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Abstract. In 2000 Constantin showed that the incompressible Euler equations can be written in an “Eulerian–Lagrangian”
form which involves the back-to-labels map (the inverse of the trajectory map for each fixed time). In the same paper a local
existence result is proved in certain Hölder spaces C1,µ. We review the Eulerian–Lagrangian formulation of the equations
and prove that given initial data in Hs for n ≥ 2 and s > n

2
+ 1, a unique local-in-time solution exists on the n-torus that

is continuous into Hs and C1 into Hs−1. These solutions automatically have C1 trajectories. The proof here is direct and
does not appeal to results already known about the classical formulation. Moreover, these solutions are regular enough that
the classical and Eulerian–Lagrangian formulations are equivalent, therefore what we present amounts to an alternative
approach to some of the standard theory.

Mathematics Subject Classification. Primary 76B03, 35Q35; Secondary 35Q31.

Keywords. Euler equations, Eulerian–Lagrangian formulation, Local well-posedness, Sobolev spaces.

1. Introduction

We study a reformulation (following Constantin [2]) of the incompressible Euler equations on a domain
T

n := R
n/2πZn in the absence of external forcing. The Euler equations model the flow of an incom-

pressible inviscid fluid and are (classically) formulated in terms of a divergence-free vector field u (i.e.
∇ · u = 0) as follows:

∂u

∂t
+ (u · ∇)u + ∇p = 0 (1)

where p is a scalar potential representing internal pressure (as opposed to physical pressure at a boundary).
The divergence-free condition reflects the incompressibility constraint.

In two and particularly in three dimensions, these equations continue to be of great interest; some
recent surveys include [5,8,18]. As an illustration of the challenge posed by these equations we note that
unlike the Navier–Stokes equations where global weak solutions have been known to exist since 1934 due
to Leray [12], existence of global weak solutions of the Euler equations (on periodic domains) was not
proved until 2011 by Wiedemann [17], following the work of DeLellis and Székelyhidi [7]. On the spatial
domain R

3, more regular local solutions (u ∈ C0([0, T ];Hs) ∩ C1([0, T ];Hs−1) with s > 5/2) have been
known to exist since the 1970s due to Kato et al. see for example [10,11].

In the study of the Navier–Stokes equations, results such as those found in [15] motivate us to approach
the classical equations of fluid mechanics from a more Lagrangian viewpoint. In that paper, Robinson
and Sadowski show that if u is a suitable weak solution of the 3D Navier–Stokes equations in the sense
of Caffarelli et al. [1] and in addition u ∈ L6/5(0, T ;L∞), then almost every particle trajectory is unique
and C1 in time. The arguments there are based on the fact that almost all trajectories avoid the set of
points (x, t) where singularities could develop using the fact that the set of such points has box-counting
dimension at most 5/3.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00021-016-0271-8&domain=pdf
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Constantin has studied a form for the Euler equations that involves both the classical velocity field
and the so called back-to-labels map A which is defined to be the inverse of the trajectory map X at each
time t. More precisely, for an evolving vector field u defined on T

n × [0, T ], the trajectory map solves{
dX
dt (y, t) = u(X(y, t), t),

X(y, 0) = y
(2)

for each y ∈ T
n. If u is divergence-free and sufficiently regular then X is well defined and X(·, t) is

bijective for each t. In this case we can define the back-to-labels map A by setting

A(·, t) := X−1(·, t), (3)

where we consider X as a map X(·, t) : Tn → T
n for each t ∈ [0, T ]. For the Eulerian–Lagrangian form,

as we shall continue to call it, Constantin [2] proved local existence and uniqueness results in certain
Hölder spaces on R

3 for solutions that are periodic, or satisfy suitable decay conditions.
As Yudovich [18] has noted, a similar combination of Eulerian and Lagrangian approaches was used

to investigate the Euler equations in Hölder spaces, by Günther and Lichtenstein independently, as early
as the 1920s [9,13].

First we will review the Eulerian–Lagrangian formulation and discuss how it is formally equivalent to
the usual Euler equations. We then turn to the main topic of this paper which is the proof of an existence
and uniqueness result for the Eulerian–Lagrangian formulation in C0([0, T ];Hs(Tn)) with s > n

2 + 1 in
dimension n ≥ 2. The proof is self contained, in the sense that it neither appeals to results about the
classical Euler equations, nor to the problem in Hölder spaces.

2. The Eulerian–Lagrangian form of the equations

The Eulerian–Lagrangian form of the Euler equations comprises the following system:

∂tA + (u · ∇)A = 0, (4)
u = P((∇A)∗v), (5)

∂tv + (u · ∇)v = 0. (6)

Given an initial divergence-free velocity u0 for the classical equations, we choose initial conditions for the
above system as follows:

A(x, 0) = x, (7)
u(x, 0) = v(x, 0) = u0(x). (8)

We use the notation P for the Leray projector onto the space of divergence-free functions. For a matrix
M , M∗ denotes the transposed matrix. The vector field v is called the virtual velocity and represents the
initial velocity transported by the flow.

