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Abstract. This paper deals with the problem of regularity criteria for the 2D generalized MHD system with fractional
dissipative terms −Λ2αu for the velocity field and −Λ2βb for the magnetic field respectively. Various regularity criteria are
established to guarantee smoothness of solutions. It turns out that our regularity criteria imply previous global existence
results naturally.

Mathematics Subject Classification. 74D05, 35Q72, 35L70, 35B40.

Keywords. Generalized MHD system, regularity criteria, scaling invariant.

1. Introduction

We consider the following two-dimensional generalized MHD (GMHD, for simplicity) system:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut + u · ∇u + ∇π + Λ2αu − b · ∇b = 0, (t, x) ∈ R
+ × R

2,

bt + u · ∇b + Λ2βb − b · ∇u = 0, (t, x) ∈ R
+ × R

2,

div u = 0,div b = 0, (t, x) ∈ R
+ × R

2,

(u, b)(x, 0) = (u0, b0)(x), x ∈ R
2,

(1.1)

here u = u(x, t) ∈ R
2, b = b(x, t) ∈ R

2, and π = π(x, t) ∈ R represent the unknown velocity field, the
magnetic field and the pressure respectively. α ≥ 0, β ≥ 0 are real parameters. We identify the case
α = β = 0 as the 2D GMHD system with zero velocity and zero magnetic diffusion respectively (so called
idea MHD equations). Λ = (−Δ)

1
2 is defined in terms of Fourier transform by Λ̂f(ξ) = |ξ|f̂(ξ).

First of all, local well-posedness and global existence results are established in [1–4]. Then, we mention
some results about the global regularity theory for the 2D GMHD systems. In [5], Tran, Yu and Zhai
proved that smooth solutions are global in the following three cases: α ≥ 1, β ≥ 1; 0 ≤ α < 1

2 , 2α+β > 2;
α ≥ 2, β = 0. Recently, Jiu and Zhao got a global regular solution under the assumption that 0 ≤ α < 1

2 ,
β ≥ 1, 3α + 2β > 3. In particular, it was proved the solution exists globally for the case α = 0, β > 3

2 ,
this result was also proved independently in [6,7]. Later, global regularity for the case α = 0, β > 1 was
established in [8] and [9] independently. Meanwhile, using the Fourier series analysis Ji proved the global
regularity criterion when 1

2 < α ≤ 1, β = 1 in [10]. Very recently, it was improved that the solution of the
2D GMHD system exists globally for the case α > 0, β = 1 in [11].

Extensive studies on regularity criterion theory have also been made for the 2D GMHD systems with
α = 1, β = 0. The following regularity criterion on the magnetic field

b ∈ Lp(0, T ;W 2,q(R2)), with
2
p

+
1
q

≤ 2, 1 ≤ p ≤ 4
3
, 2 < q ≤ ∞,

is given in [12]. But it is not scaling invariant. Later, in [13], Fan and Ozawa proved a regularity
criterion on the velocity field as ∇u ∈ L1(0, T ;L∞(R2)). A regularity criterion in terms of b ⊗ b as
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b ⊗ b ∈ L1(0, T ;BMO(R2)) is proved in [14], and another regularity criterion in terms of ∇b as ∇b ∈
L1(0, T ;BMO(R2)) is proved in [15].

Now, we introduce some notations which will be used in this paper. Use ‖ · ‖p to denote the Lp(R2)
norm. Throughout this paper, C denotes a generic positive constant (generally large), it may be different
from line to line. Use f̂ to denote the Fourier transform of f . We introduce the norm Lp,q

‖f‖Lp,q =

{
(
∫ t

0
‖f(·, τ)‖p

Lqdτ)
1
p , if 1 ≤ p < ∞,

esssup 0<τ<t ‖f‖Lq , if p = ∞.

From [16], we know that if α = β and (u, b)(x, t) is a solution to (1.1), then (uλ, bλ)(x, t) with any
λ > 0 is also a solution, where uλ(x, t) = λ2α−1u(λx, λ2αt) and bλ(x, t) = λ2α−1b(λx, λ2αt). Direct
calculation yields the norms ‖u‖Lp,q and ‖Λγu‖Lp,q are scaling dimension zero for 2α

p + 2
q = 2α − 1 and

2α
p + 2

q = 2α + γ − 1 respectively. It should be noted that both equations have the same scaling property
according to the dimensions 2 and 3. Another similarity from a scaling viewpoint can be found in the 2D
dissipative quasi-geostrophic equation whose global well-posedness had been solved by Kiselev–Nazarov–
Volberg [17], and whose further development of regularity of weak solutions was fully established by
Caffarelli–Vasser [18]. In this respect, we may say that the topic of the present paper plays a central role
in the research of regularity theorems on solutions arising in the equations of the fluid mechanics. This
paper is devoted to obtaining some scaling invariant regularity criteria for the general system (1.1). Such
a criterion on the 3D Euler equations was first obtained by Beale–Kato–Majda [19] in the case when
ω ∈ L1(0, T ;L∞(R3)). It should be emphasized that the present paper treats also the marginal case when
ω ∈ L1(0, T ;BMO) like Kozono–Taniuchi [20] in the reference. Here, we also would like to call attention
to a recent work on related generalized Hall-MHD system [21] and references therein.

