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Abstract. Basic properties of a reduced viscous compressible gas–liquid two-fluid model are explored. The model is composed
of two conservation laws representing mass balance for gas and liquid coupled to two elliptic equations (Stokes system) for
the two fluid velocities and obtained by ignoring acceleration terms in the full momentum equations. First, we present a
result that shows existence and uniqueness of regular solutions for a fixed time T0 > 0 which depends on the initial data
and the constant viscosity coefficients. Moreover, T0 can be large when the viscosity coefficients are large. However, for a
fixed set of viscosity coefficients, we conjecture that the smooth solution might blow up, at least, as time tends to infinity.
This result is backed up by considering a numerical example for a fixed set of viscosity coefficients demonstrating that for
smooth and small initial data with no single-phase regions, the solution may tend to produce both single-phase regions and
blow-up of mass gradients as time becomes large.
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1. Introduction

1.1. Model Formulation

We are interested in studying a 1D transient two-phase model for isentropic gas–liquid flow relevant for a
wide range of applications. The model is based on the so-called two-fluid formulation where the gas and
liquid phase have separate mass and momentum conservation equations. In particular, the momentum
equations involve a non-conservative pressure-related term, a viscous term and external force terms rep-
resenting gravity and friction between fluid and wall as well as interfacial friction. The model takes the
following form [17, Chapter 10]:

∂t(n) + ∂x(nug) = 0
∂t(m) + ∂x(mul) = 0

∂t(nug) + ∂x(nu2
g) + αg∂xP = −fgug − C(ug − ul) − ng + ∂x(μg∂xug)

∂t(mul) + ∂x(mu2
l ) + αl∂xP = −flul + C(ug − ul) − mg + ∂x(μl∂xul). (1.1)

Here n = αgρg and m = αlρl where the volume fractions satisfy

αl + αg = 1, (1.2)

ρl, ρg are densities and ul, ug are fluid velocities associated with the liquid and gas phase, respectively.
This kind of two-fluid gas–liquid model plays a crucial role for the industry involved in the construction

of new and safe wellbore flow systems that may operate under extreme conditions (high pressure and
high temperature). When the model is used to study deepwater wellbore operations there are many
challenging phenomena that can occur. Some of them are: (i) dynamic transition zones separating two-
phase and single-phase regions; (ii) strong expansion effects related to compressed gas which moves
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upwardly towards a lower pressure; (iii) complicated friction terms to take into account more realistic
flow patterns; (iv) transition from one flow regime to another; (v) fluid flow between the wellbore and
surrounding reservoir. A good understanding of mathematical properties of (1.1) is important both for
increased insight into physical mechanisms that will dictate the behavior of the flow system as well as for
the construction of reliable discrete versions of (1.1).

From a mathematical point of view several inherent challenges are associated with the model. When
the velocities are assumed to be equal, i.e., ul = ug, by summing the two momentum equations in (1.1)
and using (1.2), we obtain a mixture momentum equation where the coefficient of Px becomes 1. In this
case, there have been several works about (global) well posedness of weak and regular solutions as well as
the long-time behaviors, refer for instance to [8–11,13,15,19–21]. See [7] for more on the relation between
those two different type of models and [1,12,16] for discussions of various aspects of this latter model.

When the velocities are unequal new challenges arise, such as the fact that pressure terms are not in
conservative form. As a consequence, some essential estimates seem more difficult to obtain for general
viscosity coefficients. More recently, some elegant works have been published on the global well-posedness
of solutions of the model (1.1)–(1.2) without considering the gravity, the friction and the interfacial
friction. Please refer to [2,3] for global weak solutions, where capillarity effects are considered in [2] in
a three-dimensional settings. The arguments in [2,3] rely particularly on having specific mass-dependent
viscosities corresponding to μl = m and μg = n.

For constant viscosity coefficients or more general mass-dependent viscosity laws, it still seems un-
known whether the global weak solutions exist or not.

Our aim is to consider the two-phase Stokes system [obtained by ignoring acceleration terms in the
momentum equations of (1.1)] with constant viscosity coefficients and establish its well-posedness in a
fixed-time interval. Additionally, we would also like to gain some understanding of the solutions as time
becomes large by carrying out a relevant numerical experiment. Although the system is a simplified
version, most likely it can still capture some of the main properties of the full model (1.1).

More specifically, we will consider a polytropic gas law and a weakly compressible liquid represented
by

ρg =
P

a2
g

, ρl = ρl,0 +
P − p0

a2
l

(
k0 � ρl,0 − p0

a2
l

> 0
)

. (1.3)

Consequently, from the relation m
ρl

+ n
ρg

= 1 we get

P = P (m,n) = a2
l (ρl − ρl,0) + p0 = a2

gρg =
a2

l

2

[
b +

√
b2 +

4ca2
g

a2
l

]
, (1.4)

where {
b

.= b(m,n) = m + a2
g

a2
l
n − k0,

c
.= c(m,n) = k0n.

