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1. Introduction

In this contribution we wish to consider the following system

ϕt + u · ∇ϕ = Δμ, μ = aϕ − J ∗ ϕ + F ′(ϕ), (1.1)

ut + (u · ∇)u + ∇π = μ∇ϕ, (1.2)

div(u) = 0, (1.3)

in Ω × (0,∞) , on a bounded domain Ω ⊂ R
2 with boundary ∂Ω. We shall further assume the following

boundary and initial conditions:

∇μ · n = 0, u · n = 0 on ∂Ω × (0,∞), (1.4)

u(0) = u0, ϕ(0) = ϕ0 in Ω. (1.5)

We recall that the analogue system in which (1.2) is replaced by the Navier-Stokes equation

ut − div (ν (ϕ) Du) + (u · ∇)u + ∇π = μ∇ϕ, (1.6)

describes the evolution of an isothermal mixture of two incompressible and immiscible fluids through the
(relative) concentration ϕ of one species and the (averaged) velocity field u. As usual, μ is the so-called
chemical potential, J is a spatial-dependent interaction kernel and J ∗ ϕ stands for spatial convolution
over Ω, a is defined as follows a(x) = (J ∗ 1) (x), F is a double-well potential, π is pressure and ν is the
viscosity of the two-phase fluid. This system assumes the case of matched densities for the two fluids and
constant mobility. On the other hand, the system comprising of (1.6), (1.1), (1.3), subject to homogeneous
Neumann and no slip boundary conditions for μ and u, respectively, has been analyzed recently in [8–13]
under various assumptions on F, J and on the mobility and viscosity coefficients, respectively. We also
recall that the nonlocal Cahn-Hilliard-Navier-Stokes system described earlier is a generalized version of
the classical Cahn-Hilliard-Navier-Stokes system when in the place of aϕ − J ∗ ϕ one usually finds −Δϕ,
see [1,2,5,7,14–16,26–28] and references therein. For a more general family of two-phase fluid models we
also refer the reader to [18,19]. From a modelling perspective the former term is more appropriate in the
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sense that it can be physically justified and rigorously derived by starting from microscopic models for
lattice gases with long-range Kac potentials, see [21,22] and [4,17,20,24,25]. However, the analysis tends
to be more challenging and involved since the regularity of ϕ is much lower than in the classical case.
Indeed, in the case when u ≡ 0 in (1.1) the best one can hope for smooth solutions is that they are at
most globally Holder continuous (see [17]) even when ϕ0 ∈ C∞, F ∈ C∞ and Ω is of class C∞ provided
that J is a symmetric kernel that belongs to W 1,1

loc

(
R

2
)
. The latter turns out to be also optimal [11,17].

In particular, it is not at all expected for ϕ to possess any higher order regularity in spaces like W k,p,
k ≥ 3, unless J is smooth and non-singular (i.e., at least J ∈ C2

(
R

2
)
). We note that radially symmetric

kernels that belong to W 1,1
loc

(
R

2
)

are not too singular at the origin and include the well-known Newtonian
and Bessel potentials.

In the present article, we are interested in ideal two-phase flows (1.1)–(1.5) in domains Ω ⊂ R
2 with

smooth boundary ∂Ω of class C3, although this regularity can be relaxed in some places. In particular,
our main goal is to prove appropriate well-posedness results for this inviscid system. From a physical
perspective all two-phase flows must be at least slightly viscous (ν = ν (ϕ) > 0) in the presence of
a physical boundary ∂Ω, and so they are properly described by the Cahn-Hilliard-Navier-Stokes system
(1.6), (1.1), (1.3). Indeed, it is only in this case that viscous effects are essential to describe the interaction
of the two-phase fluid with ∂Ω and the variation of pressure as a function of vorticity there or vice versa
(see [6]). However, in the absence of physical boundaries the mathematical investigation of ideal two-phase
immiscible fluid flows has some real physical relevance in turbulence modelling (see again [6]), and also
in the case when the vanishing viscosity limit for incompressible flows in a domain with boundary is still
to this day an important problem. We point out that our motivation also stems from some recent results
of [7] which discusses the classical Cahn-Hilliard-Euler system in the case Ω = R

2 (or Ω is a bounded
periodic domain) when once again in place of aϕ − J ∗ ϕ in (1.1) one takes −Δϕ. Indeed, in our case
we are simply dealing with a parabolic equation which is of second-order for ϕ instead of a fourth-order
equation which was the case considered in [7] among others. Therefore, it is not straightforward to extend
the results of [7] to our system (1.1)–(1.5), especially in the light of recent results proven for the nonlocal
Cahn-Hilliard-Navier-Stokes system. This becomes actually more interesting when the assumptions on
the potential F and the interaction kernel J can remain the same as in the recent work of [11], where a
complete theory was developed for the full Cahn-Hilliard-Navier-Stokes system with nonlocal interaction,
constant mobility and variable viscosity. We also wish to point out that the results presented in this
contribution also remain true in the absence of physical boundaries when Ω = R

2 or Ω ⊂ R
2 is a compact

manifold without boundary (cf. Remark 3.2). We leave the important question of vanishing viscosity limit
to future contributions, but view the results obtained here as necessary steps in that direction.

The paper is organized as follows. In Sect. 2 we give the main definitions for weak, strong and classical
solutions and formulate statements of the main results, and in the final Sect. 3 we provide detailed proofs
of these statements.

2. Statements of Main Results

We endow Lp(Ω), W k,p (Ω) with the usual norms ‖ · ‖Lp , ‖ · ‖W k,p and scalar products (·, ·) , (·, ·)W k,2 in
L2 (Ω) and W k,2 (Ω) respectively. With some abuse of notation we shall also use W k,p (Ω) as the space
of vector-valued functions. We also consider a closed subspace of L2 (Ω) ,

H =
{
u ∈ L2 (Ω) : div (u) = 0 in Ω, u · n = 0 on ∂Ω

}
.

For every f ∈ (W 1,2 (Ω))∗ we denote by 〈f〉 the average of f over Ω, i.e., 〈f〉 = |Ω|−1 〈f, 1〉, where |Ω|
is the Lebesgue measure of Ω and 〈·, ·〉 denotes the usual pairing between the corresponding Banach
space and its dual. Consider also the space Lp

0 (Ω) = Lp (Ω) ∩ {ϕ : 〈ϕ〉 = 0}. We also introduce so-called
Neumann Laplacian BN = −Δ which can be seen as an unbounded self-adjoint operator on L2 (Ω) with
domain D (BN ) = {v ∈ W 2,2(Ω) : ∇v · n = 0 on ∂Ω}.
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Besides Gagliardo–Nirenberg interpolation inequalities in two dimensions, in our proofs we shall also
appeal to several fundamental inequalities. The first one is a variant of Trudinger’s inequality which states
for ϕ ∈ W 1,2 (Ω) that

‖ϕ‖Lp ≤ Cp1/2 ‖ϕ‖W 1,2 , (2.1)

for any p ∈ [2,∞), for some constant C > 0 independent of p and ϕ. The second one states that any
sufficiently smooth incompressible velocity u ∈ H can be found from the vorticity ω = ∇ × u via the
Biot-Savart law

u (x, t) =
∫

Ω

BΩ (x, y) ω (y, t) dy,

where the kernel BΩ is given by BΩ (x, y) = ∇⊥GΩ (x, y) with ∇⊥ = (−∂x2 , ∂x1) , x = (x1, x2) ∈ Ω, and
GΩ is the Green function for Ω, see e.g., [3,29]. In particular, there is a constant C > 0 independent of
p ∈ [2,∞) such that

‖∇u‖Lp ≤ Cp ‖ω‖Lp . (2.2)

Finally we also recall the following maximal regularity result for the Neumann Laplacian BN . Specifically,
it states that

∥
∥B−1

N

∥
∥

Lp→W 2,p ≤ Cp, for some C > 0 independent of p ∈ [2,∞), or equivalently, for the
corresponding elliptic problem BNϕ = f ∈ Lp

0 (Ω), we have the estimate

‖ϕ‖W 2,p ≤ Cp ‖f‖Lp . (2.3)

We now formulate the notion of a globally defined weak solution for the inviscid problem (1.1)–(1.5).

Definition 2.1. Let u0 ∈ V := W 1,2 (Ω) ∩ H, ϕ0 ∈ W := W 1,2 (Ω) ∩ L∞ (Ω) and T > 0 be given. We say
that (u, ϕ) is a weak solution to problem (1.1)–(1.5) corresponding to a given (u0, ϕ0) if the following
hold:
• The functions u, ϕ satisfy

u ∈ L∞(0, T ;V ), ∂tu ∈ L2(0, T ;V ∗), (2.4)

ϕ ∈ L∞(0, T ;W ) ∩ L2(0, T ;W 2,2 (Ω)) ∩ W 1,2
(
0, T ;L2 (Ω)

)
, (2.5)

μ ∈ L∞(0, T ;W ) ∩ L2(0, T ;W 2,2 (Ω)). (2.6)

• For every ψ ∈ H1 (Ω), every v ∈ V and for almost any t ∈ (0, T ) we have

(∂tϕ,ψ) + (uϕ,∇ψ) = (∇μ,∇ψ) , (2.7)
〈∂tu, v〉 + 〈u · ∇u, v〉 = (μ∇ϕ, v) , (2.8)

such that μ = a (x)ϕ − J ∗ ϕ + F
′
(ϕ), a.e. in Ω × (0, T ) .