Our main results are the following four theorems. In what follows, we set ρ = max{ 2
α , 2}, � =

max{ 2
β , 2}. The first theorem is for large α and β.

Theorem 1.1. Let α, β ≥ 1
2 . Suppose u0(x), b0(x) ∈ H2(R2) and (u, b)(x, t) is a local smooth solution of

the system (1.1). If ω(x, t), j(x, t) satisfy
∫ T

0

‖ω(·, t)‖
1

1−θβ
p dt ≤ C(T ), (1.2)

or
∫ T

0

‖ω(·, t)‖2�dt ≤ C(T ), (1.3)

or
∫ T

0

‖j(·, t)‖2ρdt ≤ C(T ), (1.4)

or
∫ T

0

‖j(·, t)‖2�dt ≤ C(T ), (1.5)

then (u, b)(x, t) is a regular solution in (0, T ′] for some T ′ > T . Here ω = −∂2u1+∂1u2, j = −∂2b1+∂1b2,
θβ = 1

pβ , p ≥ 1
β .

Remark 1.1. The regularity criteria in Theorem 1.1 are given in terms of ω or j. A natural question
is wether the regularity criteria can be given in terms of Λαu or Λβb. Here, we can prove that for
1 > α, β ≥ 1

2 , if Λβb satisfies
∫ T

0

‖Λβb(·, t)‖
2

1−ρα
s dt ≤ C(T ), (1.6)
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then the solution remains smooth on (0, T ], where ρα =
2
s −(2β−1)

α , 2β−1
2 ≤ 1

s ≤ 2β−1+α
2 . It seems that

the regularity criteria in terms of Λαu (α < 1) is much more difficult. We hope we can investigate it in
the future.

In comparison with the 3D Navier-Stokes equations, the most important exponents α and β in the
2D MHD equations are the case when α = β = 1

2 . It is well-known that the 2D generalized Navier-Stokes
equation possesses a global classical solution with α ≥ 1 (see [22] for details). Thanks to Theorem 1.1,
we have the following interesting improvement.

Corollary 1.1. Let α ≥ 1
2 and u0(x) ∈ H2(R2). Then, the 2D generalized Navier-Stokes equation

⎧
⎪⎪⎨

⎪⎪⎩

ut + u · ∇u + ∇π + Λ2αu = 0, (t, x) ∈ R
+ × R

2,

divu = 0, (t, x) ∈ R
+ × R

2,

u(x, 0) = u0(x), x ∈ R
2,

(1.7)

has a unique global classical solution.

The following theorems are established for the cases with small α or β.

Theorem 1.2. Let 0 < α < 1
2 , β > 0 or α > 0, 0 < β < 1

2 . Suppose u0(x), b0(x) ∈ H2(R2) and (u, b)(x, t)
is a local smooth solution of the system (1.1). If

∫ T

0

(‖ω(·, t)‖
1

1−σ
p + ‖j(·, t)‖

1
1−σ
p )dt ≤ C(T ). (1.8)

Then (u, b)(x, t) is a regular solution in (0, T ′] for some T ′ > T . Here σ = max{θα, θβ}, θα = 1
pα , pα ≥ 1.

Theorem 1.3. Let α > 0, β = 0. Suppose u0(x), b0(x) ∈ H2(R2) and (u, b)(x, t) is a local smooth solution
of the system (1.1). if (u, b)(x, t) satisfies

∫ T

0

(‖∇u(·, t)‖∞ + ‖j(·, t)‖
2

2−θ
p )dt ≤ C(T ), (1.9)

or
∫ T

0

(‖∇u(·, t)‖∞ + ‖j(·, t)‖2ρ)dt ≤ C(T ), (1.10)

then (u, b)(x, t) is a regular solution in (0, T ′] for some T ′ > T , where θ = 2
pα , pα ≥ 2.

For the case α = 0, β > 0 we can give the following regularity criteria.