(1.5)

As already mentioned, in this work we will focus on a reduced version of (1.1) where inertial effects in
the momentum equations have been neglected and the viscosity coefficients μl, μg are positive constants.
The model then takes the form

∂t(n) + ∂x(nug) = 0

∂t(m) + ∂x(mul) = 0

αg∂xP = −ng + μg∂
2
xxug

αl∂xP = −mg + μl∂
2
xxul,

(1.6)

where g is a positive constant (gravity constant). The model is equipped with the boundary data

ui(x = 0, t) = ui(x = 1, t) = 0, i = l, g. (1.7)

and initial data
m(x, t = 0) = m0(x), n(x, t = 0) = n0(x), x ∈ [0, 1], (1.8)
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for i = l, g. As will be demonstrated numerically in Sect. 4 this model is general enough to qualitatively
describe important gas–liquid dynamics like segregation of gas and liquid in a vertical conduit involving
a dynamic transition zone between mixture and pure phase regions.

1.2. Novelty of this Work

A model similar to (1.1), however, with mass-dependent viscosity terms and no external force terms, was
studied in [3]. The authors also assumed that both phases have pressure-density relations of the form
P = Cργ with constants C > 0 and γ > 1 (polytropic gas law), which is a different situation compared
to the gas–liquid setting described by (1.3). It was demonstrated in [3] that masses m and n are in W 1,2

for all times thanks to the possibility to derive a so-called BD-type estimate. The analysis presented here
for the reduced model (1.6) demonstrate that m and n are in W 1,r (r ≥ 2) (i.e., they remain continuous)
for a fixed time T0 > 0 which depends on the initial data and the viscosity coefficients. Consequently,
we cannot claim that m and n are in W 1,r for all times for a fixed set of viscosity coefficients. In fact,
this result is backed up by a numerical example demonstrating that gradients in m and n might blow
up as time becomes large due to a natural separation of heavy liquid and light gas in a vertical closed
conduit. This indicates that the model we study may contain phenomena not covered by the model
studied in [3]. Note also that there are additional challenges with the pressure law (1.4) as explained in
Remark 2.5.

1.3. Relevance of the Model (1.6) for Other Applications

Before we describe precisely our result it can be interesting to say some words about the potential relevance
of the two-phase Stokes model (1.6) beyond fluid mechanic related problems [6,18]. A description of
the dynamics of two phases that move with individual fluid velocities can be obtained by formulating
conservation of mass equations for each phase combined with separate momentum equations. For example,
in modeling of cell dynamics, a new interpretation of the well-known Keller–Segel model was presented in
[4] based on a two-phase formulation. More precisely, using the above notation a model of the following
form was presented

∂t(αc) + ∂x(αcuc) = Sc

∂t(αw) + ∂x(αwuw) = −Sc, αc + αw = 1,

αc∂xP + ∂x(αcΛ) = −C(uc − uw) + ∂x(μc∂xuc)

αw∂xP = +C(uc − uw) + ∂x(μw∂xuw).

(1.9)

The two phases involved here are cells (c) and water (w) which both are assumed to be incompressible
fluids. However, in addition to these transport equations for cells and water, there is another transport-
reaction model for a chemical component which strongly affects the dynamics of the cells. In particular,
there is a “new” term Λ (potential function) in the momentum equation for cells that can take into
account how the cells’ behavior differs from that of the bulk water due to its sensitivity to the chemical
component. There is also typically a source term Sc in the mass balance equations. In conclusion, the
model (1.9) clearly has its own characteristics, however, the Stokes type two-fluid model (1.6) might be
considered as a submodel of it. Hence, insight into fundamental properties of (1.6) seems relevant for the
understanding of the model (1.9).

The rest of the paper is organized as follows: In Sect. 2 we give a precise statement of the result we
achieve for (1.6). In Sect. 3, we prove Theorem 2.1 by using iteration arguments (due to a linearization of
the mass balance equations) combined with the particle equations and energy estimates. Then, in Sect.
4, for a fixed set of viscosity coefficients, we give a numerical example demonstrating that gradients in m
and n might blow up as time becomes large. Finally, we give some concluding remarks in Sect. 5.
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2. Result

In the rest of the paper, we denote W k,p = W k,p([0, 1]) and Lp = Lp([0, 1]) for k = 1, 2 and p ∈ [1,∞].

2.1. Assumptions

The following assumptions about initial masses m0 and n0 are considered. See Remark 2.5 for more
explanation.

