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Abstract. New results are obtained for global regularity and long-time behavior of the solutions to the 2D Boussinesq
equations for the flow of an incompressible fluid with positive viscosity and zero diffusivity in a smooth bounded domain.
Our first result for global boundedness of the solution (u, θ) in D(A) × H1 improves considerably the main result of the
recent article (Hu et al. in J Math Phys 54(8):081507, 2013). Our second result on global boundedness of the solution (u, θ)
in V × H1 for both bounded domain and the whole space R

2 is a new one. It has been open and also seems much more
challenging than the first result. Global regularity of the solution (u, θ) in D(A) × H2 is also proved.
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1. Introduction

Suppose that Ω ⊂ R
2 is a bounded domain with smooth boundary ∂Ω. Consider the following Boussinesq

equations for the flow of an incompressible fluid with positive viscosity and zero diffusivity:

∂tu − Δu + u · ∇u + ∇p = θe2, x ∈ Ω, t > 0 (1.1)
∇ · u = 0, x ∈ Ω, t > 0 (1.2)

∂tθ + u · ∇θ = 0, x ∈ Ω, t > 0, (1.3)

where u is the vector field of fluid velocity, p and θ are the fluid pressure and density/temperature field
and e2 = (0, 1) ∈ R

2. For simplicity of presentation, the viscosity constant has been set as 1. The standard
no-slip Dirichlet boundary condition is imposed:

u
∣
∣
∂Ω

= 0, t > 0. (1.4)

The above equations are also equipped with initial conditions:

u(x, t)
∣
∣
t=0

= u0(x), θ(x, t)
∣
∣
∣
t=0

= θ0(x), x ∈ Ω, (1.5)

with proper u0 and θ0 to be specified later.
The 2D Boussinesq equations with positive viscosity and positive diffusivity is well known to be globally

well-posed for both weak and strong solutions. This can be obtained by following the classic theory for
the 2D Navier-Stokes equations, cf. e.g. [3,12]. See also a detailed proof of the global existence of the
strong solutions as given in [11]. If viscosity and diffusivity both vanish, then the global existence of strong
solutions is still an open problem.

Motivated by the works of [2,8], there have been extensive research activities on the global regularity
of the solutions to the 2D Boussinesq equations for many cases sitting between the easiest one with
full viscosity and diffusivity and the hardest one with zero viscosity and diffusivity. For simplicity of
presentation, we refrain from discussing or citing extensive references for all those varying cases. In the
following, we briefly discuss existing results just for the case to be studied in this article, i.e. the one
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with positive and full viscosity and zero diffusivity. The notations to be used in this article are basically
standard and will be defined and explained in details in Sect. 2.

First of all, existence and uniqueness of global weak solutions have been established in [4] for Ω = R
2

and in [6] for Ω being a smooth bounded domain. Global regularity for the solution (u, θ) ∈ H1 × L2

can be easily proved. See e.g. [2,5,8] for Ω = R
2, [10] for Ω = T

2 and [7] for Ω being a smooth bounded
domain. See also Theorems 2.1 and 2.2.

For the case Ω = R
2, global in time regularity is proved in [2] for (u, θ) ∈ Hm × Hm, with the integer

m � 3 and in [8] for (u, θ) ∈ Hm × Hm−1, with the integer m � 3. Global regularity is also proved in [4]
for (u, θ) ∈ Hs × Hs−1, with real s � 3.

For the case Ω being a bounded domain with a physical boundary, the particular difficulty in addition
to complication of nonlinearity is the intensive vorticity along the boundary, which requires more careful
treatment. Mathematically, it is convenient to use vorticity equation when Ω = R

2, as vortex stretching
does not exist. Indeed, previous works for the case Ω = R

2 all take advantage of this feature. However,
for a bounded domain Ω, except the case of Ω = T

2, this approach is not as feasible since it is difficult to
deal with vorticity along the boundary of Ω. The case of Ω being a smooth bounded domain with no-slip
boundary condition on u has been studied in [9], the main result of which is the global regularity for
solutions (u, θ) ∈ H3 × H3 under some extra compatibility conditions for initial datum.

As pointed out by [7], due to the special feature of the equations, global in time regularity in the
Sobolev spaces of intermediate orders is in fact much more difficult to be established than in the higher
order Sobolve spaces Hm ×Hm and Hm ×Hm−1 for m � 3 as studied in the above mentioned literature.
The main result of [7] is global in time regularity of the solutions (u, θ) ∈ D(A) × H1 for the case of
a smooth bounded domain Ω with no-slip boundary condition on u. Here, A is the Stokes operator of
u with no-slip boundary condition on ∂Ω. See Sect. 2 for notations. This result is proved in [7] using a
new Gronwall lemma for two coupled nonlinear differential inequalities with one involving a logarithmic
function. No additional compatibility conditions is required for u0 beyond u0 ∈ D(A). The analysis of [7]
also applies to the case of Ω = R

2 or T
2 with minor modifications to obtain similar results. It might be

worthy of mentioning that for the case of Ω = R
2, global regularity in H2 × H1 is also obtained in [8]

using a boot-strapping argument, though much more complicated than the approach of [7]. Notice also
that vorticity equation is used in [8]. Thus, it seems that the analysis of [8] can not cover the case of a
bounded domain with non-periodic boundary conditions.

In this article, we study further the global regularity of solutions of this system and especially the
long-time behavior of the solutions of this system. We will focus on the case of a bounded domain Ω ⊂ R

2.
All the conclusions obtained in this article can be extended without adjustment to the case of Ω for which
Poincaré inequality is valid. All the results except for those related to uniform upper bounds are also
valid for the case Ω = R

2.
First, a new proof of the D(A)×H1 global regularity will be presented using a method quite different

from those of [7,8]. The new proof improves considerably the result of [7] in the following sense: the best
upper bounds of ‖Au(t)‖2 and ‖∇θ(t)‖2 for t ∈ [0,+∞) that can be derived from the analysis of [7] both
grow double exponentially with respect to t as t → ∞; while under the same conditions as those of [7]
and somewhat surprisingly, our analysis provides a uniform upper bound for ‖A(t)u‖2 with respect to
t ∈ [0,∞) (and indeed also a bounded absorbing set for u(t) in D(A) as t → ∞) and an upper bound
for ‖∇θ(t)‖2 which is only single exponential with repsect to t2 as t → ∞. See Theorems 3.1 and 3.2
for detailed statements of the result. Our new analysis seems also more transparent than previous ones.
Notice that due to the inductive feature of the method of [8], it seems quite difficult to get upper bounds
for ‖Au(t)‖2 and ‖∇θ(t)‖2 in explicit form of functions of t from the boot-strapping argument of [8]. In
this sense, the method of [8] seems to be less sharp than that of [7] and, as already mentioned above, it
does not apply to the case of a bounded Ω with non-periodic boundary conditions.