• The initial conditions u(0) = u0, ϕ(0) = ϕ0 hold in following sense: u(t) → u0 as t → 0 in H -sense,
and ϕ(t) → ϕ0 as t → 0 in the L2 (Ω)-sense.

• Conservation of mass: 〈ϕ (t)〉 = 〈ϕ0〉 for all t ≥ 0.

We also define what we mean by a strong/classical solution to the Cahn-Hilliard-Euler system with
nonlocal interaction.

Definition 2.2. Let u0 ∈ V , ω0 = ∇ × u0 ∈ Lq (Ω), for some q ∈ (2,∞) and ϕ ∈ W 2,2 (Ω).
• We say that (u, ϕ) is a strong solution of (1.1)-(1.5) if it is a weak solution in the sense of Definition

2.1 and in addition,

∂tu ∈ L∞ (0, T ;Lq (Ω)) , ω = ∇ × u ∈ L∞ (0, T ;Lq (Ω)) , (2.9)

ϕ ∈ L∞ (
0, T ;W 2,2 (Ω)

) ∩ W 1,∞ (
0, T ;L2 (Ω)

)
, (2.10)

ϕ ∈ W 1,2 (Ω × (0, T )) ∩ Cβ,β/2
(
Ω × ([0, T ])

)
, β ∈ (0, 1) , (2.11)

μ ∈ L∞ (0, T ;D (BN )) ∩ W 1,∞ (
0, T ;L2 (Ω)

)
. (2.12)
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• We say that (u, ϕ) is a classical solution if it is a strong solution that satisfies

u ∈ L∞ (
0, T ;W 3,2 (Ω) ∩ H

)
, ϕ ∈ L∞ (

0, T ;W 2,p (Ω)
)
, (2.13)

provided that in addition u0 ∈ W 3,2 (Ω) ∩ H and ϕ0 ∈ W 2,p (Ω) for some p ∈ (2,∞) .

Our assumptions on F, J remain essentially the same as in [8,9,11,12,17], and actually we can require
much less than there. In particular, our assumption on F below no longer requires F (s) to have a
polynomial growth as |s| → ∞ (see, for instance, assumption (H4) in [12]).

(H1) J ∈ W 1,1
loc (Rd), J(x) = J(−x), a ≥ 0 a.e. in Ω.

(H2) F is a regular potential which belongs to C2(R,R) and there exists c0, c1 > 0, c2 ≥ 0 such that

F ′′(s) + a(x) ≥ c0, F (s) ≥ c1s
2 − c2,

for all s ∈ R, a.e. x ∈ Ω.

The first main result is on the weak solvability of problem (1.1)–(1.5).

Theorem 2.3. Let the assumptions (H1)–(H2) be satisfied and assume u0 ∈ V := W 1,2 (Ω) ∩ H, ϕ0 ∈
W := H1 (Ω) ∩ L∞ (Ω). Then there exists at least one globally defined weak solution in the sense of
Definition 2.1.

In order to provide the final results we need to introduce an additional assumption on the kernel J
exactly as in [11].

Definition 2.4. A kernel J ∈ W 1,1
loc (R2) satisfying (H1) is said to be admissible if either J ∈ W 2,1 (Bδ) ,

δ ∼ diam (Ω) , or the following conditions are satisfied:
(A1) J ∈ C3(R2\{0});
(A2) J is radially symmetric, J(x) = ρ(|x|) and ρ is non-increasing;
(A3) ρ′′(r) and ρ′(r)/r are monotone on (0, r0) for some r0 > 0;
(A4) |D3J(x)| ≤ C�|x|−3 for some C� > 0.

We recall that the Newtonian and Bessel potentials are admissible, and in particular the following
estimate holds for a kernel J satisfying (A1)–(A4):

‖∇ (∇J ∗ ϕ) ‖p ≤ Cp‖ϕ‖Lp , (2.14)

for some C > 0 independent of p ∈ [2,∞) and ϕ (see, e.g., [11]).

Theorem 2.5. Let (u, ϕ) be a weak solution in the sense of Definition 2.1 with bounded vorticity ω =
∇ × u ∈ L∞ (0, T ;L∞ (Ω)). Then problem (1.1)–(1.5) has at most one such weak solution.

Theorem 2.6. Assume J is admissible in the sense of Definition 2.4. Then there exists at least one strong
solution and a unique classical solution in the sense of Definition 2.2.

3. Proofs of the Main Results

In this section we provide detailed proofs of the statements of Theorems 2.3 and 2.6. Throughout this
section, C ≥ 0 will denote a generic constant whose further dependence on certain quantities will be
specified on occurrence. The value of the constant can change even within the same line. Furthermore, we
introduce the notation a � b to mean that there exists a constant C > 0 such that a ≤ Cb. This notation
will be used when the explicit value of C is irrelevant or tedious to write down. We divide our program
into two parts: we first provide formal estimates leading to the required estimates in the statements of
Theorems 2.3, 2.6, and then at the end we briefly provide the details of the approximation scheme and
fixed point arguments that are necessary to construct smooth solutions on which the formal estimates
can be ultimately performed. The passage to the limit in the smooth solutions will be standard owing to
uniform estimates obtained in the previous steps, and therefore will be altogether omitted.
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We begin with a basic estimate for the energy functional associated with problem (1.1)–(1.5). Let

E (t) :=
1
2

‖u (t)‖2
L2 +

1
4

∫

Ω

∫

Ω

J (x − y) (ϕ (x, t) − ϕ (y, t))2 dydx +
∫

Ω

F (ϕ (t)) dx

Proposition 3.1. Let u0 ∈ H and ϕ0 ∈ L∞ (Ω) and assume (H1)–(H2). Then there exists a constant
C > 0 independent of time, T > 0, depending on (u0, ϕ0), such that

sup
t∈[0,T ]

E (t) +
∫ T

0

∫

Ω

|∇μ (x, t)| dxdt ≤ C. (3.1)

Moreover, by virtue of (3.1) it follows that

ϕ ∈ L∞ (0, T ;L∞ (Ω)) ∩ L2
(
0, T ;H1 (Ω)

)
, (3.2)

μ ∈ L2
(
0, T ;H1 (Ω)

) ∩ L∞ (0, T ;L∞ (Ω)) , (3.3)

∂tϕ ∈ L2
(
0, T ; (H1 (Ω))∗) , (3.4)

uniformly in time t ∈ (0, T ), for any T > 0.

Proof. We multiply the first and second equations of (1.1) scalarly by μ and ∂tϕ, respectively, then
equation (1.2) scalarly by u, and integrate by parts using the fact that u is divergent free, u · n = 0 and
∇μ · n = 0 on ∂Ω, to obtain

d

dt
E (t) +

∫

Ω

|∇μ (t)| dx = 0, t ∈ (0, T ) .

We also refer the reader to [8,11,12] for further details concerning this identity. In particular, integrating
the foregoing relation over (0, t) with t ∈ (0, T ) gives

sup
t∈[0,T ]

E (t) +
∫ T

0

∫

Ω

|∇μ (x, t)| dxdt ≤ E (0) , (3.5)

from which (3.1) follows. Indeed, for ϕ0 ∈ L∞ (Ω) , u0 ∈ H and J ∈ L1
loc

(
R

2
)

we have E (0) ≤
C (u0, ϕ0, ‖J‖L1). Next, we observe that owing to assumption (H2), we can find two positive constants
c1 >, c2 ≥ 0 such that F (s) ≥ c1s

2 − c2, for all s ∈ R . Hence, from (3.5) we clearly have ϕ ∈
L∞ (

0, T ;L2 (Ω)
)

and by virtue of [4, Theorem 2.1] it also follows that ϕ ∈ L∞ (0, T ;L∞ (Ω)) uniformly in
time t ∈ (0, T ) and T > 0, in dependance only of E (0) < ∞. Furthermore, since μ = a (x)ϕ−J∗ϕ+F

′
(ϕ)

we have owing to the first of assumption (H2) and a standard computation (see, e.g., [11, (4.23)]) that
for any p ∈ (1,∞) ,

‖∇ϕ‖Lp ≤ ‖∇μ‖Lp + C (R, ‖J‖W 1,1 , p, c0) , (3.6)
for R = R (E (0)) > 0 such that ‖ϕ‖L∞(0,T ;L∞(Ω)) ≤ R. By (3.5) and (3.6), the second assertion of (3.2 )
follows immediately as well. It is also clear that (3.3) holds by definition in light of the first of (3.2) and
the fact that J ∈ L1, a ∈ L∞. Finally, (3.4) is also verified by a comparison argument in (1.1) in light of
(3.2)–(3.3) and the fact that u ∈ L∞ (0, T ;H), which is a consequence of (3.1). �

We aim to deduce higher-order estimates for the solution of (1.1)–(1.5). To this end, we shall apply the
curl operator to equation (1.2) to eliminate the pressure term π. We obtain an equation for the vorticity
ω = ∇ × u = ∂x1u2 − ∂x2u1 associated with the velocity u = (u1, u2), as follows:

∂tω + u · ∇ω = −∇μ · ∇⊥ϕ, in Ω × (0, T ) , (3.7)

where u is still subject to the boundary and initial conditions of (1.4)–(1.5). We also rewrite Eq. (1.1) for
the order parameter ϕ, as follows:

∂tϕ + b−1 (u · ∇μ) + b−1u · (∇J ∗ ϕ − (∇a) ϕ) = −BNμ, in Ω × (0, T ) , (3.8)

where b (x, ϕ) := a (x) + F
′′

(ϕ) ≥ c0 by (H2), as well as b ∈ L∞ (0, T ;L∞ (Ω)) provided that ϕ ∈
L∞ (0, T ;L∞ (Ω)) [this was already established earlier in (3.2)].
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Theorem 3.2. Let u0 ∈ V = W 1,2 (Ω)∩H and ϕ0 ∈ W = L∞ (Ω)∩W 1,2 (Ω). Assume that J is admissible
in the sense of Definition 2.4. Then any smooth solution of (1.1)–(1.5) satisfies

ϕ ∈ L∞ (0, T ;W ) ∩ L2
(
0, T ;W 2,2 (Ω)

)
, (3.9)

μ ∈ L2 (0, T ;D (BN )) ∩ L∞ (
0, T ;W 1,2 (Ω)

)
, (3.10)

∂tϕ ∈ L2
(
0, T ;L2 (Ω)

)
, u ∈ L∞ (0, T ;V ) , (3.11)

uniformly in time t ∈ (0, T ) , for any T > 0. In addition if ϕ0 ∈ Cα
(
Ω

)
, α ∈ (0, 1) then

ϕ ∈ Cβ,β/2
(
Ω × ([0, T ])

)
, for some β ∈ (0, 1) . (3.12)

Proof. In order to derive the desired regularity in (3.9)–(3.10) it suffices to establish the following uniform
bounds

μ ∈ L∞ (
0, T ;W 1,2 (Ω)

)
, u ∈ L∞ (0, T ;V ) . (3.13)

In the proof of [11, Theorem 5] this was done by deriving the first bound of (3.13) using only (3.8) and
some a priori information based on which the velocity u ∈ L2

(
0, T ;W 1,2 (Ω)

)
. We recall that the latter

regularity is readily available for the Navier-Stokes Eq. (1.6) by the energy estimate performed earlier in
Proposition 3.1 (cf. e.g., [8]) whereas in the case of the Euler equation (1.2) much less is true, see (3.1).
On the other hand, our argument here makes also use of the vorticity Eq. (3.7), which exploited in unison
with (3.8) can produce the required bounds in (3.13). Therefore, we test the nonlocal Cahn-Hilliard Eq.
(3.8) by ∂tμ = b (x, ϕ) ∂tϕ − J ∗ ∂tϕ in L2 (Ω) to deduce

∫

Ω

(
b−1(u · ∇μ) + b−1u · (∇J ∗ ϕ − (∇a) ϕ)

)
∂tμdx +

∫

Ω

∂tϕ∂tμdx +
1
2

d

dt
‖∇μ‖2

L2 = 0. (3.14)

To estimate the first two integral terms on the left-hand side of (3.14) we can use the same arguments of
[11, (4.17)–(4.21)] to derive

d

dt
‖∇μ‖2

L2 +
c0

2

(
‖∂tϕ‖2

L2 +
1
2

‖BNμ‖2
L2

)

≤ Cc0,J,ε(R)
(‖u‖2

L2‖∇u‖2
L2

) ‖∇μ‖2
L2 + c‖J‖2

W 1,1‖∂tϕ‖2
(H1)∗

+Cc0,J(R) ‖u‖2
L2 + 2ε

(
‖BNμ‖2

L2 + ‖μ‖2
L2

)
, (3.15)

for any ε > 0. Let us now choose a sufficiently small ε ≤ c0/8 in order to absorb the L2-norm of BNμ
into the left-hand side and observe that μ ∈ L∞ (Ω × (0, T )) since ϕ is bounded. Furthermore, we shall
exploit the inequality (2.2). Thus, we find

d

dt
‖∇μ‖2

L2 + ε0

(
‖∂tϕ‖2

L2 + ‖BNμ‖2
L2

)

≤ C
(
‖u‖2

L2 + ‖μ‖2
L2 + ‖∂tϕ‖2

(H1)∗

)
+ C

(‖u‖2
L2‖∇μ‖2

L2

) ‖ω‖2
L2 , (3.16)

for some ε0 > 0 and C = C (c0, J, e0, R) > 0. We now test the vorticity Eq. (3.7) in L2 (Ω) by ω, use the
boundary condition u · n = 0 on ∂Ω and the fact that u is divergent free, such that

d

dt
‖ω‖2

L2 = − (∇μ · ∇⊥ϕ, ω
) ≤ ∥

∥∇μ · ∇⊥ϕ
∥
∥

L2 ‖ω‖L2 . (3.17)

Since
∥
∥∇⊥ϕ

∥
∥

Lp = ‖∇ϕ‖Lp and ∇⊥ϕ = b−1∇⊥μ + b−1
(∇⊥J ∗ ϕ − (∇⊥a

)
ϕ
)
, we have

∥
∥∇μ · ∇⊥ϕ

∥
∥

L2 ‖ω‖L2 ≤ ‖∇μ‖L4

∥
∥∇⊥ϕ

∥
∥

L4 ‖ω‖L2

≤ C (c0)
(
‖∇μ‖2

L4 +
∥
∥∇⊥J ∗ ϕ

∥
∥

L4 ‖∇μ‖L4 +
∥
∥∇⊥a

∥
∥

L4 ‖∇μ‖L4

)
‖ω‖L2

≤ C (c0, ‖J‖W 1,1 , R) ‖∇μ‖L2 (‖BNμ‖L2 + ‖μ‖L2) ‖ω‖L2

≤ C (c0, ε, ‖J‖W 1,1 , R) ‖∇μ‖2
L2 ‖ω‖2

L2 + ε
(
‖BNμ‖2

L2 + ‖μ‖2
L2

)
, (3.18)
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for any ε > 0, since ∇⊥a ∈ L∞ owing to J ∈ W 1,1, provided that

‖ϕ‖L∞(0,T ;L∞(Ω)) ≤ R.

Inserting (3.18) into the right-hand side of (3.17) and adding the resulting inequality to (3.16), and
selecting a sufficiently small ε < ε0, we infer

d

dt

(
‖∇μ‖2

L2 + ‖ω‖2
L2

)
+ ε0

(
‖∂tϕ‖2

L2 + ‖BNμ‖2
L2

)

≤ C
(
‖u‖2

L2 + ‖μ‖2
L2 + ‖∂tϕ‖2

(H1)∗

)
+ C

(‖u‖2
L2 + 1

) ‖∇μ‖2
L2‖ω‖2

L2 , (3.19)

for some ε0 > 0 and C = C (c0, ε, ‖J‖W 1,1 , R, ε0) > 0. Since ϕ is bounded, and so is μ, we observe that
by virtue of the uniform bounds established in the foregoing Proposition 3.1, we have by application of
Gronwall’s inequality that

∂tϕ ∈ L2(0, T ;L2 (Ω)), u ∈ L∞ (0, T ;V ) , (3.20)

μ ∈ L∞(0, T ;W 1,2 (Ω)) ∩ L2 (0,D (BN )) , (3.21)

by means of the Biot-Savart inequality (2.2) (indeed, ϕ0 ∈ W implies that μ0 ∈ W by the definition of
the chemical potential). The first of (3.21) together with (3.6) implies in particular

ϕ ∈ L∞ (
0, T ;W 1,2 (Ω)

)
. (3.22)

Furthermore, the continuous embedding

L∞(0, T ;W 1,2 (Ω)) ∩ L2 (0,D (BN )) ⊂ L4
(
0, T ;W 1,4 (Ω)

)

allows us to conclude from (3.21) and (3.6) that

μ, ϕ ∈ L4
(
0, T ;W 1,4 (Ω)

)
. (3.23)

As in the proof of [11, Theorem 5] we now control the H2-norm of ϕ (or at least the L2-norm of the
second derivatives ∂2

ijϕ := ∂2ϕ
∂xi∂xj

) in terms of the H2-norm of μ and (3.23). To this aim apply the second
derivative operator ∂2

ij to the second of (1.1), multiply the resulting identity by ∂2
ijϕ and integrate on Ω.