(i)

m0, n0 ∈ W 1,r, k0 < C1 ≤ m0 ≤ C2, 0 ≤ n0 ≤ C3, in [0, 1], (2.1)

for any given constant r ≥ 2, where Ci is a positive constant for i = 1, 2, 3.
(ii)

m0, n0 ∈ W 1,r, 0 ≤ m0 ≤ C4 < k0, 0 ≤ n0 ≤ C5, in [0, 1], (2.2)

for any given constant r ≥ 2, where Ci is a positive constant for i = 4, 5.
(iii)

m0, n0 ∈ W 1,r, 0 ≤ m0 ≤ C6, 0 < C7 ≤ n0 ≤ C8, in [0, 1], (2.3)

for any given constant r ≥ 2, where Ci is a positive constant for i = 6, 7, 8.

2.2. Main Result

We now present a precise statement of a result that gives some insight into the role played by the viscosity
coefficients μg and μl versus the regularity (smoothness) of the solution. A main message is that the mass
variables m and n remain continuous (since mx and nx are in Lr for r ≥ 2) as long as the viscosity is
large enough for the specified time interval [0, T0] (or equivalently, the time T0 is small enough for a given
set of viscosity coefficients). In order to shed some more light on this conclusion we will then carry out
a numerical experiment in Sect. 4 whose result seems to fit well with the theoretical result because it
demonstrates that if we do not put restriction on the length of the time interval represented by T0, the
mass variables m and n apparently create a sharp transition zone corresponding to a separation of heavy
liquid at the bottom and light gas at the top of the flow domain. In other words, we may not control that
m,n are in W 1,r.

Theorem 2.1. Under one of the assumptions (2.1), (2.2) or (2.3), there exists a positive constant T0 which
satisfies (3.40) and a solution (n,m, ug, ul) of (1.6)–(1.8) on [0, 1] × [0, T0] in the sense that

(m,n) ∈ C([0, T0];W 1,r), (mt, nt) ∈ C([0, T0];Lr), (ul, ug) ∈ C([0, T0];W 2,r). (2.4)

Moreover, upper-lower bounds of m and n hold as specified in (3.27), (3.28) and (3.29).

Remark 2.2. A closer inspection of the condition (3.40) on the existence time T0 reveals that it can be
chosen large if Aμ = max{ 1

μl
, 1

μg
} is sufficiently small, i.e., viscosities μl and μg are sufficiently large.

Remark 2.3. One can find in the proof of Theorem 2.1 that we only need that r > 1 in each step, except
step 4. In order to deal properly with the non-conservative pressure terms αgPx and αlPx we will then
in fact need that r ≥ 2.

Remark 2.4. Note that αl = αl(m,n) = m
ρl(m,n) is well-defined as ρl = ρl(P ) ≥ ρl,0 − p0

a2
l

= k0 > 0 for

m,n ≥ 0. Hence, if 0 ≤ m ≤ M for some positive M it follows that αl = m
ρl

≤ M
k0

< ∞. From m
ρl

+ n
ρg

= 1
it follows that 0 ≤ m

ρl
, n

ρg
≤ 1.



Vol. 17 (2015) Two-Fluid 427

Remark 2.5. Direct calculations show that

∂ρg(m,n)
∂m

=
a2

l

2a2
g

⎛
⎜⎜⎝1 +

b√
b2 + 4ca2

g

a2
l

⎞
⎟⎟⎠ ,

∂ρg(m,n)
∂n

=
1
2

+
b + 2k0

2
√

b2 + 4ca2
g

a2
l

where

b2 +
4ca2

g

a2
l

= (m − k0)2 + 2mn
a2

g

a2
l

+
a4

g

a4
l

n2 + 2k0
a2

g

a2
l

n.

The different assumptions on the upper-lower bounds of m0 and n0 in (2.1)–(2.3) are used to guarantee
that |∂P

∂n | ∼ |∂ρg

∂n | is bounded (note that the bound on | ∂P
∂m | is always ensured) subject to the condition

that it can be shown that m and n satisfy bounds of the same kind. This is in fact obtained in (3.15)–
(3.17) for the approximate system (3.1). Consequently, it follows that Px can be controlled by mx and
nx which is used repeatedly in Sect. 2.

3. Proof of Theorem 2.1

Denote

S � ST0,A1 = {v ∈ C([0, T0];W
1,r
0 ∩ W 2,r)|‖v‖C([0,T0];W 2,1) ≤ AμA1}

where r ≥ 2, Aμ = max{ 1
μl

, 1
μg

}, A1 and T0 satisfy (3.23) and (3.40), respectively. Note that the constant
C in (3.23) only depends on initial data and other known model parameters.