As our next main results, we prove the global regularity for (u, θ) ∈ V ×H1 and for (u, θ) ∈ D(A)×H2.
Here V is the standard space of divergence-free vector fields in L2 with their gradients also in L2. See
Sect. 2 for notations. Especially, the global regularity for (u, θ) ∈ V × H1 seems to be quite unexpected
complement of the existing results for global and local regularity. Notice that there are obvious essential
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reasons for previous analysis of regularity results to focus on the case (u, θ) ∈ H2 × H1. For example,
due to lack of diffusivity in the θ equation (1.3), even though ‖θ(t)‖p is conserved for all t � 0, there
is no direct way to get global or even local in time regularity θ ∈ H1 just from θ equation (1.3) alone.
Moreover, it seems still extremely difficult to obtain regularity of θ in H1 by just coupling it with the
enstropy equation of u, even just local in time. One key obstacle is that, in dealing with the involved
nonlinearity, ‖u‖H2 can not dominate ‖∇u‖∞ in 2D domain via Sobolev imbedding. Even with one order
higher regularity of u coupled, it is still technically complicated to combine the tool of Brezis–Gallouet
type inequalities to deal with regularity of θ in H1, as can be seen in [7,8] and in the proof of the first
main result of this article as given in Sect. 3. Now, with only H1 regularity for u coupling with H1

regularity for θ, proving global regularity of (u, θ) ∈ V ×H1 appears much more challenging than proving
global regularity of (u, θ) ∈ D(A)×H1, since Brezis–Gallouet type inequalities would not help any more.
Indeed, to the knowledge of the author, existence of V × H1 solutions has been open for any kind of
domains, even though the essential difficulty here is indeed only a local property. In this article, some new
ideas from spectral decomposition analysis will be used to resolve completely the essential difficulty. The
main result on global regularity of (u, θ) ∈ V ×H1 thus obtained will be summarized in Theorem 4.1. As
the second application of spectral decomposition and for completeness, we prove our next main result,
Theorem 5.1, for the global regularity of (u, θ) ∈ D(A) × H2. Since we will not use Brezis–Gallouet type
inequalities here, the proof is a lot simpler than otherwise.

We comment that our proofs of the above mentioned global regularity results are self-contained and
global regularity results in higher order Sobolev spaces can thus be obtained as consequence of our global
regularity results.

The rest of this article is organized as following: In Sect. 2, we give the notations, briefly review the
background results and recall some important facts crucial to later analysis. In Sect. 3, we state and prove
Theorems 3.1 and 3.2 for the global regularity of the solutions (u, θ) ∈ D(A) × H. In Sect. 4, we state
and prove Theorem 4.1 for the global regularity of the solutions (u, θ) ∈ V ×H1. In Sect. 5, we state and
prove Theorem 5.1 for the global regularity of the solutions (u, θ) ∈ D(A) × H2.

2. Preliminaries

2.1. Notations and Some Basic Results

Throughout this article, we use the notations that, for real numbers A and B,

A � B iff A � C · B,

and

A ≈ B iff c · A � B � C · A,

for some positive constants c and C independent of A and B.
Recall that Ω is a bounded domain in R

2 with sufficiently smooth boundary ∂Ω. By a domain, we
always mean an open and connected open subset of R

2. Denote by Lp(Ω) (1 � p < +∞) the classic
Lebesgue Lp space with the norm:

‖f‖p :=
(∫

Ω

|f(x)|p dx

) 1
p

, ∀f ∈ Lp(Ω).

The Lebsgue space L∞(Ω) is defined as the Banach space of (classes of) real functions on Ω which are
measurable and essentially bounded with the norm

‖f‖∞ := ess sup
x∈Ω

|f(x)|.
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Denote by Hm(Ω) (m � 1) the Sobolev space for square-integrable functions with square-integrable weak
derivatives up to order m with the norm

‖f‖Hm :=

⎛

⎝
∑

|α|�m

‖Dαf‖2
2

⎞

⎠

1
2

, ∀f ∈ Hm(Ω).

We use the standard notations of the following functional spaces for the initial value problem with no-slip
boundary condition:

H :=
{

v ∈ (L2(Ω))2
∣
∣ ∇ · v = 0 in Ω, v · n = 0 on ∂Ω

}

,

V :=
{

v ∈ (H1
0 (Ω))2

∣
∣ ∇ · v = 0 in Ω

}

,

where the equalities are in distribution sense, n is the unit vector normal to ∂Ω and outward with respect
to Ω and H1

0 (Ω) is the closure of C∞
0 (Ω) in H1(Ω), i.e. the space of the functions in H1 with zero-trace

on ∂Ω. Later on, we do not distinguish the notations for vector and scalar function spaces, which are
self-evident from the context. Therefore, we will use e.g. Lp(Ω) and Hm(Ω) or simply Lp and Hm to
denote (Lp(Ω))2 and (Hm(Ω))2 respectively provided there is no confusion.

Denote by P the Helmholtz orthogonal projector in (L2(Ω))2 onto H. The Stoke operator A : D(A) ⊂
H 
→ H is defined as

A := −PΔ, D(A) = (H2(Ω))2 ∩ V.

Recall that
‖Pv‖H � ‖v‖2, ∀v ∈ L2(Ω)2, ‖∇Pv‖2 � ‖v‖H1 , ∀v ∈ H1(Ω)2. (2.1)

By the spectral theorem for A, there exists a sequence {λj}∞
1

0 < λ1 � · · · � λj � λj+1 � · · · , lim
j→∞

λj = ∞,

and a family {wj}∞
1 ⊂ D(A) which is orthonormal in H such that

Awj = λjwj , ∀j = 1, 2, . . .

Denote, for α ∈ [0,∞),

Aαv :=
∞∑

j=1

λα
j (v, wj)wj , ∀v ∈ D(Aα),

where (·, ·) is the inner product in H and

D(Aα) :=

⎧

⎨

⎩
v ∈ H

∣
∣
∣

∞∑

j=1

λ2α
j |(v, wj)|2 < ∞

⎫

⎬

⎭
.

Notice that, D(A
1
2 ) = V and

‖A
1
2 v‖2 = ‖∇v‖2, ∀v ∈ V. (2.2)

Moreover, ‖A · ‖2 is equivalent to ‖ · ‖H2 on D(A), i.e.

‖Av‖2 ≈ ‖v‖H2 ∀v ∈ D(A).

For 0 � r � s � 1, there is a Poincaré inequality:

λs−r
1 ‖Aru‖2 � ‖Asu‖2.

Define the family of spectral projection operators {Pm}∞
1 as

P1v :=
∑

λj<2

(u,wj)wj , Pmv :=
∑

2m−1�λj<2m

(u,wj)wj , for m � 2.