This entails
(
∂2

ijμ, ∂2
ijϕ

)
=

(
a + F ′′(ϕ), (∂2

ijϕ)2
)

+
(
∂ia∂jϕ + ∂ja∂iϕ, ∂2

ijϕ
)

+
(
ϕ∂2

ija − ∂i (∂jJ ∗ ϕ) , ∂2
ijϕ

)
+

(
F ′′′(ϕ)∂iϕ∂jϕ, ∂2

ijϕ
)
. (3.24)

This identity and the first of assumption (H2) yields

c0‖∂2
ijϕ‖2 ≤ c‖∂2

ijμ‖2 + c
(‖∇a‖2

L∞ + Q(R)
)‖∇ϕ‖2 + Q(R)‖∂2

ija‖2

+‖∂i(∂jJ ∗ ϕ)‖2 + Q (R) ‖∇ϕ‖4
L4 , (3.25)

and an estimate like this still holds if ‖∂2
ijϕ‖ and ‖∂2

ijμ‖ are replaced by ‖ϕ‖H2 and ‖μ‖H2 , respectively.
Thus, recalling (3.20)–(3.23) and using the fact that J ∈ W 2,1(Bδ) or J is admissible (i.e., (2.14) holds),
from (3.25) we easily get

ϕ ∈ L2
(
0, T ;H2 (Ω)

)
. (3.26)

Collecting (3.20)–(3.22) and (3.26) the desired properties in (3.9)–(3.11) are then verified. For the final
regularity in (3.12), we can now apply the result of [11, Lemma 2] to conclude owing to the fact that
u ∈ L∞ (0, T ;V ) ⊂ L4

(
0, T ;L4 (Ω)

)
. �

Lemma 3.3. Let the assumptions of Theorem 3.2 be satisfied and suppose in addition that ω0 = ∇ × u0 ∈
Lq (Ω) , for some given q ∈ (2,∞). Then the solution (u, ϕ) satisfies

ω = ∇ × u ∈ L∞ (0, T ;Lq (Ω)) , ∂tu ∈ L∞ (
0, T ;L2 (Ω)

)
. (3.27)

In particular, the following explicit estimate holds:

sup
t∈(0,T )

‖ω (t)‖Lq ≤ ‖ω0‖Lq + CT q1/2, (3.28)
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for some CT > 0 independent of u, ϕ, q ∈ (2,∞) and time t ∈ (0, T ) .

Proof. We test the vorticity Eq. (3.7) in L2 (Ω) by |ω|q−2
ω, use the boundary condition u · n = 0 on ∂Ω

and u is divergent free, to deduce

1
q

d

dt
‖ω‖q

Lq = −
(
∇μ · ∇⊥ϕ, |ω|q−2

ω
)

= −
∫

Ω

|ω|q−2
ωb−1

(∇μ · ∇⊥J ∗ ϕ − ∇μ · (∇⊥a
)
ϕ
)

≤ C (c0) ‖ω‖q−1
Lq

(∥∥∇μ · ∇⊥J ∗ ϕ
∥
∥

Lq +
∥
∥∇μ · (∇⊥a

)
ϕ
∥
∥

Lq

)

≤ C (c0, R, ‖J‖W 1,1) ‖ω‖q−1
Lq ‖∇μ‖Lq , (3.29)

owing once again to the fact that

∇⊥ϕ = b−1∇⊥μ + b−1
(∇⊥J ∗ ϕ − (∇⊥a

)
ϕ
)

and c0 ≤ b ≤ C (R, J) (also note that ∇μ · ∇⊥μ = 0). In particular, the foregoing estimate yields

d

dt
‖ω‖Lq ≤ C (c0, R, ‖J‖W 1,1) ‖∇μ‖Lq ≤ Cq1/2 ‖μ‖H2 (3.30)

where in the last inequality we have exploited the Trudinger inequality (2.1). The constant C > 0 in
(3.30) is clearly independent of q ∈ [2,∞). Integrating (3.30) over time and exploiting (3.21) to control
the L1

(
0, T ;H2 (Ω)

)
-norm of μ yields the desired conclusion in (3.28). Thus, the first of (3.27) has been

verified. It is left to check the second of (3.27). To this end, we test the Euler Eq. (1.2) in H by ∂tu to
find

‖∂tu‖2
L2 = −

∫

Ω

(u · ∇u) ∂tu +
∫

Ω

(μ∇ϕ) ∂tu

≤ ‖∂tu‖L2 (‖u · ∇u‖L2 + ‖μ∇ϕ‖L2)

using the fact that u · n = 0 on ∂Ω (which implies that ∂tu · n = ∂t (u · n) = 0 on ∂Ω) as well as
∂t (∇ · u) = 0. More precisely, in view of (2.2) and the continuous embedding W 1,q ⊂ L∞ for q > 2 it
holds

‖∂tu‖L2 ≤ ‖u · ∇u‖L2 + ‖μ∇ϕ‖L2

≤ ‖u‖L∞ ‖∇u‖L2 + ‖μ‖L∞ ‖ϕ‖W 1,2

≤ Cq ‖ω‖Lq ‖u‖V + C (R, J) ‖ϕ‖W 1,2 . (3.31)

Thus, from (3.22), (3.28) and the second of (3.20) we obtain the desired conclusion in (3.27). �

The previous estimates can be used to derive a sufficient condition so that our problem (1.1)–(1.5)
has bounded vorticity.

Corollary 3.4. Let the assumptions of Lemma 3.3 be satisfied and further assume that T > 0 is such that
∫ T

0

‖∇μ (t)‖L∞ dt ≤ CT . (3.32)

Then ω ∈ L∞ (0, T ;L∞ (Ω)) provided that in addition ω0 ∈ L∞ (Ω) .

Proof. The proof is immediate owing to the first inequality of (3.30) that can now be integrated in time.
The procedure yields an inequality in which the passage to the limit as q → ∞ can be easily performed,
owing to the fact that the constant on the right-hand side is independent of q > 2. �

Remark 3.1. In light of Lemma 3.3 note that we also have

π ∈ L∞ (
0, T ;H1 (Ω) /R

)
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by comparison in (1.2). Moreover, (3.32) can also be stated equivalently in terms of
∫ T

0

‖∇ϕ (t)‖L∞ dt ≤ CT .

Lemma 3.5. Let the assumptions of Lemma 3.3 hold. Then there exists a weak solution (u, ϕ) such that

ϕ ∈ L∞ (
0, T ;W 2,2 (Ω)

) ∩ W 1,∞ (
0, T ;L2 (Ω)

)
, (3.33)

μ ∈ L∞ (0, T ;D (BN )) ∩ W 1,2
(
0, T ;L2 (Ω)

)
(3.34)

provided that in addition ϕ0 ∈ W 2,2 (Ω) . It follows that

∂tu ∈ L∞ (0, T ;Lq (Ω)) , (3.35)

for any q ∈ (2,∞) such that ω0 = ∇ × u0 ∈ Lq (Ω) .

Proof. Recall that (3.27) holds. The proof of the first part of this lemma follows immediately from that
of [12, Theorem 2] where a bound

u ∈ L2
(
0, T ;W 2,2 (Ω) ∩ H

)

was used on the velocity. In fact, estimating in a more accurate way we can replace this bound in terms
of that ω ∈ L∞ (0, T ;Lq (Ω)) for the vorticity for some q ∈ (2,∞). Indeed the latter yields

u ∈ L∞ (
0, T ;W 1,q (Ω)

) ⊂ L∞ (0, T ;L∞ (Ω))

and so the same arguments in Step 2 of [12, Theorem 2] work with no essential modifications. It remains
to show (3.35); this turns out to be an improved version of the second of (3.27). Using the usual Hodge
decomposition of L2 (Ω), we apply the Leray projector P : L2 (Ω) → H, which is also bounded on Lp (Ω) ,
to Eq. (1.2) giving

∂tu + P (u · ∇u) = P (μ∇ϕ) , in Ω × (0, T ) . (3.36)

We then test (3.36) in L2 (Ω) by |∂tu|p−2
∂tu for some p ∈ (2,∞), to deduce

‖∂tu‖p
Lp = −

(
P (u · ∇u) , |∂tu|p−2

∂tu
)

+
(
P (μ∇ϕ) , |∂tu|p−2

∂tu
)

≤ (‖u · ∇u‖Lp + ‖μ∇ϕ‖Lp) ‖∂tu‖p−1
Lp ,

from which we obtain

‖∂tu‖Lp ≤ ‖u · ∇u‖Lp + ‖μ∇ϕ‖Lp

≤ Cp ‖u‖L∞ ‖ω‖Lp + Cp1/2 ‖μ‖L∞ (‖∇ϕ‖H1)

≤ Cp ‖ω‖Lq ‖ω‖Lp + C (R) p1/2 ‖ϕ‖H2

≤ C (R) p
(
‖ω‖2

Lq + ‖ϕ‖H2

)
, (3.37)

provided that p ≤ q. Here we have exploited the Trudinger inequality (2.1) and the Biot-Savart inequality
(2.2). Thus, (3.35) also follows in view of the regularity (3.33) and the first of (3.27). �

It remains to deduce a higher-order estimate for the order parameter ϕ, which will allow us to obtain
the control of (3.32). This will be performed by an iterative argument on the nonlocal Cahn-Hilliard Eq.
(1.1) to derive a regularity result on ∂tϕ ∈ L∞ (0, T ;Lp (Ω)) for any p ∈ (2,∞). Indeed, by the control of
(3.33), (3.27) we can see that

BNμ = f := −∂tϕ − u · ∇ϕ ∈ L∞ (0, T ;Lp (Ω)) ,

for any p ∈ (2,∞); this result together with the maximal regularity of the Neumann Laplacian yields
from (2.3) that

μ ∈ L∞ (
0, T ;W 2,p (Ω)

)
, for any p ∈ (2,∞) . (3.38)
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In particular, the continuous embedding W 2,p ⊂ W 1,∞ yields from (3.38) the desired control in (3.32) so
that Corollary 3.4 can be indeed verified. However, let us mention that in the Cahn-Hilliard Eq. (1.1) we
have