Theorem 1.4. Let α = 0, β > 0. Suppose u0(x), b0(x) ∈ H2(R2) and (u, b)(x, t) is a local smooth solution
of the system (1.1). Suppose the corresponding solution satisfies

∫ T

0

(‖∇u(·, t)‖∞ + ‖j(·, t)‖2�)dt ≤ C(T ), (1.11)

or
∫ T

0

‖ω(·, t)‖BMOdt ≤ C(T ),
∫ T

0

‖ω(·, t)‖2�dt ≤ C(T ),

and

∫ T

0

‖j(·, t)‖2�dt ≤ C(T ), (1.12)

then (u, b)(x, t) is a regular solution in (0, T ′] for some T ′ > T .

Before giving the proofs of our main theorems, we would like to give some remarks about our results.

Remark 1.2. If α = β, the regularity criteria given by (1.2), (1.4), (1.5), (1.6), (1.8) satisfy 2β(1−θβ)+ 2
p =

2β, 2α
2 + 2

ρ = 2α for α ≤ 1, 2β
2 + 2

� = 2β for β ≤ 1, β(1 − ρβ) + 2
s = 3β − 1 and 2β(1 − σ) + 2

p = 2β

respectively, they are all scaling invariant.
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Remark 1.3. If α = 0, β > 1,one can prove ω ∈ L∞(0, T ;Lp(R2)), 2 ≤ p ≤ ∞, j ∈ L2(0, T ;Lp(R2)), 2 ≤
p < ∞ (refer [9] for details) the regularity criteria in Theorem 1.4 is satisfied naturally. So we recover the
result in [8] and [9].

Remark 1.4. If α > 0, β = 1, combining the result in [11] and the equations (2.1), (2.7) and (2.11) we can
obtain u, b ∈ L∞(0, T ;H2(R2)), the regularity criteria in (1.8) is satisfied naturally. So the corresponding
solution exists globally.

Remark 1.5. If α ≥ 2, β = 0, one can prove ω ∈ L2(0, T ;H2(R2)), j ∈ L∞(0, T ;H1(R2)), 2 ≤ p < ∞
(refer [5] for details), the regularity criteria in (1.9) is satisfied naturally. So the corresponding solution
exists globally.

Remark 1.6. Let 0 < β < 1
2 ≤ α and α + β ≥ 1 or 0 < α < 1

2 ≤ β. The regularity criteria can also be
given in terms of ω.

For 0 < β < 1
2 ≤ α and α + β ≥ 1 the regularity criteria can be given by (1.3) or

∫ T

0

‖ω(·, t)‖
1

1−θβ
p dt ≤ C(T ). (1.13)

For 0 < α < 1
2 ≤ β the regularity criteria can be given by

∫ T

0

‖ω(·, t)‖
1

1−θα
p dt ≤ C(T ). (1.14)

2. Proof of Theorem 1.1

In this section, we devote to prove Theorem 1.1. Under the assumption in Theorem 1.1, if u ∈ L∞(0, T ;
H1(R2)) and b ∈ L∞(0, T ;H1(R2)), we can deduce u ∈ L∞(0, T ;H2(R2)) and b ∈ L∞(0, T ;H2(R2)). So
it is sufficient to give a priori estimates to bound H1 norms of u and b.

Proof. Multiplying both sides of the equations of u, b in (1.1) by u, b respectively, integrating over R2 and
adding the resulting equations together we obtain

‖u‖22(t) + ‖b‖22(t) + 2
∫ t

0

‖Λαu‖22 + ‖Λβb‖22ds = ‖u0‖22 + ‖b0‖22. (2.1)

Let ω = −∂2u1 + ∂1u2, j = −∂2b1 + ∂1b2, then we obtain the following equations for ω and j:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ωt + u · ∇ω + Λ2αω − b · ∇j = 0, (t, x) ∈ R
+ × R

2,

jt + u · ∇j + Λ2βj − b · ∇ω = Q(∇u,∇b), (t, x) ∈ R
+ × R

2,

div u = 0,div b = 0, (t, x) ∈ R
+ × R

2,

(u, b)(x, 0) = (u0, b0)(x), x ∈ R
2,

(2.2)

where Q(∇u,∇b) = 2∂1b1(∂1u2 + ∂2u1) + 2∂2u2(∂1b2 + ∂2b1).
Now, we are ready to give the H1 estimation for (u, b), multiplying the equations of ω, j in (2.2) by

ω, j respectively, integrating over R
2 and adding the resulting equations together we obtain