Then,
‖PmAsv‖2 = ‖AsPmv‖2 ≈ 2ms‖Pmv‖2, for m � 1, s � 0. (2.3)
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Introducing the bi-linear operator,

B(u, v) := P(u · ∇v), ∀u, v ∈ V,

which maps V × V into V ′ (the dual space of V ), one can also reformulate equations (1.1)–(1.2) as

ut + Au + B(u, u) = P(θe2). (2.4)

It can be shown that (see e.g. [7])

‖∇B(u, v)‖2 � ‖u‖ 1
4
2 ‖Au‖ 3

4
2 ‖v‖ 1

4
2 ‖Av‖ 3

4
2 + ‖u‖ 1

2
2 ‖Au‖ 1

2
2 ‖Av‖2. (2.5)

Definition 2.1. Given (u0, θ0) ∈ H × L2, (u(t), θ(t)) is a (global) weak solution of the initial boundary
value problem (1.1)–(1.5) if for any T > 0, the following statements are valid:

1. θ ∈ C([0, T ];H), v ∈ C([0, T ]) ∩ L2(0, T ;V ).
2. For any ψ ∈ (C1([0, T ] × Ω))2 such that ∇ · ψ = 0,

∫ T

0

[

(u, ∂tψ) − (∇u,∇ψ) − (u · ∇u − θe2, ψ)
]

dt = (u(T ), ψ(T )) − (u0, ψ(0)).

3. For any φ ∈ C1([0, T ] × Ω),
∫ T

0

[

(θ, ∂tφ) − (u · φ)
]

dt = (θ(T ), φ(T )) − (θ0, φ(0)).

Notice that one could define a weak solution even somewhat weaker than the above one. We adopt
this one since existence and especially uniqueness of the weak solution to the problem (1.1)–(1.5) has
been proved in [4] for the case when Ω = R

2, and in [6] for the case of a smooth (C2) bounded domain.
As mentioned in Sect. 1, for Ω = R

2, global regularity of the solutions in Hm × Hm with integer
m � 3 is proved in [2] and global regularity in Hm × Hm−1 with integer m � 3 is proved in [8], which
is extended in [4] for (u, θ) ∈ Hs × Hs−1, with real s � 3. In [9] global regularity in H3 × H3 is proved
when Ω is a smooth bounded domain, under extra compatibility conditions for initial data. In the more
recent work [7], global regularity in D(A) × H1 is obtained where Ω can be either a bounded domain, T2

or R
2. No extra compatibility conditions for initial data other than u0 ∈ D(A) is needed.

The main goal of this article is to study global regularity and long-time behavior of the solutions
for the case of a bounded domain. The main results of this article, as discussed in Sect. 1, are Theo-
rems 3.1, 3.2, 4.1 and 5.1. The first two improve considerably the main result of [7]. The last two are new
results which seem to have been open.

For convenience of reading, we recall the following formulation of the Uniform Growall Lemma, which
will be used frequently in later discussion. The detailed proof of the lemma can be found e.g. in [13].

Lemma 2.1 (Uniform Gronwall Lemma). Let g, h and y be three non-negative locally integrable functions
on (t0,+∞) such that

dy

dt
� gy + h, ∀t � t0,

and
∫ t+r

t

g(s) ds � a1,

∫ t+r

t

h(s) ds � a2,

∫ t+r

t

y(s) ds � a3, ∀t � t0,

where r, a1, a2 and a3 are positive constants. Then

y(t + r) �
(a3

r
+ a2

)

ea1 , ∀t � t0.



110 N. Ju JMFM

2.2. Global Regularity in H × L2

For convenience of later discussion, we recall the following global regularity result:

Theorem 2.1. Suppose (u0, θ0) ∈ H × L2. Then, (1.1)–(1.5) has a unique weak solution (u, θ). Moreover,
the following are valid:

‖θ(t)‖2 = ‖θ0‖2, ∀t > 0, (2.6)

‖u(t)‖2
2 � ‖u0‖2

2e
−λ1t +

‖θ0‖2
2

λ2
1

(

1 − e−λ1t
)

, ∀t > 0. (2.7)

∫ t+r

t

‖A
1
2 u(τ)‖2

2 dτ � ‖u0‖2
2e

−λ1t +
‖θ0‖2

2

λ2
1

(

1 − e−λ1t
)

+
r

λ1
‖θ0‖2

2, ∀t, r > 0. (2.8)

Proof. Existence and uniqueness of the weak solution have already been established in [6]. For complete-
ness, we provide the brief formal a priori estimates yielding (2.6)–(2.8). Due to existence and uniqueness
of the weak solution, these a priori estimates can be justified rigorously via standard argument.

First of all, (2.6) is an immediate consequence of (1.2)–(1.4) via the following simple computations:

1
2

d

dt
‖θ‖2

2 =
∫

Ω

θtθ dx = −
∫

Ω

(u · ∇θ)θ dx = −1
2

∫

Ω

u · ∇(θ2) dx

=
1
2

∫

∂Ω

(u · n)θ2 dS − 1
2

∫

Ω

(∇ · u)θ2 dx = 0.

Next, taking inner product of (1.1) with u and using (1.2) and (1.4), we obtain

1
2

d

dt
‖u‖2

2 + ‖A
1
2 u‖2

2 � ‖θ‖2‖u‖ � λ1

2
‖u‖2

2 +
1

2λ1
‖θ‖2

2 � 1
2
‖A

1
2 u‖2

2 +
1

2λ1
‖θ‖2

2.

Therefore,
d

dt
‖u‖2

2 + ‖A
1
2 u‖2

2 � 1
λ1

‖θ0‖2
2, (2.9)

implying that

d

dt
‖u‖2

2 + λ1‖u‖2
2 � 1

λ1
‖θ0‖2

2,

from which (2.7) follows by a direct integration.
Finally, (2.8) can be obtained from (2.9) and (2.7). �

Remark 2.1. We see from (2.7) that, for any fixed ‖θ0‖2, there is a bounded absorbing set for u in H with
the radius being ‖θ0‖2/λ1 and not depending on ‖u0‖2. It is also easy to see from (2.8) that there is a
bounded absorbing set for

∫ t+r

t
‖A

1
2 u‖2

2dτ in R+ with fixed ‖θ0‖2 and r(>0).