It will often be convenient to treat A as a perturbation of the identity map on T
n. In this case we use

the notation η(x, t) := A(x, t) − x and replace (4) and (7) with the equations

∂tη + (u · ∇)η + u = 0, η(x, 0) = 0 (9)

respectively. We do this because the identity map (hence A) does not have sufficient Sobolev regularity
when considered as a function on the torus with values in R

n (i.e. without accounting for the topology
of the target torus ).

The following proposition encapsulates the derivation of (5) (sometimes called the Weber formula)
which can be found in [2].

Proposition 1. Let n ≥ 2, consider u ∈ C1((0, T ) × T
n), with u(0) ∈ C1(Tn). If u is divergence-free and

satisfies (1) for some p, with spatially periodic boundary conditions then A ∈ C1((0, T ) × T
n;Tn) and u

satisfies (5) with v(x, t) = u0(A(x, t)).
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Proof. From the regularity assumptions on u and periodicity of the domain we deduce that the trajectories
X(y, ·) ∈ C2(0, T ) and ∇X(y, ·) ∈ C1(0, T ) for all y ∈ T

n, we also have X, ∂X
∂t ∈ C1((0, T )×T

n). It follows
from the divergence-free condition that det ∇X ≡ 1, so X is volume preserving and locally injective, hence
bijective, given that Tn has finite volume. By the inverse function theorem we see that A exists and is an
element of C1((0, T ) × T

n). We now have enough regularity to make the following calculations rigorous.
From (1) and (2) we obtain

∂2X

∂t2
(y, t) = −∇p(X(y, t), t),

which is of course just a Lagrangian interpretation of the Euler equations. Setting p̃(y, t) = p(X(y, t), t)
this becomes

∂2X

∂t2
= −((∇X)∗)−1∇p̃(y, t).

Multiplying through by (∇X)∗ and changing the order of differentiation yields

∂

∂t

[
∂Xj

∂t

∂Xj

∂yi

]
=

∂

∂yi

[
−p̃ +

1
2

∣∣∣∣∂X

∂t

∣∣∣∣
2
]

(10)

for i = 1, . . . , n, where there is an implicit sum over j = 1, . . . , n and Xj , yi denote the components in R
n

of X, y respectively. Integrating (10) in time, multiplying the corresponding vector equation by (∇A)∗

and evaluating at A(x, t) gives

u(x, t) =
∂X

∂t
(A(x, t), t) = (∇A)∗u0(A(x, t)) − ∇q (11)

where

q(x, t) =
∫ t

0

p̃(A(x, t), s) − 1
2

∣∣∣∣∂X

∂t
(A(x, t), s)

∣∣∣∣
2

ds.

As gradients lie in the kernel of the Leray projector, applying P to (11) shows that u satisfies (5) as
required. Note that v(x, t) = u0(A(x, t)) satisfies (6), hence solutions to the Euler equations indeed solve
the Eulerian–Lagrangian form. �

The converse is a little more technical.

Proposition 2. Let s > n
2 + 1 and u, v, η ∈ C0([0, T ];Hs) ∩ C1([0, T ];Hs−1) satisfy (5), (6), (8) and (9).

Then for some p ∈ C0([0, T ];Hs) u solves (1).

Proof. Since Hs−1(Tn) ↪→ L∞(Tn) is an algebra, we have that if f, g ∈ Hs−1 (scalar valued) then

∂xi
(fg) = (∂xi

f)g + f(∂xi
g)

as an equlity of L2 functions, for i = 1, 2, . . . , n. Therefore, denoting the material derivative by Dt :=
∂t + (u · ∇), for f, g ∈ C0([0, T ];Hs−1) ∩ C1([0, T ];Hs−2) we have

Dt(fg) = (Dtf)g + f(Dtg). (12)

Moreover, if f ∈ Hs,

(u · ∇)∇f = ∇((u · ∇)f) − (∇u)∗∇f.

Hence the classical commutation relation

Dt∇f = ∇Dtf − (∇u)∗∇f (13)

holds as an equality in L2, when f ∈ C0([0, T ];Hs) ∩ C1([0, T ];Hs−1).
Since u satisfies (5), we may write

u(x, t) = v + (∇η)∗v − ∇q (14)
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for some real-valued q. Then by (12) and (13) the following calculations are justified:

Dtu = Dtv + (Dt∇η)∗v + (∇η)∗Dtv − Dt∇q

= (∇Dtη)∗v − (∇u)∗(∇η)∗v − ∇Dtq + (∇u)∗∇q

= −(∇u)∗[v + (∇η)∗v − ∇q] − ∇Dtq

= −(∇u)∗u − ∇Dtq

= −∇p

(15)

where p = 1
2 |u|2 + Dtq. �

3. An Existence and Uniqueness Theorem

For r ≥ 0, we will use the notation Hr variously for scalar or vector valued functions in Hr(Tn) (com-
ponentwise), where this does not cause ambiguity. We will often consider functions in spaces of the form
C0([0, T ]; (Hs(Tn))n). To simplify notation we define Σs(T ) (usually denoted Σs) for T ≥ 0 and s ≥ 0 by

Σs(T ) := C0([0, T ]; (Hs(Tn))n).

