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Abstract. The second-grade fluid equations are a model for viscoelastic fluids, with two parameters: α > 0, corresponding
to the elastic response, and ν > 0, corresponding to viscosity. Formally setting these parameters to 0 reduces the equations
to the incompressible Euler equations of ideal fluid flow. In this article we study the limits α, ν → 0 of solutions of the
second-grade fluid system, in a smooth, bounded, two-dimensional domain with no-slip boundary conditions. This class of
problems interpolates between the Euler-α model (ν = 0), for which the authors recently proved convergence to the solution
of the incompressible Euler equations, and the Navier-Stokes case (α = 0), for which the vanishing viscosity limit is an
important open problem. We prove three results. First, we establish convergence of the solutions of the second-grade model
to those of the Euler equations provided ν = O(α2), as α → 0, extending the main result in (Lopes Filho et al., Physica D
292(293):51–61, 2015). Second, we prove equivalence between convergence (of the second-grade fluid equations to the Euler
equations) and vanishing of the energy dissipation in a suitably thin region near the boundary, in the asymptotic regime

ν = O(α6/5), ν/α2 → ∞ as α → 0. This amounts to a convergence criterion similar to the well-known Kato criterion for the
vanishing viscosity limit of the Navier-Stokes equations to the Euler equations. Finally, we obtain an extension of Kato’s
classical criterion to the second-grade fluid model, valid if α = O(ν3/2), as ν → 0. The proof of all these results relies on
energy estimates and boundary correctors, following the original idea by Kato.
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1. Introduction

The second-grade fluid model is governed by the system:
⎧
⎨

⎩

∂tv − νΔu + (u · ∇)v +
∑2

j=1 vj∇uj + ∇p = 0, in Ω × (0, T )
∇ · u = 0, in Ω × (0, T )
v = (I − α2Δ)u, in Ω × (0, T ),

(1.1)

see, e.g., [3,10].
We consider system (1.1) in a two-dimensional simply-connected smooth bounded domain Ω ⊂ R

2,
subject to the no-slip Dirichlet boundary condition on ∂Ω, i.e.,

u = 0, on ∂Ω × (0, T ). (1.2)

Formally, if we set α = 0, system (1.1) becomes the Navier-Stokes system, because the term
∑2

j=1 vj∇uj becomes a gradient and it can be incorporated into the pressure. On the other hand, if
we set ν = 0 instead, system (1.1) becomes the Euler-α system and setting both α and ν to zero yields
the incompressible Euler equations, which we write as:

{
∂tū + ū · ∇ū + ∇p̄ = 0, in Ω × (0, T )

∇ · ū = 0, in Ω × (0, T ).
(1.3)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00021-015-0207-8&domain=pdf


328 M. C. Lopes Filho et al. JMFM

In this article, the Euler system, (1.3), is subject to the non-penetration boundary condition,

ū · n̂ = 0, on ∂Ω × (0, T ), (1.4)

where n̂ denotes the exterior unit normal vector to ∂Ω.
In a recent paper, [19], the authors proved that, under suitable smoothness assumptions, solutions

of the Euler-α system converge to solutions of the Euler system as α → 0, despite the presence of
a boundary layer. The analogous problem for the ν → 0 limit of the Navier-Stokes equations is an
important open problem. As we have seen, the second-grade fluids equation provides a natural family of
problems which formally interpolates between these situations, aside from having independent interest,
see [3]. The purpose of the present article is to examine the limit α, ν → 0 of the second-grade fluids
equations, in the hope of shedding light into the contrast between the vanishing α limit of Euler-α and
the vanishing viscosity limit of the Navier-Stokes system in the presence of a boundary layer.

Our investigation of the limit α, ν → 0 of solutions to (1.1) is expressed in three different results.
First, we prove that if ν = O(α2), under appropriate conditions on regularity and convergence of initial
data, solutions of the second-grade fluid equations converge to solutions of the Euler system in L2 in
space, uniformly in time, as α → 0. This result is a natural extension of the main result in [19], and the
condition ν = O(α2) can be interpreted as a smallness condition on ν, implying that the second-grade
fluid equations behave as a small perturbation of the Euler-α system. The other results are Kato-type
criteria (cf. [12]) for convergence. First, we prove that, if α2<<ν = O(α6/5), convergence is equivalent to
vanishing of the energy dissipation rate in a region near the boundary of width O(α3ν−3/2). Note that,
with the condition imposed on ν, this width is known to vanish as α → 0, but no rate can be asserted. In
this result, the second-grade fluid equations are still a small perturbation of the Euler-α model, but the
perturbation is larger, so that convergence is lost and only the sharp characterization of convergence is
retained. For the last result, we assume α = O(ν3/2). In this case, we prove that convergence is equivalent
to vanishing of the energy dissipation rate in a region of width O(ν) near the boundary, which is precisely
the result obtained by Kato for the Navier-Stokes system in [12]. In contrast with the first two results,
this last result imposes a smallness condition on α, which can be interpreted as thinking of the second-
grade fluids system as a small perturbation of the Navier-Stokes system. The result proved is, therefore,
a natural extension of the original result by Kato [12]. We illustrate the regions of validity of the three
results in Fig. 1, convergence in region IV, sharp convergence criteria in regions I and III, and no result

Fig. 1. Curve between region I and region II: ν = α2/3; between II and III: ν = α6/5; between III and IV: ν = α2
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obtained in region II. The proofs of all three results are technically very similar, based on the use of
energy estimates and boundary correctors, following the ideas introduced by Kato in [12].