3.1. Step 1: Construction of an Iteration Sequence

Following the similar arguments in [5], we construct an approximate system through an iteration sequence
as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

nk
t + (nkuk−1

g )x = 0,

mk
t + (mkuk−1

l )x = 0,

αk
g [P k]x = −nkg + μg[uk

g ]xx,

αk
l [P k]x = −mkg + μl[uk

l ]xx, (x, t) ∈ (0, 1) × (0, T0],

(3.1)

with the initial-boundary value conditions:

(mk, nk)(x, 0) = (m0, n0)(x) for x ∈ [0, 1] (3.2)

and

(uk
l , uk

g)(0, t) = (uk
l , uk

g)(1, t) = 0 for t ≥ 0, (3.3)

for k = 1, 2, 3, . . ., where (u0
g, u

0
l ) = (0, 0), αk

g = αg(mk, nk), αk
l = αl(mk, nk), P k = P (mk, nk), and

(mk, nk) ∈ C([0, T0];W 1,r) ∩ C1([0, T0];Lr), (uk
g , uk

l ) ∈ C([0, T0];W
1,r
0 ∩ W 2,r).
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3.2. Step 2: Boundedness of the Sequence

By virtue of (3.1)1, we have

nk(x, t) = n0(Xk
g (0;x, t)) exp

{
−

∫ t

0

uk−1
g,Xk

g
(Xk

g (τ ;x, t), τ) dτ

}
, (3.4)

where Xk
g is a solution of the particle equation:{

dXk
g (τ ;x,t)

dτ = uk−1
g (Xk

g (τ ;x, t), τ), τ ∈ (0, T0],
Xk

g (t;x, t) = x
(3.5)

for each k, where (x, t) ∈ [0, 1] × [0, T0]. Lemma 1.2 in [14] tells us that the unique solution Xk
g (τ ;x, t)

of (3.5) and its partial derivatives with respect to τ , x and t are continuous on [0, T0] × [0, 1] × [0, T0].
Moreover,

∂Xk
g (τ ;x, t)
∂x

= exp
{∫ τ

t

uk−1
g,Xk

g
(Xk

g (s;x, t), s) ds

}
. (3.6)

As a consequence of (3.4) and (3.6), we have

inf
x∈[0,1]

n0(x) exp

{
−

∫ T0

0

‖uk−1
g,x (s)‖L∞ds

}
≤ nk ≤ sup

x∈[0,1]

n0(x) exp

{∫ T0

0

‖uk−1
g,x (s)‖L∞ds

}
(3.7)

and

∂nk(x, t)
∂x

=
dn0(Xk

g (0;x, t))
dXk

g

exp
{

−2
∫ t

0

uk−1
g,Xk

g
(Xk

g (τ ;x, t), τ) dτ

}

−nk(x, t)
∫ t

0

uk−1
g,Xk

g Xk
g
(Xk

g (τ ;x, t), τ)
∂Xk

g (τ ;x, t)
∂x

dτ. (3.8)

Similarly, we have

inf
x∈[0,1]

m0(x) exp

{
−

∫ T0

0

‖uk−1
l,x (s)‖L∞ds

}
≤ mk ≤ sup

x∈[0,1]

m0(x) exp

{∫ T0

0

‖uk−1
l,x (s)‖L∞ds

}
(3.9)

and
∂mk(x, t)

∂x
=

dm0(Xk
l (0;x, t))

dXk
l

exp
{

−2
∫ t

0

uk−1
l,Xk

l
(Xk

l (τ ;x, t), τ) dτ

}

−mk(x, t)
∫ t

0

uk−1
l,Xk

l Xk
l
(Xk

l (τ ;x, t), τ)
∂Xk

l (τ ;x, t)
∂x

dτ, (3.10)

where Xk
l is a unique solution of (3.5) with uk−1

g replaced by uk−1
l .

Assume that uk−1
l , uk−1

g ∈ S. To prove ui
l, u

i
g ∈ S for all i = 0, 1, 2, 3, . . ., it suffices to prove uk

l , uk
g ∈ S.

In fact, as a consequence of that uk−1
g , uk−1

l ∈ S, we have

‖uk−1
g,x (·, t)‖L∞ ≤ ‖uk−1

g,x (·, t)‖W 1,1 ≤ AμA1, and ‖uk−1
l,x (·, t)‖L∞ ≤ ‖uk−1

l,x (·, t)‖W 1,1 ≤ AμA1 (3.11)

for t ∈ [0, T0].

Under the assumption (i), we have

C1 exp{−AμA1T0} ≤ mk ≤ C2 exp{AμA1T0}, and 0 ≤ nk ≤ C3 exp{AμA1T0} on [0, 1] × [0, T0].

where we have used (3.7), (3.9) and (3.11). In this case, we let

T0 ≤ 1
AμA1

log
(

C1

C̄1

)
� T1 for C̄1 ∈ (k0, C1). (3.12)



Vol. 17 (2015) Two-Fluid 429

Under the assumption (ii), we have

0 ≤ mk ≤ C4 exp{AμA1T0}, and 0 ≤ nk ≤ C5 exp{AμA1T0} on [0, 1] × [0, T0].

