn
ZlAsarlce + AF@IAjaxlze S ()27 lu]l zerflanll = -
t Bp,l Bq,l

Integrating the above inequality over [0,t] and using v = up + @ lead to
t
8sarlmqon + 3 [ 1A 0 uadr
0

t
S Wjaolles + [ 2 Pl g las(l 5 dr
0

p,1 q,1

t
< 1A aolle + / ()2 | ar ()] oo la(m)] 2 dr
0 B B

p;1 q,1

+ / dy(r)2" 3 f(r)l|ax(r)]| x dr.

q,1

Multiplying the above inequality by 247 and taking summation for j € Z, we arrive at

n A n
HGA”ng(B;l) + HGAHL%J(W )

q,1

) k
S ol g+l 150 0+ o

a, p,1

This completes the proof of the proposition. O

We next give the estimate for Stokes system.
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Proposition 3.2. Let uy € B;’l(R”) with divug = 0 and F € L( ';’1(R")) with p € [1,00] and s € R.
Then the system

up — pAu+VII=F, (t,z) € (0,T] x R",
divu =0, (3.4)
ult—o = Uo

has a unique solution (u,VII) with u € C’([O,T];B;,l(R")) and VII € L}(B;l(R”)) Moreover, the
following estimate is valid:

luxllze ms ) T Aluallcy s ) + #lualloy soezy + IV Ly 35 ) S lluollps, + 1MLy s,y (3:5)
Proof. We just need to prove (3.5). Let P be the Leray projection operator and Q def Iqp —P =
~V(—A)~!div. Applying Q to the first equation of (3.4) and using the divergence free condition for
u, we have

VII = QF,
which gives rise to
II n_\ <|IF n_gy. 3.6
vV A||L1T<B:1 1) S A||L1T(B:1 1> (3.6)

Applying P to the first equation of (3.4), then we get by Duhamel’s formula that
t
u(t) = S, (o + / S, (t — T)PF(r)dr.
0
Applying Lemma 2.4 gives rise to

t
1A u®)lor S e 2 Ajuo Lo + / e~ D A F (7)) Lodr.
0

Multiplying the above inequality by exp {—)\ fot fHdt }, we obtain
) t .
1A ur(t)]| e S e exp {_A/ f(t’)dt,} 1Ajuolle
0

t _ t .
+/ e 12 (4=7) oxp {_)\/ f(t’)dt’} 1A Ex(7)|| rdr. (3.7)
0 T

Then it is easy to observe that

T
1AjuxllLse (Lry S I[Ajuoll e +/0 |A;Fx(T)| e dT,

from which, we deduce that

||U/\||Zg9(B;,1) < luol B, + ||F>\HL1T(B;’1)' (3.8)

On the other hand, integrating (3.7) over [0, 7], we arrive at

T T t
. . 24 24 .
[AjuxllLs. ey S ||Aju0||LP/ emr2 gy +/ / e U A F(7) | podrdt
0 0 0

T T ‘
5 M_12_2j||Aju0HLp +/ ||AjF)\(T)||LPdT/ e—CMQZJ(t—T)dt
0 T

T
Spta <||Aju0||lfp +/ |AjFA(T)||LPdT>a
0
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which implies

pllunllpy o2y S lluollps | + 1My 3 - (3.9)

To control the weighted norm in (3.5), we integrate (3.7) xAf(¢) over [0,T] to obtain

T
A / 1A jun ()] o £ (2)

§||Ajuo||Lv/OT e {2 [ it fa
v : / A exp {2 / @0t Y13 B
=18l [ e {3 [ s}
/OHAJF,\( >||LpdT/T o {- YNG yar | at

T
< lAsuollze + / | A F(r) | o
0

As a consequence, we have

>\||U>\HL1 (Bs 1 < ||U0||B;=1 + ||F>\||L1T(B;‘,1)~ (3.10)
Combining (3.6) and (3.8)—(3.10) completes the proof of the proposition. O
Now let us come back to the proof of Theorem 1.2. We first infer from (1.5) that ||a0|| < 3¢ On

the other hand, we can get by applying Lemma 2.2 that qu,l( ) e //{(B;1 (R")) with p, ¢ satisfying
the conditions listed in Theorem 1.2. Thus, thanks to Theorem 2.61 in [7], we have

,1<H

ag C1
n_ n n < —
i S I3 S llaoll 3

1+ ag B, "~ Oy

llpo — 11|

Taking ¢; small enough or C; large enough gives rise to (1.3). Then Theorem 1.1 ensures that there exists
a positive time T so that (1.2) has a unique solution (a,u, VII) with

. n n Sh1 DLl
a€C([0,T); B/, (R"), ue C([0,T); By, (R")NLy(By, (R")),
and VITe LL(B?, (R")). (3.11)

We denote T™* to be the largest time so that there holds (3.11). Hence to prove Theorem 1.2, we only
need to prove that T = oo and there holds (1.6).