∂tϕ (0) = −u0 · ∇ϕ0 − BNμ (0) ∈ Lp (Ω)

if and only if μ (0) ∈ W 2,p (Ω) since u0 · ∇ϕ0 ∈ Lp (Ω), for any p ∈ (2,∞) owing to the fact that
ω0 ∈ L∞ (Ω) and ϕ0 ∈ W 2,2 (Ω) . By definition of the chemical potential μ (see the second of (1.1)), from
the identity (3.24) we have

∂2
ijμ = (a + F ′′(ϕ))∂2

ijϕ + ∂ia∂jϕ + ∂ja∂iϕ

+ϕ∂2
ija − ∂i (∂jJ ∗ ϕ) + F ′′′(ϕ)∂iϕ∂jϕ, (3.39)

for any i, j ∈ {1, 2}. Multiplying this identity by
∣
∣∂2

ijμ
∣
∣p−2

∂2
ijμ, for p > 2, we find by elementary Sobolev

inequalities,
∥
∥∂2

ijμ
∥
∥p

Lp ≤ C (R, J)
(∥
∥∂2

ijϕ
∥
∥

Lp + ‖ϕ‖H2 + ‖ϕ‖2
H2

)∥
∥∂2

ijμ
∥
∥p−1

Lp (3.40)

owing to the fact that ϕ ∈ L∞ (
0, T ;H2 (Ω)

)
and that J is admissible in the sense of Definition 2.4.

Therefore,
∥
∥∂2

ijμ (0)
∥
∥

Lp ≤ C
(
‖ϕ0‖H2 , J,

∥
∥∂2

ijϕ (0)
∥
∥

Lp

)

and so μ (0) ∈ W 2,p (Ω) turns out to be equivalent to having ϕ0 = ϕ (0) ∈ W 2,p (Ω), for p ∈ (2,∞). Now
that we have gotten the preliminaries out of the way, we can state and prove the following.

Lemma 3.6. Let ϕ0 ∈ W 2,p (Ω) and ω0 = ∇ × u0 ∈ L∞ (Ω) , u0 ∈ W 1,2 (Ω) ∩ H for some p ∈ (2,∞).
Assume that J is admissible and F ∈ C3 (R,R) obeys (H2). Then the conclusion of Corollary 3.4 is
verified. In particular, the solution (u, ϕ) satisfies

∇ × u ∈ L∞ (0, T ;L∞ (Ω)) , ϕ ∈ L∞ (
0, T ;W 2,p (Ω)

)
. (3.41)

Proof. We first differentiate both equations of (1.1) with respect to time. We have

∂2
t ϕ + div (∂tuϕ) + u · ∇∂tϕ = −BN∂tμ, in Ω × (0, T ) , (3.42)

and
∂tμ = b (x, ϕ) ∂tϕ − J ∗ ∂tϕ, in Ω × (0, T ) . (3.43)

Testing Eq. (3.42) in L2 (Ω) by |∂tϕ|λ−1
∂tϕ, λ > 1 and using the fact that u (t) , ∂tu (t) ∈ H, a.e.

t ∈ (0, T ) , we derive

1
λ + 1

d

dt
‖∂tϕ‖λ+1

Lλ+1 + λ

∫

Ω

|∂tϕ|λ−1 ∇∂tϕ · ∇∂tμdx

= λ

∫

Ω

ϕ |∂tϕ|λ−1 ∇∂tϕ · ∂tudx.

Applying the gradient on the identity (3.43) and replacing the resulting relation into the second term on
the left-hand side, we infer

d

dt
‖∂tϕ‖λ+1

Lλ+1 + λ (λ + 1) c0

∫

Ω

|∂tϕ|λ−1 |∇∂tϕ|2 dx ≤ I1 + I2 + I3, (3.44)

owing to assumption (H2), which states that b (x, ϕ) = a (x) + F
′′

(ϕ) ≥ c0; here, we have set
⎧
⎪⎨

⎪⎩

I1 := λ (λ + 1)
∫
Ω

ϕ |∂tϕ|λ−1 ∇∂tϕ · ∂tudx,

I2 := λ (λ + 1)
∫
Ω

|∂tϕ|λ−1 ∇∂tϕ · ∇J ∗ ∂tϕdx,

I3 := −λ (λ + 1)
∫
Ω

∂tϕ |∂tϕ|λ−1 ∇∂tϕ ·
(
∇a + F

′′′
(ϕ) ∇ϕ

)
dx.



Vol. 18 (2016) The Nonlocal Cahn-Hilliard-Euler System 669

We also note that

|∂tϕ|λ−1 |∇∂tϕ|2 =
(

2
λ + 1

)2 ∣
∣
∣∇|∂tϕ|λ+1

2

∣
∣
∣
2

. (3.45)

The simplest term I2 can be estimated, for any ε > 0,

|I2| ≤ ελ (λ + 1)
∫

Ω

|∂tϕ|λ−1 |∇∂tϕ|2 dx

+Cελ (λ + 1)
∫

Ω

|∂tϕ|λ−1 |∇J ∗ ∂tϕ|2 dx

≤ ελ (λ + 1)
∫

Ω

|∂tϕ|λ−1 |∇∂tϕ|2 dx

+Cελ (λ + 1) ‖∂tϕ‖λ−1
Lλ+1 (‖∇J‖L1 ‖∂tϕ‖Lλ+1)2

≤ ελ (λ + 1)
∫

Ω

|∂tϕ|λ−1 |∇∂tϕ|2 dx

+C (ε, ‖J‖W 1,1) λ (λ + 1) ‖∂tϕ‖λ+1
Lλ+1 . (3.46)

Concerning I3, we have

|I3| ≤ ελ (λ + 1)
∫

Ω

|∂tϕ|λ−1 |∇∂tϕ|2 dx

+C (ε, R, ‖∇a‖L∞) λ (λ + 1)
(

‖∂tϕ‖λ+1
Lλ+1 +

∫

Ω

|∂tϕ|λ+1 |∇ϕ|2 dx

)
. (3.47)

owing to ‖ϕ‖L∞(0,T ;L∞(Ω)) ≤ R and the fact that ∇a ∈ L∞ (Ω) (which is satisfied by assumption (H1)).
To estimate the last term on the right-hand side of (3.47) we must proceed in a more accurate way. We
shall make use of 2D Poincare-Young type inequality which can be proven by a contradiction argument
or alternatively, it can be shown as a consequence of the 2D Gagliardo-Nirenbeg-Sobolev inequality. For
any ε̃ > 0, there exists 0 < C = C (ε̃, q, r) ∼ (ε̃)−η (for some η = η (q, r) > 0) such that

‖ψ‖2
Lq ≤ ε̃ ‖∇ψ‖2

L2 + C ‖ψ‖2
Lr , for r ∈ (0, q) , (3.48)

for any q ∈ (1,∞). The Holder inequality with exponents (1 + δ, 1 + 1/δ) for any δ > 0 yields
∫

Ω

|∂tϕ|λ+1 |∇ϕ|2 dx ≤
(∫

Ω

|∂tϕ|λ+1
2 2(1+δ)

dx

)1/(1+δ)

×
(∫

Ω

|∇ϕ|2(1+1/δ)
dx

)δ/(δ+1)

≤ ‖∂tϕ‖λ+1
L(λ+1)(1+δ) ‖∇ϕ‖2

L2(1+1/δ)

≤ C (T,R, J) ‖∂tϕ‖λ+1
L(λ+1)(1+δ) , (3.49)

owing to the fact that ϕ ∈ L∞ (
0, T ;W 2,2 (Ω)

) ⊂ L∞ (
0, T ;W 1,2(1+1/δ) (Ω)

)
, for any δ > 0. Further

taking ψ = |∂tϕ|λ+1
2 in the inequality (3.48) with r = 1, we obtain

‖∂tϕ‖λ+1
L(λ+1)(1+δ) =

(∫

Ω

|ψ|2(1+δ)
dx

)1/(1+δ)

= ‖ψ‖2
L2(1+δ)

≤ ε̃
∥
∥
∥∇|∂tϕ|λ+1

2

∥
∥
∥

2

L2
+ C (ε̃, δ)