We consider the natural norm on Σs:

‖u‖Σs
= sup

t∈[0,T ]

‖u(t)‖Hs .

The aim of the rest of this paper is to prove the following theorem.

Theorem 1. If n ≥ 2, s > n
2 + 1 and u0 ∈ Hs is divergence free then there exists T > 0, such that

the system (4–6) with initial conditions (7) and (8) has a unique solution A, u, v such that η, u, v ∈
Σs(T ) ∩ C1([0, T ];Hs−1) where η(x, t) = A(x, t) − x. Moreover A ∈ C1([0, T ] × T

n) as a map into the
torus.

We will prove this by constructing a contracting iteration scheme using the Eqs. (5), (6) and (9). More
precisely, given u ∈ Σs(T ) we find v, η ∈ Σs ∩ C1([0, T ] × T

n), solutions of

∂tη + (u · ∇)η = −u, η(0, x) = 0

and

∂tv + (u · ∇)v = 0, v(0, x) = u0(x).

We then construct the next iterate of u, using

u′ = P[(∇A)∗v]

and show that u 	→ u′ is a contraction on a certain subset of Σs.
In the case of Hölder spaces, Constantin constructed an iteration scheme that was instead a contraction

with respect to A. This involves controlling differences between candidate virtual velocities (v1 and v2,
say) in terms of the difference between the respective back-to-labels maps (A1 and A2). This can be
achieved, using the fact that vi = u0(Ai) is a solution to (6). In the Hölder setting this is a natural
way to proceed, however, relying on this a posteriori knowledge about the solution introduces an extra
technicality when we work in Sobolev spaces. For this reason we will proceed as described above, relying
only on a priori estimates. Following the proof, we shall see how the argument differs if the contraction is
with respect to A, in particular we get an alternative proof under the additional assumption that s ∈ Z.

We begin the proof of Theorem 1 by stating two inequalities concerning the advection term (u · ∇)v,
using the notation B(u, v) := (u · ∇)v. Both of these results can be proved following the steps in [6,16]
(the only difference being that B here does not include a Leray projection).

Lemma 1. For s > n
2 there exists C1 > 0 such that if u ∈ Hs and v ∈ Hs+1 then B(u, v) ∈ Hs and

‖B(u, v)‖Hs ≤ C1‖u‖Hs‖v‖Hs+1 . (16)
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This is really just the fact that Hs is a Banach algebra. For the second lemma the assumption that u
is divergence-free allows us to “save a derivative” by means of the identities

(B(u, (−Δ)r/2v), (−Δ)r/2v)L2 = 0

for r ∈ [0, s].

Lemma 2. If s > n
2 + 1 there exists C2 > 0 such that for u ∈ Hs, v ∈ Hs+1 with u divergence-free we

have
|(B(u, v), v)Hs | ≤ C2‖u‖Hs‖v‖2

Hs . (17)

We use the following shorthand for closed balls in Σs:

BM = B‖·‖Σs
(0,M),

i.e. BM is the closed unit ball centred at the origin of radius M > 0 with respect to the norm ‖ · ‖Σs
.

Where ambiguity could arise we write BM (T ) for the closed ball in Σs(T ).

Lemma 3. If s > n
2 + 1 and η, v ∈ Σs(T ) then P[(∇η)∗v] ∈ Σs and there exists a constant C3 > 0

(independent of η, v, t and T ) such that for fixed t,

‖P[(∇η)∗v]‖Hr ≤ C3‖η‖Hs‖v‖Hr , (18)

where r = s or r = s − 1. Furthermore, there exists C ′
3 > 0 such that for any M > 0 and T > 0, the

following bounds hold uniformly with respect to t ∈ [0, T ] for any η1, η2, v1, v2 ∈ BM (T ):

‖P[(∇η1)∗v1 − (∇η2)∗v2]‖X ≤ C ′
3M(‖η1 − η2‖X + ‖v1 − v2‖X). (19)

where X is L2(Tn) or Hs−1.