There is a large literature associated with the vanishing viscosity and vanishing α limits, which we
briefly survey below. For the vanishing viscosity limit of the Navier-Stokes equations, convergence is
known in cases without boundary, see for example, [5–7,20] and references therein, and for Navier bound-
ary conditions, see [4,18,21,24,25]. For no-slip boundary conditions the problem is open, with sharp
convergence criteria obtained first by Kato in [12], and reformulations of Kato’s criteria obtained in
[14,23]. For a recent survey on this subject, see [1]. The literature associated with the α → 0 problem is
much smaller. In addition to the convergence result in [19], already mentioned, it was shown in [17] that,
in the whole space, solutions of Euler-α converge to the corresponding solutions of the Euler equations, as
α → 0. In [2], the limit α, ν → 0 of the solutions of (1.1) with Navier-type boundary conditions was shown
to converge to the corresponding solutions of the Euler equations, irrespective of the relative vanishing
rates of α and ν.

The remainder of this paper is organized in two sections. In Sect. 2, we introduce some basic notation,
and present preliminary results. In Sect. 3, we state and prove our main results and draw some conclusions.

2. Notations and Preliminaries

In this section, we introduce notation and present preliminary results concerning the second-grade fluid
Eq. (1.1) and the Euler equations (1.3).

Let Ω ⊆ R2 be a bounded, smooth, simply connected domain. We use the notation Hm(Ω) for the
usual L2-based Sobolev spaces of order m, with the norm ‖ · ‖m. For the case m = 0, H0(Ω) = L2(Ω); we
denote both norms by ‖ · ‖. By Hm(Ω) we denote the Sobolev space of the vector fields u = (u1, u2) such
that ui ∈ Hm(Ω), i = 1, 2, and the norms in Hm(Ω), (L2(Ω))2 are also denoted by ‖·‖m, ‖·‖, respectively.
We denote by C∞

c (Ω) the space of smooth functions with infinitely many derivatives, compactly supported
in Ω, and by Hm

0 (Ω) the closure of C∞
c (Ω) under the Hm-norm.

We make use of the following function spaces.

H = {u ∈ (L2(Ω))2 : div u = 0 in Ω, u · n̂ = 0 on ∂Ω},

V = {u ∈ H1(Ω) : div u = 0 in Ω, u = 0 on ∂Ω},

W = {u ∈ V : curl (u − α2Δu) ∈ L2(Ω)}.

We will make frequent use of the identity:
∫

Ω

(Ψ · ∇)Φ · Φdx = 0, (2.1)

for every Ψ ∈ H1(Ω), with Ψ · n̂ = 0,div Ψ = 0, and every Φ ∈ H1(Ω).
We recall the two-dimensional Ladyzhenskaya inequality (see, e.g., [8,15]),

‖ψ‖2
L4(Ω) ≤ C‖ψ‖‖ψ‖1, for every ψ ∈ (H1(Ω))2, (2.2)

where C is a positive constant.
Let u = (u1, u2) ∈ V , and set

curl u ≡ ∂x1u2 − ∂x2u1 = ∇⊥ · u,

where ∇⊥ = (−∂x2 , ∂x1). We observe that

‖curl u‖ = ‖∇u‖, for every u ∈ V. (2.3)



330 M. C. Lopes Filho et al. JMFM

Apply the curl operator to the second-grade fluid Eq. (1.1) under the no-slip boundary conditions
(1.2) to obtain the following equivalent two-dimensional system,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tq +
ν

α2
(q − curlu) + u · ∇q = 0, in Ω × (0, T ),

∇ · u = 0, in Ω × (0, T ),

q = curl (u − α2Δu) in Ω × (0, T ),

u = 0 on ∂Ω × (0, T ).

(2.4)

Global well-posedness of (1.1), or equivalently, of (2.4), has been established in [3,10]. For the sake of
completeness we state and prove the following:

Theorem 1. Let T > 0 be fixed, and uα
0 ∈ W. There exists a unique solution u ∈ C([0, T ];V ∩ W ) of

problem (1.1)–(1.2) (or (2.4)) with initial velocity uα
0 , satisfying

‖u(t)‖2 + α2‖∇u(t)‖2 + ν

∫ t

0

‖∇u(τ)‖2dτ = ‖uα
0 ‖2 + α2‖∇uα

0 ‖2, (2.5)

for every t ∈ [0, T ]. Moreover,

‖q(t)‖2 ≤ e− 1
2 ( ν

α2 )t‖q0‖2 +
1

2α2
(‖uα

0 ‖2 + α2‖∇uα
0 ‖2), (2.6)

for every t ∈ [0, T ].