∥
∥
∥|∂tϕ|λ+1

2

∥
∥
∥

2

L1

=
4ε̃

(λ + 1)2

∫

Ω

|∂tϕ|λ−1 |∇∂tϕ|2 dx + C (ε̃, δ) ‖∂tϕ‖λ+1
Lλ+1 , (3.50)

by recalling (3.45). Combining (3.50) together with (3.49), we then infer from (3.47) that

|I3| ≤ 2ελ (λ + 1)
∫

Ω

|∂tϕ|λ−1 |∇∂tϕ|2 dx + C (λ, T,R, J) ‖∂tϕ‖λ+1
Lλ+1 . (3.51)
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by choosing ε̃ < ẽ0 (T, ε,R, J, λ) appropriately small, depending on C (T,R, J) and λ > 1. The dependance
of the constant C > 0 on the right-hand side of (3.51) in λ > 0 can be made explicit (i.e., C (λ, ·, ·, ·) ∼ λγ ,
for some γ > 0 independent of T, λ,R). The final term I1 can be estimated in a similar way. For any
ε > 0, we have

|I1| ≤ ελ (λ + 1)
∫

Ω

|∂tϕ|λ−1 |∇∂tϕ|2 dx

+C (ε, R) λ (λ + 1)
∫

Ω

|∂tϕ|λ−1 |∂tu|2 dx

≤ 2ελ (λ + 1)
∫

Ω

|∂tϕ|λ−1 |∇∂tϕ|2 dx + C (λ, T,R, J) ‖∂tϕ‖λ+1
Lλ+1 . (3.52)

where the last term on right-hand side of the first inequality in (3.52) can be estimated exactly as in
(3.49)–(3.51). Indeed, recall that since ω0 ∈ L∞ (Ω) ⊂ Lq (Ω), there holds ω ∈ L∞ (0, T ;Lq (Ω)), for any
q ∈ [2,∞) and ∂tu ∈ L∞ (0, T ;Lq (Ω)) as well, owing to the conclusion of Lemma 3.5 (see (3.35)). Putting
all the estimates (3.46), (3.51) and (3.52) together in (3.44) and choosing a sufficiently small ε ≤ c0/10,
we arrive at the inequality

d

dt
‖∂tϕ‖λ+1

Lλ+1 +
c0λ

λ + 1

∫

Ω

∣
∣
∣∇|∂tϕ|λ+1

2

∣
∣
∣
2

dx ≤ C (λ,R, T, J) ‖∂tϕ‖λ+1
Lλ+1 . (3.53)

Integrating now (3.53) in time, we immediately deduce that

∂tϕ ∈ L∞ (
0, T ;Lλ+1 (Ω)

)
,

for any λ > 1 for as long as ∂tϕ (0) ∈ Lλ+1 (Ω). In particular, it follows that (3.38) holds with p = λ + 1
and so a simple argument like in (3.40) involving the identity (3.39) gives ϕ ∈ L∞ (

0, T ;W 2,λ+1 (Ω)
)
,

which is the desired claim in (3.41). The first of (3.41) is already a consequence of this estimate and the
statement of Corollary 3.4. The proof of Lemma 3.6 is thus concluded. �

Theorem 3.7. Let the assumptions of Lemma 3.6 be satisfied and assume in addition that u0 ∈ W 3,2 (Ω)∩
H. Then the solution (u, ϕ) also has the following regularity

u ∈ L∞ (
0, T ;W 3,2 (Ω) ∩ H

)
. (3.54)

Proof. We apply the gradient ∇ to the vorticity equation. We have

∂t (∇ω) = −∇ (u · ∇ω) − ∇ (∇μ · ∇⊥ϕ
)

in Ω × (0, T ) .

Testing this equation in L2 (Ω) by ∇ω we deduce

1
2

d

dt
‖∇ω‖2

L2 = −
∫

Ω

∇ (u · ∇ω) · ∇ωdx −
∫

Ω

∇ (∇μ · ∇⊥ϕ
) · ∇ωdx = K1 + K2. (3.55)

We first have using the usual Einstein summation convention, and the fact that u is divergent free and
u · n = 0 on ∂Ω,

K1 = −
∫

Ω

∂m (uk∂kω) ∂mωdx

= −
∫

Ω

∂muk∂kω∂mωdx − 1
2

∫

Ω

uk∂k (∂mω)2 dx

= −
∫

Ω

∂muk∂kω∂mωdx

≤ ‖∇u‖L∞ ‖∇ω‖2
L2 . (3.56)

At this point we shall apply the following inequality (cf., e.g., [7, Lemma 4.3]) with a > 0,

‖v‖L∞ ≤ C sup
q≥2

‖v‖Lq

qa
(ln (e + ‖v‖H2))a

, (3.57)



Vol. 18 (2016) The Nonlocal Cahn-Hilliard-Euler System 671

for some constant C > 0 independent of v. We note that the inequality in [7, Lemma 4.3] was stated in
the case Ω = R

2 but it also holds in any bounded domain Ω ⊂ R
2 with a boundary of class C3 by simply

exploiting a suitable extension operator E : W 2,2 (Ω) → W 2,2
(
R

2
)
, given by Ev = ṽ with the extension

ṽ ∈ Cb

(
R

2
)

satisfying (3.57). Appealing also to the fact that ‖∇u‖W 2,2 ≤ C ‖ω‖W 1,2 owing to [3, Lemma
5] and ‖ω‖L∞(0,T ;L∞(Ω)) ≤ CT , then from (3.56) we obtain

|K1| ≤ C sup
q≥2

‖∇u‖Lq

q
(ln (e + ‖ω‖W 1,2))

≤ C sup
q≥2

‖ω‖Lq (ln (e + ‖ω‖W 1,2))

≤ C (T,R, J,Ω) (ln (e + ‖ω‖W 1,2)) , (3.58)

by means of the Biot-Savart inequality (2.2). On the other hand, for some p > 2, K2 can be estimated as
follows:

K2 = −
∫

Ω

∂m

(
∂kμ∂⊥

k ϕ
)
∂mωdx

= −
∫

Ω

∂2
mkμ∂⊥

k ϕ∂mωdx −
∫

Ω

∂kμ
(
∂m∂⊥

k ϕ
)
∂mωdx

� ‖∇ω‖L2

(∥∥∇⊥ϕ
∥
∥

L∞ ‖μ‖H2 + ‖∇μ‖L∞ ‖ϕ‖H2

)

≤ C (T,R, J) ‖∇ω‖L2 (‖ϕ‖W 2,p + ‖μ‖W 2,p)

≤ C
(
1 + ‖∇ω‖2

L2

)
. (3.59)

Set now z (t) := C + ‖ω (t)‖2
W 1,2 . Inserting the estimates (3.58)–(3.59) into the right-hand side of (3.46)

and adding the resulting inequality to that of (3.29) with q = 2, we obtain

d

dt
z (t) ≤ C (T,R,Ω, J) ln (e + z (t)) z (t) , t ∈ (0, T ) .

Integrating this inequality over time t ∈ (0, T ), we deduce

‖ω (t)‖2
W 1,2 ≤ C (T,R, J,Ω) ∼ eeCT

, t ∈ (0, T ) . (3.60)

Thus since ‖∇u‖W 2,2 ≤ C ‖ω‖W 1,2 , (3.60) yields the corresponding regularity in (3.54). This completes
the proof. �

We shall now focus our attention to showing the uniqueness of solutions in the class of bounded vortic-
ities. Although this is just some variation of the famous Yudovich theorem (see [29]), for the convenience
of the reader, we give below an explicit proof of this result for our inviscid system (1.1)–(1.5). Theorem
2.5 follows then from Theorem 3.8 below.

Theorem 3.8. Let (ui, ϕi) be any two solutions, which are at least regular as in Definition 2.1, such that
the corresponding vorticities

ωi = ∇ × ui ∈ L∞ (0, T ;L∞ (Ω)) . (3.61)

Then u1 ≡ u2, ϕ1 ≡ ϕ2 in Ω × (0, T ) provided that (u1 (0) , ϕ1 (0)) ≡ (u2 (0) , ϕ2 (0)).

Proof. Let us set u (t) = u1 (t) − u2 (t) and ϕ (t) = ϕ1 (t) − ϕ2 (t). Consider

Y (t) := ‖u (t)‖2
L2 +

∥
∥
∥B

−1/2
N (ϕ (t) − ϕ (t))

∥
∥
∥

2

L2

and observe that by Definition 2.1 and (3.61), (u, ϕ) ∈ C
(
[0, T ] ;H × L2 (Ω)

)
and Y is absolutely contin-

uous on (0, T ). First, exactly as in [11] rewriting the Korteweg force as

K (ϕ) = −∇a
ϕ2

2
− (J ∗ ϕ)∇ϕ (3.62)
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by incorporating any potential terms in the pressure π̃ := π − F (ϕ) + aϕ2/2, we see that the difference
(u (t) , ϕ (t)) satisfies the system

∂tϕ = −BN μ̃ − u · ∇ϕ1−u2 · ∇ϕ, μ̃ = aϕ − J ∗ ϕ + F ′(ϕ2) − F ′(ϕ1), (3.63)

∂tu + (u1 · ∇)u + (u · ∇)u2 + ∇π̃ = −ϕ(ϕ1 + ϕ2)
∇a

2
− (J ∗ ϕ)∇ϕ2 − (J ∗ ϕ1)∇ϕ, (3.64)

where π̃ := π̃2 − π̃1 and div(u) = 0, u · n = 0 on ∂Ω. Moreover, by (3.61) and (2.2) we know that
ui ∈ L∞ (

0, T ;W 1,p (Ω)
)

for any p ∈ (2,∞) , and so

‖∇ui (t)‖Lp ≤ Cp, t ∈ [0, T ] . (3.65)

We multiply (3.64) by u in H and the first of (3.63) by B−1
N (ϕ − 〈ϕ〉) (notice that we also have 〈ϕ〉 =

〈ϕ1 (0)〉−〈ϕ2 (0)〉 ≡ 0 since ϕ1 (0) ≡ ϕ2 (0) by assumption). After standard transformations, we arrive at

d

dt
Y (t) + 2(a (x) ϕ + F ′(ϕ1) − F ′(ϕ2), ϕ) ≤ 2

6∑

j=1

|Ij | , (3.66)

where ⎧
⎨

⎩

I1 = − 1
2 (ϕ (ϕ1 + ϕ2) ∇a, u) , I2 = − ((J ∗ ϕ) ∇ϕ2, u) ,

I3 = − ((J ∗ ϕ1) ∇ϕ, u) , I4 = − (
u · ∇ϕ1, B

−1
N (ϕ − 〈ϕ〉)) ,

I5 = − (
u2 · ∇ϕ,B−1

N (ϕ − 〈ϕ〉)) , I6 = − (u · ∇u2, u) .