Proof. For continuity into Hs−1 we use the fact that Hs−1 is a Banach algebra. More precisely, we see
that ‖P[(∇η1)∗v1 − (∇η2)∗v2]‖Hs−1 ≤ C‖η1 − η2‖Hs‖v1 + v2‖Hs−1

+ C‖∇η1 + ∇η2‖Hs−1‖v1 − v2‖Hs−1 ,
(20)

where C > 0 is independent of the ηi and vi. The key step in the proof of (18) when r = s is that if
η, v ∈ C2 then for some q ∈ Hs,

∂xi
P[(∇η)∗v] = ∂xi

(∂xj
ηkvk) − ∂xi

∂xj
q

= ∂xj
(∂xi

ηkvk) − ∂xi
ηk∂xj

vk + ∂xj
ηk∂xi

vk − ∂xi
∂xj

q

where sums are taken implicitly over k. The left-hand side is already divergence-free so projecting again
removes the gradient terms and yields

∂xi
P[(∇η)∗v] = P[(∇η)∗∂xi

v − (∇v)∗∂xi
η]. (21)

By continuity, this still holds if we only have η, v ∈ Hs. A calculation similar to (20) applied to (21)
yields continuity with respect to the Hs norm as claimed.

The inequalities (18) for r = s − 1 and r = s are obtained by taking the Hs−1 norms of P[(∇η)∗v]
and (21) respectively.

To prove (19), we again use the fact that P removes gradients. Indeed for f , g ∈ Hs, we have

P((∇f)∗g) = P(∇(f · g) − (∇g)∗f) = −P((∇g)∗f). (22)

Setting f = η1 − η2, g = v1 + v2, we see that the calculations in (20) can be modified to give the required
result. Note that for the L2 bound we use the fact that (20) holds if we replace Hs with L∞ and Hs−1

with L2. �
The next lemma gives uniform bounds on the Hs norms of solutions to the transport Eqs. (4) and

(6). We will consider the following system:{
∂tf + (u · ∇)f = g
f(0) = f0

(23)

where f, g : [0, T ] × T
n → R

n and u is divergence free.
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Lemma 4. Let s > n
2 + 1 and fix f0 ∈ Hs, g ∈ Σs. If u ∈ Σs is non-zero and divergence free then there

exists a unique solution f to (23). Furthermore, the solution f ∈ Σs ∩ C1([0, T ];Hs−1) ∩ C1([0, T ] × T
n)

and there exists C4 > 0 (from Lemma 2) such that if r, t ∈ [0, T ] we have:

‖f(t)‖Hs ≤
(

‖f(r)‖Hs +
‖g‖Σs

C4‖u‖Σs

)
exp(C4|t − r|‖u‖Σs

) − ‖g‖Σs

C4‖u‖Σs

. (24)

Proof. By the method of characteristics we obtain a solution f ∈ C1([0, T ] × T
n). The formal argument

that follows motivates our consideration of the regularity of f . Taking the Hs product of (23) with f
yields

1
2

d
dt

‖f‖2
Hs = −(B(u, f), f)Hs + (f, g)Hs .

By Lemma 2, there exists C > 0 such that for all t ∈ [0, T ],

1
2

d
dt

‖f(t)‖2
Hs ≤ C‖u(t)‖Hs‖f(t)‖2

Hs + ‖g(t)‖Hs‖f(t)‖Hs . (25)

Now (24) follows from Gronwall’s inequality. In the case r > t, this argument is applied to the time-
reversed equation, that is, using the fact that for fixed r, −f(r − t) is transported by −u(r − t) with
forcing g(r − t).

To properly justify this we can proceed by a Galerkin method. For each N ∈ N we find a solution to
the system {

∂tfN + PNB(uN , fN ) = gN

fN (r) = PNf(r), (26)

on [r, T ], where PN denotes truncation up to Fourier modes of order N (in space), uN := PNu and
gN := PNg. The estimate (24) applies to fN so by a standard argument using the Aubin–Lions lemma
we obtain a weak solution h ∈ L∞(r, T ;Hs) such that ∂th ∈ L∞(r, T ;Hs−1), hence h ∈ C0([0, T ];Hs−1).
Using the divergence free property we obtain uniqueness of solutions h ∈ L2(r, T ;H1) with time derivative
∂th ∈ L2(r, T ;L2). Indeed, if h and h̃ are two such solutions it follows from (23) that

d
ds

‖h − h̃‖2
L2 = 0.

Therefore f = h, i.e. this weak solution agrees with our C1 classical solution on [r, T ].
We now prove (24) in the case r ≤ t. Since fN → f in L2(r, T ;Hs−1), we may choose a dense countable

subset {tk}∞
k=1 ⊂ [r, T ] such that fN (tk) → f(tk) in Hs−1 as N → ∞ for each k. The formal argument

above is valid on the truncated system, thus

‖fN (tk)‖Hs ≤
(

‖PNf(r)‖Hs +
‖g‖Σs

C‖uN‖Σs

)
exp(C|tk − r|‖u‖Σs

) − ‖gN‖Σs

C‖u‖Σs

. (27)

Hence, passing to a subsequence of fN for each k with a diagonalisation argument, we may assume that for
all k, fN (tk) converges weakly in Hs as N → ∞. Moreover, by the choice of the points tk and uniqueness
of weak limits, we must have fN (tk) ⇀ f(tk) in Hs. Taking the lim inf of (27) with respect to N → ∞
yields

‖f(tk)‖Hs ≤
(

‖f(r)‖Hs +
‖g‖Σs

C‖u‖Σs

)
exp(C|tk − r|‖u‖Σs

) − ‖g‖Σs

C‖u‖Σs

. (28)

To prove (24) and the weak continuity of f into Hs we will use the fact that a weakly convergent sequence
in Hs−1 that is also bounded in Hs must converge weakly in Hs to the same limit by the Banach–Alaoglu
theorem. Indeed if xk ⇀ x in Hs−1 is bounded in Hs then any subsequence admits a further subsequence
converging weakly in Hs to x by the uniqueness of weak limits.