In this case, we let

T0 ≤ 1
AμA1

log
( C̄4

C4

)
� T̄1 for C̄4 ∈ (C4, k0). (3.13)

Under the assumption (iii), we have

0 ≤ mk ≤ C6 exp{AμA1T0}, and C7 exp{−AμA1T0} ≤ nk ≤ C8 exp{AμA1T0} on [0, 1] × [0, T0].

where we have used (3.7), (3.9) and (3.11). In this case, we let

T0 ≤ 1
AμA1

� ¯̄T1. (3.14)

Consequently, we have
• Under the assumption (i), we have

k0 < C̄1 ≤ mk ≤ C1C2

C̄1
, and 0 ≤ nk ≤ C1C3

C̄1
on [0, 1] × [0, T0], (3.15)

where T0 ≤ T1.
• Under the assumption (ii), we have

0 ≤ mk ≤ C̄4 < k0, and 0 ≤ nk ≤ C̄4C5

C4
on [0, 1] × [0, T0], (3.16)

where T0 ≤ T̄1.
• Under the assumption (iii), we have

0 ≤ mk ≤ C6e, and
C7

e
≤ nk ≤ C8e on [0, 1] × [0, T0], (3.17)

where T0 ≤ ¯̄T1.
It follows from (3.15)–(3.17) and Remark 2.5 that under the assumption (2.1), (2.2) or (2.3), there

exists a positive constant C which is independent of T0, Aμ and A1, such that⎧⎪⎨
⎪⎩

∥∥∥∂P (mk,nk)
∂nk

∥∥∥
L∞([0,1]×[0,T0])

≤ C,
∥∥∥∂P (mk,nk)

∂mk

∥∥∥
L∞([0,1]×[0,T0])

≤ C,

‖mk‖L∞([0,1]×[0,T0]) ≤ C, ‖nk‖L∞([0,1]×[0,T0]) ≤ C,

(3.18)

where T0 satisfies (3.12), (3.13) or (3.14).
Now we are in a position to prove uk

l , uk
g ∈ S. First, we derive L1 estimates of nk

x and mk
x. By virtue

of (3.6) and (3.8), we have∫ 1

0

∣∣∣∣∂nk(x, t)
∂x

∣∣∣∣ dx ≤
∫ 1

0

∣∣∣∣∣
dn0(Xk

g (0;x, t))
dXk

g

exp
{

−2
∫ t

0

uk−1
g,Xk

g
(Xk

g (τ ;x, t), τ) dτ

}∣∣∣∣∣ dx

+
∫ 1

0

∣∣∣∣∣nk(x, t)
∫ t

0

uk−1
g,Xk

g Xk
g
(Xk

g (τ ;x, t), τ)
∂Xk

g (τ ;x, t)
∂x

dτ

∣∣∣∣∣ dx

≤
∫ 1

0

∣∣∣∣dn0(x)
dx

∣∣∣∣ exp
{∫ t

0

‖uk−1
g,x (·, τ)‖L∞dτ

}
dx + C

∫ t

0

∫ 1

0

|uk−1
g,xx(x, τ)| dx dτ

≤ exp{AμA1T0}‖n0,x‖L1 + CAμA1T0, (3.19)

where we have used the fact that uk−1
g ∈ S. Similarly, we have∫ 1

0

∣∣∣∣∂mk(x, t)
∂x

∣∣∣∣ dx ≤ exp{AμA1T0}‖m0,x‖L1 + CAμA1T0. (3.20)
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By virtue of the elliptic equation (3.1)3, the solution uk
g can be expressed by

uk
g =

1
μg

∫ x

0

∫ y

0

(αk
g [P k]ξ + nkg) dξ dy − 1

μg
x

∫ 1

0

∫ y

0

(αk
g [P k]ξ + nkg) dξ dy

which implies that

[uk
g ]x =

1
μg

∫ x

0

(αk
g [P k]ξ + nkg) dξ − 1

μg

∫ 1

0

∫ y

0

(αk
g [P k]ξ + nkg) dξ dy.

Consequently,

‖uk
g(·, t)‖W 2,1 ≤ 5

μg
‖(αk

g [P k]x + nkg)‖L1 ≤ 5Aμ

[
C(‖mk

x‖L1 + ‖nk
x‖L1) + g‖n0‖L1

]
(3.21)

for all t ∈ [0, T0], where we have used the fact that
∫ 1

0

nk =
∫ 1

0

n0. Similarly, we have

‖uk
l (·, t)‖W 2,1 ≤ 5Aμ

[
C(‖mk

x‖L1 + ‖nk
x‖L1) + g‖m0‖L1

]
for all t ∈ [0, T0]. Denote T2 = 1

AµA1
and let

T0 ≤ min{T1, T2} for assumption (2.1),

T0 ≤ min{T̄1, T2} for assumption (2.2),

T0 ≤ min{ ¯̄T1, T2} for assumption (2.3),

(3.22)

and

A1 ≥ 5Ce(‖m0,x‖L1 + ‖n0,x‖L1) + 10C2 + 5g‖m0‖L1 + 5g‖n0‖L1 . (3.23)

Then for assumptions (2.1)–(2.3) respectively, we have

‖uk
g(·, t)‖W 2,1 ≤ AμA1 and ‖uk

l (·, t)‖W 2,1 ≤ AμA1

for all t ∈ [0, T0]. Consequently, we have uk
l , uk

g ∈ S. It also follows from (3.19) and (3.20) that

‖nk
x(·, t)‖L1 ≤ C, ‖mk

x(·, t)‖L1 ≤ C (3.24)

for an appropriate choice of C independent of Aμ, A1, and T0.