1
2

d

dt
(‖ω‖22 + ‖j‖22) + ‖Λαω‖22 + ‖Λβj‖22 =

∫

R2
Q(∇u,∇b)jdx

≤ C‖ω‖p‖j‖22q

≤ C‖j‖2−2θβ

2 ‖Λβj‖2θβ

2 ‖ω‖p

≤ C‖j‖22‖ω‖
1

1−θβ
p + ε‖Λβj‖22, (2.3)
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where p > 1
β , 1

p + 1
q = 1. Here we have used the Galiardo–Nirenberg inequality

‖j‖2q ≤ C‖j‖1−θβ

2 ‖Λβj‖θβ

2 ,
1
2q

=
(

1
2

− β

2

)

θβ +
1 − θβ

2
, 0 ≤ θβ < 1, (2.4)

then it yields

θβ =
1
2 − 1

2q

β
2

=
1
2p

β
2

=
1
pβ

.

Thanks to regularity criteria (1.2), we obtain

(‖ω‖22 + ‖j‖22) +
∫ t

0

‖Λαω‖22 + ‖Λβj‖22dt ≤ C(T ). (2.5)

On the other hand, if β > 0, we have

1
2

d

dt
(‖ω‖22 + ‖j‖22) + ‖Λαω‖22 + ‖Λβj‖22 ≤

⎧
⎨

⎩

C‖ω‖22
β

‖j‖22 + 1
2‖Λβj‖22, if 0 < β < 1,

C‖ω‖22‖j‖22 + 1
2‖Λj‖22, if β ≥ 1,

≤ C‖ω‖2�‖j‖22 +
1
2
‖Λβj‖22. (2.6)

Or

1
2

d

dt
(‖ω‖22 + ‖j‖22) + ‖Λαω‖22 + ‖Λβj‖22 ≤

⎧
⎨

⎩

C‖ω‖22‖j‖22
β

+ 1
2‖Λβj‖22, if 0 < β < 1,

C‖ω‖22‖j‖22 + 1
2‖Λj‖22, if β ≥ 1,

≤ C‖ω‖22‖j‖2� +
1
2
‖Λβj‖22. (2.7)

Here we have used the Galiardo–Nirenberg inequality

‖j‖24 ≤ C‖Λβj‖2‖j‖ 2
β
,

and the estimate given in [20]

‖∂αf · ∂βg‖r ≤ C(‖f‖BMO‖Λ|α|+|β|g‖r + ‖g‖BMO‖Λ|α|+|β|f‖r).

We need the condition (1.3) or (1.5) to guarantee the H1 estimate (2.5).
If α > 0, using the Hölder’s inequality and Young’s inequality we have

1
2

d

dt
(‖ω‖22 + ‖j‖22) + ‖Λαω‖22 + ‖Λβj‖22 ≤

⎧
⎨

⎩

C‖ω‖ 2
1−α

‖j‖2 4
1+α

≤ 1
2‖Λαω‖22 + C‖j‖22‖j‖22

α

, 0 < α < 1,

1
2‖∇ω‖22 + C‖j‖42, α ≥ 1,

≤ C‖j‖22‖j‖2ρ +
1
2
‖Λαω‖22. (2.8)

Here we have used the embeddings Hs(Rn) ↪→ Lq(Rn) for s < n
2 and 1

q = 1
2 − s

n and H1 ↪→ BMO in 2D.
Finally, use (1.4) we obtain (2.5). Now we complete the H1 estimation.

As the MHD system stays regular beyond T if and only if
∫ T

0
‖ω‖BMO + ‖j‖BMOdt < ∞. Using

the embedding H1(R2) ↪→ BMO(R2) in 2D, if ω, j ∈ L∞(0, T ;H1(R2)), we can deduce that ω, j ∈
L∞(0, T ;BMO(R2)). Now, we only have to prove ω, j ∈ L∞(0, T ;H1(R2)). Form (2.2), we have

⎧
⎨

⎩

(∂iω)t + u · ∇(∂iω) + Λ2α(∂iω) = −∂iu · ∇ω + ∂i(b · ∇j),

(∂ij)t + u · ∇(∂ij) + Λ2β(∂ij) = −∂iu · ∇j + ∂i(b · ∇ω) + ∂iQ(∇u,∇b).
(2.9)
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Multiplying the equation of ∂iω, ∂ij in (2.9) by ∂iω, ∂ij respectively, integrating over R2 and adding the
resulting equations together we obtain

1
2

d

dt
(‖∂iω‖22 + ‖∂ij‖22) + ‖Λα∂iω‖22 + ‖Λβ∂ij‖22

= −
∫

R2
(∂iu · ∇ω)∂iωdx +

∫

R2
(∂ib · ∇j)∂iωdx −

∫

R2
(∂iu · ∇j)∂ijdx

+
∫

R2
(∂ib · ∇ω)∂ijdx +

∫

R2
∂iQ(∇u,∇b)∂ijdx

:= I1 + I2 + I3 + I4 + I5. (2.10)

