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Abstract. In the present paper we study a singular perturbation problem for a Navier–Stokes–Korteweg model with Coriolis
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coefficient constant in order to capture surface tension effects in the limit. We consider here the case of variable rotation
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on compensated compactness arguments. Besides, we look for minimal regularity assumptions on the variations of the axis.
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1. Introduction

In the present paper we continue the study, started in [12], of singular perturbation problems for viscous
capillary fluids under the action of fast rotation of the Earth.

Denoting by ρ ≥ 0 the density of the fluid and by u ∈ R
3 its velocity field, the mathematical model

is given by the Navier–Stokes–Korteweg system with Coriolis force
⎧
⎪⎨

⎪⎩

St ∂tρ + div (ρu) = 0

St ∂t(ρu) + div
(
ρu ⊗ u

)
+

1
Fr2

∇Π(ρ) − ν

Re
div

(
ρDu

)
− κ

We
ρ∇Δρ +

C(ρ, u)
Ro

= 0,
(NSK)

where the positive real numbers ν and κ are respectively the viscosity and capillarity coefficients, Du is
the viscous stress tensor and ρ∇Δρ is the surface tension tensor; finally, Π represents the pressure of the
fluid, which is supposed to be a smooth function of the density only.

In system (NSK), the positive parameters St, Fr, Re, We and Ro denote respectively the Strouhal,
Froude, Reynolds, Weber and Rossby numbers (see e.g. [8,15]); we identify the Froude and the Mach
numbers. The term C(ρ, u) = c e3 × ρu represents the Coriolis operator, where c is a suitably smooth
function (we refer to Sect. 2 below for the precise assumptions).

There are two important features to point out in the mathematical theory of equations (NSK). First of
all, the capillarity term in the momentum equation gives additional bounds for higher order derivatives of
the density. Such a property shows up not just in the classical energy inequality, but also through the so
called BD entropy conservation, a second energy inequality first discovered in [4] by Bresch and Desjardins
(see also [7]) for our system, and then generalized by the same authors to different models: see e.g. [3,5].
It turns out that the BD entropy structure is a fundamental ingredient in the theory of compressible
fluids with density-dependent viscosity coefficients: for instance, we quote here works [10,19,21,25,27].

On the other hand, one has to remark that the viscosity term is degenerate in regions of vacuum,
where one loses then any information on the velocity field and its gradient. For this reason, for system
(NSK) supplemented with a classical barotropic pressure law (this hypothesis was however a bit relaxed),
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in [7] Bresch et al. proved the global in time existence of a modified notion of weak solutions. Namely,
under these assumptions stability can be obtained only in non-void regions of the physical space, so that
one has to test the equations only against functions supported in zones where the density does not vanish.
This was achieved by (formally) using ρψ as a new test function, with ψ ∈ Dt,x and ρ the density itself,
and passing to the limit in the new “weak” formulation.

However, it turns out that stability can be recovered in presence of additional terms in the momentum
equation: for instance, some drag forces (like in [3] by Bresch and Desjardins for a 2-D shallow water
model), or a “cold component” in the pressure law (like in [5] by the same authors, where variations of
the temperature are taken into account as well); alternatively, it is possible to impose some additional
integrability conditions on the initial velocity, as done in [25] by Mellet and Vasseur. We refer to paper
[9] for a complete and interesting discussion on this subjet, as well as for some recent developments (see
also [29]).

Differently to what done in [12], where the weak formulation of [7] was used, we suppose here that
the pressure term Π is given by the sum of two components, a classical one P (ρ) = ργ and a singular
one Pc(ρ) = −ρ−γc , for two suitable parameters γ > 0, γc > 0. Therefore (thanks to the results of [9],
under much more general assumptions than the ones considered here) one recovers existence of global in
time weak solutions in the classical sense; let us point out that, alternatively, we might have added some
drag terms to our equations (as done in [3]), without substantially changing the subsequent analysis. The
term Pc is often referred to as cold pressure (see e.g. [5]), because it is associated with the zero Kelvin
isothermal curve for heat conducting fluids; also, singular pressures naturally appears when e.g. Van der
Waals type laws are considered. In fact, for densities and temperatures close to 0 the properties of the
medium drastically change, damaging the validity of the equations of motion: the presence of Pc may be
seen as a way of preserving stability of the model. At the mathematical level, this term gives a control
for negative powers of the density, which can be used to deduce integrability properties on the velocity
field. We refer to Subsection 3.1 of [5] for more details and some physical insights. Let us also recall
other works involving singular pressure laws: for instance, Ref. [27] for mixture of fluids with chemical
reactions, Ref. [21] for some lubrication models in one space dimension and the above mentioned work
[9] for compressible Navier–Stokes equations.

In the sequel, we also assume St = Re = 1 in system (NSK), and we set κ = 1 for convenience.
Moreover, for ε ∈ ]0, 1] we take Fr = Ro = ε and We = ε2(1−α), where α ∈ [0, 1]: we end up with the
system

⎧
⎨

⎩

∂tρ + div (ρu) = 0

∂t (ρu) + div
(
ρu ⊗ u

)
+

1
ε2

∇Π(ρ) +
1
ε
C(ρ, u) − νdiv

(
ρDu

)
− 1

ε2(1−α)
ρ∇Δρ = 0.

(1)

We are interested in studying the asymptotic behavior of a family of weak solutions
(
ρε, uε

)

ε
for ε → 0.

This means that we are performing the incompressible and fast rotation limits simultaneously, combining
them with effects coming either from vanishing capillarity (for 0 < α ≤ 1) or constant capillarity (i.e.
α = 0).

The mathematical study of fluids in fast rotation has now a quite long history, which goes back to
the pioneering paper [1] by Babin et al. for the incompressible Navier–Stokes equations. We refer to book
[11] and the references therein for a complete analysis of the problem for incompressible viscous fluids;
in the matter of this, we also quote here papaer [6,17]. Let us just point out an important aspect in the
theory of rotating fluids (see e.g. [11]): the strong Coriolis force has a stabilazing effect on the motion.
Namely, in the limit ε → 0, the dynamics becomes constant in the direction parallel to the rotation axis:
the fluid moves along vertical coloumns (the so called “Taylor–Proudman coloumns”) and the flow is
purely 2-dimensional, evolving on a plane orthogonal to the rotation axis. We refer also to book [28] for
some physical background about this problem.

In the compressible case, various models have been considered, for which the choice of the scaling
Fr = Ro = ε is usually assumed. The classical barotropic Navier–Stokes equations with constant viscosity
coefficient (not depending on the density, then) were studied in [14] by Feireisl et al., and in [13] by
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the same authors in collaboration with Gérard-Varet. For general ill-prepared initial data, in the former
article it was proved the convergence of the model to a 2-D quasi-geostrophic equation, by resorting to the
spectral analysis of the (constant coefficient) singular perturbation operator. In the latter work, instead,
still for ill-prepared data, the limit system was identified as a linear equation, due to the presence of the
centrifugal force having the same scaling as the other quantities. Also, in [13] the singular perturbation
operator is no more constant coefficients, and the authors had to resort to compensated compactness
arguments in order to pass to the limit in the non-linear terms. This method was firstly introduced by
Lions and Masmoudi (see [22,23]) in dealing with incompressible limit problems, and borrowed in [17] by
Gallagher and Saint-Raymond in the context of rotating fluids.

Concerning systems having a similar structure as (1), in the above mentioned paper [3] Bresch and
Desjardins studied the problem for a 2-D viscous shallow-water model with density dependent viscosities
(we refer also to [16,18] for a similar system, but with constant viscosity coefficient) and with additional
laminar and turbolent friction terms; also, they assumed a vanishing capillarity regime. In [20], instead,
Jüngel et al. considered more general viscosity and capillarity tensors, working in a strong solutions
framework, still in space dimension 2 and in the vanishing capillarity regime. In both works [3,20], for
well-prepared initial data, the authors recovered convergence to a quasi-geostrophic equation, by use of
the modulated energy method.

Coming back to the somehow simpler form (1), in [12] we studied the problem in the 3-D domain
Ω = R

2× ]0, 1[ and for general ill-prepared initial data: the improvement was due to the use of spectral
analysis tools (namely RAGE theorem and microlocal symmetrization arguments), as done in [14]. We
payed attention both to the vanishing and constant capillarity cases: in the former instance we recovered
the asymptotic result of [3,20], while in the latter we found the convergence to a slightly modified 2-D
quasi-geostrophic equation: since surface tension effects do not vanish in the limit, then they come into
play also in the final relation.

In the present paper we want to continue the previous study, mainly focusing on the case of effectively
variable rotation axis depending just on the “horizontal variables”, in analogy to what done in [17] by
Gallagher and Saint-Raymond for the homogeneous incompressible Navier–Stokes system. Indeed, when
c ≡ 1 (so that C(ρ, u) = e3 × ρu) the analysis of [12] still applies: the presence of the cold pressure is
important just for stability of weak solutions, but it does not affect the singular pertubation problem
(actually, it simplifies things, since it supplies informations for u and its gradient). We will come back in a
while to the hypotheses for the function c. For the moment, let us point out that we restrict our attention
to the constant capillarity regime, corresponding to α = 0: we are interested here in capturing surface
tension effects in the limit; on the other hand, different choices of α can be treated in a similar way.

For non-constant rotation axis, the singular perturbation operator becomes variable coefficients, so
that spectral analysis tools are no more available. Resorting to the techniques of [17], also used in [13] for
non-constant density profiles, the idea is hence to apply compensated compactness arguments to prove
the convergence in the non-linear terms: more precisely, after a regularization procedure and integration
by parts, we take advantage of the structure of our system to find special algebraic cancellations and
relations, which enable us to pass to the limit. The main novelty here is the presence of an additional
non-linear term, due to capillarity: the BD entropy structure gives compactness in space for the density,
but we miss uniform informations in time, so that we cannot pass directly to the limit in it. Nonetheless, it
turns out that this item exactly cancels out with another one, coming from the analysis of the convective
term. Notice also that the regularization process itself presents some complications with respect to [13,17],
because we have here less available controls for the velocity field and its gradient. In the end, we can
prove the convergence to a variable coefficients linear equation (of parabolic type) for the limit density,
which can be seen as a sort of stream function for the limit velocity field.

As it was already the case in [17], the previous arguments work under high regularity assumptions on
the variation c of the axis. First of all, a control on the gradient of c is needed in the computations, in
order to use the vorticity equation and to decompose the horizontal part of the (approximated) velocity
field into the basis given by ∇c and its orthogonal ∇⊥c (recall that c just depends on the horizontal
variables). Hence, having c ∈ W 1,∞ seems to be a necessary hypothesis, at least for this strategy to work;
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besides, we will also need to assume that ∇c has non-degenerate critical points, in a precise sense (as
already done in [17]).

But this is not all: the regularization procedure creates some remainder terms (essentially, commutators
between a smoothing operator and the variable coefficient), which we need to be small together with their
gradient in order to be able to exploit the vorticity formulation. This requirement asks for additional
regularity on ∇c: in the present paper we look for minimal smoothness assumptions on it in order to
recover the convergence. More precisely, we show that it is sufficient for ∇c to be μ-continuous, for some
admissible modulus of continuity μ. The proof of this result relies just on fine commutator estimates,
which can be obtained, nonetheless, in a quite classical way.

To conclude, we give an overview of the paper. In the next section we set up the problem, formulating
our working hypotheses, and we state the main results. Section 3 is devoted to establish suitable a
priori estimates, in the general case of system (NSK); besides, this analysis allows to justify a technical
requirement in [12] for the vanishing capillarity regime. In Sect. 4 we prove our main result, about the
singular limit problem in the case of variable rotation axis, when assumptions are made on the first
variation of ∇c. Finally, in the Appendix we recall some basic notions from Littlewood–Paley theory
(Appendix A.1) and about admissible moduli of continuity (Appendix A.2); we postpone the proof of
some technical results for the BD entropy in Appendix A.3.

Notations. Let us introduce some notations here.
We will decompose x ∈ Ω := R

2× ]0, 1[ into x = (xh, x3), with xh ∈ R
2 denoting its horizontal

component. Analogously, for a vector-field v = (v1, v2, v3) ∈ R
3 we set vh = (v1, v2), and we define the

differential operators ∇h and divh as the usual operators, but acting just with respect to xh. Finally, we
define the operator ∇⊥

h :=
(
−∂2, ∂1

)
.

Moreover, since we will reconduct ourselves to a periodic problem in the x3-variable (see Remark 2.1
below), we also introduce the following decomposition: for a vector-field X, we write

X(x) = 〈X〉(xh) + X̃(x), where 〈X〉(xh) :=
∫

T

X(xh, x3) dx3. (2)

Notice that X̃ has zero vertical average, and therefore we can write X̃(x) = ∂3Z̃(x), with Z̃ having zero
vertical average as well. We also set Z̃ = I(X̃) = ∂−1

3 X̃.

2. Basic Definitions and Results

We describe here our main hypotheses and results.

2.1. General Setting

Let us consider the rescaled Navier–Stokes–Korteweg system
⎧
⎨

⎩

∂tρ + div (ρu) = 0

∂t (ρu) + div
(
ρu ⊗ u

)
+

1
Fr2

∇Π(ρ) − ν div
(
ρDu

)
− 1

We
ρ∇Δρ +

1
Ro

C(ρ, u) = 0
(3)

in R+ × Ω, where Ω is the infinite slab

Ω := R
2 × ]0, 1[.

In the previous system, the scalar function ρ ≥ 0 represents the density of the fluid, while u ∈ R
3 its

velocity field. The quantity ν, which we will assume always to be a fixed positive constant, is the viscosity
coefficient and the operator D denotes the viscous stress tensor, defined by

Du :=
1
2

(
∇u +t ∇u

)
.
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Moreover, we denoted by C the Coriolis operator, which takes into account the Earth rotation: here, we
suppose that C is given by

C(ρ, u) := c(xh) e3 × ρ u, (4)
where e3 = (0, 0, 1) is the unit vector directed along the x3-coordinate and c is a smooth scalar function
of the horizontal variables only. Finally, the function Π(ρ) represents the pressure of the fluid: for the
reasons we explained in the introduction, we suppose here Π = P + Pc, where P is the classical pressure,
given by the Boyle law

P (ρ) :=
1
2γ

ργ , for some 1 < γ ≤ 2, (5)

and the second term is the cold pressure component, for which we take the power law

Pc(ρ) := − 1
2γc

ρ−γc , with 1 ≤ γc ≤ 2. (6)

The presence of the 1/2 is just a normalization in order to have Π′(1) = 1: this fact simplifies some
computations in the sequel.