2.3. Global Regularity in V × L2

The following global regularity will also be used in later discussion:

Theorem 2.2. Suppose that (u0, θ0) ∈ V × L2. Then, there is a t0 = t0(u0, θ0) > 0, such that the unique
weak solution (u, θ) of (1.1)–(1.5) satisfies

‖A
1
2 u(t)‖2

2 � 1 + 2‖A
1
2 u0‖2

2, ∀t ∈ [0, t0]. (2.10)

Moreover, for t � t0, the following uniform bound of ‖A
1
2 u(t)‖2 is valid:

‖A
1
2 u(t)‖2

2 �
[

‖u0‖2
2e

−λ1tt−1
0 + (λ−1

1 + t0)‖θ0‖2
2 +

‖θ0‖2
2

λ2
1t0

(

1 − e−λ1t
)
]

ea1 , (2.11)
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where, there is a generic constant c0 > 0, such that

a1 � c0

(

‖u0‖2
2e

−λ1t +
‖θ0‖2

2

λ2
1

)[

‖u0‖2
2e

−λ1t +
‖θ0‖2

2

λ2
1

(

1 − e−λ1t
)

+
t0
λ1

‖θ0‖2
2

]

. (2.12)

Furthermore, for any t, r > 0,
∫ t+r

t

‖Au(τ)‖2
2 dτ � ‖A

1
2 u(t)‖2

2 + r‖θ0‖2
2

+
∫ t+r

t

[

‖u0‖2
2e

−λ1τ +
(‖θ0‖2

λ1

)2
]

‖A
1
2 u(τ)‖4

2 dτ. (2.13)

Proof. Due to Theorem 2.1, all the following a priori estimates can be justified rigorously. Taking the
inner product of (2.4) with Au, we obtain

1
2

d

dt
‖A

1
2 u‖2

2 + ‖Au‖2
2 � ‖θ‖2‖Au‖2 + |〈B(u, u), Au〉|

� ‖θ0‖2‖Au‖2 + C‖u · ∇u‖2‖Au‖2

� ‖θ0‖2‖Au‖2 + C‖u‖ 1
2
2 ‖∇u‖2‖Au‖ 3

2
2

� 1
2
‖Au‖2

2 + C
(

‖θ0‖2
2 + ‖u‖2

2‖A
1
2 u‖4

2

)

,

where we have used Gagliardo–Nirenberg inequality. Therefore, we obtain
d

dt
‖A

1
2 u‖2

2 + ‖Au‖2
2 � ‖θ0‖2

2 + ‖u‖2
2‖A

1
2 u‖4

2. (2.14)

Step 1 Proof of regularity local in time.
By (2.7) and (2.14), we have

d

dt
‖A

1
2 u‖2

2 + ‖Au‖2
2 � ‖θ0‖2

2 +

[

‖u0‖2
2 +

(‖θ0‖2

λ1

)2
]

‖A
1
2 u‖4

2.

Hence,
d

dt
‖A

1
2 u‖2

2 � C0 + C1‖A
1
2 u‖4

2, (2.15)

where

C0 = C‖θ0‖2
2, C1 = C

(

‖u0‖2
2 +

‖θ0‖2
2

λ2
1

)

.

Let y(t) = 1 + ‖A
1
2 u(t)‖2

2 and C2 = max{C0, C1}. Then, (2.15) implies that

y′(t) � C2y
2.

Integrating this inequality with respect to t yields

y(t) � y(0)
(1 − C2y(0)t)

.

Choose t0 > 0 such that

t0 � 1
2C2y(0)

=
1

2C2

(

1 + ‖A
1
2 u0‖2

2

) .

Then, for t ∈ [0, t0],

1 + ‖A
1
2 u(t)‖2

2 � 1 + ‖A
1
2 u0‖2

2

1 − C2

(

1 + ‖A
1
2 u0‖2

2

)

t
� 2

(

1 + ‖A
1
2 u0‖2

2

)

.

This proves the local estimate (2.10).
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Step 2 Proof of regularity global in time.
Recall that (2.8) implies

∫ t+r

t

‖A
1
2 u(τ)‖2

2 dτ � ‖u0‖2
2 +

‖θ0‖2
2

λ2
1

+
r

λ1
‖θ0‖2

2. (2.16)

Apply Lemma 2.1, (2.15) with

g(s) = C1y(s), h(s) = C0, y(s) = ‖A
1
2 u(s)‖2

2

a1 = C1a3, a2 = C0r, a3 = ‖u0‖2
2 +

‖θ0‖2
2

λ2
1

+
r

λ1
‖θ0‖2

2.

Then, due to (2.16), Lemma 2.1 confirms that

‖A
1
2 u(t + r)‖2

2 �
(a3

r
+ C0r

)

eC1a3 , ∀ t � 0. (2.17)

Therefore, global in time regularity u ∈ L∞([0,∞);V ) follows from (2.17) (with r = t0) and (2.10).
Notice that, even though the combination of (2.10) and (2.17) gives an upper bound for ‖A

1
2 u(t)‖2

which is uniform with respect to t ∈ [0,∞), the upper bound depends on u0 and θ0. In the following,
we prove an improved upper bound for ‖A

1
2 u(t)‖2 which is uniform with respect to u0 ∈ V for large t

(depending on u0). When θ0 ∈ L2 is fixed, this upper bound implies an upper bound for the radius of an
absorbing set for u in V . To do so, we use the sharper estimate that

y(t + r) �
(

1
r

∫ t+r

t

y(s)ds +
∫ t+r

t

h(s)ds

)

e
∫ t+r
t

g(s)ds, t � 0, r > 0, (2.18)

under the same assumption of Lemma 2.1, except that a1, a2, a3 and r are constants. Validity of (2.18) is
obvious from the proof of Lemma 2.1. See e.g. [13]. Applying (2.18) to (2.14) (ignoring the term ‖Au‖2

2)
with r = t0 and

g(s) = C‖u(s)‖2
2‖A

1
2 u(s)‖2

2, h(s) = C‖θ0‖2
2, y(s) = ‖A

1
2 u(s)‖2

2,

yields the global estimate (2.11), (2.12) with the help of (2.7) and (2.8).
Finally, (2.13) follows from integrating (2.14) with respect to t from t to t + r. �

Remark 2.2. We see from (2.11) and (2.12) that, for any fixed ‖θ0‖2, there is a bounded absorbing set for
u in space V with the radius depending on ‖θ0‖2 but not u0. It is also easy to see from (2.13) that there
is a bounded absorbing set of

∫ t+r

t
‖Au‖2

2dτ in R+ for fixed ‖θ0‖2 and r(> 0) which is also independent
of u0.

3. Global Regularity in D(A) × H1

The first main result of this article is achieved via an alternative proof of the global regularity of the
solution (u, θ) ∈ D(A) × H1. Proving this global regularity is the main result of the recent work [7].
The improvement of our new result over that of [7]1 is in the following sense: the best upper bounds for
‖Au(t)‖2 and ‖∇θ(t)‖2 that can be obtained from the proof of [7] both increase double exponentially
with respect to t as t → ∞; while under the same conditions, our new proof provides a uniform upper
bound for ‖Au(t)‖2 with respect to t ∈ [0,∞) and an upper bound for ‖∇θ(t)‖2 which grows only single
exponentially with respect to t2. Indeed, we also obtain a bounded absorbing set for ‖Au(t)‖2 in R+, which
depends only on θ0 but not on u0. To achieve the improvement, our method has to be quite different
from the previous ones. We split the statement of our first main result into Theorems 3.1 and 3.2. We
also split the proof of our first main result into the following three subsections.