From this, (24) follows by the density of {tk} and the continuity of f into Hs−1. Indeed, in the case
t ≥ r, for any subsequence (tk�

)∞
�=1 ⊂ (tk)∞

k=1 such that tk�
→ t we have f(tk�

) ⇀ f(t) in Hs. Applying
(28) at tk�

and taking the lim inf as � → ∞ yeilds (24) at time t. For t < r the required bounds are
obtained in the same way from the time-reversed version of (26).
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We have shown that ‖f(t)‖Hs in bounded uniformly, not merely almost everywhere. Therefore for any
fixed τ ∈ [0, T ] and any sequence {τk} ⊂ [0, T ] such that τk → τ we deduce, by the continuity into Hs−1,
that f(τk) ⇀ f(τ) in Hs. This says that f is weakly continuous into Hs.

To see that f ∈ Σs it is therefore enough to show that ‖f(t)‖Hs is continuous. This is the case since
for all r, t ∈ [0, T ], (24) gives bounds of the form

(‖f(r)‖Hs + α)e−β|t−r| − α ≤ ‖f(t)‖Hs ≤ (‖f(r)‖Hs + α)eβ|t−r| − α

for time independent constants α, β > 0, where the first inequality comes from (24) with r and t inter-
changed.

The fact that f ∈ C1([0, T ];Hs−1) follows from the fact that ∂tf ∈ Σs−1 which can be seen from the
regularity of the other terms in (23). �

Lemma 5. For s > n/2 + 1 fix u1, u2 ∈ Σs and f0 ∈ Hs. Let g1 = g2 = 0 or gi = −ui for i = 1, 2. If f1,
f2 are the solutions of (23) corresponding to u1, u2, g1, g2 respectively, then in the case that g1 = g2 = 0,
there exists C5 > 0 depending only on s such that

‖f1(t) − f2(t)‖L2 ≤ C5‖f1 + f2‖Σs
‖u1 − u2‖Σ0t (29)

for all t ∈ [0, T ]. In the case that gi = −ui for i = 1, 2 we instead have

‖f1(t) − f2(t)‖L2 ≤ (C5‖f1 + f2‖Σs
+ 1)‖u1 − u2‖Σ0t (30)

Proof. Using the anti-symmetry of (B(u1 − u2, ·), ·)L2 we have, for t ∈ [0, T ],

d
dt

‖f1 − f2‖2
L2 ≤ |(B(u1 − u2, f1 + f2), f1 − f2)L2 | + 2|(g1 − g2, f1 − f2)|

≤ C‖f1 + f2‖Hs‖u1 − u2‖L2‖f1 − f2‖L2 + 2‖g1 − g2‖Σ0‖f1 − f2‖L2

≤ C‖f1 + f2‖Σs
‖u1 − u2‖Σ0‖f1 − f2‖L2 + 2‖g1 − g2‖Σ0‖f1 − f2‖L2

Where C depends on the embedding Hs−1 ↪→ L∞. Formally dividing by ‖f1 − f2‖L2 and integrating the
resulting inequality gives (29) or (30) depending on the choice of g1 and g2. Justifying this last step is
straightforward. �

We are now in a position to prove the main result.

Proof of Theorem 1. Fix s > n/2 + 1 and let C3, C4 be the constants in (18), (24) (from Lemmas 3 and
4) respectively. Fix M > ‖u0‖Hs and T > 0 so that

exp(C4TM)‖u0‖Hs

(
C3

C4
[exp(C4TM) − 1] + 1

)
≤ M.