In view of the analysis of the singular perturbation problem, we supplement system (3) by complete
slip boundary conditions, in order to avoid the appearing of boundary layers effects. Namely, if we denote
by n the unitary outward normal to the boundary ∂Ω of the domain (simply, ∂Ω = {x3 = 0}∪{x3 = 1}),
we impose

(u · n)|∂Ω = u3
|∂Ω = 0, (∇ρ · n)|∂Ω = ∂3ρ|∂Ω = 0,

(
(Du)n × n

)

|∂Ω
= 0. (7)

Remark 2.1. Equation (3), supplemented by complete slip boundary boundary conditions, can be recasted
as a periodic problem with respect to the vertical variable, in the new domain

Ω = R
2 × T

1, with T
1 := [−1, 1]/ ∼,

where ∼ denotes the equivalence relation which identifies −1 and 1. Indeed, the equations are invariant
if we extend ρ and uh as even functions with respect to x3, and u3 as an odd function.

In what follows, we will always assume that such modifications have been performed on the initial
data, and that the respective solutions keep the same symmetry properties.

2.2. Existence of Weak Solutions

Here we will always consider initial data (ρ0, u0) such that ρ0 ≥ 0 and
⎧
⎪⎨

⎪⎩

1
Fr

(ρ0 − 1) ∈ Lγ(Ω) and
1
Fr

(
1
ρ0

− 1
)

∈ Lγc(Ω)

√
ρ0 u0, ∇√

ρ0,
1√
We

∇ρ0 ∈ L2(Ω).
(8)

At this point, let us also introduce the internal energy functions h(ρ) and hc(ρ), such that
⎧
⎪⎪⎨

⎪⎪⎩

h′′(ρ) =
P ′(ρ)

ρ
= ργ−2 and h(1) = h′(1) = 0,

h′′
c (ρ) =

P ′
c(ρ)
ρ

= ρ−γc−2 and hc(1) = h′
c(1) = 0,

and let us define the classical energy

E[ρ, u](t) :=
∫

Ω

(
1

Fr2
h(ρ) +

1
Fr2

hc(ρ) +
1
2

ρ |u|2 +
1

2We
|∇ρ|2

)

dx, (9)

and the BD entropy function

F [ρ](t) :=
ν2

2

∫

Ω

ρ |∇ log ρ|2 dx = 2 ν2

∫

Ω

|∇√
ρ|2 dx. (10)
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Finally, let us denote by E[ρ0, u0] ≡ E[ρ, u](0) and by F [ρ0] ≡ F [ρ](0) the same energies, when computed
on the initial data

(
ρ0, u0

)
.

We now give the definition of weak solution to our system. The integrability properties we require
[see points (i) and (ii) below], as well as conditions (8) for the initial data, will be justified by energy
estimates, which we will establish in Sect. 3.1.

Definition 2.2. Fix initial data (ρ0, u0) which satisfy the conditions in (8), with ρ0 ≥ 0.
We say that

(
ρ, u

)
is a weak solution to system (3)–(7) in [0, T [×Ω (for some T > 0) with initial

datum (ρ0, u0) if the following conditions are verified:

(i) ρ ≥ 0 almost everywhere, and one has the properties Fr−1
(
ρ − 1

)
∈ L∞(

[0, T [ ;Lγ(Ω)
)
, Fr−1

(
1/ρ −

1
)

∈ L∞(
[0, T [ ;Lγc(Ω)

)
, We−1/2∇ρ and ∇√

ρ ∈ L∞(
[0, T [ ;L2(Ω)

)
and We−1/2∇2ρ ∈ L2

(
[0, T [ ;

L2(Ω)
)
;

(ii)
√

ρ u ∈ L∞(
[0, T [ ;L2(Ω)

)
and

√
ρ Du ∈ L2

(
[0, T [ ;L2(Ω)

)
;

(iii) the mass and momentum equations are satisfied in the weak sense: for any scalar function φ ∈
D

(
[0, T [×Ω

)
one has the equality

−
∫ T

0

∫

Ω

(

ρ ∂tφ + ρ u · ∇φ

)

dx dt =
∫

Ω

ρ0 φ(0) dx,

and for any vector-field ψ ∈ D
(
[0, T [×Ω;R3

)
one has

∫

Ω

ρ0 u0 · ψ(0) dx =
∫ T

0

∫

Ω

(

−ρ u · ∂tψ − ρ u ⊗ u : ∇ψ − 1
Fr2

Π(ρ) div ψ

+ ν ρDu : ∇ψ +
1

We
ρΔρdiv ψ +

1
We

Δρ∇ρ · ψ +
c(xh)
Ro

e3 × ρ u · ψ

)

dx dt.

(11)

For such initial data, the existence of weak solutions to system (3) is guaranteed for any fixed value
of the positive parameters Fr, We and Ro.

Theorem 2.3. Let γc = 2 in (6) and c ∈ W 1,∞(R2) in (4). Fix the value of the Froude, Weber and Rossby
numbers, and consider an initial datum (ρ0, u0) satisfying conditions (8), with ρ0 ≥ 0.

Then, there exits a global in time weak solution (ρ, u) to system (3), related to (ρ0, u0).

The previous result can be established arguing exactly as in [9], so we omit its proof. Actually, the
result of [9] holds true under more general assumptions than ours (as for the cold component of the
pressure and the viscosity coefficient, for instance).

Remark 2.4. • The hypothesis γc = 2 is assumed just for simplicity here, but, as remarked above, it
is not really necessary for existence.

• The condition c ∈ W 1,∞ is important in order to take advantage of the BD entropy structure of our
system, see Sect. 3.1.2. However, it can be deeply relaxed at this level: see also the discussion at the
beginning of Sect. 4.4.

2.3. The Singular Perturbation Problem

We get now interested in a singular perturbation problem for system (3). Namely, we want to study the
incompressible and high rotation limit simultaneously, both in the regimes of constant and vanishing
capillarity (in the same spirit of the analysis of [12]).

For doing this, we consider a small parameter ε ∈ ]0, 1]: we set Fr = Ro = ε, We = ε2(1−α), for some
0 ≤ α ≤ 1. Notice that the constant capillarity regime corresponds to the choice α = 0, while in the other
cases we are letting also the capillarity coefficient go to 0.
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Therefore, we end up with the equations
⎧
⎨

⎩

∂tρ + div (ρu) = 0

∂t (ρu) + div
(
ρu ⊗ u

)
+

1
ε2

∇Π(ρ) +
1
ε
C(ρ, u) − νdiv

(
ρDu

)
− 1

ε2(1−α)
ρ∇Δρ = 0.

(12)

Here we will consider the general instance of ill-prepared initial data
(
ρ, u

)

|t=0
=

(
ρ0,ε, u0,ε

)
. Namely,

we will suppose the following assumptions on the family
(
ρ0,ε, u0,ε

)

ε>0
:

(i) ρ0,ε = 1 + ε r0,ε, with
(
r0,ε

)

ε
⊂ H1(Ω) ∩ L∞(Ω) bounded;

(ii) 1/ρ0,ε = 1 + ε a0,ε, with
(
a0,ε

)

ε
⊂ L2(Ω) bounded;

(iii)
(
u0,ε

)

ε
⊂ L2(Ω) bounded.

Up to extraction of a subsequence, we can suppose that

r0,ε ⇀ r0 in H1(Ω), a0,ε ⇀ a0 = − r0 in L2(Ω), u0,ε ⇀ u0 in L2(Ω), (13)

where we denoted by ⇀ the weak convergence in the respective spaces.

Remark 2.5. The property a0 = −r0 immediately follows from the weak convergence. Indeed, for any
test function ϕ ∈ D(Ω), by definition of a0,ε we have

∫

Ω

a0,ε ϕdx = − 1
ε

∫

Ω

1
ρ0,ε

(ρ0,ε − 1) ϕdx = −
∫

Ω

r0,ε ϕdx − ε

∫

Ω

r0,ε a0,ε ϕdx.

The left-hand side of the previous equality converges to
∫

Ω
a0ϕdx; as for the right-hand side, the former

term converges to −
∫

Ω
r0ϕdx, and the latter goes to 0 for ε → 0.

Remark 2.6. Notice that the choice of constant density profile in the limit, i.e. ρ ≡ 1, is consistent with
the balance of forces acting on the system. As a matter of fact, ρ is identified as a solution of the static
problem

∇Π(ρ) = − ε2α ρ∇Δρ,

and this relation implies, up to an additive constant,

− ε2α Δρ = Ξ(ρ), with Ξ(ρ) :=
∫ ρ

1

(
Π′(σ)/σ

)
dσ.

Of course, ρ ≡ 1 solves the previous elliptic equation. However, depending on the non-linearity Π, when
α = 0 one is led to consider also non-constant limit density profiles: this was already the case in [13] for
a barotropic Navier–Stokes system with Coriolis term, when the centrifugal force is assumed of the same
order as the pressure and the rotation.

The analogue for capillary fluids will be matter of future studies.

Furthermore, we need to slightly modify the definition of weak solutions: namely, in addition to the
conditions of Definition 2.2, we also demand that the weak solutions are constructed in such a way to
satisfy relevant uniform bounds in ε. More precisely, we set Eε[ρ, u] and Fε[ρ] the energies defined in (9)
and (10) respectively, where we take the scaling Fr = Ro = ε, We = ε2(1−α): hence we require that, for
almost every t ∈ ]0, T ], the following inequalities hold true:

Eε[ρ, u](t) + ν

∫ t

0

∫

Ω

ρ |Du|2 dx dτ ≤ Eε[ρ0, u0] (14)

Fε[ρ](t) +
ν

ε2

∫ t

0

∫

Ω

P ′(ρ) |∇√
ρ|2 dx dτ +

ν

ε2(1−α)

∫ t

0

∫

Ω

∣
∣∇2ρ

∣
∣2 dx dτ ≤ C (1 + T ), (15)

where the constant C depends just on the triplet
(
Eε[ρ0, u0], Fε[ρ0], ν

)
.

From now on, we will focus only on the regime of constant capillarity, i.e. α = 0. Indeed, our main
goal is to capture the effects of the surface tension in the asymptotics, which seems to be a new feature in
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this kind of studies. However, we remark that the vanishing capillarity limit (i.e. α ∈ ]0, 1]) can be dealt
with as in [12] when c ≡ 1, or by similar arguments as in Sect. 4 when c is non-constant.

First of all, let us consider the case of constant rotation axis, namely when c ≡ 1 in (4).

Theorem 2.7. Let 1 < γ ≤ 2 in (5), α = 0 and C(ρ, u) = e3 × ρ u in (12).
Let

(
ρ0,ε, u0,ε

)

ε
be initial data satisfying the hypotheses (i)–(iii) and (13), and let

(
ρε, uε

)

ε
be a family

of corresponding weak solutions to system (12)–(7) in [0, T ] × Ω, in the sense of Definition 2.2. Suppose
that inequalities (14) and (15) hold true and that the symmetriy properties of Remark 2.1 are verified.
We also define rε := ε−1 (ρε − 1).

Then, up to the extraction of a subsequence,
(
rε, uε

)

ε
weakly converges (in suitable energy spaces1) to

(r, u), where r = r(xh) and u =
(
uh(xh), 0

)
are linked by the relation uh = ∇⊥

h (Id − Δh) r. Moreover, r
is a weak solution of the modified quasi-geostrophic equation

∂t

(
Id − Δh + Δ2

h

)
r + ∇⊥

h

(
Id − Δh

)
r · ∇hΔ2

hr +
ν

2
Δ2

h

(
Id − Δh

)
r = 0 (16)

supplemented with the initial condition r|t=0 = r̃0, where r̃0 ∈ H3(R2) is identified by

(
Id − Δh + Δ2

h

)
r̃0 =

∫ 1

0

(
ω3

0 + r0

)
dx3.

We omit the proof of this result here, because it goes along the lines of the one given in [12]. Its
main ingredients are the spectral analysis of the (constant coefficient) singular perturbation operator and
an application of the RAGE Theorem. We remark that the RAGE Theorem allows to deduce strong
convergence properties in suitable norms, and this is the key to pass to the limit in the non-linear terms.

Let us now consider the case of effectively variable rotation axis. For technical reason, analogously to
what done in [17], we need to assume that the function c has non-degenerate critical points: namely, we
will suppose

lim
δ→0

L({xh ∈ R
2||∇hc(xh)

∣
∣ ≤ δ}) = 0, (17)

where we denoted by L(O) the 2-dimensional Lebesgue measure of a set O ⊂ R
2.

Also, we will require that the gradient of c is μ-continuous, for some admissible modulus of continuity
μ: we will recall the precise definition in Appendix A.2.

For notation convenience, let us also introduce the operator

Dc(f) := Dh

(
c−1 ∇⊥

h f
)

=
1
2

(
∇h +t ∇h

) (
c−1 ∇⊥

h f
)

for any scalar function f = f(xh).

Theorem 2.8. Let 1 < γ ≤ 2 in (5), α = 0 and C(ρ, u) = c(xh) e3 × ρ u in (12), where c ∈ W 1,∞(R2)
is �= 0 almost everywhere and it verifies the non-degeneracy condition (17). Let us also assume that
∇hc ∈ Cμ(R2), for some admissible modulus of continuity μ.

Let
(
ρ0,ε, u0,ε

)

ε
be initial data satisfying the hypotheses (i)–(iii) and (13), and let

(
ρε, uε

)

ε
be a family

of corresponding weak solutions to system (12)–(7) in [0, T ] × Ω, in the sense of Definition 2.2. Suppose
that inequalities (14) and (15) hold true and that the symmetriy properties of Remark 2.1 are verified.
Define rε := ε−1 (ρε − 1) as above.

Then, up to the extraction of a subsequence, one has the following convergence properties:
(a) rε ⇀ r in L∞(

[0, T ];H1(Ω)
)

∩ L2
(
[0, T ];H2(Ω)

)
,

(b)
√

ρε uε ⇀ u in L∞(
[0, T ];L2(Ω)

)
and

√
ρε Duε ⇀ Du in L2

(
[0, T ];L2(Ω)

)
,

where, this time, r = r(xh) and u =
(
uh(xh), 0

)
verify the relation c(xh)uh = ∇⊥

h (Id − Δh) r. Moreover,
r solves (in the weak sense) the equation

∂t

(

r − divh

(
1
c2

∇h

(
Id − Δh

)
r

))

+ ν tDc ◦ Dc

(
(Id − Δh)r

)
= 0 (18)

1 See points (a) and (b) in Theorem 2.8.



Vol. 18 (2016) A Singular Limit Problem for Rotating Capillary Fluids 633

supplemented with the initial condition r|t=0 = r̃0, where r̃0 is defined by

r̃0 − divh

(
1
c2

∇h

(
Id − Δh

)
r̃0

)

=
∫ 1

0

(curlh(c−1 uh
0 ) + r0) dx3.

Notice that we have the identity

tDc ◦ Dc(f) = ∇⊥
h ·

(
1
c

∇h · Dc(f)
)

,

where we used the notations div f and ∇ · f in an equivalent way. We also remark here that, for c ≡ 1,
this operator reduces to (1/2)Δ2

hf .

Remark 2.9. As already pointed out in [17] (see also [13]), the limit equation is linear in the case of variable
rotation axis. Indeed, the limit motion is much more constrained in this situation, and correspondingly
the kernel of the singular perturbation operator is smaller than in the instance of constant axis.