1 The approach of [8] applies only to the case of Ω with no boundary and yields less sharp estimate than that of [7].
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3.1. Local Regularity in D(A) × H1

As the preparation for the analysis in the next two subsections, we prove the following local in time
boundedness of ‖Au(t)‖2 and ‖∇θ(t)‖2:

Proposition 3.1. Suppose (u0, θ0) ∈ D(A) × H1. Then, there exists a t1 ∈ (0, t0], such that

‖Au‖2
2 + ‖∇θ‖2

2 � 2
(‖Au0‖2

2 + ‖∇θ0‖2
2

)

, ∀t ∈ [0, t1], (3.1)

where t0 > 0 is given in (2.10).

Proof. Taking inner product of (2.4) with A2u and using (2.1) and (2.5), we have
d

dt
‖Au‖2

2 + ‖A
3
2 u‖2

2 � ‖θ‖2
H1 + ‖u‖2‖Au‖3

2

� ‖θ0‖2
2 + ‖∇θ‖2

2 + ‖u‖2‖Au‖3
2. (3.2)

Applying ∇ to (1.3) and taking the inner product of the derived equation with ∇θ, we have

1
2

d

dt
‖∇θ‖2

2 = −
∫

Ω

2∑

i,j=1

∂jθ∂jui∂iθ dx � ‖∇u‖∞‖∇θ‖2
2, (3.3)

where we have used an integration by parts, no-slip boundary condition and the fact that ∇ · u = 0.
Therefore,

d

dt
‖∇θ‖2

2 � 1
2
‖A

3
2 u‖2

2 + C‖∇θ‖4
2. (3.4)

Adding (3.2) and (3.4) yields
d

dt

(‖Au‖2
2 + ‖∇θ‖2

2

)

+ ‖A
3
2 u‖2

2 � C(1 + ‖θ0‖2
2) + C

(‖Au‖2
2 + ‖∇θ‖2

2

)2
.

Therefore, there exists a t1 ∈ (0, t0] such that (3.1) is valid. This finishes the proof of local regularity of
(u, θ) ∈ L∞(0, t1;D(A) × H1). �

3.2. Global Uniform Estimates of ||Au||2 and ||ut(t)||2

In this subsection, we prove the global in time uniform boundedness of ‖Au(t)‖2. Our approach is com-
pletely different from previous methods used in [7], which gives an upper bound of ‖Au(t)‖2 that is double
exponential with respect to t as t → ∞.
Theorem 3.1. Suppose (u0, θ0) ∈ (D(A),H1). Then,

u ∈ L∞(0,+∞;D(A)), ut ∈ L∞(0,+∞;H) ∩ L2
loc(0,+∞;V ).

Moreover, for fixed ‖θ0‖H1 , there exists a bounded absorbing set in R+ for ‖Au(t)‖2, ‖ut(t)‖2 and
∫ t+1

t
‖ut(τ)‖2

V dτ , which is independent of u0.

Proof. To prove uniform boundedness of u ∈ L∞(0,∞;D(A)), it is enough to prove uniform boundedness
of ut ∈ L∞(t1,∞;H) for sufficiently small t1 > 0. However, we will prove in the following slightly stronger
uniform boundedness of ut ∈ L∞(0,∞;H), without imposing the condition that ut(0) ∈ H.

Step 1 Local regularity of ut ∈ L∞(0, t1;H).
By (2.4), we have

‖ut‖2
2 = 〈−Au − B(u, u) + Pθe2, ut〉 � (‖Au‖2 + ‖u · ∇u‖2 + ‖θ‖2)‖ut‖2.

Therefore,
‖ut‖2 � ‖Au‖2(1 + ‖∇u‖2) + ‖θ0‖2. (3.5)

Hence, by (2.10), (3.1) and (3.5), we have

‖ut‖2 � (‖Au0‖2 + ‖∇θ0‖)(1 + ‖∇u0‖2) + ‖θ0‖2, ∀t ∈ (0, t1],

which proves local regularity of ut ∈ L∞(0, t1;H).
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Step 2 Global regularity of ut ∈ L∞(0,∞;H) ∩ L2(0,∞;V ).
First, square (3.5) and integrate with respect to t to get

∫ t+r

t

‖ut(τ)‖2
2 dτ � r‖θ0‖2

2 +
∫ t+r

t

‖Au(τ)‖2
2(1 + ‖∇u(τ)‖2

2) dτ. (3.6)

By (3.6), Theorems 2.1 and 2.2, we see that
∫ t+r

t
‖ut(τ)‖2

2 dτ is uniformly bounded. By Remarks 2.1
and 2.2, it is also easy to see that there is a bounded absorbing set in R+ for

∫ t+r

t
‖ut(τ)‖2

2 dτ when θ0

and r > 0 are fixed. Next, apply ∂t to (1.1) to get

∂tut − Δut + ut · ∇u + u · ∇ut + ∇pt = θte2. (3.7)

Taking inner product of (3.7) with respect ut yields

1
2

d

dt
‖ut‖2

2 + ‖∇ut‖2
2 = −〈ut · ∇u, ut〉 − 〈u · ∇ut, ut〉 − 〈∇pt, ut〉 + 〈θte2, ut〉

= −〈ut · ∇u, ut〉 − 〈u · ∇θe2, ut〉
= −〈ut · ∇u, ut〉 + 〈θu,∇u2,t〉
� ‖∇u‖2‖ut‖2

4 + ‖uθ‖2
2 +

1
4
‖∇ut‖2

2

� C‖∇u‖2
2‖ut‖2

2 + C‖Au‖2
2‖θ0‖2

2 +
1
2
‖∇ut‖2

2.

Therefore,
d

dt
‖ut‖2

2 + ‖∇ut‖2
2 � ‖∇u‖2

2‖ut‖2
2 + ‖Au‖2

2‖θ0‖2
2 (3.8)

Recall (3.6), Theorems 2.1 and 2.2 to conclude that
∫ t+r

t
‖ut(τ)‖2

2 dτ , ‖∇u(t)‖2 and
∫ t+r

t
‖Au(τ)‖2

2 dτ are
all uniformly bounded. Moreover, there is a bounded absorbing set for all the three quantities. Therefore,
we can apply Lemma 2.1 to (3.8) to get the existence of a bounded set in R+ which absorbs ‖ut(t)‖2.
Moreover, with the help of the local regularity in Step 1, we get the uniform boundedness of ‖ut(t)‖2

for all t ∈ (0,+∞). Then, integrate (3.8) with respect to t and use the fact ut ∈ L∞(0,∞;H) and
Therorem 2.2 to get ut ∈ L2

loc(0,∞;V ).

Step 3 Global regularity u ∈ L∞(0,∞;D(A)).
By (2.4), we have

‖Au(t)‖2
2 = 〈Pθe2 − ut − B(u, u), Au〉

� (‖θ‖2 + ‖ut‖2)‖Au‖2 + C‖u‖ 1
2
2 ‖A

1
2 u‖2‖Au‖ 3

2
2

� C(‖θ‖2
2 + ‖ut‖2

2 + ‖u‖2
2‖A

1
2 u‖4

2) +
1
2
‖Au(t)‖2

2.