Proof. The existence and uniqueness of a solution to (1.1) was obtained in [3,10]. By standard energy
estimates, it is easy to obtain identity (2.5) as well as

‖q(t)‖2 ≤ e− 1
2 ( ν

α2 )t

(

‖q0‖2 +
ν

2α2

∫ t

0

e
1
2 ( ν

α2 )s‖curl u‖2ds

)

. (2.7)

From (2.3), (2.5) and (2.7) we conclude (2.6). �

In the next section we will investigate the convergence of solutions of the second-grade fluid equations,
as α → 0 and ν → 0, to the corresponding solutions of the 2D incompressible Euler equations. To this end,
we will need the following existence and regularity result concerning the solution of the Euler equations
(1.3) (see, for example, [13,22]).

Theorem 2. Fix T > 0 and s ≥ 3. Let u0 ∈ Hs(Ω)∩H. Then there exists a unique solution ū of (1.3)–(1.4),
with initial velocity u0, such that ū ∈ C([0, T ];Hs(Ω)). Moreover, ū also belongs to C1([0, T ];Hs−1(Ω))
and ‖ū(t)‖ = ‖u0‖, for any t ∈ [0, T ].

3. Main results

In this section we state and prove three theorems concerning the limit as α, ν → 0 of solutions of the
second-grade fluid equations. These results aim at describing the second-grade equations as an interpo-
lation between the Euler-α equations and the Navier-Stokes equations. It is hence natural to treat two
different regimes, one in which ν is small with respect to α and the other in which α is small relative to ν.

The first result consists of convergence to the corresponding Euler solution in the case ν = O(α2), as
α → 0.

Theorem 3. Fix T > 0 and let u0 ∈ H3(Ω) ∩ H. Assume that we are given a family of approximations
{uα

0 }α>0 ⊂ H3(Ω) ∩ V for u0 satisfying:
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‖uα
0 − u0‖ → 0,

α2‖∇uα
0 ‖2 = o(1),

‖uα
0 ‖3 = O(α−3).

(3.1)

Let uα,ν ∈ C([0, T ];V ∩W ) be the solution of (1.1)–(1.2), with initial velocity uα
0 . Let ū ∈ C([0, T ];H3(Ω)∩

H)∩C1([0, T ];H2(Ω)) be the solution of the Euler equations (1.3)–(1.4), with initial velocity u0. Assume
that ν = O(α2), as α → 0. Then uα,ν converges to ū, strongly in C([0, T ]; (L2(Ω))2), as α → 0.

Remark 1. In [19] the authors introduced the notion of a suitable family of approximations to u0 ∈ H3∩H
as a family {uα

0 } satisfying (3.1). In Proposition 1 of [19], it was shown that, for any u0 ∈ H1(Ω) ∩ H
there exists a suitable family of approximations.

Remark 2. Hereafter, K will denote a positive constant which is independent of α, but might depend on
u0.

Proof. We have, from Lemma 1 in [3], that H3(Ω) ∩ V ⊆ W . Thus from (2.5) and (3.1), we deduce that
for all t ∈ [0, T ],

‖uα,ν(t)‖2 + α2‖∇uα,ν(t)‖2 + ν

∫ t

0

‖∇uα,ν(τ)‖2dτ = ‖uα
0 ‖2 + α2‖∇uα

0 ‖2 ≤ K. (3.2)

From (2.3), together with (3.1) we have:

‖qα
0 ‖ ≤ ‖curl uα

0 ‖ + α2‖curl Δuα
0 ‖ ≤ K

α
. (3.3)

By virtue of (2.6), (3.3) and (3.2), we have

‖qα(t)‖2 ≤ ‖qα
0 ‖2 +

‖uα
0 ‖2 + α2‖∇uα

0 ‖2

2α2
≤ K

α2
. (3.4)

From (2.3), (2.4), (3.2) and (3.4) it follows that, for all t ∈ [0, T ], we have

α2‖curl Δuα,ν(t)‖ ≤ ‖qα(t)‖ + ‖curluα,ν(t)‖ ≤ K

α
. (3.5)

We recall from Lemma 2 in [19], that, for all ψ ∈ (H3(Ω))2 ∩ V , we have

‖ψ‖3 ≤ K‖curl Δψ‖. (3.6)

Therefore, from (3.5) and (3.6), we conclude that for all t ∈ [0, T ], it holds that

‖uα,ν(t)‖3 ≤ K

α3
. (3.7)

Following the notation introduced in [19] we recall the boundary layer corrector, given by

ub = ∇⊥(zψ̄), (3.8)

where ψ̄ is the stream function associated to ū, and z = z(x) is a cut-off function supported in a
δ−neighborhood of the boundary, ∂Ω.

We list below some useful estimates on the boundary layer corrector obtained in [19] (see also [12]).
For every t ∈ [0, T ], we have that:

‖∂�
tub(t)‖ ≤ Kδ

1
2 , (3.9)

‖∂�
t∇ub(t)‖ ≤ Kδ− 1

2 , (3.10)

where � = 0, 1, and K does not depend on δ.
In what follows we will make use of the following interpolation inequality (see [9], e.g.),

‖f‖2
1 ≤ K‖f‖‖f‖2, for all f ∈ H2(Ω). (3.11)
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Set Wα,ν = uα,ν − ū. From (1.1) and (1.3), Wα,ν satisfies:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂tW
α,ν + (uα,ν · ∇)Wα,ν + (Wα,ν · ∇)ū

= div τα,ν + ∇
(

p̄ − pα − |uα,ν |2
2

)

, in Ω × (0, T ),

div Wα,ν = 0, in Ω × (0, T ),

Wα,ν · n̂ = 0 on ∂Ω × (0, T ),
Wα,ν(x, 0) = uα

0 − u0 in Ω,

(3.12)

where

div τα,ν = α2∂tΔuα,ν + νΔuα,ν + α2(uα,ν · ∇)Δuα,ν + α2
2∑

j=1

(Δuα,ν
j )∇uα,ν

j .