Also, notice that having non-constant c makes variable coefficients appear in the limit equation.

3. A Priori Estimates

The present section is devoted to show uniform bounds for smooth solutions of our system, written in
the general form (3). Throughout this section we will suppose Fr, We and Ro to be fixed. However, we
will keep track of them in the first paragraph: this is relevant in view of the analysis of Sect. 4.

Besides, the next computations will give complete justification to a technical assumption in [12] (see
Remark 3.8 below).

3.1. Energy Estimates

Suppose that (ρ, u) is a smooth solution to system (3) in R+ × Ω, related to the smooth initial datum(
ρ0, u0

)
. We establish here energy estimates for (ρ, u).

Remark 3.1. The construction given in e.g. [9] ensures the existence of smooth approximated solutions,
which converge to a weak solution of our original system and which are compatible with the uniform
bounds given by the BD entropy structure of the equations.

Therefore, the estimates established here will be inherited by the family of weak solutions we are going
to consider, see Sect. 4.1.

3.1.1. Classical Energy. First of all, let us show the classical energy conservation.

Proposition 3.2. Let (ρ, u) be a smooth solution to system (3) in R+ × Ω, with initial datum
(
ρ0, u0

)
.

Then, for all t ∈ R+, one has
d

dt
E[ρ, u](t) + ν

∫

Ω

ρ |Du|2 dx = 0.

Proof. First of all, we multiply the second relation in system (3) by u: by use of the mass equation and
the fact that C(ρ, u) is orthogonal to u, we arrive at the equality

1
2

d

dt

∫

Ω

(

ρ |u|2 +
1

We
|∇ρ|2

)

dx +
1

Fr2

∫

Ω

(
P ′(ρ) + P ′

c(ρ)
)
∇ρ · u dx + ν

∫

Ω

ρDu : ∇u dx = 0.

On the one hand, we have the identity Du : ∇u = |Du|2; on the other hand, multiplying the equation
for ρ by h′(ρ)/Fr2 gives

1
Fr2

∫

Ω

P ′(ρ)∇ρ · u dx =
1

Fr2
d

dt

∫

Ω

h(ρ) dx.

Notice that an analogous equality holds true also for the cold part Pc of the pressure.
Putting the obtained relations into the previous one concludes the proof of the proposition. �
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From the previous energy conservation, we infer the following bounds.

Corollary 3.3. Let γc = 2. Let (ρ, u) be a smooth solution to system (3) in R+ × Ω, with initial datum(
ρ0, u0

)
, and assume that E[ρ0, u0] < +∞. Then one has the following properties:

√
ρ u,

1√
We

∇ρ ∈ L∞(
R+;L2(Ω)

)
and

√
ρ Du ∈ L2

(
R+;L2(Ω)

)
.

Moreover, we also get

1
Fr

(ρ − 1) ∈ L∞(
R+;Lγ(Ω)

)
and

1
Fr

(
1
ρ

− 1
)

∈ L∞(
R+;L2(Ω)

)
.

Proof. The first properties are immediate, after integrating the relation of Proposition 3.2 in time. So,
let us focus on the density term.

For 1 < γ ≤ 2, Lemma 2 of [20], combined with Proposition 3.2, tells us

‖ρ − 1‖γ
L∞

T (Lγ) ≤ C
(
Frγ + Fr2

)
,

which immediately gives the first property.
Let us consider negative powers of the density: for γc = 2, it is easy to see that

Hc(ρ) := γc (γc + 1)hc(ρ) −
∣
∣
∣
∣
1
ρ

− 1
∣
∣
∣
∣

γc

≥ 0

for all ρ ≥ 0, and this concludes the proof of the corollary. �

3.1.2. BD Entropy. We want now to take advantage of the BD entropy structure of our system. Let us
start with a lemma, which is the analogue of Proposition 3.3 in [12]. For the sake of completeness, we
give the complete proof in Appendix A.3.

Lemma 3.4. Let (ρ, u) be a smooth solution to system (3) in R+ ×Ω, related to the initial datum
(
ρ0, u0

)
.

Then there exists a “universal” constant C > 0 such that, for all t ∈ R+, one has

1
2

∫

Ω

ρ |u + ν ∇ log ρ|2 dx +
ν

We

∫ t

0

∫

Ω

∣
∣∇2ρ

∣
∣2 dx dτ +

4ν

Fr2

∫ t

0

∫

Ω

Π′(ρ) |∇√
ρ|2 dx dτ

≤ C
(
F [ρ0] + E[ρ0, u0]

)
+

ν

Ro

∣
∣
∣
∣

∫ t

0

∫

Ω

c(xh) e3 × u · ∇ρ dx dτ

∣
∣
∣
∣ . (19)

Let us point out here that the last term on the left-hand side of the previous relation can be also
written as

4 ν

Fr2

∫

Ω

(
P ′(ρ) + P ′

c(ρ)
)
|∇√

ρ|2 =
ν

Fr2

∫

Ω

(
ργ−2 + ρ−γc−2

)
|∇ρ|2

=
Cγ ν

Fr2

∫

Ω

|∇(ργ/2)|2 +
Cγc

ν

Fr2

∫

Ω

|∇(ρ−γc/2)|2, (20)

for some positive constants Cγ and Cγc
. In particular, in our case γc = 2, Cγc

= 1.
Next, let us give now some estimates for the density (again, see the proof in Appendix A.3).

Lemma 3.5. There exists a “universal” constant C > 0 such that

‖ρ − 1‖L∞
t (L2) ≤ C(Fr +

(
1 − 12(γ)

) √
We),

where we have set 12(γ) = 1 if γ = 2 and 12(γ) = 0 otherwise.
Moreover, for any 0 < δ ≤ 1/2 and any 1 ≤ p ≤ 4/(1 + 2δ) one has

‖ρ − 1‖p
Lp

t (L∞)
≤ Cp

((
Fr +

(
1 − 12(γ)

)√
We

)
t

+ (We)p(3−2δ)/4 ν−1/q t1−1/q
( ν

We

∥
∥∇2ρ

∥
∥2

L2
t (L2)

)1/q
)

,
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where we have defined q := 4/
(
(1 + 2δ)p

)
∈ [1, 4/(1 + 2δ)], and the constant Cp depends also on the value

of p.

We are now ready to control the Coriolis term in the estimates of Lemma 3.4. We will give two different
types of estimates: the first one is useful in order to justify Definition 2.2 of weak solutions. The second
kind of inequalities, instead, will be relevant in studying the singular limit problem (see Sect. 4). Again,
the proof is postponed to Appendix A.3.

Lemma 3.6. (i) There exists a positive constant C, just depending on E[ρ0, u0], such that

ν

Ro

∣
∣
∣
∣

∫ t

0

∫

Ω

c(xh) e3 × u · ∇ρ dx dτ

∣
∣
∣
∣ ≤ C

Ro

∫ t

0

(
F [ρ](τ)

)1/2
dτ.

(ii) Moreover, one has the following estimate: for any 1 < γ ≤ 2,

ν

Ro

∣
∣
∣
∣

∫ t

0

∫

Ω

c(xh) e3 × u · ∇ρ dx dτ

∣
∣
∣
∣ ≤ C ν (1 + t)

Fr +
√

We
Ro

(1 + Fr +
√

We)1/2

+C ν (1 + t) (We)3/5

(
Fr +

√
We

Ro

)8/5

+
3
4

ν

We

∥
∥∇2ρ

∥
∥2

L2
t (L2)

.

Alternatively, in the particular instance γ = 2, one can get the different bound

ν

Ro

∣
∣
∣
∣

∫ t

0

∫

Ω

c(xh) e3 × u · ∇ρ dx dτ

∣
∣
∣
∣ ≤ C ν t

(
Fr
Ro

)2

+ C ν
√

t
Fr
Ro

(
1 + Fr

)1/2

+C ν (1 + t) (We)3/5

(
Fr
Ro

)8/5

+
1
2

ν

Fr2
‖∇ρ‖2

L2
t (L2)

+
3
4

ν

We

∥
∥∇2ρ

∥
∥2

L2
t (L2)

.

By the previous lemmas, we easily infer the BD entropy estimate for our system.

Proposition 3.7. Let (ρ, u) be a smooth solution to system (3) in R+ × Ω, related to the initial datum(
ρ0, u0

)
.

(i) There exists a constant C > 0, just depending on E[ρ0, u0] and F [ρ0], such that, for all T ∈ R+

fixed, one has

sup
[0,T ]

F [ρ] +
ν

We

∫ T

0

∫

Ω

∣
∣∇2ρ

∣
∣2 dx dt +

ν

Fr2

∫ T

0

∫

Ω

Π′(ρ) |∇√
ρ|2 dx dt ≤ C + C

(
T

Ro

)2

.

(ii) Alternatively, for any 1 < γ ≤ 2 and any T ∈ R+ fixed, we have the estimate

sup
[0,T ]

F [ρ] +
ν

We

∫ T

0

∫

Ω

∣
∣∇2ρ

∣
∣2 dx dt +

ν

Fr2

∫ T

0

∫

Ω

Π′(ρ) |∇√
ρ|2 dx dt

≤ C + C1 ν (1 + T )Θ + C2 ν (1 + T )Θ8/5,

where Θ = Θ(Fr,Ro,We) = (Fr +
√

We)/Ro and the positive constants C1 and C2 are uniformly
bounded for (Fr,We) varying in some compact set [0,Fr] × [0,We].

In the case γ = 2, one can derive also an analogous inequality, with the right-hand side replaced
by the quantity

C + C ν T Θ̃2 + C1 ν
√

T Θ̃ + C2 ν (1 + T ) Θ̃8/5,

where C1 and C2 have the same property as above, and we have defined Θ̃ := Fr/Ro.
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Proof. Our starting point is inequality (19): we estimate from below the first term in the left-hand side
by

1
2

∫

Ω

ρ(t) |u(t) + ν ∇ log ρ(t)|2 dx ≥ F [ρ](t) − 1
2

∫

Ω

ρ(t) |u(t)|2 dx,

where the last term can be clearly moved on the right-hand side of (19) and controlled by E[ρ0, u0] (recall
Proposition 3.2).

Let us now consider the rotating term, and bound it by the first inequality in Lemma 3.6. Notice that,
at this point, one could use Young inequality to get F 1/2 ≤ 1 + F and then apply Gronwall lemma: this
would give an exponential growth in time for F and the other terms we want to control. So we prefer to
argue in a finer way.

More precisely, for any t ∈ [0, T ] we have the bound

C

Ro

∫ t

0

(
F [ρ](τ)

)1/2
dτ ≤ C t

Ro

(

sup
[0,t]

F [ρ]

)1/2

≤ C t2

Ro2 +
1
2

sup
[0,t]

F [ρ]

and then, from (19), we find

F [ρ](t) +
ν

We

∫ t

0

∫

Ω

∣
∣∇2ρ

∣
∣2 +

4ν

Fr2

∫ t

0

∫

Ω

(
P ′(ρ) + P ′

c(ρ)
)

|∇√
ρ|2 ≤ C +

C t2

Ro2 +
1
2

sup
[0,t]

F [ρ].

Taking first the sup[0,T ] of the member on the right, and then the sup[0,T ] of the member on the left, we
deduce item (i) of our statement.

On the other hand, if we bound the Coriolis term in (19) using the second type of estimates of Lemma
3.6, for any 1 < γ ≤ 2 we easily find the former inequality in item (ii).

In the special case γ = 2, we can alternatively use the last bound of Lemma 3.6: since P ′(ρ)|∇√
ρ|2 =

|∇ρ|2, we can absorbe the last two terms of the right-hand side into the left-hand term. Then, the
inequality with Θ̃ immediately follows. �

Remark 3.8. The previous proposition suggests to take γ = 2 when considering the vanishing capillarity
regime. As a matter of fact, if We = ε2(1−α), for some 0 < α ≤ 1, uniform bounds in ε seem to be out of
reach without resorting to Θ̃ rather than to Θ.

From Proposition 3.7, we deduce the next statement. Notice that, here below, the last assertion derives
also from Lemma 3.5.

Corollary 3.9. Let (ρ, u) be a smooth solution to system (3) in R+ × Ω, with initial datum
(
ρ0, u0

)
, and

assume that E[ρ0, u0] and F [ρ0] are finite. Then one has the following bounds:
⎧
⎪⎨

⎪⎩

∇√
ρ ∈ L∞

loc

(
R+;L2(Ω)

)

√
ν√

We
∇2ρ,

√
ν

Fr
∇

(
ργ/2

)
,

√
ν

Fr
∇

(
1
ρ

)

∈ L2
loc

(
R+;L2(Ω)

)
.

In particular, the quantity
(
ρ − 1

)
/
√

We belongs to L2
loc

(
R+;L∞(Ω)

)
.

3.2. Additional Bounds

In the present paragraph we show further properties, which can be deduced from the previous controls
of Corollaries 3.3 and 3.9.

In the sequel, we will still keep track of the dependence of the various quantities on the Froude, Rossby
and Weber numbers. On the contrary, we will drop out the dependence on ν, since for us it will be always
a fixed positive parameter.
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Hence, let us fix a T ∈ R+. First of all, from Corollaries 3.3 and 3.9 above, we get

1
Fr

(
1
ρ

− 1
)

∈ L∞
T

(
L2(Ω)

)
∩ L2

T

(
H1(Ω)

)
.

Then, since
∣
∣1/

√
ρ − 1

∣
∣ ≤ |1/ρ − 1|, by Sobolev embeddings we also infer

1
Fr

(
1

√
ρ

− 1
)

∈ L∞
T

(
L2(Ω)

)
∩ L2

T

(
L6(Ω)

)
.

Therefore, thanks to energy estimates of Proposition 3.2, we deduce first that

u =
√

ρ u +
(

1
√

ρ
− 1

)
√

ρ u ∈ L∞
T

(
L2

)
+ L2

T

(
L3/2

)
↪→ L2

T

(
L

3/2
loc

)
, (21)

and hence, by an analogous decomposition, also that

Du =
√

ρ Du +
(

1
√

ρ
− 1

)
√

ρDu ∈ (L2
T

(
L2

)
+ L1

T

(
L3/2

)
) ∩ (L2

T

(
L2 + L1

)
). (22)

Notice that, in particular, Du belongs to L1
T

(
L

3/2
loc

)
; therefore, Sobolev embeddings implies the additional

property u ∈ L1
T

(
L3

loc

)
.

We turn now our attention to the quantity ρ u. Exploiting the same decomposition as above, together
with the L2

T

(
L∞)

control on ρ − 1 provided by the BD entropy conservation (recall Corollary 3.9), we
have

ρ u =
√

ρ u + (
√

ρ − 1)
√

ρ u ∈ L∞
T

(
L2 + L3/2

)
∩ (L∞

T

(
L2

)
+ L2

T

(
L2

)
). (23)

In particular, this implies that ρ u belongs also to L∞
T

(
L

3/2
loc

)
∩ L2

T

(
L2

)
. On the other hand, for its gradient

we have

D(ρ u) = ρDu + uDρ =
√

ρ Du + (
√

ρ − 1)
√

ρ Du +
√

ρ uD
√

ρ.