We first get from (1.2) that (@, VII) solves the Stokes system
—pAu+ VI =G, (t,x)€ (0,T") xR"™,
divu =0,
Ulg=o =0

with

G = a(pAu — VII) + paAup — (- Vi + diviup @ U+ @ Q@ up) + up - Vup).
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Applying Lemma 2.2, we have for any ¢t < T that
la(uday =VILI o z-y S llall o2y lrdax, VIL Ay
w(mn) e (o) “(#)

||/MAAUF||L% (B%fl) S MHCLAIIU (B%1>»

q,

B

Hﬂ'VﬂAJr(uF-VuF)AHLl(B;ﬁ ><HU|| (ijl >|| | (B"+1>+CF,

p,1

Using Lemma 2.2 , (1.4) and interpolation inequality, we have for any 1 > 0 that

divior 03 00wl 5 /umn s Jurll s
t p pl Pl
1
/IIUAII nﬂIIUAII?% HuFII nHIIUFII o d7
p pl Bpl
< U — n_ n_ 0<t T*
Sl )nn woll g1l (300 058

Finally, we conclude that

HG)\HL%<BE’;1> S <ﬂ+u||a|| (Bq ) +lal (Bz?,l 1)) Hﬁ)\HL%<BE’:1>

— n _ n _ n H n _
||uO||Bp1 daall, (Bp 1) + ||¢1||L?o<qu )llV *”@(Bél 1)
+u||a>\|| (B )+CF, 0<t<Tr.
he
Applying Proposition 3.2 and taking n < u in the above inequality, we arrive at

||ﬁ>\”z;?°<3pl >+>\Hu/\|| tf(B" 1) +ullaxll (BEIH> +||VH>\||L%(B§1’1>

D,

(ulla ~(7) F 1o (4&;)) ol (a3)

—1 =
u |\uo\|3%_l||uA||Ll (B,) + Ha”w@ (B% )”vﬂ)\HL% (Bp;l )

p,1 t,f p,1 q,1
+ A oy + Cp, 0<t<Tr. 3.12
Hloally (57) (3.12)

Summing up (3.12) and (3.3)x u, we obtain

||ﬂ,\||i?o<3p%—1) +I~L||ﬂ,\||L% (B"+1) + ||VH,\|| (Bp%—l> +M||CL/\||Z%,o (B% )

1 1

+(r-an 1||uo||B;11)||uA|L}_f(Bn1>+N<A Mol (53

p p,1

<03 (mlalgpry + e VIl e
(i) T (5227) (527)

VII n +C 0<t<T*. 3.13
+ HGHLt ( ql)|| A|| ( 3 >+u||ao|\ F}7 <t< (3.13)
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To complete the proof, we shall use the method of continuity. For this, we define

def _
T % g {t 0T il () bl oy IV gy + ) <
() T (en”) T (e T e (04
(3.14)
Fixing the constant C' in (3.13) and taking ¢; = 555, A = C +Cp~ 1||uo|| 21, we deduce from (3.13) and
1
(3.14) that E

HU)\||~ ( p%*l) +/L||U)\||L (p% ) + HVHA” (B%—l) +MHa}\”E§’°(B§1)

p,1

B
<u||a0 3t F) , for t < T**.

As a consequence,
(wtaoll 3+ ) oo (3 [0t
<Cy ( |aoH —l— CF> exp <C1||u0| w1/ ) for t < T,

p 1
with some constant Cy > C'. The above estimate along with the smallness condition (1.5) implies that

Hu||~t ( i ) +ulall, (B% >+ IIVHHL <B§1—1> +M||GIIE?O(B§1)
C

<2

\s

||ﬁ||g§o<3p;:l )+u\|u|| ( "+1) + ||VH||L (B; 1) +pllall (Bi) < %cm (3.15)

for t < T,

Now we can conclude that T* = oo by using the standard method of continuity. In fact, it follows from
(3.14) and (3.15) that T** = T*. If T* < oo, in view of (3.15), we can use Theorem 1.1 to extend the local
existence time of solution satisfying (3.11) beyond T*. But this is a contradiction with our assumption
that 7™ is maximal. Whence we conclude that T* = co and the conclusion of Theorem 1.2 follows.