Let u ∈ BM (T ) be a divergence free function and let η be the solution of (23) for the flow u with
initial data η0 = 0 and forcing g = u. Let v be the solution for initial data v0 = u0 with g = 0. Define
Su := P[(∇η)∗v + v], then by Lemmas 3 and 4,

‖Su(t)‖Hs ≤ exp(C4tM)‖u0‖Hs

(
C3

C4
[exp(C4tM) − 1] + 1

)
≤ M (31)

for all t ∈ [0, T ]. Hence S : BM (T ) → BM (T ). Note that Su(·, 0) = u0 even if u(·, 0) = u0.
We next show that S is a contraction on BM (T ) in the L2 norm if T is sufficiently small. For u1,

u2 ∈ BM (T ) we construct vi and ηi from ui as above for i = 1, 2 with v1(·, 0) = v2(·, 0) = u0. Now

‖Su1 − Su2‖L2 ≤ Ca‖η1 − η2‖L2 + Cb‖v1 − v2‖L2

≤ (Cc‖v1 + v2‖Σs
+ Cd‖η1 + η2‖Σs

+ Ce)T‖u1 − u2‖Σ0

≤ C(u0,M, T )‖u1 − u2‖Σ0 ,

(32)
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where Ca, . . . , Ce denote various constants arising from the application of Lemmas 3, 4 and 5. Keeping
careful track of the constants shows that C(u0,M, T ) is given by the formula

C(u0,M, T ) := 2T

[(
C5(C ′

3M + 1)‖u0‖Hs +
C ′

3C5M

C4

)
exp(C4TM) + C ′

3M

(
1
2

− C5

C4

)]
(33)

Where C ′
3, C4, C5 are the constants from Lemmas 3, 4 and 5 respectively. Taking the supremum of (32)

with respect to t and choosing T > 0 small enough, we see that S is a contraction in the required sense.
We conclude that S has a unique accumulation point u, in the closure of BM with respect to ‖ · ‖Σ0 .

Since BM (T ) is convex and closed in Σs it is weakly closed, hence u ∈ BM (T ) is a fixed point of S. A
fixed point of S, along with associated back-to-labels map and virtual velocity, clearly give a solution to
the Eulerian–Lagrangian formulation of the Euler equations with the required regularity. The contraction
argument gives uniqueness in BM (T ) and it remains to prove that we have uniqueness in Σs(T ).

Since S is a contraction on BM (T̃ ) for any T̃ ∈ (0, T ], we have by continuity of ‖u(t)‖Hs , that if u′, A′

and v′ also satisfy (4–6) with u′ ∈ Σs(T ), then u(t) = u′(t) when 0 ≤ t ≤ min(T, inf{r : ‖u′(r)‖Hs = M}).
Now we know that for all k ∈ N there exists Tk ≤ T such that S is a contraction on BM+1/k(Tk) and

we may assume Tk → T as k → ∞. By the previous observation, this means that u is the unique solution
in Σs(T − ε) for all ε > 0, hence by continuity u is the unique solution in Σs as required.

The proof that u ∈ C1([0, T ];Hs−1) uses the same trick as Lemma 3 to save a spatial derivative (we
have only shown that ∇ηt ∈ Hs−2, which might otherwise limit the regularity of u). More precisely, using
(22) and the fact that u = P[(∇η)∗v + v], it can be shown that

1
h

‖u(t + h) − u(t) − hP[(∇η(t))∗∂tv(t) + ∂tv(t) − (∇v(t))∗∂tη(t)]‖Hs−1

≤ 1
2h

‖P[(∇η(t + h) + ∇η(t))∗(v(t + h) − v(t) − h∂tv)]‖Hs−1

+
1
2h

‖P[(∇v(t + h) + ∇v(t))∗(η(t + h) − η(t) − h∂tη)]‖Hs−1

+
1
2
‖P[(∇η(t + h) − ∇η(t))∗∂tv(t)]‖Hs−1

+
1
2
‖P[(∇v(t + h) − ∇v(t))∗∂tη(t)]‖Hs−1

+
1
h

‖v(t + h) − v(t) − h∂tv(t)‖Hs−1 .

Since Hs−1 is an algebra and η, v ∈ C0([0, T ];Hs) ∩ C1([0, T ];Hs−1), the right-hand side vanishes as
h → 0. Therefore u ∈ C1([0, T ];Hs−1) and

∂tu = P[(∇η(t))∗∂tv(t) + ∂tv(t) − (∇v(t))∗∂tη(t)].

�

4. An Alternative Iteration

Here we exhibit an alternative proof of existence and uniqueness for (4–6), which is based on contractions
with respect to A rather than u. The extra technicality in this approach is contained in the follow-
ing lemma, which is proved in an appendix. We will denote the identity map on T

n by ι and use the
correspondence between maps T

n → R
n and T

n → T
n without comment.

Lemma 6. Let s ∈ Z with s > n
2 + 1 and fix f, g ∈ Hs. If g + ι is a volume preserving map then

f ◦ (g + ι) ∈ Hs and
‖f ◦ (g + ι)‖Hs ≤ C6‖f‖Hs(‖g‖Hs + (2π)n)s (34)

for some C6 > 0 depending only on s and the constants from some Sobolev embeddings.
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This allows us to write a second proof of existence and uniqueness of solutions in Σs for s > n/2 + 1
in the case s ∈ Z.