If α ≥ 1
2 , β ≥ 1

2 , the following Galiardo–Nirenberg inequalities will be used in our estimation:

‖∇f‖L3 ≤ C‖Λ
1
2 f‖ 1

6
2 ‖Λ

1
2 ∇f‖ 5

6
2 ,

‖∇f‖L3 ≤ C‖∇f‖ 1
3
2 ‖Λ

1
2 ∇f‖ 2

3
2 ,

‖∇f‖L3 = ‖∇f‖ 2
3
L3‖∇f‖ 1

3
L3 ≤ C‖Λ

1
2 f‖ 1

9
2 ‖∇f‖ 1

9
2 ‖Λ

1
2 ∇f‖ 7

9
2 ,

‖f‖L3 ≤ C‖f‖ 7
9
2 ‖Λ

1
2 ∇f‖ 2

9
2 .

Now, we we are ready to give the estimate for the right hand of (2.10).

I1 = −
∫

R2
(∂iu · ∇ω)∂iωdx ≤ C‖ω‖L3‖∇ω‖2L3

≤ C‖ω‖L3‖∇ω‖ 4
3
L3‖∇ω‖ 2

3
L3

≤ C‖ω‖ 7
9
2 ‖Λ

1
2 ∇ω‖ 2

9
2 ‖Λ

1
2 ω‖ 2

9
2 ‖∇ω‖ 2

9
2 ‖Λ

1
2 ∇ω‖ 14

9
2

≤ C‖ω‖ 7
9
2 ‖Λ

1
2 ω‖ 2

9
2 ‖∇ω‖ 2

9
2 ‖Λ

1
2 ∇ω‖ 16

9
2

≤ C(ε)‖ω‖72‖Λ
1
2 ω‖22‖∇ω‖22 + ε‖Λ

1
2 ∇ω‖22.

I2 =
∫

R2
(∂ib · ∇j)∂iωdx ≤ C‖j‖L3‖∇j‖L3‖∇ω‖L3

≤ C‖j‖ 7
9
2 ‖Λ

1
2 ∇j‖ 2

9
2 ‖Λ

1
2 j‖ 1

9
2 ‖∇j‖ 1

9
2 ‖Λ

1
2 ∇j‖ 7

9
2 ‖Λ

1
2 ω‖ 1

9
2 ‖∇ω‖ 1

9
2 ‖Λ

1
2 ∇ω‖ 7

9
2

≤ C‖j‖ 7
9
2 ‖Λ

1
2 j‖ 1

9
2 ‖∇j‖ 1

9
2 ‖Λ

1
2 ∇j‖2‖Λ

1
2 ω‖ 1

9
2 ‖∇ω‖ 1

9
2 ‖Λ

1
2 ∇ω‖ 7

9
2

≤ C(ε)‖j‖72(‖Λ
1
2 j‖22‖∇j‖22 + ‖Λ

1
2 ω‖22‖∇ω‖22) + ε(‖Λ

1
2 ∇j‖22 + ‖Λ

1
2 ∇ω‖22).

I3 = −
∫

R2
(∂iu · ∇j)∂ijdx ≤ C‖ω‖L3‖∇j‖2L3

≤ C‖ω‖L3‖∇j‖ 4
3
L3‖∇j‖ 2

3
L3

≤ C(ε)‖ω‖72‖Λ
1
2 j‖22‖∇j‖22 + ε(‖Λ

1
2 ∇j‖22 + ‖Λ

1
2 ∇ω‖22).

As

I4 =
∫

R2
(∂ib · ∇ω)∂ijdx ≤ C‖j‖L3‖∇j‖L3‖∇ω‖L3 ,

we can use the same method as I2 to cope with it.

I5 =
∫

R2
∂iQ(∇u,∇b)∂ijdx ≤ C‖j‖3‖∇j‖3‖∇ω‖3 + C‖ω‖3‖∇j‖23

≤ C(ε)(‖j‖72 + ‖ω‖72)(‖Λ
1
2 j‖22‖∇j‖22 + ‖Λ

1
2 ω‖22‖∇ω‖22) + ε(‖Λ

1
2 ∇j‖22 + ‖Λ

1
2 ∇ω‖22).