3.3. Step 3: Compactness Arguments

In order to obtain some compactness properties of mk
x and nk

x, we need to bound them in Lr where r > 1.1

In fact, since we have ui
l, u

i
g ∈ S for all i and have (3.18)–(3.20), we evaluate ‖mk(·, t)‖W 1,r , ‖nk(·, t)‖W 1,r

and ‖uk
l (·, t)‖W 2,r , ‖uk

g(·, t)‖W 2,r as we did in (3.19) and (3.21) respectively. This gives inequalities of the
form ∫ 1

0

|[uk−1
g ]xx|r ≤ Cμ

∫ 1

0

([mk−1]rx + [nk−1]rx) + Cμ (similarly for uk−1
l )

and ∫ 1

0

([mk]rx + [nk]rx) ≤ Cμ

∫ t

0

∫ 1

0

([mk−1]rx + [nk−1]rx) + Cμ.

Then we use Gronwall inequality and verify that mk and nk are bounded in C([0, T0];W 1,r) uniformly
for k and that uk

l and uk
g are bounded in C([0, T0];W 2,r) uniformly for k.

1 In the paper, we need r ≥ 2 due to the non-conservative form of the momentum equations. Please refer to (3.35)–(3.37)
in Step 4.
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Thus, there exist a subsequence ki (i = 1, 2, 3, . . .) and a (ul, ug,m, n), such that

(uki

l , uki
g ) ⇀ (ul, ug) weak-* in L∞([0, T0];W

1,r
0 ∩ W 2,r),

nki ⇀ n weak-* in L∞([0, T0];W 1,r),

mki ⇀ m weak-* in L∞([0, T0];W 1,r),

(nki
t ,mki

t ) ⇀ (nt,mt) weak-* in L∞([0, T0];Lr)

(3.25)

as ki → ∞, where

(ul, ug) ∈ L∞([0, T0];W 2,r ∩ W 1,r
0 ), and (m,n) ∈ L∞([0, T0];W 1,r),

and nt,mt ∈ L∞([0, T0];Lr). Using the Aubin–Lions’ compactness theorem, we can obtain some strong
convergence. More precisely, there exists a subsequence still denoted by ki without loss of generality
(i = 1, 2, 3, . . .), such that

nki → n in C([0, 1] × [0, T0]),

mki → m in C([0, 1] × [0, T0]),
(3.26)

as ki → ∞. It follows from (3.26), (3.15)–(3.17) that
• Under the assumption (i), we have

k0 < C̄1 ≤ m ≤ C1C2

C̄1
, and 0 ≤ n ≤ C1C3

C̄1
on [0, 1] × [0, T0], (3.27)

where T0 ≤ min{T1, T2}.
• Under the assumption (ii), we have

0 ≤ m ≤ C̄4 < k0, and 0 ≤ n ≤ C̄4C5

C4
on [0, 1] × [0, T0], (3.28)

where T0 ≤ min{T̄1, T2}.
• Under the assumption (iii), we have

0 ≤ m ≤ C6e, and
C7

e
≤ n ≤ C8e on [0, 1] × [0, T0], (3.29)

where T0 ≤ min{ ¯̄T1, T2}.

3.4. Step 4: Convergence of (uki−1
l , uki−1

g )

We are going to investigate the convergence of the neighbor sequence of (uki

l , uki
g ), i.e., (uki−1

l , uki−1
g ),

in order to make sure that their limits are the same, since they both appear in the approximate system
(3.1).