Multiply Eq. (3.12) by Wα,ν and integrate over Ω × (0, t), for t ∈ [0, T ]. We then obtain

1
2
‖Wα,ν(t)‖2 +

∫ t

0

∫

Ω

(Wα,ν · ∇)ū · Wα,νdxds

=
∫ t

0

∫

Ω

div τα,ν · Wα,νdxds +
1
2
‖Wα,ν(0)‖2.

(3.13)

Clearly,
∣
∣
∣
∣

∫ t

0

∫

Ω

(Wα,ν · ∇)ū · Wα,νdxds

∣
∣
∣
∣ ≤ ‖∇ū‖L∞(Ω×(0,T ))

∫ t

0

‖Wα,ν(s)‖2ds. (3.14)

Moreover,
∫ t

0

∫

Ω

div τα,ν · Wα,νdxds = α2

∫ t

0

∫

Ω

∂sΔuα,ν · Wα,νdxds

−α2

∫ t

0

∫

Ω

(uα,ν · ∇)Δuα,ν · ūdxds

−α2

∫ t

0

∫

Ω

2∑

j=1

(Δuα,ν
j )∇uα,ν

j · ūdxds

+ν

∫ t

0

∫

Ω

Δuα,ν · Wα,νdxds

=: I1(t) + I2(t) + I3(t) + I4(t). (3.15)

Estimates for I1(t) and I2(t) + I3(t) were already provided in the proof of Theorem 2 of [19]. In
particular, it was shown that, for all t ∈ [0, T ],

I2(t) + I3(t) ≤ Kα2

∫ t

0

‖∇uα,ν(s)‖2ds + KTα2, (3.16)

see (4.18) and (4.19) in [19].
We will give some details of the estimate for I1. We start by rewriting I1, as in [19]:

I1(t) = α2

∫ t

0

∫

Ω

∂sΔuα,ν · Wα,νdxds

= −α2

∫ t

0

∫

Ω

∂s∇uα,ν · ∇uα,νdxds − α2

∫ t

0

∫

Ω

∂sΔuα,ν · (ū − ub)dxds

− α2

∫ t

0

∫

Ω

∂sΔuα,ν · ubdxds,

where ub is given in (3.8) for a suitable choice of δ.
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We have, for all t ∈ [0, T ],

I1(t) ≤ −α2

4
‖∇uα,ν(t)‖2 +

α2

2
‖∇uα

0 ‖2 + Kα2

∫ t

0

‖∇uα,ν‖2ds + g(δ, α, uα
0 , u0), (3.17)

with

g(δ, α, uα
0 , u0) = −α2

∫

Ω
∇uα

0 · ∇u0dx + Kα2 + Kαδ−1/2 + Kα2δ−1 + Kδ1/2 + Kδ2/3,

see (4.15) of [19] for details. Choose δ = δ(α) such that

δ(α) → 0 and
α2

δ(α)
→ 0, as α → 0. (3.18)

It follows from our choice in (3.18) and the hypotheses of Theorem 3, namely (3.1), that

g(δ, α, uα
0 , u0) → 0, as α → 0. (3.19)

Finally, we estimate the dissipative term. Here we use the boundary corrector ub to allow integration
by parts. We obtain

I4(t) = ν

∫ t

0

∫

Ω

Δuα,ν · (uα,ν − ū)dxds = −ν

∫ t

0

∫

Ω

(∇uα,ν : ∇uα,ν)dxds

−ν

∫ t

0

∫

Ω

Δuα,ν · (ū − ub))dxds − ν

∫ t

0

∫

Ω

Δuα,ν · ubdxds

= −ν

∫ t

0

∫

Ω

|∇uα,ν |2dxds − ν

∫ t

0

∫

Ω

(∇uα,ν : ∇(ū − ub))dxds

−ν

∫ t

0

∫

Ω

Δuα,ν · ubdxds

≤ −ν

∫ t

0

‖∇uα,ν(s)‖2ds + ν

∫ t

0

‖∇uα,ν(s)‖‖∇ū(s)‖ds

+ν

∫ t

0

‖∇uα,ν(s)‖‖∇ub(s)‖ds + ν

∫ t

0

‖Δuα,ν(s)‖‖ub(s)‖ds (3.20)

Thanks to (3.9), (3.10) and the result in Theorem 2, we obtain

I4(t) ≤ −ν

∫ t

0

‖∇uα,ν(s)‖2ds + K
ν

α

∫ t

0

(α‖∇uα,ν(s)‖)ds

+K
ν

α
δ− 1

2

∫ t

0

(α‖∇uα,ν(s)‖)ds + K
ν

α2
δ

1
2

∫ t

0

(α2‖Δuα,ν(s)‖)ds. (3.21)