4. Proof of Theorem 1.3

In this section, we shall verify that the divergence free vector field ug . introduced in Theorem 1.3 can
be large in every direction, namely, we shall check (1.8). We shall also show that the nonlinear smallness
assumption (1.9) is valid. Let us start by proving the following lemma:

Lemma 4.1. Let n > 3, f € S (R™) be given, p € (1,¢], o € (0,n(1 — %)) and o € [0,1). Then there
exists a constant C' > 0 such that for any e € (0,1) small enough, the function
def ;21 Ln—
fe(l') = e 61 f (1’1, ey T2, 7&\& ! ,Z'n)
satisfies

O™ b < | follge S C7FF

Proof. Applying Lemma 3.1 in [9], we can obtain the upper bound of || f¢|| p—o- In order to bound from

below || f]] p-o, we first approximate f by g in the following sense
P,

Seuﬂgh(l +[z)MD(f —g)(@)| <n and §€ Z(R")
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with k large enough and 7 small enough. In particular, we have
15 =g ller <me?, and |f° =gl pg <m0 (4.1)

Suppose the support of § is included in the ball B(0, R) for some R > 0, then the support of g¢ is included
in the ball B((¢7%,0,...,0),e"*R). This ball is included in e~!% for some annulus ¢". Choose a smooth
function ¢ € 2(R™) with value 1 in the neighborhood of ¢ and vanishing identically near 0. Then we
have

g = FHC(e0)9) = F (cleg)e” e age ).
In particular, for 0 < t < €2, we infer from the above equality that

lgller S lle” 2g%r S Nl g%,

which along with (4.1) and Lemma 2.5 implies

>
19,5~ [ 5 IS = O g [ o5 ar
> C (|5 e —mev) 2 CTeT (I f oo — ).
Again thanks to (4.1), we arrive at
1Flge > No%llag — 1% > C1e+5 (110 — .
Taking < || f|lL», we complete the proof of the lemma. O

Remark 4.1. With some slight modifications of the above proof, the lemma remains true for real valued
functions

fe(x) =cos (%)f (ml, ey Tp—2, %,w» ,
or ff(x)=sin (%)f (xl,...,xn,g, %,mn) . (4.2)

We note that (1.8) is an immediate consequence of Lemma 4.1. Indeed, applying Lemma 4.1 for a = 0,

. q
we infer that the B, mnorm of the j-th (j < n) component of vg. is equivalent to (- log £)i. While
[y

=y and |jwy n_y are equivalent respectively to e®(—loge T and (— loge i Thus, we require
0 € 0,e B

pl

o > 0 in Theorem 1.3 so that there holds (1.8).
In order to control the nonlinearity S, (t)uo, - V.S, (t)uo,., we need to prove the following lemma,
which is a slight improvement of Lemma 3.2 in [9].

Lemma 4.2. Let p € (1,00], 0 € (0,n(1 — %)) and 0 =
BQ_pl,Q(R”), we have

ﬁ € (0,1). Then for any f,g € H-'(R") N
P

1S (D F Sl 57y S 1 Ul -2 llgllg-0) U g, Mol g, )7
Proof. Denote by E dif 1A( Su(t)fSu(t)g)ll L1 (m+;r)- Then for any integer jo, we have
15, Su gl pr gy = D 277 Ej+ Y 277, (4.3)
J<jo J>Jjo

For the low frequencies, using Lemma 2.1 and the Cauchy—Schwarz inequality, we get
(1—1
E; 2707018, Su(t)g ]l o vy
ni(1—1
< 207018, () fll 2 22) 1S (D9l 2t 12 -
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Whence we deduce by using Lemma 2.5 that
By 2700 £l -allgll - (4.4)
For the high frequencies, we have
B; S 180 fllzqaercam 1 Su Ol 2o S i~ 1l Nl s, (45)
Substituting (4.4) and (4.5) into (4.3), we infer

1 SOl s oy < 1 (2750 gl + 270 g o)
Choosing jo to be the integer part of
9 10g, (Mol
o 1Al -2 llgll

gives the desired result. (I

Finally, we are ready to check (1.9). Using the notations in (1.7) and (4.2), we get by easy but tedious
computations,

—loge)2 x .
1Su(B)vo.e - VSu(t)voell o\ 2 S(Q(ﬁﬂsu(t)fesu(t)ge\\ AP
p(nil) S0 v (eni)

(—loge)? 5 .
2 |IS. () f5S,.(1)5° niay,
e IO S 08, o

A

15 (H)wo.c - VS;L(t)wo,sHU( .5171)

and

15 (t)vo,e - VSpu(t)wo e

L1<R+;B'§l_1) + |18, (H)wo,e - VSu(t)“0,6||L1<

(—loge)? P .
<X 277 € n
~ 63_2771_,_% ||Su(t)fasu(t)g HLl(]RJr;Bz;l)’

where f and § are various Schwartz functions and may be different on different lines. On the other hand,
applying Lemmas 4.1 and 4.2 gives rise to

IS8, ) S0 Uil e o) S 7'
Similarly, we have
HSu(t)fESM(t)gEHLl<R+;B§1_1> Sptertn,
||Su(t)f65u(t)§‘€||Ll(Rﬁgi—l) <ptetten,

As a consequence, we conclude that (1.9) is valid and the proof of Theorem 1.3 is completed.
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