The first two terms are in L2
T

(
L2 + L3/2

)
, while the last one is in L∞

T

(
L1

)
. Then we find D(ρ u) ∈

(L2
T

(
L2 + L3/2

)
+ L∞

T

(
L1

)
) ↪→ L2

T

(
L1

loc

)
.

Finally, let us consider the quantity ρ3/2 u: arguing exactly as in (23), we get

ρ3/2 u =
√

ρ u + (ρ − 1)
√

ρ u ∈ L∞
T

(
L2 + L3/2

)
∩ (L∞

T

(
L2

)
+ L2

T

(
L2

)
). (24)

Furthermore, we notice that

D
(
ρ3/2 u

)
= ρ

√
ρ Du +

3
2

√
ρ u Dρ

=
√

ρ Du + (ρ − 1)
√

ρ Du +
3
2

√
ρ uDρ ∈ L2

T

(
L2(Ω) + L3/2(Ω)

)
. (25)

Indeed, the first term in the right-hand side of the last relation clearly belongs to L2
T

(
L2

)
; moreover,

by Corollaries 3.3 and 3.9 and Sobolev embeddings, the second and the third terms are in L2
T

(
L3/2

)
.

Therefore, by use of Proposition A.4, we deduce that ρ3/2 u belongs also to L2
T

(
L3(Ω)

)
.

4. The Singular Perturbation Problem

In the present section we prove Theorem 2.8. We first establish uniform bounds for the family
(
ρε, uε

)

ε
of

weak solutions we are considering. Then, we study the singular pertubation operator, showing constraints
on the limit-points of this family. Finally, we pass to the limit in the weak formulation of the equations,
proving the convergence to Eq. (18).



638 F. Fanelli JMFM

4.1. Uniform Estimates

By use of the analysis of Sect. 3 (keep in mind also what said in Remark 3.1), we establish here uniform
bounds for the family of weak solutions

(
ρε, uε

)

ε
. Recall that we have fixed γc = 2, α = 0 and 1 < γ ≤ 2.

First of all, we consider the energies Eε[ρ, u] and Fε[ρ], defined respectively by (14) and (15). We
remark that, under our hypotheses on the initial data, we deduce the existence of a “universal constant”
C0 > 0 such that

Eε[ρε, uε](0) + Fε[ρε](0) ≤ C0.

Then, by use of Corollary 3.3 we immediately infer the following properties.

Proposition 4.1. Let
(
ρε, uε

)

ε
be the family of weak solutions to system (12) considered in Theorem 2.8.

Then it satisfies the following bounds, uniformly in ε:
√

ρε uε ∈ L∞(
R+;L2(Ω)

)
and

√
ρε Duε ∈ L2

(
R+;L2(Ω)

)

for the velocity fields, and for the densities
1
ε

(ρε − 1) ∈ L∞(
R+;Lγ(Ω)

)
,

1
ε

(
1
ρε

− 1
)

∈ L∞(
R+;L2(Ω)

)
,

1
ε

∇ρε ∈ L∞(
R+;L2(Ω)

)
.

Remark 4.2. In particular, under our assumptions we always have

‖ρε − 1‖L∞(R+;L2(Ω)) ≤ C ε.

As for the BD entropy structure, Corollary 3.9 implies the following estimates; as for the last sentence,
one has to use Lemma A.3 in the Appendix.

Proposition 4.3. Let
(
ρε, uε

)

ε
be the family of weak solutions to system (12) considered in Theorem 2.8.

Then one has the following bounds, uniformly for ε > 0:
⎧
⎪⎨

⎪⎩

∇√
ρε ∈ L∞

loc

(
R+;L2(Ω)

)

1
ε

∇2ρε,
1
ε

∇(ργ/2
ε ),

1
ε

∇
(

1
ρε

)

∈ L2
loc

(
R+;L2(Ω)

)
.

In particular, the family
(
ε−1 (ρε − 1)

)

ε
is bounded in Lp

loc

(
R+;L∞(Ω)

)
for any 2 ≤ p < 4.

Moreover, arguing exactly as in Sect. 3.2, we can establish also the following bounds, uniformly in ε.
First of all, by the decompositions (21) and (22) we immediately have

(
uε

)

ε
⊂ L∞

T

(
L2

)
+ L2

T

(
L3/2

)
↪→ L2

T

(
L

3/2
loc

)

(
Duε

)

ε
⊂ (L2

T

(
L2

)
+ L1

T (L3/2)) ∩ (L2
T (L2 + L1)).

In particular,
(
Duε

)

ε
is uniformly bounded in L1

T

(
L

3/2
loc

)
; therefore, by Sobolev embeddings we gather

also the additional continuous inclusion
(
uε

)

ε
⊂ L1

T

(
L3

loc

)
.

Furthermore, we also infer the uniform bounds
(
ρε uε

)

ε
⊂ L∞

T

(
L2 + L3/2

)
∩ (L∞

T

(
L2

)
+ L2

T

(
L2

)
)

(
D(ρε uε)

)

ε
⊂ L2

T

(
L2 + L3/2

)
+ L∞

T

(
L1

)
↪→ L2

T

(
L1

loc

)
. (26)

In particular, we deduce that
(
ρε uε

)

ε
is a bounded family in L∞

T

(
L

3/2
loc

)
∩ L2

T

(
L2

)
.

For the sake of completeness let us also establish uniform bounds on quantities related to ρ
3/2
ε uε.

First of all, arguing exactly as in (24), we get
(
ρ3/2

ε uε

)

ε
⊂ L∞

T

(
L2 + L3/2

)
∩ (L∞

T

(
L2

)
+ L2

T

(
L2

)
);

on the other hand, analogously to (25), we have also the uniform embedding

(D
(
ρ3/2

ε uε

)
)ε ⊂ L2

T

(
L2(Ω) + L3/2(Ω)

)
. (27)
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Therefore, by Proposition A.4 we infer that
(
ρ
3/2
ε uε

)

ε
is uniformly bounded in L2

T

(
L3(Ω)

)
.

Finally, from this fact combined with the usual decomposition
√

ρε = 1 + (
√

ρε − 1) and Sobolev
embeddings, it follows also that

(
ρ2

ε uε

)

ε
⊂ L2

T

(
L2(Ω)

)
.

4.2. Study of the Singular Perturbation Operator

In the present subsection we identify some properties and constraints on the limit points of the family of
weak solutions

(
ρε, uε

)

ε
.

First of all, by uniform bounds we immediately deduce that ρε → 1 (strong convergence) in
L∞(

R+;H1(Ω)
)

∩ L2
loc

(
R+;H2(Ω)

)
, with convergence rate of order ε. So, we can write ρε = 1 + ε rε,

with the family
(
rε

)

ε
bounded in the previous spaces. Then we infer that

rε ⇀ r in L∞(
R+;H1(Ω)

)
∩ L2

loc

(
R+;H2(Ω)

)
. (28)

In the same way, if we define aε :=
(
1/ρε − 1

)
/ε, we gather that

(
aε

)

ε
is uniformly bounded in

L∞(
R+;L2(Ω)

)
∩ L2

loc

(
R+;H1(Ω)

)
. So it weakly converges to some a in this space: arguing as done in

Remark 2.5, it is easy to check that

aε ⇀ −r in L∞(
R+;L2(Ω)

)
∩ L2

loc

(
R+;H1(Ω)

)
. (29)

Again by uniform bounds, we also deduce

uε ⇀ u in L2
loc

(
R+;L3/2

loc (Ω)
)

(30)

and Duε ⇀ Du in L2
loc

(
R+;L1

loc(Ω)
)
, where we have identified (L1)∗ with L∞.

Notice also that, by uniqueness of the limit, we have the additional properties
√

ρε uε
∗
⇀ u in L∞(

R+;L2(Ω)
)

ρε uε ⇀ u in L2
loc

(
R+;L2(Ω)

)

√
ρε Duε ⇀ Du in L2

(
R+;L2(Ω)

)
,

where ∗
⇀ denotes the weak-∗ convergence in L∞(

R+;L2(Ω)
)
.

Let us find now some constraints the limit points (r, u) have to satisfy: the following result can be
seen as the analogue of the Taylor–Proudman theorem in our setting.

Proposition 4.4. Let
(
ρε, uε

)

ε
be a family of weak solutions to system (12)–(7), each one related to the

initial datum
(
ρ0,ε, u0,ε

)
and fulfilling the hypotheses fixed in Sect. 2.

Let us define rε := ε−1 (ρε − 1), and let (r, u) be a limit point of the sequence
(
rε, uε

)

ε
.

Then r = r(xh) and u =
(
uh(xh), 0

)
, with divhuh = 0. Moreover, we infer the properties

cuh = ∇⊥
h

(
Id − Δh

)
r and uh · ∇hc ≡ 0.

Proof. First of all, we test the mass equation on any φ ∈ D
(
[0, T [×Ω

)
: using the decomposition ρε =

1 + ε rε, we get

− ε

∫ T

0

∫

Ω

rε ∂tφ −
∫ T

0

∫

Ω

ρε uε · ∇φ = ε

∫

Ω

r0,ε φ(0).

From this relation, letting ε → 0, by uniform bounds and convergence properties established above, we
deduce that

∫ T

0

∫

Ω
u · ∇φ = 0, which in turn implies

div u ≡ 0 almost everywhere in [0, T ] × Ω. (31)
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Let us consider now the velocity field: for any ψ ∈ D
(
[0, T [×Ω;R3

)
, we use εψ as a test-function in

the momentum Eq. (11). By use of uniform bounds, we see that the only integrals which do not go to 0
are the ones involving the pressure Π, the Coriolis force C and the capillarity term: let us focus on them.

We start by dealing with the classical part P of the pressure: we can write

1
ε

∫ T

0

∫

Ω

∇P (ρε) · ψ = −1
ε

∫ T

0

∫

Ω

(P (ρε) − P (1) − P ′(1) (ρε − 1))div ψ +
1
ε

P ′(1)
∫ T

0

∫

Ω

∇ρε · ψ.

The quantity P (ρε)−P (1)−P ′(1) (ρε − 1) can be controlled by the internal energy h(ρε): since h(ρε)/ε2

is uniformly bounded in L∞
T

(
L1

)
(see Propositions 3.2, 4.1), the first integral tends to 0 for ε → 0. Hence,

thanks also to (28) we find

1
ε

∫ T

0

∫

Ω

∇P (ρε) · ψ −→ P ′(1)
∫ T

0

∫

Ω

∇r · ψ.

An analogous decomposition allows us to treat also the cold part of the pressure: we find that (1/ε)
∫ T

0

∫

Ω

∇Pc(ρε) · ψ converges to P ′
c(1)

∫ T

0

∫

Ω
∇r · ψ. Therefore, since P ′(1) = P ′

c(1) = 1/2, in the end we infer
the convergence, in the limit for ε going to 0,

1
ε

∫ T

0

∫

Ω

∇Π(ρε) · ψ −→
∫ T

0

∫

Ω

∇r · ψ.

As for the rotation term, uniform bounds immediately imply
∫ T

0

∫

Ω

C(ρε, uε) · ψ =
∫ T

0

∫

Ω

c e3 × ρε uε · ψ −→
∫ T

0

∫

Ω

c e3 × u · ψ.

Finally, let us consider the integrals coming from the capillarity tensor. The former one can be treated
writing, as usual, ρε = 1 + (ρε − 1): therefore we get

1
ε

∫ T

0

∫

Ω

ρε Δρε · div ψ −→
∫ T

0

∫

Ω

Δr · div ψ,

where we used the uniform L2
T

(
L2

)
bound on Δρε and the fact that ρε − 1 is of order ε in e.g. L∞

T

(
L2

)
.

On the other hand, since also ∇ρε is of order ε in L2
T

(
L2

)
, one easily gets

1
ε

∫ T

0

∫

Ω

Δρε ∇ρε · ψ −→ 0.

Let us sum up all these informations: from the momentum equation, when ε → 0, we have found that
the limit point (r, u) has to verify the relation

c(xh) e3 × u + ∇
(
Id − Δ

)
r = 0, (32)

which means in particular
⎧
⎪⎨

⎪⎩

∂1

(
Id − Δ

)
r = cu2

∂2

(
Id − Δ

)
r = − cu1

∂3

(
Id − Δ

)
r = 0.

This relation immediately implies that
(
Id − Δ

)
r =

(
Id − Δ

)
r(xh) depends just on the horizontal

variables. Hence, ∂3r fulfills the elliptic equation −Δ∂3r + ∂3r = 0 in Ω: by passing in Fourier variables
on R

2 × T
1, we deduce that

∂3r ≡ 0 =⇒ r = r(xh). (33)

On the other hand, by (32) we get that also cuh has to depend just on the horizontal variables; taking
the ∂3 derivative [since c = c(xh) and c �= 0 almost everywhere on R

2] implies that uh = uh(xh).
From this property and the divergence-free condition (31), it follows also that ∂2

3u3 ≡ 0, i.e. ∂3u
3 =

∂3u
3(xh). On the other hand, by periodicity

∫

T1 ∂3u
3 dx3 = 0, which entails ∂3u

3 = 0 by decomposition
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(2), and then u3 = u3(xh). By use of the complete-slip boundary conditions (7), in the end we deduce
that u3 ≡ 0, which in turn gives

u =
(
uh(xh), 0

)
, with divhuh = 0. (34)

Finally, let us apply the rot operator to Eq. (32): we obtain

divh

(
c(xh)uh

)
≡ 0 =⇒ uh · ∇hc = 0, (35)

where us have used the just proved property (34). �

Remark 4.5. Notice that, by the previous proposition and the fact that r, u ∈ L∞(
R+;L2(Ω)

)
, we get

that actually r ∈ L∞(
R+;H3(Ω)

)
.

4.3. Passing to the Limit in the Weak Formulation

By Proposition 4.4, we can define the singular perturbation operator

Ã : L2(Ω) × L2(Ω) −→ H−1(Ω) × H−3(Ω)
(
r, V

)
�→ (div V, c(xh) e3 × V + ∇

(
Id − Δ

)
r),

which has variable coefficients: so, spectral analysis tools (employed in [12]) are out of use here. Then, in
order to prove convergence in the weak formulation of our equations, we will resort then to a compensated
compactness argument.

This technique goes back to works by Lions and Masmoudi about incompressible limit (see e.g. [22,23]);
it was introduced for the first time in the context of highly rotating fluids by Gallagher and Saint-Raymond
in [17]. There, they dealt with incompressible Navier–Stokes equations with variable rotation axis. With
the same strategy, in paper [13] Feireisl et al. studied the case of a compressible Navier–Stokes system
with Earth rotation and centrifugal force, when the fixed limit density profile is supposed non-constant.