We apply the interpolation inequality (3.11) to estimate the term ‖Δuα,ν(s)‖. Then estimates (3.2), (3.7)
and (3.21) give

I4 ≤ −ν

∫ t

0

‖∇uα,ν(s)‖2ds + KT
ν

α
+ KT

ν

α
δ− 1

2 + KT
ν

α2
δ

1
2 . (3.22)

Putting together (3.16), (3.17), (3.18), (3.19) and (3.22), we conclude that, for all t ∈ [0, T ],
∫ t

0

∫

o

div τα,ν · Wα,νdxds = I1(t) + I2(t) + I3(t) + I4(t)

≤ −1
4
α2‖∇uα,ν(t)‖2 − ν

∫ t

0

‖∇uα,ν(s)‖2ds +
α2

2
‖∇uα,ν

0 ‖2

+Kα2

∫ t

0

‖∇uα,ν(s)‖2ds + g(δ, α, uα
0 , u0)

+KTα2 + KT
ν

α
+ KT

ν

α
δ− 1

2 + KT
ν

α2
δ

1
2 . (3.23)
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From (3.14) and (3.23), we have

‖Wα,ν(t)‖2 + α2‖∇uα,ν‖2 + 2ν

∫ t

0

‖∇uα,ν(s)‖2ds ≤ K

∫ t

0

‖Wα,ν(s)‖2ds

+K(‖Wα,ν(0)‖2 + α2‖∇uα,ν
0 ‖2) + Kα2

∫ t

0

‖∇uα,ν(s)‖2ds + g̃(uα
0 , u0, ub(0)), (3.24)

where

g̃(uα
0 , u0, ub(0)) = KTα2 + KTα

ν

α2
+ KT

ν

α2
αδ− 1

2 + KT
ν

α2
δ

1
2 + g(δ, α, uα

0 , u0).

From the conditions (3.18), (3.19) and the assumption ν = O(α2), we infer that

g̃(uα
0 , u0, ub(0)) → 0, (3.25)

as α, ν → 0. Applying Gronwall’s lemma to (3.24), we obtain

sup
t∈[0,T ]

(‖Wα,ν(t)‖2 + α2‖∇uα,ν(t)‖2
)

+ ν

∫ T

0

‖∇uα,ν‖2dt

≤ eK2T
[
K1(‖Wα,ν(0)‖2 + α2‖∇uα

0 ‖2) + g̃(uα
0 , ū0, ub(0), α)

]
,

(3.26)

where K1,K2 do not depend on α, ν. From (3.1), (3.25) and (3.26), it follows that

sup
t∈(0,T )

(‖uα,ν(t) − ū(t)‖2 + α2‖∇uα,ν(t)‖2) + ν

∫ T

0

‖∇uα,ν‖2dt → 0 (3.27)

as α, ν → 0, provided ν = O(α2). �

The result we have just proved, Theorem 3, is a natural extension of Theorem 2 in [19], which treated
the special case ν = 0, α → 0. In fact, the proof we have just presented is an easy adaptation of the
proof of Theorem 2 in [19]. It is natural to seek an extension of Kato’s criterion, known for the case
α = 0, to the second-grade fluid equations. We obtain two distinct results in this direction, one which
is an extension of Theorem 3, with α2 << ν = O(α6/5), α → 0, and another which is an extension of
Kato’s original result in [12] to second-grade fluids, which works for α = O(ν3/2), as ν → 0.

Recall that a suitable family of approximations to a vector field u0 ∈ H3(Ω)∩H is a family {uα
0 }α>0 ⊂

H3(Ω) ∩ V satisfying (3.1).

Theorem 4. Fix T > 0 and let u0 ∈ H3(Ω) ∩ H. Let {uα
0 }α>0 ⊂ H3(Ω) ∩ V , be a suitable family of

approximations for u0. Let uα,ν ∈ C([0, T ];V ∩ W ) be the solution of (1.1)–(1.2) with initial velocity uα
0 .

Let ū ∈ C([0, T ];H3(Ω) ∩ H) ∩ C1([0, T ];H2(Ω)) be the solution of the Euler equations (1.3)–(1.4), with
initial velocity u0. Assume that

lim
α→0

ν

α2
= ∞, (3.28)

and that
ν = O(α6/5). (3.29)

Then uα,ν converges strongly to ū in C([0, T ]; (L2(Ω))2), as α → 0, if and only if

lim
α→0

ν

∫ T

0

∫

Ωδ

|∇uν,α|2dxdt = 0, (3.30)

where Ωδ is a δ−neighborhood of ∂Ω with

δ = C
α3

ν
3
2
. (3.31)
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Proof. Assume first that the family uα,ν converges, as α → 0, to ū strongly in C([0, T ];L2(Ω)). Then,
since ‖ū(t)‖ is constant, 0 ≤ t ≤ T , and since we are under hypothesis (3.29), it follows easily from the
energy estimate (3.2) together with the conditions (3.1) for a suitable family of approximations, that the
conclusion (3.30) holds true.

Conversely, we now suppose that condition (3.30) is valid, with δ given by (3.31). Let us denote the
L2(0, T ;L2(Ωδ))-norm by |‖ · ‖|.