Thus,
‖Au(t)‖2

2 � ‖θ0‖2
2 + ‖ut‖2

2 + ‖u‖2
2‖A

1
2 u‖4

2.

Therefore, ‖Au(t)‖2 is also uniformly bounded for t ∈ [0,∞) and there exists a bounded absorbing set
for ‖Au(t)‖2 in R+ as well. �

3.3. Global Single Exponential Estimate of ||∇θ||2

Now, we prove global boundedness of ‖∇θ‖2. Our approach is still quite different from previous methods
used in [7]. Notice that, even if assuming that the uniform boundedness of ‖Au(t)‖2 were already known,
following previous approache would still results in double exponential growth of the upper bound of
‖∇θ(t)‖2 with respect to t.
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Theorem 3.2. Suppose (u0, θ0) ∈ (D(A),H1). Then, for any T > 0, we have θ ∈ L∞(0, T ;H1). Moreover,
there is a constant C > 0 depending only on t1(> 0), u0 and θ0, such that

‖∇θ(t)‖ � CeCt2 , ∀t � t1 > 0. (3.9)

Moreover, there exists a C > 0 depending only θ0, such that

lim
t→∞ ‖∇θ(t)‖e−Ct2 � C. (3.10)

Proof. By the local regularity result Proposition 3.1, we only need to prove global boundedness of θ ∈
L∞

loc(t1,∞;H1), or simply ∇θ ∈ L∞
loc(t1,∞;L2), and it is enough to prove (3.9).

Since ‖Au(t)‖2 is uniformly bounded for t ∈ [0,+∞) by Theorem 3.1, we can use Brezis–Gallouet
inequality (see [1]) to obtain

‖∇u(t)‖∞ � C
[

1 + log
1
2 (1 + ‖A

3
2 u(t)‖2)

]

, (3.11)

where C is independent of t and u and depends only on ‖θ0‖2. Therefore, by (3.3), we get
d

dt
‖∇θ‖2

2 � C
[

1 + log
1
2 (1 + ‖A

3
2 u(t)‖2)

]

‖∇θ‖2
2,

that is

‖∇θ(t)‖2
2 � ‖∇θ0‖2

2 exp
{

C

∫ t

0

[

1 + log
1
2 (1 + ‖A

3
2 u(τ)‖2)

]

dτ

}

.

Due to concavity of the function f(x) := log
1
2 (1 + x) for x ∈ [0,+∞), Jensen’s inequality implies

1
t

∫ t

0

[

1 + log
1
2 (1 + ‖A

3
2 u(τ)‖2)

]

dτ � 1 + log
1
2

(

1 +
1
t

∫ t

0

‖A
3
2 u(τ)‖2 dτ

)

.

Hence, the above two inequalities yield

‖∇θ(t)‖2
2 � ‖∇θ0‖2

2 exp
{

Ct + Ct log
1
2

[

1 +
1
t

∫ t

0

‖A
3
2 u(τ)‖2 dτ

]}

� ‖∇θ0‖2
2

[

1 +
1
t

∫ t

0

‖A
3
2 u(τ)‖2 dτ

]

eC(t+t2).

.

Notice that in the last step of the above inequality, we have used Cauchy-Schwartz inequality.
Let t � t1 > 0. Then, we obtain form the above estimate

‖∇θ(t)‖2
2 � ‖∇θ0‖2

2e
C(t+t2) + ‖∇θ0‖2

2

eC(t+t2)

t

∫ t

0

‖A
3
2 u(τ)‖2 dτ

� ‖∇θ0‖2
2e

C(t+t2) + ‖∇θ0‖2
2

eC(t+t2)

√
t

(∫ t

0

‖A
3
2 u(τ)‖2

2 dτ

) 1
2

�
[

‖∇θ0‖2
2 +

‖∇θ0‖4
2

t1

]

eC(t+t2) +
∫ t

0

‖A
3
2 u(τ)‖2

2 dτ.

Integrating (3.2), we have
∫ t

0

‖A
3
2 u(τ)‖2

2 dτ � ‖Au0‖2
2 + C

∫ t

0

[‖θ0‖2
2 + ‖u‖2‖Au‖3

2 + ‖∇θ‖2
2

]

dτ.

Therefore, the above two inequalities give us, for t � t1,

‖∇θ(t)‖2
2 �

[

‖∇θ0‖2
2 +

‖∇θ0‖4
2

t1

]

eC(t+t2) + C(1 + t) + C

∫ t

0

‖∇θ(τ)‖2
2 dτ, (3.12)

where we have used uniform boundedness of u ∈ L∞(0,∞,D(A)) as given in Theorem 3.1. Denote

y(t) :=
∫ t

0

‖∇θ(τ)‖2
2 dτ.
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Then, (3.12) becomes

y′(τ) = ‖∇θ(τ)‖2
2 � C(τ + 1) + CeC(τ+τ2) + Cy(τ),

that is

y′(τ) − Cy(τ) � C(τ + 1) + CeC(τ+τ2).

Integrating the above inequality for τ from t1 to t > t1, we get
∫ t

0

‖∇θ(τ)‖2
2 dτ = y(t)

� eC(t−t1)

[

y(t1) + C(t + 1)(t − t1) + C

∫ t

t1

eC(τ+τ2) dτ

]

.

(3.13)

Noticing that
∫ t

t1

eC(τ+τ2) dτ �
∫ t

t1

eC(τ+1)2 dτ � 1
Ct1

(

eC(t+1)2 − eC(t1+1)2
)

� CeCt2 ,

and recalling local regularity result from Proposition 3.1:

‖∇θ(t)‖2
2 � 2(‖Au0‖2

2 + ‖u0‖2
2), ∀t ∈ [0, t1],

we obtain from (3.13) that, for t � t1 > 0,
∫ t

0

‖∇θ(τ)‖2
2 dτ � CeCt2 , (3.14)

where the C’s in the right-hand side of (3.14) may depend only on ‖θ0‖2, ‖u0‖, ‖Au‖0 and t1. Now, (3.9)
follows immediately from (3.12) and (3.14). It is easy to see from our proof that (3.10) is also valid. �

4. Global Regularity in V × H1

In this section, we prove global regularity of the solution (u, θ) ∈ V ×H1. As can be seen from Sect. 3, the
Brezis–Gallouet inequality (3.11) is one of the key steps in obtaining estimate on ‖∇θ(t)‖2. However, to
use (3.11), one has to deal with ‖A

3
2 u‖2. Therefore, it is natrual to introduce the estimate (3.2). This is

the main reason for studying local and global regularity of (u, θ) ∈ D(A) × H1. Notice that, it is possible
to use a less demanding variant of Brezis–Gallouet inequality involving only ‖A1+εu‖2, with ε > 0, which
however would be quite complicated. If we now study local and global regularity of (u, θ) ∈ V × H1,
the estimate (3.2) will not be available and more importantly the Brezis–Gallouet type inequality (3.11)
(and its variants) can not help. Therefore, essential new difficulties appear here. It is quite remarkable
that our following analysis using the idea of spectral decompostion can help to resolve the problem rather
conveniently. Our next main result of this article is presented the following:

Theorem 4.1. Suppose (u0, θ0) ∈ V × H1 and (u, θ) is the (unique) weak solution to the Eqs. (1.1)–(1.3)
with conditions (1.4) and (1.5). Then,

u ∈ L∞(0,∞;V ), θ ∈ L∞
loc(0,∞;H1).