Most of our analysis will follow the one performed in [13,17]. Notice however that here we have to
deal with an additional term, coming from the presence of capillarity.

Let us consider tests functions φ ∈ D
(
[0, T [×Ω

)
and ψ ∈ D

(
[0, T [×Ω;R3

)
such that the couple (φ, ψ)

belongs to Ker Ã. Recall that, by Proposition 4.4, they satisfy

div ψ = 0 and c(xh) e3 × ψ + ∇
(
Id − Δ

)
φ = 0.

In particular, ψ =
(
ψh, 0

)
and φ just depend on the horizontal variable xh ∈ R

2 and they are linked by
the relation cψh = ∇⊥

h

(
Id − Δh

)
φ. Finally, combining this property with the divergence-free condition

for ψ, we infer also that ∇⊥
h

(
Id − Δh

)
φ · ∇hc = 0.

First of all, we evaluate the momentum equation on such a ψ: taking into account the previous
properties, we end up with

∫

Ω

ρ0,ε u0,ε · ψ(0) dx =
∫ T

0

∫

Ω

(

−ρε uε · ∂tψ − ρε uε ⊗ uε : ∇ψ

+ ν ρε Duε : ∇ψ +
1
ε2

Δρε ∇ρε · ψ +
c(xh)

ε
e3 × ρε uε · ψ

)

dx dt. (36)

Notice that the ∂t and viscosity terms do not present any difficulty in passing to the limit. On the
other hand, the rotation term can be handled by use of the weak form of the mass equation, tested on
φ̃ =

(
Id − Δh

)
φ: we get

1
ε

∫ T

0

∫

Ω

c(xh) e3 × ρε uε · ψ = − 1
ε

∫ T

0

∫

Ω

c(xh) ρε uh
ε ·

(
ψh

)⊥

=
1
ε

∫ T

0

∫

Ω

ρε uh
ε · ∇hφ̃ = −

∫

Ω

r0,ε φ̃(0) −
∫ T

0

∫

Ω

rε ∂tφ̃,
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which obviously converges in the limit ε → 0.
In order to deal with the transport and the capillarity terms, we want to use the structure of the

system. Therefore, first of all we need to introduce a regularization of our solutions.

4.3.1. Regularization and Description of the Oscillations. Let us set Vε := ρε uε. We can write system
(12) in the form

{
ε ∂trε + div Vε = 0

ε ∂tVε + (c(xh) e3 × Vε + ∇
(
Id − Δ

)
rε) = ε fε,

(37)

where we have defined fε by the formula

fε := −div (ρεuε ⊗ uε) + ν div (ρεDuε)

− 1
ε2

∇(Π(ρε) − Π(1) − Π′(1) (ρε − 1)) +
1
ε2

(
ρε − 1

)
∇Δρε. (38)

Equation (37) have to be read in the weak sense, of course. In particular, from writing

〈fε, ψ〉 :=
∫

Ω

(

ρεuε ⊗ uε : ∇ψ − ν ρεDuε : ∇ψ − 1
ε2

Δρε ∇ρε · ψ

− 1
ε2

(ρε − 1)Δρε div ψ +
1
ε2

(Π(ρε) − Π(1) − Π′(1) (ρε − 1))div ψ

)

dx

=
∫

Ω

(f1
ε : ∇ψ + f2

ε : ∇ψ + f3
ε · ψ + f4

ε div ψ + f5
ε div ψ) dx

and by a systematic use of uniform bounds (recall Propositions 4.1, 4.3), we can easily see that
(
f1

ε

)

ε

and
(
f5

ε

)

ε
are uniformly bounded in L∞

T

(
L1

)
, and so is

(
f2

ε

)

ε
in L2

T

(
L2

)
; finally,

(
f3

ε

)

ε
and

(
f4

ε

)

ε
are

bounded in L2
T

(
L1

)
.

Therefore, we deduce the uniform boundedness of
(
fε

)

ε
in the space L2

T

(
H−1(Ω) + W−1,1(Ω)

)
, and

then in particular in L2
T

(
H−s(Ω)

)
for any s > 5/2.

Now, for any M > 0, let us consider the low-frequency cut-off operator SM of a Littlewood–Paley
decomposition, as introduced in (50) below, and let us define

rε,M := SMrε and Vε,M := SMVε.

The following result hods true.

Proposition 4.6. For any fixed time T > 0 and compact set K ⊂ Ω, the following convergence properties
hold, in the limit for M −→ +∞:

⎧
⎨

⎩

supε>0 ‖rε − rε,M‖L∞
T (Hs(K)) ∩ L2

T (H1+s(K)) −→ 0 ∀s < 1

supε>0 ‖Vε − Vε,M‖L2
T (H−s(K)) −→ 0 ∀s > 0.

(39)

Moreover, for any M > 0, the couple
(
rε,M , Vε,M

)
satisfies the approximate wave equations

{
ε ∂trε,M + div Vε,M = 0

ε ∂tVε,M + (c(xh) e3 × Vε,M + ∇
(
Id − Δ

)
rε,M ) = ε fε,M + gε,M ,

(40)

where
(
fε,M

)

ε
and

(
gε,M

)

ε
are families of smooth functions satisfying

⎧
⎨

⎩

supε>0 ‖fε,M‖L2
T (Hs(K)) ≤ C(s,M) ∀s ≥ 0

supε>0 ‖gε,M‖L2
T (H1(K)) −→ 0 for M → +∞,

(41)

where the constant C(s,M) depends on the fixed values of s ≥ 0, M > 0.
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Proof. Keeping in mind the characterization of Hs spaces in terms of Littlewood–Paley decomposition
(see Appendix A.1), properties (39) are straightforward consequences of the uniform bounds established
in Sect. 4.1.

Next, applying operator SM to (37) immediately gives us system (40), where, denoting by [P,Q] the
commutator between two operators P and Q, we have set

fε,M := SMfε and gε,M :=
[
c(xh), SM

](
e3 × Vε

)
.

By these definitions and the uniform bounds on
(
fε

)

ε
, it is easy to verify the first property in (41). As

for the second one, we need to generalize the argument of Lemma 3.3 in [24], because here we have less
available controls on the family

(
Vε

)

ε
.

First of all, by uniform bounds and Lemma A.7 we get

sup
ε>0

‖gε,M‖L2
T (L2) ≤ C 2−M .

As for the gradient, for any 1 ≤ j ≤ 3 we can write

∂jgε,M = [c, SM ] ∂j

(
e3 × Vε

)
+ [∂jc, SM ]

(
e3 × Vε

)
.

In order to control the former term, we use Lemma A.8 with p2 = q = 2 and p1 = 1. Recalling that, by
(26), (DVε)ε ⊂ L2

T (L1
loc), for any compact K ⊂ Ω we get

sup
ε>0

∥
∥[c, SM ] ∂j

(
e3 × Vε

)∥
∥

L2
T (L2(K))

≤ C 2−M .

For the latter term, instead, Lemma A.9 gives us

sup
ε>0

∥
∥[∂jc, SM ]

(
e3 × Vε

)∥
∥

L2
T (L2)

≤ C μ(2−M ).

In the end, choosing η(M) = max
{
2−M , μ(2−M )

}
(which goes to 0 when M → +∞), we get

sup
ε>0

‖gε,M‖L2
T (H1

loc)
≤ C η(M)

for a suitable constant C > 0, and this completes the proof of the proposition. �

We also have an important decomposition for the approximated velocity fields.

Proposition 4.7. The following decompositions hold true:

Vε,M = Vε,M + εVε,M and DVε,M = Dε,M + εDε,M ,

where, for any compact set K ⊂ Ω and any s ≥ 0 one has
⎧
⎨

⎩

‖Vε,M‖
L2

T

(
L2(K)∩L3(K)

) + ‖Dε,M‖
L2

T

(
L2(K)

) ≤ C(K)

‖Vε,M‖
L2

T

(
Hs(K)

) + ‖Dε,M‖
L2

T

(
Hs(K)

) ≤ C(K, s,M),

for suitable positive constants C(K), C(K, s,M) depending just on the quantities in the brackets.

Proof. By definitions, we immediately have

Vε,M = SM

(
ρε uε

)
= SM

(
ρ3/2

ε uε

)
− SM

(
(
√

ρε − 1) ρε uε

)
.

Thanks to the uniform bounds established in Sect. 4.1, the first decomposition and the related estimates
are easy to be verified.

Let us now take a space derivative of Vε,M , splitted in accordance with the previous identity. Thanks
to spectral localization, the second term do not present any problem: indeed, for any 1 ≤ j ≤ 3 one has

ε−1 ∂j

(
(
√

ρε − 1) ρε uε

)
= ∂j

√
ρε − 1

ε
ρε uε +

√
ρε − 1

ε
∂j

(
ρε uε

)

=
∂jρε

2 ε

√
ρε uε +

√
ρε − 1

ε
∂j

(
ρε uε

)
.
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For the former term, one uses Proposition 4.1 and the fact that (by Sobolev embeddings) ε−1∇ρε ∈
L2

T (L6); for the latter, instead, one has to take advantage of the estimate |√ρ−1| ≤ |ρ−1| together with
property (26).

As for SM

(
ρ
3/2
ε uε

)
, instead, we have to proceed carefully. More precisely, for any 1 ≤ j ≤ 3 we start

by writing

∂jSM

(
ρ3/2

ε uε

)
=

3
2

SM

(√
ρε uε ∂jρε

)
+ SM

(
ρ3/2

ε ∂juε

)

=
3
2

SM

(√
ρε uε ∂jρε

)
+ SM

(√
ρε ∂juε

)
+ SM

(
(ρε − 1)

√
ρε ∂juε

)
.

Recalling now that
(√

ρε Duε

)

ε
⊂ L2

T

(
L2(Ω)

)
, we can set Dε,M = SM

(√
ρε ∂juε

)
. Indeed, since

(
ε−1 (ρε−

1)
)

ε
⊂ L∞

T

(
L6(Ω)

)
and

(
ε−1 ∇ρε

)

ε
⊂ L∞

T

(
L2(Ω)

)
, the other two terms are of order ε. So we can include

them into the remainder Dε,M .
Hence, the proposition is now proved. �

4.3.2. The Capillarity Term. First of all, let us deal with the surface tension term in (36). Notice that it
can be rewritten as

∫ T

0

∫

Ω
Δrε ∇rε · ψ, for any smooth test function ψ.

Thanks to the next lemma, we reconduct ourselves to study the convergence in the case of regular
density functions.

Lemma 4.8. For any ψ ∈ D
(
[0, T [×Ω;R3

)
, we have

lim
M→+∞

lim sup
ε→0

∣
∣
∣
∣
∣

∫ T

0

∫

Ω

Δrε ∇rε · ψ dx dt −
∫ T

0

∫

Ω

Δrε,M ∇rε,M · ψ dx dt

∣
∣
∣
∣
∣
= 0.

Proof. Let us fix M > 0: we can write
∫ T

0

∫

Ω

Δrε ∇rε · ψ =
∫ T

0

∫

Ω

Δrε ∇rε,M · ψ +
∫ T

0

∫

Ω

Δrε ∇
(
Id − SM

)
rε · ψ.

By the uniform L2
T

(
L2

)
bounds on the family

(
Δrε

)

ε
and the first property in (39), we get that

∣
∣
∣
∣
∣

∫ T

0

∫

Ω

Δrε ∇
(
Id − SM

)
rε · ψ

∣
∣
∣
∣
∣
≤ C δ(M),

for some positive constant C, independent of ε and M , and some function δ(M) such that δ(M) −→ 0
for M → +∞.

On the other hand, the former term in the right-hand side of the previous identity can be written as
∫ T

0

∫

Ω

Δrε ∇rε,M · ψ =
∫ T

0

∫

Ω

Δrε,M ∇rε,M · ψ +
∫ T

0

∫

Ω

Δ
(
Id − SM

)
rε ∇rε,M · ψ.

For the last term, using that the operator Id − SM is self-adjoint, we can estimate
∣
∣
∣
∣
∣

∫ T

0

∫

Ω

Δ
(
Id − SM

)
rε ∇rε,M · ψ

∣
∣
∣
∣
∣
≤ C ‖Δrε‖L2

T (L2)

∥
∥
(
Id − SM

)(
∇rε,M · ψ

)∥
∥

L2
T (L2)

,

and this quantity converges to 0 for M −→ +∞, thanks to Lemma A.3, point (iii). Indeed, it is enough
to notice that

(
∇

(
∇rε,M · ψ

))

ε,M
is bounded in L2

T (L2), uniformly both in ε and M . �

Thanks to Lemma 4.8, for any ψ ∈ D
(
[0, T [×Ω;R3

)
∩ Ker Ã we have to consider the convergence of

the term (pay attention to the signs)
∫ T

0

∫

Ω

Δrε,M ∇rε,M · ψ dx dt = −
∫ T

0

∫

Ω

(
Id − Δ

)
rε,M ∇rε,M · ψ dx dt +

∫ T

0

∫

Ω

rε,M ∇rε,M · ψ dx dt.
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Notice that rε,M ∇rε,M = ∇ (rε,M )2 /2: therefore, since ψ is divergence-free, by integration by parts we
get that the latter item on the right-hand side is identically 0.

Therefore, in the end we have to deal only with the remainder

−
∫ T

0

∫

Ω

(
Id − Δ

)
rε,M ∇rε,M · ψ = −

∫ T

0

∫

Ω

(
Id − Δh

)
〈rε,M 〉 ∇h〈rε,M 〉 · ψ

−
∫ T

0

∫

Ω

〈
(
Id − Δ

)
r̃ε,M ∇r̃ε,M 〉 · ψ, (42)

where we used the notations introduced in (2), setting r̃ε,M the mean-free part of rε,M .

4.3.3. The Convective Term. In the present paragraph we will deal with the convective term. Once again,
the first step is to reduce the study to the case of smooth vector fields Vε,M .

Lemma 4.9. For any ψ ∈ D
(
[0, T [×Ω;R3

)
, we have

lim
M→+∞

lim sup
ε→0

∣
∣
∣
∣
∣

∫ T

0

∫

Ω

ρεuε ⊗ uε : ∇ψ dx dt −
∫ T

0

∫

Ω

Vε,M ⊗ Vε,M : ∇ψ dx dt

∣
∣
∣
∣
∣
= 0.

Proof. First of all, we can write
∫ T

0

∫

Ω

ρεuε ⊗ uε : ∇ψ =
∫ T

0

∫

Ω

ρεuε ⊗ √
ρε uε : ∇ψ − ε

∫ T

0

∫

Ω

√
ρε − 1

ε
ρεuε ⊗ uε : ∇ψ.