We use the notation in the proof of Theorem 3. Our starting point is the identity (3.13), for which,
clearly, it suffices to estimate the terms I1, I2, I3 and I4, see (3.15). The only estimate we need to modify
is the estimate for I4.

From (3.20), we have that

I4 ≤ −ν

∫ t

0

‖∇uα,ν(s)‖2ds + KTν
1
2 +

ν
1
2

δ
1
2

(ν
1
2 |‖∇uα,ν‖|) + νδ|‖Δuα,ν‖|

= −ν

∫ t

0

‖∇uα,ν(s)‖2ds + KTν
1
2

+ν
1
2 δ− 1

2 (ν
1
2 |‖∇uα,ν‖|) + νδ

1
2 α−2(α2|‖Δuα,ν‖|). (3.32)

From (3.7) and (3.11), we have

α|‖∇u‖| =
α

ν
1
2
(ν

1
2 |‖∇u‖|), α2|‖Δu‖| ≤ K

α
1
2

ν
1
4

(ν
1
2 |‖∇u‖|) 1

2 . (3.33)

From (3.33), we find that

I4 ≤ −ν

∫ t

0

‖∇uα,ν(s)‖2ds + KTν
1
2

+ν
1
2 δ− 1

2 (ν
1
2 |‖∇uα,ν‖|) + Kδ

1
2 ν

3
4 α− 3

2 (ν
1
2 |‖∇uν,α‖|) 1

2 . (3.34)

Recall that δ was given in (3.31). Then, in view of hypothesis (3.28), it follows that δ → 0 as α → 0.
Furthermore, in light of our assumption on ν relative to α, (3.29), we have

α2

δ
= O(α4/5),

so that both conditions in (3.18) are satisfied as α → 0. Hence, as in Theorem 3, the conclusion (3.19)
follows. Finally, we note that, due to hypothesis (3.29), that ν = O(α6/5), we obtain

ν
1
2 δ− 1

2 = ν
5
4 α− 3

2 = O(1)

as α → 0.
From (3.16), (3.17) and (3.34), we have

‖Wα,ν(t)‖2 + α2‖∇uα,ν‖2 + ν

∫ t

0

‖∇uα,ν(s)‖2ds ≤ K(‖Wα,ν(0)‖2

+K

∫ t

0

‖Wα,ν(s)‖2ds + α2‖∇uα
0 ‖2) + Kα2

∫ t

0

‖∇uα,ν(s)‖2ds + KTν
1
2

+ν
1
2 δ− 1

2 (ν
1
2 |‖∇uα,ν‖|) + Kδ

1
2 ν

3
4 α− 3

2 (ν
1
2 |‖∇uν,α‖|) 1

2

+KTα2 + g(δ, α, uα
0 , u0), (3.35)

where g(δ, α, uα
0 , u0) is as in (3.19). From (3.30), (3.19), (3.35) and using the Gronwall lemma, we obtain

(3.27), which is the convergence result we desired. This concludes the proof. �

In our final result we adopt the point of view that the second-grade equations are a perturbation of
the Navier-Stokes equations. Hence we consider the limit as ν → 0 under a smallness condition in α
relative to ν.
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Theorem 5. Fix T > 0 and let u0 ∈ H3(Ω) ∩ H. Let {uα
0 }α>0 ⊂ H3(Ω) ∩ V , be a suitable family of

approximations for u0. Let uα,ν ∈ C([0, T ];V ∩ W ) be the solution of (1.1)–(1.2) with initial velocity uα
0 .

Let ū ∈ C([0, T ];H3(Ω) ∩ H) ∩ C1([0, T ];H2(Ω)) be the solution of the Euler equations (1.3)–(1.4), with
initial velocity u0. Assume that

α = O(ν3/2), as ν → 0. (3.36)

Then uα,ν converges strongly to ū in C([0, T ]; (L2(Ω))2), as ν → 0, if and only if

lim
ν→0

ν

∫ T

0

∫

ΩCν

|∇uν,α|2dxdt = 0, (3.37)

where ΩCν is a Cν−neighborhood of ∂Ω.

Proof. As in Theorem 4, we first suppose that the family uα,ν converges, as α → 0, to ū strongly in
C([0, T ];L2(Ω)). Then, using the fact that ‖ū(t)‖ = ‖u0‖, 0 ≤ t ≤ T , it follows from the energy estimate
(3.2), together with the conditions (3.1) for a suitable family of approximations, that (3.37) holds true.