Moreover, for fixed θ0, there is a bounded absorbing set in R+ for ‖∇u(t)‖2 and ‖Au(t)‖2 as t → ∞,
which is independent of u0. Furthermore, there is a constant C > 0 depending only on t1(> 0), u0 and
θ0, such that

‖∇θ(t)‖2 � CeCt2 , ∀t � t1 > 0. (4.1)
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Proof. Step 1 We first prove local in time existence of the solution (u, θ) in V × H1, that is, there exists
a t0 = t0(u0, θ0) > 0, such that (u, θ) ∈ L∞(0, t0;V × H1).

Since (u, θ) ∈ L∞(0,∞;V × L2), we only need to prove the local regularity of θ ∈ L∞(0, t0;H1) for
some t0 > 0. Due to existence and uniqueness of the weak solution, we only need to carry out some
a priori estimates formally in the following proof. These a priori estimates can be rigorously justified
with a standard approximation argument.

By (3.3), we have

‖∇θ(t)‖2 � ‖∇θ0‖2 exp
{∫ t

0

‖∇u(τ)‖∞ dτ

}

(4.2)

Apply Pm to (2.4) and then take inner product with Pmu. We get

1
2

d

dt
‖Pmu(t)‖2

2 + 〈PmAu,Pmu〉 = 〈Pm [P(θe2) − B(u, u)] , Pmu〉.

Noticing that

〈PmAu,Pmu〉 =
∑

2m−1�λj<2m

λj |(u,wj)|2 � 2m−1‖Pmu‖2
2, ∀m � 1,

we get

d

dt
‖Pmu(t)‖2 + 2m−1‖Pmu‖2 � ‖PmP(θe2)‖2 + ‖PmB(u, u)‖2.

Thus,

2‖Pmu(t)‖2 +
∫ t

0

2m‖Pmu(τ)‖2 dτ

� 2‖Pmu0‖2 + 2
∫ t

0

(‖PmP(θ(τ)e2)‖2 + ‖PmB(u(τ), u(τ))‖2) dτ. (4.3)

Multiplying (4.3) by 2
m
2 and using (2.3) yields

∫ t

0

2m+ m
2 ‖Pmu(τ)‖2dτ � ‖A

1
2 Pmu0‖2 +

∫ t

0

‖A
1
2 PmP(θ(τ)e2)‖2 dτ

+
∫ t

0

‖A
1
2 PmB(u(τ), u(τ))‖2 dτ. (4.4)

Squaring both sides of (4.4) and summing up with respect to m yields

∞∑

m=1

(∫ t

0

2m+ m
2 ‖Pmu‖2 dτ

)2

�
∞∑

m=1

‖A
1
2 Pmu0‖2

2 +
∞∑

m=1

(∫ t

0

‖A
1
2 PmP(θ(τ)e2)‖2 dτ

)2

+
∞∑

m=1

(∫ t

0

‖A
1
2 PmB(u(τ), u(τ))‖2 dτ

)2

= ‖A
1
2 u0‖2

2 +
∞∑

m=1

(∫ t

0

‖A
1
2 PmP(θ(τ)e2)‖2 dτ

)2

+
∞∑

m=1

(∫ t

0

‖A
1
2 PmB(u(τ), u(τ))‖2 dτ

)2

.
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Then, take square root of the above inequality to get
[ ∞∑

m=1

(∫ t

0

2m+ m
2 ‖Pmu‖2 dτ

)2
] 1

2

� ‖A
1
2 u0‖2 +

[ ∞∑

m=1

(∫ t

0

‖A
1
2 PmP(θ(τ)e2)‖2 dτ

)2
] 1

2

+

[ ∞∑

m=1

(∫ t

0

‖A
1
2 PmB(u(τ), u(τ))‖2 dτ

)2
] 1

2

� ‖A
1
2 u0‖2 +

∫ t

0

( ∞∑

m=1

‖A
1
2 PmP(θ(τ)e2)‖2

2

) 1
2

dτ

+
∫ t

0

( ∞∑

m=1

‖A
1
2 PmB(u(τ), u(τ))‖2

2

) 1
2

dτ

= ‖A
1
2 u0‖2 +

∫ t

0

‖A
1
2P(θ(τ)e2)‖2 dτ +

∫ t

0

‖A
1
2 B(u(τ), u(τ))‖2 dτ, (4.5)

where Minkowski’s inequality is used twice for the second inequality of (4.5).
By Agmon’s inequality, (2.2) and (2.3), it is easy to see that

‖∇Pmu(τ)‖∞ � ‖∇Pmu(τ)‖ 1
2
2 ‖A∇Pmu(τ)‖ 1

2
2

� 2
m
2 ‖∇Pmu(τ)‖2 = 2

m
2 ‖A

1
2 Pmu(τ)‖2 � 2m‖Pmu(τ)‖2. (4.6)

Therefore, by (4.6) and (4.5), we obtain
∫ t

0

‖∇u(τ)‖∞ dτ �
∫ t

0

∞∑

m=1

‖∇Pmu(τ)‖∞ dτ

=
∞∑

m=1

2− m
2

∫ t

0

2m+ m
2 ‖Pmu(τ)‖2 dτ

�
[ ∞∑

m=1

(∫ t

0

2m+ m
2 ‖Pmu‖2 dτ

)2
] 1

2

� ‖∇u0‖2 +
∫ t

0

‖∇P(θ(τ)e2)‖2 dτ +
∫ t

0

‖∇B(u(τ), u(τ))‖2 dτ. (4.7)

The last term of (4.7) can be estimated using (2.5) as
∫ t

0

‖∇B(u(τ), u(τ))‖2 dτ �
∫ t

0

‖u(τ)‖ 1
2
2 ‖Au(τ)‖ 3

2
2 dτ

�
(∫ t

0

‖u(τ)‖2
2 dτ

) 1
4
(∫ t

0

‖Au(τ)‖2
2 dτ

) 3
4

. (4.8)

Combining (4.7) and (4.8), we get
∫ t

0

‖∇u(τ)‖∞ dτ � ‖∇u0‖2 + t +
∫ t

0

‖∇θ(τ)‖2 dτ

� ‖∇u0‖2 +
∫ t

0

(1 + ‖∇θ(τ)‖2) dτ, (4.9)



Vol. 19 (2017) Global Regularity and Long-time Behavior of the Solutions 119

where we have used Theorems 2.1, 2.2 and (2.15). By (4.2) and (4.9), we obtain

‖∇θ(t)‖2 � exp
{

c0

∫ t

0

(1 + ‖∇θ(t)‖2) dτ

}

, (4.10)

where c0 > 0 is a constant depending on initial data. Denote:

y(t) := c0

∫ t

0

(1 + ‖∇θ(t)‖2) dτ.