Notice that the latter integral in the right-hand side is of order ε: this is a consequence of the uniform
bounds

(√
ρε uε

)

ε
⊂ L∞

T

(
L2

)
and

(
ε−1(

√
ρε − 1)

)

ε
⊂ Lp

T

(
L∞)

for any p ∈ [2, 4[ (recall Proposition
4.3). The former one, instead, can be decomposed again into

∫ T

0

∫

Ω

ρεuε ⊗ √
ρε uε : ∇ψ =

∫ T

0

∫

Ω

Vε,M ⊗ √
ρε uε : ∇ψ +

∫ T

0

∫

Ω

(
Id − SM

)
Vε ⊗ √

ρε uε : ∇ψ

=
∫ T

0

∫

Ω

Vε,M ⊗ Vε : ∇ψ + O(ε) +
∫ T

0

∫

Ω

(
Id − SM

)
Vε ⊗ √

ρε uε : ∇ψ,

where, in passing from the first to the second equality, we have argued exactly as before.
Let us focus on the high frequency term first: we can write

∫ T

0

∫

Ω

(
Id − SM

)
Vε ⊗ √

ρε uε : ∇ψ = − ε

∫ T

0

∫

Ω

ρε − 1
ε

(
Id − SM

)
Vε ⊗ √

ρε uε : ∇ψ

+
∫ T

0

∫

Ω

(
Id − SM

)
Vε ⊗ ρ3/2

ε uε : ∇ψ.

Notice that the former term is O(ε) (by uniform bounds again). On the other hand, (27) tells us that
(
ρ
3/2
ε uε ∇ψ

)

ε
is uniformly bounded in L2

T

(
W

1,3/2
loc (Ω)

)
: then, since

(
Vε

)

ε
⊂ L2

T

(
L2

)
and the operator

Id − SM is self-adjoint, by Lemma A.3 we gather that the latter one is arbitrarly small for M large
enough, uniformly in ε. In the end, we obtain that

lim
M→+∞

lim sup
ε→0

∣
∣
∣
∣
∣

∫ T

0

∫

Ω

(
Id − SM

)
Vε ⊗ √

ρε uε : ∇ψ

∣
∣
∣
∣
∣
= 0.

It remains us to consider the integral
∫ T

0

∫

Ω

Vε,M ⊗ Vε : ∇ψ =
∫ T

0

∫

Ω

Vε,M ⊗ Vε,M : ∇ψ +
∫ T

0

∫

Ω

Vε,M ⊗
(
Id − SM

)
Vε : ∇ψ

and prove that the last term in the right-hand side of the previous relation is small. We notice that, by
the decomposition of Proposition 4.7, we have

∥
∥D

(
Vε,M : ∇ψ

)∥
∥

L2
T (L2

loc)
≤ C1 + εC2(M),
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for some constant C1 > 0 independent of ε and M , and C2(M) just depending on M . Therefore, using
again the simmetry of the operator Id − SM and Lemma A.3, it immediately follows that

lim
M→+∞

lim sup
ε→0

∣
∣
∣
∣
∣

∫ T

0

∫

Ω

Vε,M ⊗
(
Id − SM

)
Vε : ∇ψ

∣
∣
∣
∣
∣
= 0.

This concludes the proof of the lemma. �
Now, recall Eq. (36): paying attention once again to the right signs, by the previous lemma we have

just to pass to the limit in the term

−
∫ T

0

∫

Ω

Vε,M ⊗ Vε,M : ∇ψ =
∫ T

0

∫

Ω

div (Vε,M ⊗ Vε,M ) · ψ

=
∫ T

0

∫

Ω

div h

(
〈V h

ε,M 〉 ⊗ 〈V h
ε,M 〉

)
· ψ +

∫ T

0

∫

Ω

div h(〈Ṽ h
ε,M ⊗ Ṽ h

ε,M 〉) · ψ

=
∫ T

0

∫

Ω

(T 1
ε,M + T 2

ε,M ) · ψ.

For notational convenience, from now on we will generically denote by Rε,M any remainder, i.e. any
term satisfying the property

lim
M→+∞

lim sup
ε→0

∣
∣
∣
∣
∣

∫ T

0

∫

Ω

Rε,M · ψ dx dt

∣
∣
∣
∣
∣
= 0 (43)

for all test functions ψ ∈ D
(
[0, T [×Ω;R3

)
∩ Ker Ã.

Handling T 1
ε,M . Since we are dealing with smooth functions, we can integrate by parts: we get

T 1
ε,M = divh

(
〈V h

ε,M 〉 ⊗ 〈V h
ε,M 〉

)
= divh

(
〈V h

ε,M 〉
)

〈V h
ε,M 〉 + 〈V h

ε,M 〉 · ∇h

(
〈V h

ε,M 〉
)

= divh

(
〈V h

ε,M 〉
)

〈V h
ε,M 〉 +

1
2

∇h(|〈V h
ε,M 〉|2) + curlh〈V h

ε,M 〉 〈V h
ε,M 〉⊥.

Notice that we can forget about the second term: it is a perfect gradient, and then it vanishes when tested
against a function in the kernel of the singular perturbation operator.

For the first term, we take advantage of system (40): averaging the first equation with respect to x3

and multiplying it by 〈V h
ε,M 〉, we arrive at

div h

(
〈V h

ε,M 〉
)

〈V h
ε,M 〉 = − ε ∂t〈rε,M 〉 〈V h

ε,M 〉 = Rε,M + ε 〈rε,M 〉 ∂t〈V h
ε,M 〉,

since ε ∂t

(
〈rε,M 〉 〈V h

ε,M 〉
)

is a remainder in the sense specified by relation (43) above. We use now the
horizontal part of (40) (again, after taking the vertical average), multiplied by 〈rε,M 〉: paying attention
to the signs, we get

ε 〈rε,M 〉 ∂t〈V h
ε,M 〉 = − c(xh) 〈rε,M 〉 〈V h

ε,M 〉⊥ − 〈rεM
〉∇h

(
Id − Δh

)
〈rεM

〉 + ε 〈fh
ε,M 〉 + 〈gh

ε,M 〉
= − c(xh) 〈rε,M 〉 〈V h

ε,M 〉⊥ +
(
Id − Δh

)
〈rεM

〉∇h〈rεM
〉 + Rε,M ,

where we used also the properties proved in Proposition 4.6 and we included in the remainder term also
the perfect gradient. Inserting this relation into the expression for T 1

ε,M , we find

T 1
ε,M = (curlh〈V h

ε,M 〉 − c(xh) 〈rε,M 〉) 〈V h
ε,M 〉⊥ +

(
Id − Δh

)
〈rεM

〉∇h〈rεM
〉 + Rε,M . (44)

In order to deal with the first term in the right-hand side, the idea is to decompose V h
ε,M in the orthonormal

basis (up to normalization)
{
∇hc, ∇⊥

h c
}
. Of course, this can be done in the region when ∇hc is far from

0: therefore, we proceed as follows.
First of all, let us come back to system (40) for a while: we take again the vertical average of the

equations and we compute the curl of the horizontal part, finding

ε ∂tcurlh〈V h
ε,M 〉 + divh

(
c(xh) 〈V h

ε,M 〉
)

= ε curlh〈fh
ε,M 〉 + curlh〈gh

ε,M 〉.
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On the other hand, from the first equation multiplied by c, we get

ε ∂t

(
c(xh) 〈rε,M 〉

)
+ divh

(
c(xh) 〈V h

ε,M 〉
)

= 〈V h
ε,M 〉 · ∇hc(xh),

and this relation, together with the previous one, finally gives us

ε ∂t

(
curlh〈V h

ε,M 〉 − c(xh) 〈rε,M 〉
)

= ε curlh〈fh
ε,M 〉 + curlh〈gh

ε,M 〉 + 〈V h
ε,M 〉 · ∇hc(xh). (45)

Notice that, thanks to Proposition 4.6, there exists a function η ≥ 0, with η(M) −→ 0 for M → +∞,
such that, for any compact K ⊂ Ω,

sup
ε>0

∥
∥curlh〈gh

ε,M 〉
∥
∥

L2
T

(
L2(K)

) ≤ η(M). (46)

Then, fixed a b ∈ C∞
0 (R2), with 0 ≤ b(xh) ≤ 1, such that b ≡ 1 on

{
|xh| ≤ 1

}
and b ≡ 0 on

{
|xh| ≥ 2

}
,

we define

bM (xh) := b(
(
η(M)

)−1/2 ∇hc(xh)).

Now we are ready to deal with the first term in the right-hand side of (44). For notational convenience,
we set Xε,M := curlh〈V h

ε,M 〉 − c(xh) 〈rε,M 〉. On the one hand, using the decomposition and the bounds
established in Proposition 4.7, we deduce that, for any compact K ⊂ Ω,

∥
∥bM Xε,M 〈V h

ε,M 〉⊥∥
∥

L1([0,T ]×K)
≤ εC(M) + C ‖bM‖L6(K)

≤ εC(M) + C (L{xh ∈ R
2||∇hc(xh)| ≤ 2

√
η(M)})1/6.

Therefore, thanks to hypothesis (17), we infer that this term is a remainder, in the sense specified by
relation (43). On the other hand, for ∇hc far from 0, we can write

(1 − bM ) Xε,M 〈V h
ε,M 〉⊥ = (1 − bM ) Xε,M

(
〈V h

ε,M 〉⊥ · ∇⊥
h c

|∇hc|2
∇⊥

h c +
〈V h

ε,M 〉⊥ · ∇hc

|∇hc|2
∇hc

)

= (1 − bM ) Xε,M

(
〈V h

ε,M 〉 · ∇hc

|∇hc|2
∇⊥

h c +
〈V h

ε,M 〉⊥ · ∇hc

|∇hc|2
∇hc

)

.

We observe that the latter term in the right-hand side is identically 0 when tested against a ψ ∈ Ker Ã
(because divhψh = divh

(
cψh

)
≡ 0, and then ψh · ∇hc = 0). For the former term, instead, we use the

expression found in (45): we get

(1 − bM ) Xε,M

〈V h
ε,M 〉 · ∇hc

|∇hc|2
∇⊥

h c

=
(1 − bM ) Xε,M

|∇hc|2
ε ∂tXε,M ∇⊥

h c − (1 − bM ) Xε,M

|∇hc|2
(
ε curlh〈fh

ε,M 〉 + curlh〈gh
ε,M 〉

)
∇⊥

h c

=
ε (1 − bM ) ∂t |Xε,M |2

2 |∇hc|2
∇⊥

h c − (1 − bM ) Xε,M

|∇hc|2
(
ε curlh〈fh

ε,M 〉 + curlh〈gh
ε,M 〉

)
∇⊥

h c,

which is again a remainder Rε,M , thanks to Proposition 4.7 and property (46).
In the end, putting all these facts together, we have proved that (paying attention again to the right

signs)

T 1
ε,M =

(
Id − Δh

)
〈rεM

〉∇h〈rεM
〉 + Rε,M . (47)

Notice that the first term in the right-hand side exactly cancels out with the first one of (42).
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Dealing with T 2
ε,M . Let us now consider the term T 2

ε,M : exactly as done above, we can write

T 2
ε,M = divh(〈Ṽ h

ε,M ⊗ Ṽ h
ε,M 〉) = 〈divh(Ṽ h

ε,M ) Ṽ h
ε,M 〉 +

1
2

〈∇h|Ṽ h
ε,M |2〉 + 〈curlhṼ h

ε,M (Ṽ h
ε,M )⊥〉.

Let us focus on the last term for a while: with the notations introduced in (2), we have

(curlṼε,M )h = ∂3W̃
h
ε,M and (curlṼε,M )3 = curlhṼ h

ε,M = ω̃3
ε,M ,

where we have defined W̃h
ε,M := (Ṽ h

ε,M )⊥−∂−1
3 ∇⊥

h Ṽ 3
ε,M . For these quantities, from the momentum equation

in (40) (where we take the mean-free part and the curl), we deduce
{

ε ∂tW̃
h
ε,M − c Ṽ h

ε,M = (∂−1
3 curl(ε f̃ε,M + g̃ε,M ))h

ε ∂tω̃
3
ε,M + divh

(
c Ṽ h

ε,M

)
= curlh(ε f̃h

ε,M + g̃h
ε,M ).

(48)

Making use of the relations above and of Propositions 4.6 and 4.7, we get

curlhṼ h
ε,M (Ṽ h

ε,M )⊥ = ω̃3
ε,M (Ṽ h

ε,M )⊥

=
ε

c
∂t(W̃h

ε,M )⊥ ω̃3
ε,M − 1

c
ω̃3

ε,M ((∂−1
3 curl(ε f̃ε,M + g̃ε,M ))h)⊥

= − ε

c
(W̃h

ε,M )⊥ ∂tω̃
3
ε,M + Rε,M =

1
c

(W̃h
ε,M )⊥ divh

(
c Ṽ h

ε,M

)
+ Rε,M .

Hence, including also the gradient term into the remainders, we arrive at the equality

T 2
ε,M = 〈divh

(
Ṽ h

ε,M

)
(Ṽ h

ε,M + (W̃h
ε,M )⊥)〉 +

〈
1
c

(W̃h
ε,M )⊥ Ṽ h

ε,M · ∇hc

〉

+ Rε,M ,

which can be finally rewritten in the following way:

T 2
ε,M = 〈div Ṽε,M (Ṽ h

ε,M + (W̃h
ε,M )⊥)〉

− 〈∂3Ṽ
3
ε,M (Ṽ h

ε,M + (W̃h
ε,M )⊥)〉 +

〈
1
c

(W̃h
ε,M )⊥ Ṽ h

ε,M · ∇hc

〉

+ Rε,M .

The second term on the right-hand side is actually another remainder. As a matter of fact, direct com-
putations yield

∂3Ṽ
3
ε,M (Ṽ h

ε,M + (W̃h
ε,M )⊥) = ∂3(Ṽ 3

ε,M (Ṽ h
ε,M + (W̃h

ε,M )⊥)) − Ṽ 3
ε,M ∂3(Ṽ h

ε,M + (W̃h
ε,M )⊥)

= Rε,M − 1
2

∇h|Ṽ 3
ε,M |2 = Rε,M .

As for the first term, instead, we use the equation for the density in (40) to obtain

div Ṽε,M (Ṽ h
ε,M + (W̃h

ε,M )⊥) = − ε ∂tr̃ε,M (Ṽ h
ε,M + (W̃h

ε,M )⊥)

= Rε,M + ε r̃ε,M ∂t(Ṽ h
ε,M + (W̃h

ε,M )⊥).

Now, by Eqs. (48) and (40) again, it is easy to see that

ε r̃ε,M ∂t(Ṽ h
ε,M + (W̃h

ε,M )⊥) = Rε,M − r̃ε,M ∇
(
Id − Δ

)
r̃ε,M = Rε,M + ∇r̃ε,M

(
Id − Δ

)
r̃ε,M ,

and therefore we find (with attention to the right sign)

T 2
ε,M = 〈∇r̃ε,M

(
Id − Δ

)
r̃ε,M 〉 +

〈
1
c

(W̃h
ε,M )⊥ Ṽ h

ε,M · ∇hc

〉

+ Rε,M .