Since ϕi ∈ L∞ (0, T ;L∞ (Ω)) and J ∈ W 1,1
loc

(
R

2
)
, we estimate I1 − I3 in the following simple way:

|I1| ≤ ‖ϕ‖L2‖ϕ1 + ϕ2‖L∞‖∇a‖L∞‖u‖L2

≤ ε‖ϕ‖2
L2 + C (ε, R, J) ‖u‖2

L2 , (3.67)

|I2| = |(ϕ2, (∇J ∗ ϕ)u)| ≤ ‖ϕ2‖L∞‖∇J ∗ ϕ‖L2‖u‖L2

≤ ε‖ϕ‖2
L2 + C (ε, R, J) ‖u‖2

L2 , (3.68)

|I3| = |((∇J ∗ ϕ1)ϕ, u)| ≤ ‖∇J ∗ ϕ1‖L∞‖ϕ‖‖u‖L2

≤ ε‖ϕ‖2
L2 + C (ε, R, J) ‖u‖2

L2 , (3.69)

for any ε > 0. Since ui ∈ L∞ (0, T ;L∞ (Ω)) by (3.65) we also have

|I4| =
∣
∣(u · ∇B−1

N (ϕ − 〈ϕ〉), ϕ1

)∣∣ ≤ ‖u‖L2‖∇B−1
N (ϕ − 〈ϕ〉)‖L2‖ϕ1‖L∞

≤‖u‖2
L2 + C (R) ‖B

−1/2
N (ϕ − 〈ϕ〉)‖2

L2 , (3.70)

|I5| =
∣
∣(u2 · ∇B−1

N (ϕ − 〈ϕ〉), ϕ)
∣
∣ ≤ ‖ϕ‖L2‖u2‖L∞‖∇B−1

N (ϕ − 〈ϕ〉)‖L2

≤ε‖ϕ‖2
L2 + C (R, J) ‖∇B−1

N (ϕ − 〈ϕ〉)‖2
L4 . (3.71)

For p > 1 arbitrary and 1/p+1/p∗ = 1, by virtue of the interpolation inequality ‖u‖L2p∗ ≤‖u‖1−1/p
L2 ‖u‖1/p

L∞ ,
the final term is estimated as follows:

|I6| = |(u · ∇u2, u)| ≤ C ‖u‖2
L2p∗ ‖∇u2‖Lp (3.72)

≤ Cp ‖u‖2(1−1/p)
L2 ≤ CpY (t)1−1/p

.

Collecting all the estimates from (3.67)–(3.72) into (3.66), then exploiting assumption (H2) (which yields
(a (x) ϕ + F ′(ϕ1) − F ′(ϕ2), ϕ) ≥ c0 ‖ϕ‖2

L2 ) and choosing a sufficiently small ε ≤ c0/4, we obtain

d

dt
Y (t) ≤ CpY (t)1−1/p + CY (t) , t ∈ (0, T ) , (3.73)

for any p > 1. Since we need an estimate for Y (t) ≤ 1 small only (recall that Y (t) remains always
bounded on [0, T ]), from (3.73) we infer

d

dt
Y (t) ≤ CpY (t)1−1/p

,
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for some constant C = C (R, J) > 0 independent of p. Take p = log (K/E (t)) for some sufficiently large
K > 0 such that p > 1. Therefore, we deduce

d

dt
Y (t) ≤ CY (t) log

K

Y (t)
,

which can be integrated in time over the interval (δ, t) , for some t > δ to find

Y (t) ≤ K

(
Y (δ)
K

)e−C(t−δ)

.

Passing to the limit as δ → 0+ into the foregoing inequality and recalling that Y ∈ C [0, T ], we derive
that Y (t) = 0 on [0, T ]. The proof of Theorem 3.8 is concluded. �
Remark 3.2. We briefly explain how the case Ω = R

2 (or Ω ⊂ R
2 is a smooth compact manifold without

boundary) can be handled with our present analysis. We shall focus mainly on the case Ω = R
2 since

the case of a compact manifold without boundary can be actually reduced to this. The energy estimate
provided by the statement of Proposition 3.1 holds without any modifications also in the case Ω = R

2

(refer also [7] to in the classical case). Relying on the fact that the nonlocal Cahn-Hilliard equation
is a parabolic equation of second-order, the bound ϕ ∈ L∞ (

0, T ;L∞ (
R

2
))

is obtained exactly in the
same fashion as in [4]. The energy estimate (3.13) produced by the statement of Theorem 3.2 can still be
recovered since both the Trudinger and the Biot-Savart inequalities (2.1), (2.2) are still valid in R

2. The
Hölder regularity result in [11, Lemma 2] requires no essential modifications while the other remaining
statements of Lemmas 3.3, 3.5, 3.6 and Theorem 3.7 can be easily reproduced by energy methods.

We now conclude that both Theorems 2.6 and 2.3 follow from the statements of the results proven in
this section, and a proper approximation scheme for problem (1.1)–(1.5) that we explain in the sequel.
Let ε ∈ (0, 1) be a given small parameter and for some R > 0, let

ϕ ∈ Z =
{
ϕ ∈ L∞ (0, T ;L∞ (Ω)) ∩ L2

(
0, T ;W 1,2 (Ω)

)
: ‖ϕ‖Z ≤ R

}
.

Also observe that Z is a closed convex subset of

L∞ (0, T ;L∞ (Ω)) ∩ L2
(
0, T ;W 1,2 (Ω)

)

when endowed with the corresponding metric topology. Consider next a further regularizing sequence ϕε

for ϕ such that ϕε ∈ L∞ (
0, T ;W 2,p (Ω)

)
for some p > 2, such that

‖ϕε‖Z ≤ ‖ϕ‖Z (3.74)

uniformly with respect to ε ∈ (0, 1). We rewrite the Korteweg force μ∇ϕ as (a (x)ϕ − J ∗ ϕ) ∇ϕ by
incorporating the remainder ∇F (ϕ) into the pressure term. Further, for any given initial data ϕ0 ∈ W =
W 1,2 (Ω) ∩ L∞ (Ω) , u0 ∈ V = W 1,2 (Ω) ∩ H, consider smooth sequences of data {ϕ0,ε} ⊂ W 2,p (Ω) ,
{u0,ε} ⊂ W 3,2 (Ω) ∩ H such that the following hold uniformly in ε :

‖ϕ0,ε‖W ≤ ‖ϕ0‖W and ‖u0,ε‖V ≤ ‖u0‖V . (3.75)

We can consider the following Euler equation with both a smooth initial datum and smooth forcing as
follows: ⎧

⎨

⎩

∂tu + (u · ∇) u + ∇π̃ = (a (x)ϕε − J ∗ ϕε) ∇ϕε

div (u) = 0, u · n = 0 on ∂Ω,
u|t=0 = u0,ε.

(3.76)

Denote the corresponding solution by uε and the corresponding pressure by π̃ε. Let us denote

fε = (a (x) ϕε − J ∗ ϕε) ∇ϕε

and note that

curl (fε) = − (∇aϕε + a∇ϕε − ∇J ∗ ϕε) · ∇⊥ϕε ∈ L∞ (0, T ;L∞ (Ω))

as well as

∇curl (fε) ∈ L∞ (
0, T ;L2 (Ω)

)
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owing to the fact that ϕε ∈ L∞ (
0, T ;W 2,p (Ω)

)
and J is admissible in the sense of Definition 2.4. Since

u0,ε is also smooth by construction, it is easy to see from the proof of Theorem 3.7 that

uε ∈ L∞ (
0, T ;W 3,2 (Ω) ∩ H

) ∩ W 1,∞ (
0, T ;W 1,2 (Ω) ∩ H

)
. (3.77)

The second regularity in (3.77) is immediate by virtue of the first of (3.77) and a similar argument that we
have employed for (3.36). Next, for the solution uε obtained by this procedure we can solve the parabolic
problem associated with the nonlocal Cahn-Hilliard equation as follows:

{
∂tϕ + uε · ∇ϕ = −BNμ, μ = a (x) ϕ − J ∗ ϕ + F

′
(ϕ) ,

ϕ|t=0 = ϕ0,ε.
(3.78)

We denote its corresponding solution by ϕε and the chemical potential by με. We observe that due to
the regularity proven for (3.78) in this section (cf. also [11]), we have

ϕε ∈ Cβ,β/2
(
Ω × [0, T ]

) ∩ L∞ (
0, T ;W 2,p (Ω)

) ∩ W 1,∞ (0, T ;Lp (Ω)) (3.79)

with similar properties for με. Thus, we define a mapping Sε (ϕ) = ϕε on which we aim to apply the
Schauder fixed point theorem. In order to do so, we must check the following properties:
(1) Sε is well defined as a mapping from Z into Z . In particular, it suffices to check that

‖ϕε‖2
Z ≤ R0,

for some constant R0 > 0 which is independent of R > 0 and ε ∈ (0, 1).
(2) We have ϕε ∈ Cβ,β/2

(
Ω × [0, T ]

) ∩ L2
(
0, T ;W 2,2 (Ω)

)
, which is in fact already a consequence of

(3.79). Note that this property entails that Sε is a compact mapping.
(3) The mapping Sε is continuous on Z. In particular, owing to the regularity (3.79) it suffices to show

that

‖ϕ1ε − ϕ2ε‖(W 1,2)∗ ≤ R1 ‖ϕ1 − ϕ2‖Z ,

where ϕiε are any two solutions, satisfying (3.79 ), such that Sε (ϕi) = ϕiε, for given ϕi ∈ Z, i = 1, 2.
Here the constant R1 > 0 may also depend on ε ∈ (0, 1) .