In the above estimation we have also used Hölder’s inequality and Young’s inequality.
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Finally, putting the above results together and setting ε suitably small, we deduce

d

dt
(‖∇ω‖22 + ‖∇j‖22) + ‖Λα∇ω‖22 + ‖Λβ∇j‖22
≤ C(‖ω‖72 + ‖j‖72)(‖Λ

1
2 j‖22‖∇j‖22 + ‖Λ

1
2 ω‖22‖∇ω‖22). (2.11)

Then, by Gronwall’s inequality and (2.5) we have

(‖∇ω‖22 + ‖∇j‖22) +
∫ t

0

‖Λα∇ω‖22 + ‖Λβ∇j‖22dt ≤ C(T ). (2.12)

That is to say ω, j ∈ L∞(0, T ;H1(R2)).
The proof of Theorem 1.1 is complete. �

Now we give the proof of Remark 1.1.

Proof. If in addition, 1 > α, β ≥ 1
2 , the estimates (2.1) and (2.12) is the same as that in Theorem 1.1.

Now we only have to give the estimate (2.5). Using the following inequalities

‖ω‖p ≤ ‖ω‖1−ρα

2 ‖Λαω‖ρα

2 ,
1
p

=
(

1
2

− α

2

)

ρα +
1 − ρα

2
, 0 ≤ ρα ≤ 1,

‖j‖2q ≤ C‖Λβb‖1−θs
s ‖Λ1+βb‖θs

2 ,
1
2q

=
1 − β

2
+

1 − θs

s
, 1 − β ≤ θs ≤ 1,

and letting θs = 1
2 , we can deduce

1
2

d

dt
(‖ω‖22 + ‖j‖22) + ‖Λαω‖22 + ‖Λβj‖22 ≤ C‖ω‖p‖j‖22q.

≤ C‖ω‖1−ρα

2 ‖Λαω‖ρα

2 ‖Λβb‖2−2θs
s ‖Λβj‖2θs

2

≤ C‖ω‖22‖Λβb‖
2

1−ρα
s + ε‖Λαω‖22 + ε‖Λβj‖22,

where

ρα =
1
2 − 1

p
α
2

=
p − 2
pα

, 2 ≤ p ≤ 2
1 − α

,

θs = 1 − s

(
β

2
− 1

2p

)

, s =
p

pβ − 1
.

The regularity criterion (1.6) also guarantees the H1 estimate (2.5). �

3. Proof of Theorem 1.2

First, we use (1.8) and (2.3) to obtain the H1 estimation (2.5).
Under the assumption of Theorem 1.2, we can’t establish the estimation (2.12) as that in Theorem

1.1. Now, we should give the estimate of Ii, i = 1, 2, 3, 4, 5 which are defined in Sect. 2. If 0 < α < 1
2 ,

β > 0 or α > 0, 0 < β < 1
2 , use (2.4), Hölder’s inequality and Young’s inequality we obtain

I1 = −
∫

R2
(∂iu · ∇ω)∂iωdx ≤ C‖ω‖p‖∇ω‖22q

≤ C‖ω‖p‖∇ω‖2(1−θα)
2 ‖Λ1+αω‖2θα

2

≤ C(ε)‖ω‖
1

1−θα
p ‖∇ω‖22 + ε‖Λ1+αω‖22,
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where 1
p + 1

q = 1, and θα =
1− 1

q

α = 1
pα .

I3 = −
∫

R2
(∂iu · ∇j)∂ijdx ≤ C‖ω‖p‖∇j‖22q

≤ C‖ω‖p‖∇j‖2(1−θβ)
2 ‖Λ1+βj‖2θβ

2

≤ C(ε)‖ω‖
1

1−θβ
p ‖∇j‖22 + ε‖Λ1+βj‖22. (3.1)

Similarly, Ii, i = 2, 4, 5, can be bounded as follows.

I2, I4 ≤ C‖j‖p‖∇j‖2q‖∇ω‖2q

≤ C(ε)
(

‖j‖
1

1−θβ
p ‖∇j‖22 + ‖j‖

1
1−θα
p ‖∇ω‖22

)

+ ε(‖Λ1+αω‖22 + ‖Λ1+βj‖22).

I5 ≤ C‖j‖p‖∇j‖2q‖∇ω‖2q + C‖ω‖p‖∇j‖22q

≤ C(ε)[
(

‖j‖
1

1−θβ
p + ‖ω‖

1
1−θβ
p

)

‖∇j‖22 + ‖j‖
1

1−θα
p ‖∇ω‖22] + ε(‖Λ1+αω‖22 + ‖Λ1+βj‖22).