Now we have to deal with the second term in this last identity. Once again, we take advantage of the
decomposition along the basis

{
∇hc, ∇⊥

h c
}
. For simplicity of exposition, we omit the cut-off away from

the region {∇hc = 0} and we just give a sketch of the argument, since it is analogous to what done above
for T 1

ε,M .
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First of all, we write

1
c

(W̃h
ε,M )⊥ Ṽ h

ε,M · ∇hc =
1
c
(Ṽ h

ε,M · ∇hc)

(

W̃h
ε,M · ∇hc

∇⊥
h c

|∇hc|2
+ (W̃h

ε,M )⊥ · ∇hc
∇hc

|∇hc|2

)

.

As before, the last term in the right-hand side vanishes when tested against a smooth ψ ∈ Ker Ã. Next,
we obtain informations on Ṽ h

ε,M · ∇hc from the first equation in (48):

Ṽ h
ε,M · ∇hc =

1
c
(ε ∂tW̃

h
ε,M − (∂−1

3 curl(ε f̃ε,M + g̃ε,M ))h) · ∇hc.

Therefore, we obtain that

1
c

(W̃h
ε,M )⊥ Ṽ h

ε,M · ∇hc =
ε

2 c2
∂t|W̃h

ε,M · ∇hc|2
∇⊥

h c

|∇hc|2

− 1
c2

(∂−1
3 curl(ε f̃ε,M + g̃ε,M ))h · ∇hc

∇⊥
h c

|∇hc|2
,

which is obviously a remainder in the sense of relation (43).
In the end, we have discovered that (paying attention to the right sign)

T 2
ε,M = 〈∇r̃ε,M

(
Id − Δ

)
r̃ε,M 〉 + Rε,M . (49)

Notice that the density-dependent term exactly cancels out with the latter item in (42).

4.3.4. The Limit Equation. Let us sum up what we have just proved. In order to pass to the limit in Eq.
(36), we needed to treat the non-linearities coming from the capillarity term and the convection term.

For the former, after applying Lemma 4.8, we have arrived at relation (42):

−
∫ T

0

∫

Ω

(
Id − Δ

)
rε,M ∇rε,M · ψ = −

∫ T

0

∫

Ω

(
Id − Δh

)
〈rε,M 〉 ∇h〈rε,M 〉 · ψ

−
∫ T

0

∫

Ω

〈
(
Id − Δ

)
r̃ε,M ∇r̃ε,M 〉 · ψ.

On the other hand, for the latter we exploited Lemma 4.9 and, after manipulations, we have found

−
∫ T

0

∫

Ω

Vε,M ⊗ Vε,M : ∇ψ =
∫ T

0

∫

Ω

(
T 1

ε,M + T 2
ε,M

)
· ψ

=
∫ T

0

∫

Ω

(
(
Id − Δh

)
〈rεM

〉∇h〈rεM
〉 + 〈∇r̃ε,M

(
Id − Δ

)
r̃ε,M 〉 + Rε,M ) · ψ,

where we used also relations (47) and (49). Therefore, thanks to the special cancellations involving the
density-dependent terms, in the end we have proved the relation

∫ T

0

∫

Ω

(−
(
Id − Δ

)
rε,M ∇rε,M · ψ − Vε,M ⊗ Vε,M : ∇ψ) =

∫ T

0

∫

Ω

Rε,M · ψ,

which immediately implies, together with Lemmas 4.8 and 4.9, that

lim
M→+∞

lim
ε→0

∫ T

0

∫

Ω

(
1
ε2

Δρε ∇ρε · ψ − ρε uε ⊗ uε : ∇ψ

)

dx dt = 0.

Then, thanks to the previous computations, we can pass to the limit in the weak formulation of our
system: we obtain

∫ T

0

∫

Ω

(−u · ∂tψ − r∂t

(
Id − Δh

)
φ + νDu : ∇ψ)dxdt =

∫

Ω

(
u0 · ψ(0) + r0

(
Id − Δh

)
φ(0)

)
dx

for any (φ, ψ) test functions belonging to the kernel of the singular perturbation operator Ã. Recall that,
in particular, this implies the relation cψh = ∇⊥

h

(
Id − Δh

)
φ.
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Furthermore, we recall that also (r, u) ∈ Ker Ã: then div u ≡ 0, u =
(
uh, 0

)
and cuh = ∇⊥

h

(
Id −Δh

)
r.

Setting X(r) =
(
Id − Δh

)
r and φ̃ =

(
Id − Δh

)
φ, and using that all the functions depend just on the

horizontal variables, straightforward computations yield to

−
∫ T

0

∫

Ω

u · ∂tψ dx dt =
∫ T

0

∫

R2
divh

(
1
c2

∇hX(r)
)

∂tφ̃ dxh dt

ν

∫ T

0

∫

Ω

Du : ∇ψ dx dt = ν

∫ T

0

∫

R2
Dc

(
X(r)

)
: ∇h

(
c−1 ∇⊥

h φ̃
)
dxh dt

= ν

∫ T

0

∫

R2
Dc

(
X(r)

)
: Dc

(
φ̃

)
dxh dt = ν

∫ T

0

∫

R2

tDc ◦ Dc

(
X(r)

)
φ̃ dxh dt.

Inserting these equalities into the previous relation completes the proof of Theorem 2.8.

4.4. Final Remarks

We conclude by making a few comments about our hypotheses on the regularity of the rotation coefficient,
namely c ∈ W 1,∞(R2) with ∇hc ∈ Cμ(R2).
• At the level of uniform bounds (see Sect. 3), we asked for ∇hc ∈ L∞ in order to close the estimates

for the BD-entropy (recall Lemma 3.6), both in the case of vanishing and constant capillarity.
Nonetheless notice that, under an additional L2

T

(
L2

)
bounds for the family of velocity fields (uε)ε,

the control of the rotation term in (19) is straightforward for c ∈ L∞:

1
ε

∣
∣
∣
∣

∫ t

0

∫

Ω

c(xh) e3 × uε · ∇ρε dx dτ

∣
∣
∣
∣ ≤ C

√
T ‖c‖L∞ ‖uε‖L2

T (L2)

‖∇ρε‖L∞
T (L2)

ε
,

where the right-hand side is uniformly bounded by classical energy estimates (see Corollary 3.3).
Remark that the property (uε)ε ⊂ L2

T

(
L2

)
can be deduced, for instance, when an additional laminar

friction term is added to the momentum equation (see e.g. [3]).
• The W 1,∞ regularity seems to be necessary in the compensated compactness argument: in particular,

we exploited it for resorting to the equation for the vorticity and for decomposing some vector fields
along

{
∇hc, ∇⊥

h c
}
.

Notice that, by Proposition 4.4, ∇hc is parallel to ∇h(Id − Δh)r; on the other hand, we have
no available informations for ∇h(Id − Δh)r: in particular, it is not clear for us how to avoid the
non-degeneracy condition (17).

• Finally, the requirement ∇hc ∈ Cμ (for some admissible modulus of continuity μ) is fundamental
in order to get (46), which is a key property in our proof. Notice that paraproduct decomposition
does not seem to help in gaining anything at this level. This is the main reason why imposing some
regularity on ∇hc seems to be necessary for proving the result, and it seems not to be possible to
go below the Lipschitz threshold c ∈ W 1,∞.

Related to the non-degeneracy condition, let us remark also that there is a huge gap between the case
of constant rotation axis (for which ∇c ≡ 0 everywhere) and the case of variable rotation axis considered
here, for which we need hypothesis (17). It seems very likely that this difference is just “artificial”, and
it depends on the techniques used in the proof. It could be interesting to find a different approach to
the problem, in order to being able to treat coefficients which can be constant (i.e. whose gradient can
vanish) in a region of non-zero Lebesgue measure.
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A. Appendix

We collect in this appendix some well-known results about Littlewood–Paley theory and admissible moduli
of continuity, and the proof of some technical lemmas.

A.1. Fourier Analysis Toolbox

Let us recall some tools from Fourier Analysis, which we exploited in our proof. We refer e.g. to [2,
Chapter 2] and [26, Chapters 4 and 5] for the details.

For simplicity of exposition, let us deal with the R
d case; however, the construction can be adapted

to the d-dimensional torus T
d, and then also to the case of Rd1 × T

d2 .
First of all, let us introduce the Littlewood–Paley decomposition, based on a non-homogeneous dyadic

partition of unity in the Phase Space.
We fix a smooth radial function χ supported in the ball B(0, 2), equal to 1 in a neighborhood of B(0, 1)

and such that r �→ χ(r e) is nonincreasing over R+ for all unitary vectors e ∈ R
d. Set ϕ (ξ) = χ (ξ)−χ (2ξ)

and ϕj(ξ) := ϕ(2−jξ) for all j ≥ 0.
The dyadic blocks (Δj)j∈Z are defined by2

Δj := 0 if j ≤ −2, Δ−1 := χ(D) and Δj := ϕ(2−jD) if j ≥ 0.

We also introduce the low frequency cut-off operators: for any j ≥ 0,

Sju := χ
(
2−jD

)
u =

∑

k≤j−1

Δku. (50)

The following classical property holds true: for any u ∈ S ′, one has the equality u =
∑

j Δju in the
sense of S ′. We will freely use this fact in the sequel.

Spectrally localized functions have nice properties with respect to the action of derivatives. This is
explained by the so-called Bernstein’s inequalities.

Lemma A.1. Let 0 < r < R. A constant C exists so that, for any nonnegative integer k, any couple (p, q)
in [1,+∞]2 with p ≤ q and any function u ∈ Lp, we have, for all λ > 0,

supp û ⊂ B(0, λR) =⇒ ‖∇ku‖Lq ≤ Ck+1 λk+d( 1
p − 1

q ) ‖u‖Lp ;

supp û ⊂ {ξ ∈ R
d | rλ ≤ |ξ| ≤ Rλ} =⇒ C−k−1 λk‖u‖Lp ≤ ‖∇ku‖Lp ≤ Ck+1 λk‖u‖Lp .

By use of Littlewood–Paley decomposition, we can define the class of Besov spaces.

Definition A.2. Let s ∈ R and 1 ≤ p, r ≤ +∞. The non-homogeneous Besov space Bs
p,r is defined as the

subset of tempered distributions u for which

‖u‖Bs
p,r

:= ‖
(
2js ‖Δju‖Lp

)

j∈N
‖�r < +∞.

Besov spaces are interpolation spaces between the Sobolev ones. In fact, for any k ∈ N and p ∈ [1,+∞]
we have the chain of continuous embeddings Bk

p,1 ↪→ W k,p ↪→ Bk
p,∞. Moreover, for all s ∈ R we have

Bs
2,2 ≡ Hs, with equivalence of the respective norms.
We report here some statements which we used in our analysis: their proof are given in [12]. We refer

again to [2,26] for more details and more general results.

2 Throughout we agree that f(D) stands for the pseudo-differential operator u �→ F−1(f Fu).
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Lemma A.3. (i) For 1 ≤ p ≤ 2, one has ‖f‖L2 ≤ C
(
‖f‖Lp + ‖∇f‖L2

)
.

(ii) For any 0 < δ ≤ 1/2 and any 1 ≤ p ≤ +∞, one has

‖f‖L∞ ≤ C(‖f‖Lp + ‖∇f‖(1/2)−δ
L2

∥
∥∇2f

∥
∥(1/2)+δ

L2 ).

(iii) Let 1 ≤ p ≤ 2 such that 1/p < 1/d + 1/2. For any j ∈ N, there exists a constant Cj, depending just
on j, d and p, and going to 0 for j → +∞, such that

‖(Id − Sj) f‖L2 ≤ Cj ‖∇f‖B0
p,∞

.

In particular, if ∇f = ∇f1 + ∇f2, with ∇f1 ∈ B0
2,∞ and ∇f2 ∈ B0

p,∞, then

‖(Id − Sj) f‖L2 ≤ C̃j (‖∇f1‖B0
2,∞

+ ‖∇f2‖B0
p,∞

),

for a new constant C̃j still going to 0 for j → +∞.

Finally, let us recall some notions of homogeneous dyadic decomposition. Namely, one can rather work
with homogeneous dyadic blocks (Δ̇j)j∈Z, defined as

Δ̇j := ϕ(2−jD) for all j ∈ Z.

Then, we can introduce the homogeneous Besov spaces Ḃs
p,r by the property

‖u‖Ḃs
p,r

:= ‖(2js ‖Δ̇ju‖Lp)j∈Z ‖�r < +∞

(plus some conditions on low frequencies). We do not enter into the details, for which we refer to Chapter
2 of [2]. Let us however recall refined embeddings of homogeneous Besov spaces into Lebesgue spaces (see
Theorem 2.40 of [2]).

Proposition A.4. For any p ∈ [2,+∞], one has the embeddings Ḃ0
p,2 ↪→ Lp and Lp′

↪→ Ḃ0
p′,2, where p′

is defined by the condition 1/p′ = 1 − 1/p.

A.2. Admissible Moduli of Continuity

In this paragraph we recall some basic definitions and properties about general moduli of continuity. We
refer to Section 2.11 of [2] for a more indeep discussion.

Definition A.5. A modulus of continuity is a continuous non-decreasing function μ : [0, 1] −→ R+ such
that μ(0) = 0.

It is said to be admissible if the function Γμ, defined by the relation

Γμ(s) := s μ(1/s),

is non-decreasing on [1,+∞[ and it verifies, for some constant C > 0 and any s ≥ 1,
∫ +∞

s

σ−2 Γμ(σ) dσ ≤ C s−1 Γμ(s).

Given a modulus of continuity μ, we can define the space Cμ(Rd) as the set of real-valued functions
a ∈ L∞(Rd) such that

|a|Cμ
:= sup

|y|∈ ]0,1]

|a(x + y) − a(x)|
μ(|y|) < +∞.

We also define ‖a‖Cμ
:= ‖a‖L∞ + |a|Cμ

.
On the other hand, for an increasing Γ on [1,+∞[ , we define the space BΓ(Rd) as the set of real-valued

functions a ∈ L∞(Rd) such that

|a|BΓ := sup
j≥0

‖∇Sja‖L∞

Γ(2j)
< +∞,
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where Sj is the low-frequency cut-off operator of a Littlewood–Paley decomposition, as introduced above.
We also set ‖a‖BΓ := ‖a‖L∞ + |a|BΓ .

One has the following result (see Proposition 2.111 of [2]).

Proposition A.6. Let μ be an admissible modulus of continuity. Then Cμ(Rd) = BΓμ
(Rd), and the respec-

tive norms are equivalent. Moreover, for any a ∈ Cμ(Rd) one has

‖Δja‖L∞ ≤ C μ(2−j)

for all j ≥ −1, where the constant C just depend on ‖a‖Cμ
.

Now we want to present a commutator lemma, which is fundamental in the proof of Proposition 4.6,
especially for property (41).

First of all, let us recall the classical commutator estimates (see Lemma 2.97 of [2]).