After these conditions are satisfied, we can apply the conclusion of the Schauder fixed point theorem
to infer the existence of at least one fixed point ϕε such that Sε (ϕε) = ϕε. In particular, such a fixed
point solution will satisfy (3.79) and therefore the solution uε of the Euler Eq. (3.76) (where we replace
ϕε by ϕε

ε) will also be smooth in the class of (3.77). In particular, these considerations allow us to perform
rigorously the required computations and estimates in this section. In order to ensure some compactness
for these approximating sequence of solutions (uε, ϕε), and properly pass to the limit as ε → 0, to deduce
the existence results stated in Theorems 2.3 and 2.6, we would require to obtain uniform estimates with
respect to ε. For instance, for the statement of Theorem 2.3, we would need to show:

(4) For any T > 0, we have

‖uε‖L∞(0,T ;V ) ≤ C, ‖ϕε‖L∞(0,T ;W ) ≤ C, (3.80)

for some constant C > 0 independent of ε. Indeed, as these uniform bounds are realized, it can be
easily checked that the limit function of (uε, ϕε) as ε → 0 is indeed a weak solution of (1.1)–(1.5)
in the sense of Definition 2.1. Higher-order estimates can be also performed uniformly with respect
to ε ∈ (0, 1) in light of the proofs of Lemmas 3.3, 3.5, 3.6 and Theorem 3.7. Thus a passage to the
limit in these estimates can be performed as well and thus one can also verify the whole statement
of Theorem 2.6 . As usual, these arguments can be concluded by noticing that T > 0 is arbitrary
in all of these estimates.

Let us now briefly explain how to get all of (1)–(4). To show (1), we first multiply the first equation
of (3.76) in H by u = uε, to deduce

d

dt
‖uε‖2

L2 ≤ 2 ‖(a (x)ϕε − J ∗ ϕε) ∇ϕε‖L2 ‖uε‖L2 .
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In particular, owing to (3.75) and (3.74) this estimate yields

‖uε (t)‖2
L2 ≤ 2 ‖u0‖2

L2 + 8

(∫ T

0

‖(a (x) ϕε − J ∗ ϕε) ∇ϕε‖L2 ds

)2

≤ 2 ‖u0‖2
L2 + C (J)

(
R2T 2 + R3T

)
, (3.81)

for some C = C (J) > 0 independent of ε,R, for any given R > 0 and T > 0. In particular, this shows
that uε ∈ L∞ (0, T ;H) uniformly bounded for any ε ∈ (0, 1). With this information we can proceed to
obtain an estimate for the solution ϕε of (3.78) as follows. We multiply the first equation of (3.78) by ϕ
and integrate by parts over Ω. We derive

d

dt
‖ϕε‖2

L2 + 2
∫

Ω

(
a (x) + F

′′
(ϕε)

)
|∇ϕε|2 dx

= 2 (∇J ∗ ϕε,∇ϕε) − 2 (∇aϕε,∇ϕε)

≤ C (ε, ‖J‖W 1,1) ‖ϕε‖2
L2 + 2ε ‖∇ϕε‖2

L2 , (3.82)

for any ε > 0. By assumption (H2) we can then absorb the small ε-term on the left hand side. Integrating
the resulting inequality over time and recalling (3.75), we derive

‖ϕε‖L∞(0,T ;L2(Ω))∩L2(0,T ;W 1,2(Ω)) ≤ C (T, ‖ϕ0‖L2) , (3.83)

where the constant on the right-hand side is clearly independent of ε > 0 and on R > 0. Since uε ∈
L∞ (0, T ;H) is divergent free and uε · n = 0 on ∂Ω, we can also multiply the first of (3.78) by |ϕε|p−1

ϕε

and perform a Moser-like iteration as in the proof of [4, Theorem 2.1] to find that

‖ϕε‖L∞(0,T ;L∞(Ω)) ≤ C
(
‖ϕ0,ε‖L∞(Ω) , ‖ϕε‖L∞(0,T ;L2(Ω))

)
.

Then owing to (3.83) and (3.75) we also arrive at ϕε ∈ L∞ (0, T ;L∞ (Ω)) uniformly with a constant
R0 = R0(T, ‖ϕ0‖L∞(Ω)) that is independent in ε > 0 and R > 0; together with (3.83) it concludes the
proof of property (1). In particular, we also have

με ∈ L2
(
0, T ;W 1,2 (Ω)

) ∩ L∞ (0, T ;L∞ (Ω)) (3.84)

uniformly with respect to ε ∈ (0, 1). Note that the proceeding uniform bounds were the starting point
of the proof of Theorem 3.2. Hence, it can be concluded that the approximate solutions (uε, ϕε) satisfy
(3.9)–(3.12) there uniformly with respect to ε. In particular, (3.80) is indeed verifiable. It follows that the
second property (2) is also satisfied. To show the continuity of the mapping Sε, we consider the differences
ϕ = ϕ1 − ϕ2, uε = u1ε − u2ε, ϕε = ϕ1ε − ϕ2ε, and observe that (uε, ϕε) satisfies the following problem

∂tϕε = −BN μ̃ε − uε · ∇ϕ1ε−u2ε · ∇ϕε, (3.85)

μ̃ε = aϕε − J ∗ ϕε + F ′(ϕ2ε) − F ′(ϕ1ε), (3.86)

∂tuε + (u1ε · ∇)uε + (uε · ∇)u2ε + ∇π̃ε = gε, (3.87)

with uε (0) ≡ 0, ϕε (0) ≡ 0. Here we have set

gε = (a (x) ϕε − J ∗ ϕε) ∇ϕε
1 + (a (x)ϕε

2 − J ∗ ϕε
2) ∇ϕε.

Testing first Eq. (3.87) in H by uε, by standard estimates we deduce

d

dt
‖uε‖2

L2 ≤ 2 ‖uε‖2
L2 ‖∇u2ε‖L∞ + ‖gε‖L2 ‖uε‖L2 (3.88)

� (1 + ‖∇u2ε‖L∞) ‖uε‖2
L2 + ‖gε‖2

L2 .

Notice now that gε ∈ L2
(
0, T ;L2 (Ω)

)
and

∫ T

0

‖gε (s)‖2
L2 ds ≤ C (J) R ‖ϕ (T )‖2

Z . (3.89)
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Since uε is smooth owing to (3.77), we can infer from (3.88) and the application of Gronwall’s inequality,
that

‖uε (t)‖2
L2 ≤ C (ε, J,R, T ) ‖ϕ (t)‖2

Z , t ∈ (0, T ) . (3.90)

In fact, the constant on the right-hand side of (3.90) can be chosen independently of ε, but this is not
much relevant at this point. On the other hand, multiplying (3.85) scalarly B−1

N (ϕε − 〈ϕε〉) (notice that
we also have 〈ϕε (t)〉 = 〈ϕε (0)〉 ≡ 0). After standard transformations as in the proof of Theorem 3.8, we
deduce

d

dt
‖ϕε‖2

(W 1,2)∗ + 2(a (x)ϕε + F ′(ϕ1ε) − F ′(ϕ2ε), ϕε) ≤ 2 |J1 + J2 + J3| , (3.91)

where

J1 = − (
u2ε · ∇ϕε, B

−1
N ϕε

)
, J2 = − (

uε · ∇ϕ1ε, B
−1
N ϕε

)
,

J3 =
(
J ∗ ϕε, B

−1
N ϕε

)
.

We can estimate the terms J1 − J3 exactly as in (3.70)–(3.71), to deduce

|J3| ≤ ‖∇J ∗ ϕε‖L2

∥
∥∇B−1

N ϕε

∥
∥

≤ ε ‖ϕε‖2
L2 + C (J, ε) ‖ϕε‖2

(W 1,2)∗ ,

|J1 + J2| ≤ ε ‖ϕε‖2
L2 + ‖uε‖2

L2 + C (J, ε, R) ‖ϕε‖2
(W 1,2)∗ (3.92)

These estimates together with (3.91) and (3.90) then yield

‖ϕε (t)‖2
(W 1,2)∗ ≤ C (T,R, J, ε) ‖ϕ (t)‖2

Z , t ∈ (0, T ) ,

which is the required property (3). By these considerations we can then conclude the entire thesis of this
contribution.
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