Next, we assume that (3.37) is valid. Once again we use the notation in the proof of Theorem 3. We
start by multiplying the equation for the difference Wα,ν = uα,ν − ū, (3.12), by V α,ν = uα,ν − (ū − ub);
we then integrate the resulting identity on Ω × (0, t), for all t ∈ [0, T ]. We obtain

1
2
‖uα,ν(t) − ū(t)‖2 − 1

2
‖uα

0 − u0‖2 +
∫ t

0

∫

Ω

∂s(uα,ν − ū)ubdxds

=
∫ t

0

∫

Ω

div τα,ν · V α,νdxds −
∫ t

0

∫

Ω

((uα,ν · ∇)uα,ν − (ū · ∇)ū) · V α,νdxds. (3.38)

Consider first the third term on the left-hand-side of (3.38). We integrate by parts with respect to t and
we use (3.9) and (3.2) to deduce that

∣
∣
∣
∣

∫ t

0

∫

Ω

∂s(uα,ν − ū)ubdxds

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

Ω

(uα,ν(x, t) − ū(x, t))ub(x, t)dx −
∫

Ω

(uα,ν(x, 0) − ū(x, 0))ub(x, t)dx

−
∫ t

0

∫

Ω

(uα,ν − ū)∂subdxds

∣
∣
∣
∣

≤ ‖uα,ν(t) − ū(t)‖‖ub(t)‖ + ‖uα
0 − u0‖‖ub(0)‖

+
∫ t

0

‖uα,ν(s) − ū(s)‖‖ub‖ds

≤ Kδ
1
2 + K‖uα

0 − u0‖ + KTδ
1
2 . (3.39)

Using repeatedly identity (2.1) we obtain, for the second term on the right-hand-side of (3.38),
∫ t

0

∫

Ω

((uα,ν · ∇)uα,ν − (ū · ∇)ū) · V α,νdxds ≤
∫ t

0

∫

Ω

|uα,ν − ū|2|∇ū|dsdx

+
∫ t

0

∫

Ω

((uα,ν · ∇)uα,ν − (ū · ∇)ū) · ubdxds

≤ K

∫ t

0

‖uα,ν(s) − ū(s)‖2ds +
∫ t

0

∫

Ω

|(uα,ν · ∇)uα,ν · ub| + K‖ub‖. (3.40)

We make use of a version of the Poincaré inequality, valid for functions in u ∈ H1(Ωδ) such that u = 0
on ∂Ω; see e.g. Lemma 3 in [11]. This inequality is given by

‖u‖L2(Ωδ) ≤ Kδ‖∇u‖L2(Ωδ). (3.41)
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It follows from (3.40) and (3.9), together with (3.41), that
∫ t

0

∫

Ω

((uα,ν · ∇)uα,ν − (ū · ∇)ū) · V α,νdxds ≤ K

∫ t

0

‖uα,ν(s) − ū(s)‖2ds

+
∫ t

0

‖uα,ν‖L2(Ωδ)‖∇uα,ν‖L2(Ωδ)|ub|∞ds + Kδ
1
2

≤ K

∫ t

0

‖uα,ν(s) − ū(s)‖2ds + Kδ

∫ t

0

‖∇uα,ν‖2
L2(Ωδ) + Kδ

1
2 . (3.42)

Next, we will treat the first term on the right-hand-side of (3.38), which we rewrite as
∫ t

0

∫

Ω

div τα,ν · V α,νdxds = −
∫ t

0

∫

Ω

α2∂s∇uα,ν : ∇V α,νdxds

−α2

∫ t

0

∫

Ω

(uα,ν · ∇)Δuα,ν · (ū − ub)dxds

−α2

∫ t

0

∫

Ω

2∑

j=1

(Δuα,ν
j )∇uα,ν

j · (ū − ub)dxds

−ν

∫ t

0

∫

Ω

∇uα,ν : ∇V α,νdxds

=: J1(t) + J2(t) + J3(t) + J4(t). (3.43)

Now we need to estimate the terms above one by one. We begin with J1, which we integrate by parts
with respect to the time variable to obtain:

J1 = −
∫ t

0

∫

Ω

α2∂s∇uα,ν : ∇(uα,ν − ū + ub)dxds

= −1
2
α2‖∇uα,ν(t)‖2 +

1
2
α2‖∇uα

0 ‖2

−α2

∫ t

0

∫

Ω

∇uα,ν∇∂sūdxds + α2

∫

Ω

∇uα
0 : ∇u0dx

+α2

∫ t

0

∫

Ω

∇uα,ν : ∇∂subdxds − α2

∫

Ω

∇uα
0 : ∇ub(0)dx

≤ −1
2
α2‖∇uα,ν(t)‖2 + KTα + KTαδ− 1

2 + ḡ(uα
0 , u0, ub(0)), (3.44)

where

ḡ(uα
0 , u0, ub(0)) =

α2

2
‖∇uα

0 ‖2 + α2

∫

Ω

(∇uα
0 : ∇u0)dx − α2

∫

Ω

(∇uα
0 : ∇ub(0))dx. (3.45)

Next, we add J2 and J3. We find, easily, that

J2(t) + J3(t) = I2(t) + I3(t)

+α2

∫ t

0

∫

Ω

⎡

⎣(uα,ν · ∇)Δuα,νub +
2∑

j=1

Δuα,ν
j ∇uα,ν

j · ub

⎤

⎦ dxds

≤ Kα2

∫ t

0

‖∇uα,ν(s)‖2ds + KTα2

+α2

∫ t

0

∫

Ω

⎡

⎣(uα,ν · ∇)Δuα,νub +
2∑

j=1

Δuα,ν
j ∇uα,ν

j · ub

⎤

⎦ dxds, (3.46)
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where I2 and I3 are defined in (3.15). Using the Hölder inequality and (3.9), one can infer that