To that end, we need the estimates of the difference between mk+1 (nk+1) and mk (nk), since there
is a connection between velocity and mass due to the momentum equation. Denote m̄k+1 = mk+1 − mk

and n̄k+1 = nk+1 − nk. Then{
m̄k+1

t + m̄k+1
x uk

l + mk
x(uk

l − uk−1
l ) + m̄k+1[uk

l ]x + mk(uk
l − uk−1

l )x = 0,

m̄k+1(x, 0) = 0
(3.30)

and {
n̄k+1

t + n̄k+1
x uk

g + nk
x(uk

g − uk−1
g ) + n̄k+1[uk

g ]x + nk(uk
g − uk−1

g )x = 0,

n̄k+1(x, 0) = 0
(3.31)

for (x, t) ∈ [0, 1] × [0, T0].
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Using (3.30), we have

d

dt

∫ 1

0

|m̄k+1|r ≤ r

∫ 1

0

|m̄k+1|r−1|mk
x||uk

l − uk−1
l | + (r − 1)

∫ 1

0

|m̄k+1|r|[uk
l ]x|

+r

∫ 1

0

|m̄k+1|r−1|mk||(uk
l − uk−1

l )x|

≤ r‖uk
l − uk−1

l ‖L∞‖m̄k+1‖r−1
Lr ‖mk

x‖Lr + (r − 1)‖[uk
l ]x‖L∞‖m̄k+1‖r

Lr

+r‖mk‖L∞‖(uk
l − uk−1

l )x‖Lr‖m̄k+1‖r−1
Lr

≤ C̄‖(uk
l − uk−1

l )x‖Lr‖m̄k+1‖r−1
Lr + C̄Aμ‖m̄k+1‖r

Lr , (3.32)

where C̄ is a generic positive constant depending only on the initial data, the upper bound of T0 and
other known constants but independent of k and Aμ. Here we have used the facts that mk

x is bounded in
Lr and that uk

l ∈ S, and the Poincaré inequality. Similarly, we have

d

dt

∫ 1

0

|n̄k+1|r ≤ C̄‖(uk
g − uk−1

g )x‖Lr‖n̄k+1‖r−1
Lr + C̄Aμ‖n̄k+1‖r

Lr . (3.33)

It is easy to see that uk
l − uk−1

l solves the equation

μl[uk
l − uk−1

l ]xx = αk
l P k

x − αk−1
l P k−1

x + g(mk − mk−1)

= (αk
l − αk−1

l )P k
x + αk−1

l [P k − P k−1]x + g(mk − mk−1)

= (αk
l − αk−1

l )P k
x + (αk−1

l [P k − P k−1])x − αk−1
lx [P k − P k−1] + g(mk − mk−1).

(3.34)

Similar to the estimate of uk
g [see (3.21)], ‖(uk

l − uk−1
l )x‖Lr can be evaluated as follows:

‖[uk
l − uk−1

l ]x‖Lr ≤ C̄

μl
‖(αk

l − αk−1
l )P k

x ‖L1 +
C̄

μl
‖[αk−1

l ]x(P k − P k−1)‖L1

+
C̄

μl
‖αk−1

l (P k − P k−1)‖Lr +
C̄

μl
‖m̄k‖Lr . (3.35)

Note that

|αk
l − αk−1

l | ≤ C̄(|m̄k| + |n̄k|) and |P k − P k−1| ≤ C̄(|m̄k| + |n̄k|).
Since

αlx =
∂

∂x

m

ρl(m,n)
=

[ 1
ρl

− m

ρ2l

1
a2

l

∂P

∂m

]
mx − m

ρ2l

1
a2

l

∂P

∂n
nx,

it follows, in view of Remark 2.4 and (3.18), that

|[αk−1
l ]x| ≤ C̄(|mk−1

x | + |nk−1
x |).

Similarly, for P k
x , and we can conclude that P k

x and [αk−1
l ]x are in Lr. Using Hölder inequality we can

estimate the first term on the RHS of (3.35) as follows

‖(αk
l − αk−1

l )P k
x ‖r

L1 ≤ C̄

∫ 1

0

(|m̄k| + |n̄k|)r ·
(∫ 1

0

|P k
x | r

r−1

)r−1

≤ C̄

∫ 1

0

(|m̄k|r + |n̄k|r),

if r
r−1 ≤ r, i.e., r ≥ 2. The same arguments give that

‖[αk−1
l ]x(P k − P k−1)‖r

L1 ≤ C̄

∫ 1

0

(|m̄k|r + |n̄k|r),

while it follows that

‖αk−1
l (P k − P k−1)‖r

Lr ≤ C̄

∫ 1

0

(|m̄k|r + |n̄k|r).
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Consequently,

‖[uk
l − uk−1

l ]x‖Lr ≤ C̄Aμ(‖m̄k‖Lr + ‖n̄k‖Lr ). (3.36)

Similarly, we have

‖[uk
g − uk−1

g ]x‖Lr ≤ C̄Aμ(‖m̄k‖Lr + ‖n̄k‖Lr ). (3.37)

Combining (3.32), (3.33), (3.36) and (3.37) with Young inequality, we have

d

dt

∫ 1

0

(|m̄k+1|r + |n̄k+1|r) ≤ C̄Aμ(‖m̄k‖r
Lr + ‖n̄k‖r

Lr ) + C̄Aμ(‖m̄k+1‖r
Lr + ‖n̄k+1‖r

Lr ). (3.38)

Integrating (3.38) over [0, t] for any given t ∈ [0, T0], and taking the maximum on both sides, we have

max
t∈[0,T0]

(‖m̄k+1‖r
Lr + ‖n̄k+1‖r

Lr ) ≤ 1
2

max
t∈[0,T0]

(‖m̄k‖r
Lr + ‖n̄k‖r

Lr ), (3.39)

provided

T0 ≤ min
{

T1, T2,
1

3C̄Aμ

}
for assumption (2.1),

T0 ≤ min
{

T̄1, T2,
1

3C̄Aμ

}
for assumption (2.2),

T0 ≤ min
{

¯̄T1, T2,
1

3C̄Aμ

}
for assumption (2.3).