Lemma A.7. Let θ ∈ C1(Rd) such that
(
1 + | · |

)
θ̂ ∈ L1. There exists a constant C such that, for any

Lipschitz function � ∈ W 1,∞(Rd) and any f ∈ Lp(Rd) and for all λ > 0, one has
∥
∥
[
θ(λ−1D), �

]
f
∥
∥

Lp ≤ C λ−1 ‖∇�‖L∞ ‖f‖Lp .

Going along the lines of the proof, it is easy to see that the constant C depends just on the L1 norm
of the function |x| k(x), where k = F−1

ξ θ denotes the inverse Fourier transform of θ.
Let us give a slight variation of the previous lemma. For simplicity, we restrict our attention to the

case of θ in the Schwartz class S(Rd): this will be enough for our aims.

Lemma A.8. Let θ ∈ S(Rd) and (p1, p2, q) ∈ [1,+∞]3 such that 1/q = 1 + 1/p2 − 1/p1. Then there exists
a constant C such that, for any f ∈ Lp1(Rd), any � ∈ W 1,∞(Rd) and all λ > 0,

∥
∥
[
θ(λ−1D), �

]
f
∥
∥

Lp2
≤ C λ−1 ‖∇�‖L∞ ‖f‖Lp1 .

The constant C just depends on the Lq norm of the function |x| k(x), where k = F−1
ξ θ.

The proof follows the arguments used for the classical statement, with no special novelties. Hence, we
omit it.

Let us consider now less regular functions �.

Lemma A.9. Let θ ∈ C1(Rd) be as in Lemma A.7, and let μ be an admissible modulus of continuity. Then,
there exists a constant C such that, for any function � ∈ Cμ(Rd) and any f ∈ Lp(Rd) and for all λ > 1,
one has

∥
∥
[
θ(λ−1D), �

]
f
∥
∥

Lp ≤ C μ(λ−1) |�|Cμ
‖f‖Lp .

The constant C only depends on the L1 norms of the functions k(x) and |x| k(x).

Proof. As in the proof of the classical result (see Lemma A.7), we can write
[
θ(λ−1D), �

]
f = λd

∫

Rd

k
(
λ(x − y)

)
f(y)

(
�(x) − �(y)

)
dy.

Remark that the previous integral is actually taken over R
d\{x}, so that we can multiply and divide

by μ(|x − y|). Making the seminorm |�|Cμ
appear, thanks to Young inequality we are reduced to estimate

the quantity

λd ‖k(λ · )μ( | · | )‖L1 = λd

∫

Rd

|k|(λ z)μ(|z|) dz.

Let us split the previous integral according to the decomposition R
d =

{
|z| ≤ λ−1

}
∪

{
|z| ≥ λ−1

}
. For

the former term, since μ is increasing we have

λd

∫

|z|≤λ−1
|k|(λ z)μ(|z|) dz ≤ μ(λ−1) ‖k‖L1 .
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For the latter term, instead, we make the non-decreasing function Γμ appear, and we estimate

λd

∫

|z|≥λ−1
|k|(λ z)μ(|z|) dz = λd

∫

|z|≥λ−1
|k|(λ z) Γμ(|z|−1) |z| dz

≤ C Γμ(λ)λ−1 ‖ | · | k( · )‖L1 ≤ C μ(λ−1).

The lemma is hence proved. �

Obviously, an extension of the previous result, in the same spirit of Lemma A.8, holds true.

A.3. On the BD Entropy Structure

We give here the details of the proofs of some technical lemmas about BD entropy estimates. We start
by proving Lemma 3.4.

Proof of Lemma 3.4. First of all, by Lemma 2 of [7] we can write

1
2

d

dt

∫

Ω

ρ |∇ log ρ|2 +
∫

Ω

∇div u · ∇ρ +
∫

Ω

ρDu : ∇ log ρ ⊗ ∇ log ρ = 0. (51)

Next, we multiply the momentum equation by ν ∇ρ/ρ and we integrate over Ω: we find

ν

∫

Ω

(∂tu + u · ∇u) · ∇ρν2

∫

Ω

Du :
(

∇2ρ − 1
ρ
∇ρ ⊗ ∇ρ

)

+
ν

Ro

∫

Ω

e3 × u · ∇ρ +
ν

We

∫

Ω

∣
∣∇2ρ

∣
∣2 +

4 ν

Fr2

∫

Ω

(
P ′(ρ) + P ′

c

)
|∇√

ρ|2 = 0. (52)

Now we add (51), multiplied by ν2, to (52): we end up with

ν2

2
d

dt

∫

Ω

ρ |∇ log ρ|2 +
ν

We

∫

Ω

∣
∣∇2ρ

∣
∣2 +

4ν

Fr2

∫

Ω

(
P ′ + P ′

c

)
|∇√

ρ|2 +
ν

Ro

∫

Ω

e3 × u · ∇ρ

= −ν

∫

Ω

∂tu · ρ − ν2

∫

Ω

∇div u · ∇ρ − ν

∫

Ω

(u · ∇u) · ∇ρ − ν2

∫

Ω

Du : ∇2ρ.

From this relation, thanks to the mass equation and the identities

−
∫

Ω

u · ∇div (ρu) −
∫

Ω

(u · ∇u) · ∇ρ =
∫

Ω

ρ∇u : t∇u

−
∫

Ω

∇div u · ∇ρ −
∫

Ω

Du : ∇2ρ = 0,

we deduce the equality

d

dt
Fε +

ν

We

∫

Ω

∣
∣∇2ρ

∣
∣2 dx +

4ν

Fr2

∫

Ω

(
P ′(ρ) + P ′

c(ρ)
)

|∇√
ρ|2 dx +

ν

Ro

∫

Ω

e3 × u · ∇ρ dx

= − ν
d

dt

∫

Ω

u · ∇ρ dx + ν

∫

Ω

ρ∇u : t∇u dx.

Notice that we can rewrite this last relation in the following way:

1
2

d

dt

∫

Ω

ρ |u + ν ∇ log ρ|2 dx +
ν

We

∫

Ω

∣
∣∇2ρ

∣
∣2 dx +

ν

Ro

∫

Ω

e3 × u · ∇ρ dx

+
4ν

Fr2

∫

Ω

(
P ′(ρ) + P ′

c(ρ)
)

|∇√
ρ|2 dx =

1
2

d

dt

∫

Ω

ρ |u|2 dx + ν

∫

Ω

ρ∇u : t∇u dx.

Then, we conclude by integrating with respect to time and using Proposition 3.2. �

Now, let us switch our attention to the proof of Lemma 3.5.
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Proof of Lemma 3.5. By Lemma A.3, item (i), we easily deduce

‖ρ − 1‖L∞
t (L2) ≤ C(‖ρ − 1‖L∞

t (Lγ) +
(
1 − 12(γ)

)
‖∇ρ‖L∞

t (L2)),

and the first estimate immediately follows from Proposition 3.2 and Corollary 3.3.
Let us now focus on the second estimate. By Lemma A.3, item (ii), for any 0 < δ ≤ 1/2 and any

1 ≤ p < +∞ we can write

‖ρ − 1‖p
Lp

t (L∞)
≤ Cp

(

‖ρ − 1‖L∞
t (L2) t +

∫ t

0

‖∇ρ‖p((1/2)−δ)
L2

∥
∥∇2ρ

∥
∥p((1/2)+δ)

L2 dτ

)

. (53)

Now, since p ≤ 4/(1 + 2δ), we can apply Hölder inequality to make the L2
t

(
L2

)
norm of ∇2ρ appear.

More precisely, using again the bounds of Proposition 3.2 and Corollary 3.3, we have
∫ t

0

‖∇ρ‖p((1/2)−δ)
L2

∥
∥∇2ρ

∥
∥p((1/2)+δ)

L2 dτ ≤ ‖∇ρ‖p((1/2)−δ)
L∞

t (L2)

∫ t

0

∥
∥∇2ρ

∥
∥p((1/2)+δ)

L2 dτ

≤ (We)p((1/2)−δ) t1−1/q (‖∇2ρ‖2
L2

t (L2))
1/q,

where we have set q := 4/
(
(1 + 2δ)p

)
. Putting this inequality into (53) and using also the bound of the

first part, we finally get the desired estimate. �

Let us conclude this section by showing the proof of Lemma 3.6. Notice that we are not able to exploit
the presence of the cold pressure term at this level.

Proof of Lemma 3.6. The first inequality is trivial: we have just to write e3 ×u ·∇ρ = e3 ×
(√

ρu
)
·∇√

ρ,
and then apply Hölder inequality to the integral over Ω and Proposition 3.2.

Let us then focus on the estimate in (ii). First of all, we write
∫ t

0

∫

Ω

c e3 × u · ∇ρ =
∫ t

0

∫

Ω

c e3 × √
ρu · ∇ρ +

∫ t

0

∫

Ω

c e3 × √
ρu · ∇ρ

(
1

√
ρ

− 1
)

. (54)

Now we perform an integration by parts in the latter term: denoting by ω = ∇ × u the vorticity of the
fluid, we get

∫ t

0

∫

Ω

c e3 × √
ρu · ∇ρ

(
1

√
ρ

− 1
)

=
∫ t

0

∫

Ω

c ρω3 (
√

ρ − 1) +
∫ t

0

∫

Ω

ρu · ∇⊥
h c (

√
ρ − 1)

−
∫ t

0

∫

Ω

c

2
e3 × √

ρu · ∇ρ

(
1

√
ρ

− 1
)

+
∫ t

0

∫

Ω

c

2
e3 × u · ∇ρ,

which in turn implies
∫ t

0

∫

Ω

c e3 × √
ρu · ∇ρ

(
1

√
ρ

− 1
)

=
2
3

∫ t

0

∫

Ω

c ρω3 (
√

ρ − 1)

+
1
3

∫ t

0

∫

Ω

c e3 × u · ∇ρ +
2
3

∫ t

0

∫

Ω

ρu · ∇⊥
h c (

√
ρ − 1) .

Combining now (54) with this last relation gives us

ν

Ro

∫ t

0

∫

Ω

c e3 × u · ∇ρ =
ν

Ro

∫ t

0

∫

Ω

c ρω3 (
√

ρ − 1)

+
3 ν

2Ro

∫ t

0

∫

Ω

c e3 × √
ρu · ∇ρ +

ν

Ro

∫ t

0

∫

Ω

ρu · ∇⊥
h c (

√
ρ − 1) . (55)

Let us start by considering the second term on the right-hand side: on the one hand, by use of Hölder
inequality and Proposition 3.2, one gets

ν

Ro

∣
∣
∣
∣

∫ t

0

∫

Ω

c e3 × √
ρu · ∇ρ

∣
∣
∣
∣ ≤ C ν

Ro

∫ t

0

‖√
ρ u‖L2 ‖∇ρ‖L2 dτ ≤ C ν t

√
We

Ro
. (56)
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On the other hand, if γ = 2, by use of Young inequality we can also write

ν

Ro

∣
∣
∣
∣

∫ t

0

∫

Ω

c e3 × √
ρu · ∇ρ

∣
∣
∣
∣ ≤ C ν

Ro

∫ t

0

‖∇ρ‖L2 dτ ≤ C ν
√

t

Ro

(∫ t

0

‖∇ρ‖2
L2 dτ

)1/2

≤ C ν t

(
Fr
Ro

)2

+
1
2

ν

Fr2
‖∇ρ‖2

L2
t (L2) . (57)

For the vorticity term, we start by observing that |√ρ−1| ≤ |ρ−1|: therefore, thanks also to Corollary
3.3 and Lemma 3.5, we can write the estimate

ν

Ro

∣
∣
∣
∣

∫ t

0

∫

Ω

c ρω3 (
√

ρ − 1)
∣
∣
∣
∣ ≤ ν

Ro
‖√

ρDu‖L2
t (L2) ‖√

ρ − 1‖L∞
t (L2) ‖√

ρ‖L2
t (L∞)

≤ C ν

Ro
ζ ‖√

ρ‖L2
t (L∞) ,

where, for notation convenience, we have set

ζ = ζ(Fr,We) := (Fr +
(
1 − 12(γ)

) √
We).

In order to control the last factor in the right-hand side, we take advantage as usual of the decomposition√
ρ = 1 + (

√
ρ − 1); then, applying Lemma 3.5 with e.g. δ = 1/4 and p = 2 (and so q = 4/3) implies

‖√
ρ‖L2

t (L∞) ≤ C

(
(
1 + ζ

)
t + (We)3/4 ν−3/4 t1/4

( ν

We

∥
∥∇2ρ

∥
∥2

L2
t (L2)

)3/4
)1/2

≤ C

(
(
1 + ζ

)1/2 √
t + (We)3/8 ν−3/8 t1/8

( ν

We

∥
∥∇2ρ

∥
∥2

L2
t (L2)

)3/8
)

.

Inserting this inequality in the estimate for the vorticity term gives

ν

Ro

∣
∣
∣
∣

∫ t

0

∫

Ω

c ρω3 (
√

ρ − 1) dx dτ

∣
∣
∣
∣ ≤ C ν

Ro
ζ

(
1 + ζ

)1/2 √
t

+
C ν5/8 (We)3/8 t1/8

Ro
ζ

( ν

We

∥
∥∇2ρ

∥
∥2

L2
t (L2)

)3/8

,

and, by application of Young inequality, in the end we find

ν

Ro

∣
∣
∣
∣

∫ t

0

∫

Ω

c ρω3 (
√

ρ − 1) dx dτ

∣
∣
∣
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Ro
ζ

(
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C ν (We)3/5 ζ8/5

(Ro)8/5
t1/5 +

3
8

ν

We

∥
∥∇2ρ

∥
∥2

L2
t (L2)

. (58)

Finally, for the term involving ∇hc in (55) we can argue in a very similar way. Thanks to the bounds
of Corollary 3.3 and Lemma 3.5, where this time we take δ = 1/4 and p = 1 (and then q = 8/3), we infer
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Ro

∣
∣
∣
∣

∫ t

0

∫

Ω

ρu · ∇⊥
h c (

√
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∣
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ρ − 1‖L∞
t (L2) ‖√

ρ‖L1
t (L∞)

≤ C ν
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ζ
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(
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)
t + (We)3/8 ν−3/8 t5/8

( ν
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∥
∥∇2ρ

∥
∥2

L2
t (L2)

)3/8
)

.

Hence, by use of Young inequality as before, it follows the control

ν

Ro

∣
∣
∣
∣

∫ t

0

∫

Ω

ρu · ∇⊥
h c (

√
ρ − 1)

∣
∣
∣
∣ ≤ C ν t
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ζ

(
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3
8

ν
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∥
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∥
∥2

L2
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. (59)
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Now, we recall equality (55): keeping in mind the definition of ζ, combining (58) and (59) with (56)
gives us the bound for the general case 1 < γ ≤ 2; the inequality in the special case γ = 2 follows using
(57) instead of (56). �

Remark A.10. The rotation term in [12] was dealt with in a slightly different way, exploiting the special
law of the classical component of the pressure. In the end, one can obtain an analogous inequality to the
one given here.
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Mémoires de la SMF, vol. 107. Société Mathématique de France (2006)
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