By (4.10), we have

y′(t) � C1e
y(t),

where C1 > 0 is a constant depending on u0 and θ0. Thus, there exists a t0 > 0, such that

c0

∫ t

0

(1 + ‖∇θ(t)‖2) dτ = y(t) � ln
(

1
1 − C1t

)

< +∞, for t ∈ [0, t0].

Therefore, by (4.10),

‖∇θ(t)‖2 � C2

1 − C1t
< +∞, t ∈ [0, t0],

where C2 > 0 is also a constant depending on u0 and θ0. This finishes the proof of θ ∈ L∞(0, t0;H1).
Step 2 We prove global in time existence of θ in H1.

Suppose that (u0, θ0) ∈ V ×H1. Then, by Step 1, there is t0 > 0, such that (u, θ) ∈ L∞(0, t0;V ×H1).
Therefore, by (2.14),

‖A
1
2 u(t0)‖2

2 +
∫ t0

0

‖Au(s)‖2
2ds � ‖A

1
2 u0‖2

2 + Ct0‖θ0‖2
2

+ C

∫ t0

0

‖u(s)‖2
2‖A

1
2 u(s)‖4

2ds < ∞.

Therefore, there exists a t∗ ∈ (0, t0), such that u(t∗) ∈ D(A). Since (u(t∗), θ(t∗)) ∈ D(A) × H1, by the
global existence results of Theorems 3.1 and 3.2, we have

u ∈ L∞(t∗,+∞;D(A)), θ ∈ L∞
loc(t∗,∞;H1),

thus proving the global regularity (u, θ) ∈ L∞(0, T ;V × H1) for any T > 0. The rest part of the theorem
follows from Theorems 2.2, 3.1 and 3.2. �

Remark 4.1. Theorem 4.1 is obviously also valid for Ω = T
2. By Littlewood-Paley frequence decomposi-

tion, the method of our proof of global regularity in V × H1 can be extended immediately to the case of
Ω = R

2.

5. Global Regularity in D(A) × H2

The following theorem is our last main result for global regularity, which we include here for completeness.
Since we will not use Brezis–Gallouet type inequalities in our proof of Theorem 5.1, the proof is a lot
simpler than otherwise.

Theorem 5.1. Suppose (u0, θ0) ∈ D(A)×H2 and (u, θ) is the (unique) weak solution to the Eqs. (1.1)–(1.3)
with conditions (1.4) and (1.5). Then,

u ∈ L∞(0,∞;D(A)), and θ ∈ L∞([0, T ];H2), ∀T > 0.

Moreover, for fixed θ0, there is a bounded absorbing set in R+ for ‖∇u(t)‖2 and ‖Au(t)‖2 as t → ∞,
which is independent of u0.
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Proof. It is easy to see that we just need to prove that for any T > 0

θ ∈ L∞(0, T ;H2).

All the other statements of the theorem are already confirmed by the previous theorems.
Applying ∂2

x to (1.3) and then taking inner product of the derived equation with ∂2
xθ, we obtain

d

dt
‖∂2

xθ‖2
2 = −2〈(∂2

xu) · ∇θ + 2(∂xu) · ∇(∂xθ), ∂2
xθ〉

� ‖∇θ‖4‖Au‖4‖∇2θ‖ + ‖∇u‖∞‖∇2θ‖2
2

� ‖∇θ‖ 1
2
2 ‖∇2θ‖ 3

2
2 ‖Au‖ 1

2
2 ‖A

3
2 u‖ 1

2
2 + ‖∇u‖∞‖∇2θ‖2

2

� ‖∇θ‖2
2‖Au‖2

2‖A
3
2 u‖2

2 + (1 + ‖∇u‖∞)‖∇2θ‖2
2.

Similar estimates can be obtained for ∂2
xyθ and ∂2

yθ. Therefore, we have

d

dt
‖∇2θ‖2

2 � ‖∇θ‖2
2‖Au‖2

2‖A
3
2 u‖2

2 + (1 + ‖∇u‖∞)‖∇2θ‖2
2.

Applying Gronwall lemma to the above inequality, we obtain

‖∇2θ(t)‖2
2 � ‖∇2θ0‖2

2e
∫ t
0 (1+‖∇u(τ)‖∞) dτ

+
∫ t

0

‖∇θ(τ)‖2
2‖Au(τ)‖2

2‖A
3
2 u(τ)‖2

2e
∫ t
τ
(1+‖∇u(s)‖∞) ds dτ. (5.1)

By (4.7) and (4.8), we have
∫ t

0

‖∇u(τ)‖∞ dτ � ‖∇u0‖2 +
∫ t

0

‖∇θ(τ)‖2 dτ

+
(∫ t

0

‖u(τ)‖2
2 dτ

) 1
4
(∫ t

0

‖Au(τ)‖2
2 dτ

) 3
4

(5.2)

Case 1. Suppose that t ∈ [0, t1]. Then, by (5.2)
∫ t

0

‖∇u(τ)‖∞ dτ �
∫ t1

0

‖∇u(τ)‖∞ dτ � C < ∞,

where we have applied Theorems 2.1, 2.2 (or Theorem 3.1) and Theorem 3.2 (or Theorem 4.1) to (5.2)
with t replaced by t0. Then, apply these theorems and the above inequality to (5.1) to get

‖∇2θ(t)‖2
2 � ‖∇2θ0‖2

2 +
∫ t1

0

‖A
3
2 u(τ)‖2

2 dτ, ∀t ∈ [0, t1].

Furthermore, by (3.2), we get that for t ∈ [0, t1]

‖∇2θ(t)‖2
2 � ‖∇2θ0‖2

2 + ‖θ0‖2
2t +

∫ t

0

(‖∇θ(τ)‖2
2 + ‖u(τ)‖2

2‖Au(τ)‖2
2) dτ,

from which we derive regularity of local boundedness:

θ ∈ L∞(0, t1,H
2).

Case 2. Suppose t ∈ [t1, T ]. This can be treated the same way as Case 1 and we can obtain a upper bound
on ‖∇2θ(t)‖2

2 for t ∈ [t1, T ]. �

Remark 5.1. Since (4.7) and (4.8) are all still valid for Ω = R
2. Global regularity of (u, θ) ∈ D(A) × H2

is also still valid when Ω = R
2.
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