Fix u0 ∈ Hs and M > 0 and suppose η ∈ BM (T ) for some T > 0 such that η(t)+ι is volume-preserving
for all t ∈ [0, T ]. Define u and v via v = u0 ◦ (η + ι) and u = P[(∇η)∗v + v]. Construct η′, the iterate of η
by solving

∂tη
′ + (u · ∇)η′ = −u, η′(x, 0) = 0.

By Lemmas 3, 4 and 6 we have

‖η′‖Σs
≤ 1

C4
[exp(C4C6(C3M + 1)(M + (2π)n)s‖u0‖HsT ) − 1] .

Hence for T small enough, we may assume η′ ∈ BM (T ) and since ∇ · u = 0 we also have that η′ + ι is
volume preserving.

Now suppose that η1, η2 ∈ BM (T ) and let η′
1, η′

2 be the respective iterates then

‖η′
1 − η′

2‖Σ0 ≤ 2(C5M + 1)(C ′
3M + (C ′

3M + 1)CLip)T‖η1 − η2‖Σ0 ,

by Lemmas 3 and 5. Here CLip is the Lipschitz constant of u0. It follows that, for small enough T , this
iteration procedure is a contraction on BM (T ) in the L2 norm. Existence and uniqueness of solutions
now follows using the same steps as in the previous method.

5. Conclusions

We have seen that Constantin’s proof of local well-posedness for the Eulerian–Lagrangian formulation
of the Euler equations in C1,μ can be adapted to prove analogous results in the corresponding Sobolev
spaces, Hs for s > n/2 + 1, directly. This involved different estimates, which may seem more familiar
to some readers. We have given two different iteration schemes to deduce well-posedness using these
estimates; iterating with respect to u is natural in this setting and leads to a fairly clean proof, whereas
iterating with respect to the Lagrangian coordinate A involves estimates on the compositions of Sobolev
functions, which are proved in Appendix A. It would be interesting to investigate these composition
estimates further and extend them to non-integer Sobolev spaces, for example.

Robinson and Sadowski [15] have shown that in the case of the 3D Navier–Stokes equations, al-
most every Lagrangian trajectory is well-defined and C1, for any suitable weak solution u, with u ∈
L6/5(0, T ;L∞). This suggests it may be reasonable to study Eulerian–Lagrangian formulations for diffu-
sive systems. For example, calculations analogous to the derivation above suggest that the Navier–Stokes
equations can be formulated as

∂tA + (u · ∇)A = 0, u = P((∇A)∗v),

with

∂tv + (u · ∇)v − ((∇A)∗)−1Δ(∇A)∗v = 0,

however obtaining results using such formulations has proved difficult, so far.
Constantin [3,4] has put forward an Eulerian–Lagrangian form in the viscous case, where diffusive

terms appear in the equations for the back-to-labels map and the virtual velocity. Ideally we would be able
to make a meaningful study of formulations where the back-to-labels map retains its physical meaning.

Alternatively, if one formally considers the equation satisfied by (∇A)∗v, one arrives at a formulation
in magnetization variables. We recently showed that this leads to an interesting model system for Navier–
Stokes, which is globally well-posed in H1/2 in 3D [14].
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Appendix A. Compositions in Hs

In this appendix we prove Lemma 6, which gives bounds on the compositions Hs functions with certain
volume-preserving locally Hs functions where s ∈ Z with s > n

2 .
To begin with we consider gi ∈ Hs and multi indices βi with |βi| ∈ [1, s] for i = 1, . . . , �. We call

p ∈ [1,∞] admissible for (βi)1≤i≤� if there exists a constant C > 0 independent of (gi)1≤i≤� such that∥∥∥∥∥
�∏

i=1

Dβigi

∥∥∥∥∥
Lp

≤ C

�∏
i=1

‖gi‖Hs . (35)

Of course p is admissible if there exist q1, . . . , q� ∈ [1,∞) such that Hs−|βi| ↪→ Lqi for each i and
�∑

i=1

1
qi

=
1
p
,

or p = ∞ and qi = ∞ for all i. We may assume, without loss of generality that there are constants k1

and k2 with 0 ≤ k1 ≤ k2 ≤ � such that⎧⎨
⎩

s − |βi| ∈ [0, n/2) for 1 ≤ i ≤ k1

s − |βi| = n/2 for k1 + 1 ≤ i ≤ k2

s − |βi| > n/2 for k2 + 1 ≤ i ≤ �

So we have ∥∥∥∥∥
k1∏

i=1

Dβigi

∥∥∥∥∥
Lp

≤ C

k1∏
i=1

‖gi‖Hs

for

1
p

∈
[

k1∑
i=1

n − 2(s − |βi|)
2n

,
k1

2

]
.

Moreover ∥∥∥∥∥
k2∏

i=k1+1

Dβigi

∥∥∥∥∥
Lp

≤ C

k2∏
i=k1+1

‖gi‖Hs

for p ∈ [2,∞). Lastly, ∥∥∥∥∥
�∏

i=k2+1

Dβigi

∥∥∥∥∥
L∞

≤ C
�∏

i=k2+1

‖gi‖Hs .