Finally, Let ε suitably small and put the above results together, we deduce

d

dt
(‖∇ω‖22 + ‖∇j‖22) + ‖Λα∇ω‖22 + ‖Λβ∇j‖22

≤ C[(‖j‖
1

1−θβ
p + ‖ω‖

1
1−θβ
p )‖∇j‖22 + (‖j‖

1
1−θα
p + ‖ω‖

1
1−θα
p )‖∇ω‖22]. (3.2)

If we have
∫ T

0

‖ω‖
1

1−θα
p dt,

∫ T

0

‖ω‖
1

1−θβ
p dt,

∫ T

0

‖j‖
1

1−θα
p dt,

∫ T

0

‖j‖
1

1−θβ
p dt ≤ C(T ). (3.3)

By the Gronwall’s inequality we can deduce (2.12). As the regularity criteria in Theorem 1.2 covered
(3.3), so we finish our proof.

4. Proof of Theorem 1.3

Firstly we give the H1 estimation for (u, b):

1
2

d

dt
(‖ω‖22 + ‖j‖22) + ‖Λαω‖22 + ‖Λβj‖22 ≤ C‖∇u‖∞‖j‖22.

Then use the Gronwall’s inequality and (1.11) we obtain (2.5).
In order to give the H2 estimation for (u, b), we should estimate Ii, i = 1, 2, 3, 4, 5 which are defined

in Sect. 2.

I1 = −
∫

R2
(∂iu · ∇ω)∂iωdx ≤ C‖∇u‖∞‖∇ω‖22. (4.1)

I3 = −
∫

R2
(∂iu · ∇j)∂ijdx ≤ C‖∇u‖∞‖∇j‖22. (4.2)

I2, I4 ≤ C‖∇j‖2‖j‖p‖∇ω‖q ≤ ‖∇j‖2‖j‖p‖∇ω‖1−θ
2 ‖Λα∇ω‖θ

2

≤ C‖j‖
2

2−θ
p (‖∇ω‖22 + ‖∇j‖22) + ε‖Λα∇ω‖22.

Here θ = 2
pα , pα ≥ 2, 1

p + 1
q = 1

2 . Here we have used the Galiardo–Nirenberg inequality

‖∇ω‖q ≤ C‖∇ω‖1−θ
2 ‖Λα∇ω‖θ

2,
1
q

=
(

1
2

− α

2

)

θ +
1 − θ

2
, 0 ≤ θ ≤ 1,



Vol. 18 (2016) On regularity criteria 339

with

θ =
1
2 − 1

q
α
2

=
1
p
α
2

=
2
pα

.

On the other hand we can estimate I2, I4 as

I2, I4 ≤
⎧
⎨

⎩

C‖j‖ 2
α
‖Λα∇ω‖2‖∇j‖2 ≤ C‖j‖22

α

‖∇j‖22 + ε‖Λα+1ω‖22, 0 < α < 1,

C‖j‖22‖∇j‖22 + ε‖∇2ω‖22, α ≥ 1,

≤ C‖j‖2ρ‖∇j‖22 + ε‖Λα+1ω‖22. (4.3)

I5 ≤ C‖∇u‖∞‖∇j‖22 + C‖j‖
2

2−θ
p (‖∇j‖22 + ‖∇ω‖22) + ε‖Λ1+αω‖22,

or

I5 ≤ C‖∇u‖∞‖∇j‖22 + C‖j‖2ρ‖∇j‖22 + ε‖Λα+1ω‖22.
Finally, let ε suitably small and put the above results, we deduce

d

dt
(‖∇ω‖22 + ‖∇j‖22) + ‖Λα∇ω‖22 + ‖Λβ∇j‖22 ≤ C

(

‖∇u‖∞ + ‖j‖
2

2−θ
p

)

(‖∇j‖22 + ‖∇ω‖22),

or

d

dt
(‖∇ω‖22 + ‖∇j‖22) + ‖Λα∇ω‖22 + ‖Λβ∇j‖22 ≤ C(‖∇u‖∞ + ‖j‖2ρ)(‖∇j‖22 + ‖∇ω‖22),

Then, by the Gronwall’s inequality, (1.9) or (1.10) we obtain (2.12).
Now we finish our proof.

5. Proof of Theorem 1.4

The H1 estimation for (u, b) is the same as that in the proof of Theorem 1.3.
For α = 0, β > 0, in order to give the H2 estimation for (u, b), we should estimate Ii, i = 1, 2, 3, 4, 5

which are defined in Sect. 2.