J4 = −ν

∫ t

0

∫

Ω

|∇uα,ν |2dxds + ν

∫ t

0

∫

Ω

∇uα,ν∇ūdxds

−ν

∫ t

0

∫

Ω

∇uα,ν∇ubdxds

≤ −ν

∫ t

0

‖∇uα,ν‖2ds + ν

∫ t

0

‖∇uα,ν‖‖∇ū‖ds

+ν

∫ t

0

‖∇uα,ν‖L2(Ωδ)‖∇ub‖L2(Ωδ)ds

≤ −ν

∫ t

0

‖∇uα,ν‖2ds + KTν
1
2 +

ν1/2

δ1/2

(

ν
1
2

∫ t

0

‖∇uα,ν‖L2(Ωδ)

)

. (3.47)

From (3.7), (3.10) and (3.41), we deduce that

α2

∫ t

0

∫

Ω

[(uα,ν · ∇)Δuα,ν ] · ubdxds = −α2

∫ t

0

∫

Ω

Δuα,ν · [(uα,ν · ∇)ub]dxds

≤ α2‖∇ub‖L∞

∫ t

0

‖uα,ν(s)‖L2(Ωδ)‖Δuα,ν‖L2(Ωδ)ds

≤ K

∫ t

0

‖∇uα,ν(s)‖L2(Ωδ)(α2‖Δuα,ν‖L2(Ωδ))ds. (3.48)

From (3.48) together with (3.33) it follows that
∣
∣
∣
∣α

2

∫ t

0

∫

Ω

(uα,ν · ∇)Δuα,ν · (ub)dxds

∣
∣
∣
∣ ≤ K

α
1
2

ν
3
4

(ν
1
2 |‖∇uα,ν‖|) 3

2 . (3.49)

Similarly, it is easy to obtain
∣
∣
∣
∣
∣
∣
α2

∫ t

0

∫

Ω

2∑

j

Δuα,ν
j ∇uj · (ub)dxds

∣
∣
∣
∣
∣
∣
≤ K

α
1
2

ν
3
4

(ν
1
2 |‖∇uα,ν‖|) 3

2 . (3.50)

We put together (3.38) with the estimates in (3.39), (3.42), (3.44),(3.46), (3.47), (3.49), (3.50) and (3.45),
and we find

‖uα,ν(t) − ū(t)‖2 + α2‖∇uα,ν‖2 + ν

∫ t

0

‖∇uα,ν(s)‖2ds

≤ K(‖uα
0 − u0‖2 + ‖uα

0 − u0‖)

+K

∫ t

0

‖uα,ν(s) − ū(s)‖2ds + Kδ

∫ t

0

‖∇uα,ν‖2
L2(Ωδ) + Kα + Kδ

1
2

+Kα2

∫ t

0

‖∇uα,ν(s)‖2ds + Kα
1
2 + Kαδ− 1

2 + Kν
1
2

+
ν

1
2

δ
1
2

(ν
1
2 |‖∇uα,ν‖|) + K

α
1
2

ν
3
4

(ν
1
2 |‖∇uα,ν‖|) 3

2 + ḡ(uα
0 , u0, ub(0)). (3.51)

We apply the Gronwall lemma to (3.51), we take δ = Cν and we use our hypothesis (3.36) and (3.37),
to conclude that

sup
t∈(0,T )

(‖uα,ν(t) − ū(t)‖2 + α2‖∇uα,ν(t)‖2) + ν

∫ T

0

‖∇uα,ν‖2dt → 0,

as ν → 0. �
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We finish with a few concluding remarks. Our goal here was to probe the relation between the van-
ishing viscosity limit for the Navier-Stokes equations and the vanishing-α limit for the Euler-α system,
exploring the diverse nature of the boundary layer for these problems by using the second-grade fluid
system as an interpolant. What we found is that there appears to be a subtle and complicated change
in behavior as viscosity and α vanish at different relative rates. Near Euler-α there is a region in (α, ν)
space where behavior similar to Euler-α is found, and further along, a region where vanishing viscosity
limit is controlled by behavior of the fluid in a suitable thin region around the boundary. In addition,
near Navier-Stokes there is a region where the behavior appears similar to Navier-Stokes as well. There is
also an intermediate region where we found no precise characterization of the Euler limit in the spirit of
Kato’s criterion. In this intermediate region we could formulate criteria for convergence in several ways,
but we found no equivalence result.

What is the difference in the boundary layer problem for Euler-α and Navier-Stokes? Both situations
are associated with a thin region of intense shear near the boundary, caused by discrepancy between
the boundary conditions of the approximation and of the limit. In inviscid fluid flows, thin regions of
intense shear are subject to the Kelvin-Helmholtz instability, which is the source of much of the difficulty
in understanding boundary layers. Most likely, the mechanism of inhibiting Kelvin-Helmholtz instability
by Euler-α and Navier-Stokes is quite different; understanding precisely how would be a very interesting
topic for future investigation.

It would be interesting to examine this problem from an asymptotic analysis point-of-view, examining
the changing nature of the boundary layer equations for the different relative ways in which α and ν
may vanish. This could also lead to estimating the error terms in the situations where convergence was
established. Other natural open problems include requiring less smoothness from the underlying Euler
solution, for example, looking at the case of bounded initial vorticity, higher dimensions and other α
models.
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