Combining these observations we see that p is admissible if

1
p

∈
(

k1∑
i=1

n − 2(s − |βi|)
2n

,
�

2

]
. (36)

or if k1 = k2 then p is still admissible if

1
p

=
k1∑

i=1

n − 2(s − |βi|)
2n

, (37)

furthermore p = ∞ is admissible if k1 = k2 = 0.
Note that if p ∈ [1,∞] is admissable and fi : Tn → R

n are linear maps then we have (rather crudely)∥∥∥∥∥
�∏

i=1

Dβi(gi + fi)

∥∥∥∥∥
Lp

≤ C
�∏

i=1

‖gi‖Hs + ‖fi‖op(2π)n/qi . (38)
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In the proof of the lemma below, we will need the fact that if s > n
2 and

∑�
i=1 |βi| ≤ s then p = 2

is admissible for (βi)1≤i≤�. Furthermore, we will need to show that if s > n/2 + 1 then there exists an
admissible p > n

s−� and that p = ∞ is admissible if s = � > n/2 + 1.
For the first claim, note that if k1 = 0 or k1 = 1 then p = 2 is clearly admissible. Otherwise, if

1 < k1 ≤ � and s > n/2, we have the following calculation:

k1∑
i=1

n − 2(s − |βi|) ≤ k1n − 2k1s + 2s = (k1 − 1)(n − 2s) + n < n (39)

so p = 2 is admissible. For the second claim, observe that if s > n/2 + 1 then

k1∑
i=1

n − 2(s − |βi|) < 2
k1∑

i=1

|βi| − 2k1 ≤ 2(s − k1) − 2
�∑

i=k1+1

|βi| ≤ 2(s − �), (40)

where the middle inequality uses the assumption that
∑�

i=1 |βi| ≤ s. Hence there exists an admissible
value p > n

s−� , if s − � > 0. If s = � then necessarily, |βi| = 1 for i = 1, . . . , � hence p = ∞ is admissible
by (37).

Lemma 6. Let s ∈ Z with s > n
2 + 1 and fix f, g ∈ Hs. Denote the identity map on T

n by ι. If g + ι is a
volume preserving map then f ◦ (g + ι) ∈ Hs(Tn) and

‖f ◦ (g + ι)‖Hs ≤ C‖f‖Hs(‖g‖Hs + (2π)n)s (41)

for some C > 0 depending only on s and the constants from some Sobolev embeddings.

Proof. For each k ∈ N, consider functions fk, gk ∈ C∞(Tn;Rn) such that fk → f in Hs and gk → g in
Hs. Without loss of generality we assume that ||det ∇(gk(x) + x)| − 1| < 1

k+1 holds uniformly in x.
Now by the chain and Leibniz rules, we see that for a multi-index γ with |γ| ≤ s, Dγ(fk ◦ (gk + ι)) is

a (weighted) sum with summands of the form

((Dαfk) ◦ (gk + ι))
�∏

i=1

Dβi(gri

k + xri
), (42)

where � = |α| ≤ |γ| and
∑�

i=1 |βi| = |γ|. Here gi
k denotes the ith vector component of gk. We seek to

bound terms of the form (42) in L2 using the preceding observations.
Since Dαfk ∈ Hs−� and gk + ι is “almost volume preserving” it can be seen that (Dαfk)◦(gk + ι) ∈ Lq

if
1
q

∈
(

1
2

− s − �

n
,
1
2

]

with s − � ∈ (0, n/2] or

1
q

=
1
2

− s − �

n

when s − � ∈ (0, n/2). Of course, if s − � > n/2 then Dαfk ∈ L∞.
To bound (42) in L2 therefore, we need to check that there is an admissible p such that,

1
p

∈
[
0,

s − �

n

)
.

and that p = ∞ is admissible if s = �. This follows from the claims we proved before the statement of
the lemma.

Now we see that

‖fk ◦ (gk + ι)‖Hs ≤ C
√

1 + 1/k ‖fk‖Hs(‖gk‖Hs + (2π)n)s
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where C depends only on Sobolev embeddings and some combinatorics. Since fk and gk converge we
may assume that fk ◦ (gk + ι) converges weakly in Hs. Thus the lemma is proved if we can show that
fk ◦ (gk + ι) → f ◦ (g + ι) in L2 for example. This is indeed the case:

‖f ◦ (g + ι) − fk ◦ (gk + ι)‖L2

≤ ‖f ◦ (g + ι) − f ◦ (gk + ι)‖L2 + ‖f ◦ (gk + ι) − fk ◦ (gk + ι)‖L2

≤ CLip‖g − gk‖L2 +
√

1 + 1/k ‖f − fk‖L2 ,

where we make use of the fact that f ∈ Hs is Lipschitz since s > n/2+1 and denote by CLip the Lipschitz
constant of f . �
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