(3.40)

(3.39) implies that

max
t∈[0,T0]

(‖m̄k+1‖r
Lr + ‖n̄k+1‖r

Lr ) ≤
(

1
2

)k−1

max
t∈[0,T0]

(‖m̄2‖r
Lr + ‖n̄2‖r

Lr ) ≤ C̄

(
1
2

)k−1

, (3.41)

for all k. (3.36), (3.37) and (3.41) give

‖(uk
l − uk−1

l )x‖r
Lr ≤ C̄Ar

μ

(
1
2

)k−2

, (3.42)

and

‖(uk
g − uk−1

g )x‖r
Lr ≤ C̄Ar

μ

(
1
2

)k−2

. (3.43)

(3.42) and (3.43) combined with (3.25)1 imply that

(uki−1
l , uki−1

g ) ⇀ (ul, ug) weak-* in L∞([0, T0];W
1,r
0 ) (3.44)

as ki → ∞.

3.5. Step 5: Conclusion

Based on (3.25)–(3.29) in Step 3, it is easy to verify

μg[ug]xx = ng + αgPx,

μl[ul]xx = mg + αlPx,
(3.45)

a.e. in [0, 1] × [0, T0], since

(αki
g , αki

l , P ki) → (αg, αl, P ) in C([0, 1] × [0, T0]),

as ki → ∞, and P ki
x is bounded in L∞([0, T0];L2), where αg = αg(m,n), αl = αl(m,n), P = P (m,n).
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Using (3.25)4, (3.26), (3.44) and the regularity of (m,n, ul, ug), we get

nt + (nug)x = 0,

mt + (mul)x = 0,
(3.46)

a.e. in [0, 1] × [0, T0]. (3.26) and (3.25)1 ensure that (m,n) and (ul, ug) satisfy the initial condition
and the boundary condition, respectively. The continuity in time of (m,n) can be proved by using the
characteristic equation as in Step 2. Then we use the equations of (ul, ug) and get the continuity in time
of (ul, ug). Thus, we get a solution (m,n, ul, ug) which solves (1.6)–(1.8) on [0, 1] × [0, T0] in the settings
as in Theorem 2.1. The uniqueness was done implicitly in Step 4.
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Fig. 1. An example of the behavior of the model (1.6) showing how initial smooth initial data with no single-phase zones
tend to develop single-phase regions and sharp gradients in the volume fraction
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4. A Numerical Example

We explore an example for the model (1.6) subject to the following initial data

αg(x, t = 0) = 0.5, P (x, t = 0) = P0(x).

From these we can compute ρl(P0) and ρg(P0), then the corresponding m0(x), n0(x) and ul,0(x),
ug,0(x). We consider a fully discrete version of the approximate system (3.1) and compute solutions on
a spatial grid corresponding to 100 cells. Plots of αg, P , αlul, and αgug are are shown in Fig. 1. The
plots tell us that the heavy liquid will start to fall towards the bottom of the vertical conduit (giving
rise to a negative liquid velocity) whereas the light gas is displaced upwardly (giving rise to a positive
gas velocity). As more and more of the two phases have been separated, the fluids will gradually stop
moving reflected by the dying fluid velocities. Associated with this separation there is formation of a
sharp gradient in the volume fraction representing an interface between the two phases.

5. Concluding Remarks

The analysis has given some insight into important mechanisms of the reduced two-fluid model (1.6). It
is demonstrated that for a fixed time T > 0, there exists a strong solution as described by Theorem 2.1
subject to the condition that the viscosity coefficients are sufficiently large. In particular, it is shown that
masses m and n are in W 1,2. The fact that this result depends on time T is quite natural, as reflected
by the numerical example, since is is demonstrated that the gradient of the volume fraction tend to
blow up for larger times indicating that m and n may not remain in W 1,2 for all times. An interesting
open question is whether blow-up of gradients in masses might happen in finite time for fixed viscosity
coefficients for the model (1.6).

The formulation of the two-fluid model itself is not cast in stone. Future studies will focus on seeking
appropriate formulations of the two-fluid model and related functional spaces in which to study such
models where results (estimates) can be obtained with weaker conditions on the viscosity coefficients.
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