I2, I4 ≤
{

C‖j‖ 2
β
‖Λβ∇j‖2‖∇ω‖2 ≤ C‖j‖22

β

‖∇ω‖22 + ε‖Λβ∇j‖22, 0 < β < 1,

C‖j‖22‖∇ω‖22 + ε‖∇2j‖22, β ≥ 1,

≤ C‖j‖2�‖∇ω‖22 + ε‖Λβ∇j‖22. (5.1)

I5 ≤ C‖j‖2�‖∇ω‖22 + C‖∇u‖∞‖∇j‖22 + ε‖Λβ∇j‖22.
Finally, let ε suitably small and put the above results and (4.1), (4.2) together, we deduce

d

dt
(‖∇ω‖22 + ‖∇j‖22) + ‖Λα∇ω‖22 + ‖Λβ∇j‖22 ≤ C(‖j‖2� + ‖∇u‖∞)(‖∇ω‖22 + ‖∇j‖22). (5.2)

Then, by using the Gronwall’s inequality and (1.11) we obtain (2.12).
On the other hand, for α = 0, β > 0, we use (2.7) to give the H1 estimation for (u, b).

1
2

d

dt
(‖ω‖22 + ‖j‖22) + ‖Λβj‖22 ≤ C‖j‖2�‖ω‖22 +

1
2
‖Λβj‖22.

Then use the Gronwall’s inequality and (1.12) we obtain (2.5).
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Now, we give the H1 estimation for (ω, j). We should give the estimation of Ii, i = 1, 2, 3, 4, 5 which
are defined in Sect. 2.

I1 = −
∫

R2
(∂iu · ∇ω)∂iωdx ≤ C‖ω‖BMO‖∇ω‖22.

I3 ≤
⎧
⎨

⎩

C‖ω‖ 2
β
‖Λβ∇j‖2‖∇j‖2 ≤ C‖ω‖22

β

‖∇j‖22 + ε‖Λβ∇j‖22, 0 < β < 1,

C‖ω‖22‖∇j‖22 + ε‖∇2j‖22, β ≥ 1,

≤ ‖ω‖2�‖∇j‖22 + ε‖Λβ+1j‖22. (5.3)

We use (4.3) to estimate I2 and I4.

I5 ≤ C‖j‖2�‖∇ω‖22 + C‖ω‖2�‖∇j‖22 + ε‖Λβ∇j‖22.
Finally, let ε suitably small and put the above results together, we deduce

d

dt
(‖∇ω‖22 + ‖∇j‖22) + ‖Λα∇ω‖22 + ‖Λβ∇j‖22 ≤ C(‖ω‖BMO + ‖j‖2� + ‖ω‖2�)(‖∇j‖22 + ‖∇ω‖22).

By the Gronwall’s inequality and (1.12), we obtain (2.12).
Now we complete our proof.
From the proof of our Theorems we can also give the following regularity criterion

Theorem 5.1. Let α, β > 0. Suppose u0(x), b0(x) ∈ H2(R2) and (u, b)(x, t) is a local smooth solution of
the system (1.1). If

∫ T

0

(‖ω(·, t)‖2ρ + ‖ω(·, t)‖2� + ‖j(·, t)‖2ρ)dt ≤ C(T ), (5.4)

or
∫ T

0

(‖ω(·, t)‖2ρ + ‖ω(·, t)‖2� + ‖j(·, t)‖2�)dt ≤ C(T ). (5.5)

Then the solution remains smooth on (0, T ]. Use this regularity criteria we can prove the existence of
global regularity when α + β ≥ 2, 0 < β < 1.

Proof. The H1 estimation for (u, b) is given by (2.7), (2.8) or (5.3). In order to give the H2 estimation
for (u, b), we should estimate Ii, i = 1, 2, 3, 4, 5 which are defined in Sect. 2.

I1 = −
∫

R2
(∂iu · ∇ω)∂iωdx ≤ C‖ω‖2ρ‖∇ω‖22 + ε‖Λ1+αω‖22.

Finally, let ε suitably small and put the above result, (4.3), (5.1) and (5.3) together, we deduce the H2

estimation for (u, b).
In order to prove the global regularity we only have to prove (u, b)(x, t) satisfies (5.4) or (5.5).
If 0 < β < 1, we have α > 1. By using the Galiardo–Nirenberg inequality

‖ω‖ 2
β

≤ ‖u‖1−θ
2 ‖Λαu‖θ

2, 0 ≤ θ =
2 − β

α
≤ 1, (5.6)

we have
1
2

d

dt
(‖ω‖22 + ‖j‖22) + ‖Λαω‖22 + ‖Λβj‖22 =

∫

R2
Q(∇u,∇b)jdx

≤ C‖Λαu‖2θ
2 ‖j‖22 + ‖Λβj‖22.

Then we deduce (5.4). �
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