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Abstract. We study the Navier–Stokes equations of steady motion of a viscous incompressible fluid in R
3. We prove that

there are no nontrivial solution of these equations defined in the whole space R
3 for axially symmetric case with no swirl (the

Liouville theorem). Also we prove the conditional Liouville type theorem for axial symmetric solutions to the Euler system.

Mathematics Subject Classification. 35Q30 · 76D03 · 76D05.

Keywords. Three dimensional exterior axially symmetric domains, stationary Navier–Stokes equations,

boundary–value problem.

1. Introduction

The historical Liouville theorem (1847) states that a bounded entire holomorphic function is constant.
Nowadays, if K [u] denotes an elliptic differential operator (in general, nonlinear), among other issues
the name of Liouville is associated with the search of the conditions on u assuring that the system

K [u] = 0 in R
m,

lim
|x|→+∞

u(x) = u0 (1.1)

where u0 is an assigned constant vector, has the only solution u = u0. In this sense the Liouville theorem
for (1.1) is the first step in the study of the uniqueness questions concerning the operator K . We recall,
that the Liouville theorem holds for homogeneous elliptic systems and is strictly linked with the regularity
of weak solutions for nonlinear elliptic systems with nonconstant coefficients (see [9]).

In this paper we are concerned with the case where K is the stationary Navier–Stokes operator. To
be precise, we consider in R

3 the following problem
⎧
⎪⎪⎨

⎪⎪⎩

−νΔu + (u · ∇)u + ∇p = 0,

divu = 0,

lim
|x|→+∞

u(x) = u0,

(1.2)

where ν is the kinematical viscosity, u : R3 → R
3 and p : R3 → R are the unknown velocity and pressure

fields.
A D-solution to (1.2) is a pair (u, p) such that

∫

R3

|∇u|2 dx < +∞. (1.3)

Among the several open problems in the theory of the steady–state Navier–Stokes equation the following
Liouville’s type one is of some interest (see, e.g., [7], p. 729):

(LT) is a D-solution to (1.2) in R
3, vanishing at infinity, identically zero?
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In addition to its theoretical meaning, (LT) can be viewed as the first step in the study of the very hard
problem of uniqueness of solutions to nonhomogeneous problem for the Navier–Stokes equations and the
asymptotics of such solutions as |x| → +∞ (see [1,3,5,7,10,17,18,20]). As far as we know, the only
results concerning (LT) are due to Galdi [7] and, more recently to Chae and Yoneda [2]. In [2,7] (LT) is
respectively proved under the additional conditions that u belongs to L9/2(R3) or has a suitable behavior
at infinity, respectively. For n = 2 (LT) is proved in [8], while for n = 4 is simply obtained by a standard
integration and Sobolev’s inequality [7]. For n > 4 it is not known whether a D-solution is regular so the
technique used to prove the theorem for n = 4 are no longer applicable.

In this paper we consider (LT) in the class of axially symmetric solutions. Here and henceforth we
use the following usual notation. Let Ox1 , Ox2 , Ox3 be coordinate axis in R

3 and θ = arctg(x2/x1),
r = (x2

1 + x2
2)

1/2, z = x3 be cylindrical coordinates. Denote by vθ, vr, vz the projections of the vector v
on the axes θ, r, z.

A function f is said to be axially symmetric if it does not depend on θ. A vector-valued function
h = (hθ, hr, hz) is called axially symmetric if hθ, hr and hz do not depend on θ. A vector-valued function
h′ = (hθ, hr, hz) is called axially symmetric with no swirl if hθ = 0 while hr and hz do not depend on θ.

Our main result is the following

Theorem 1.1. Let (u, p) be an axially symmetric D-solution to (1.2) in R
3. If u0 = 0 and u has no swirl,

then u ≡ 0.

For u0 �= 0 it is well–known, by classical results of Babenko [1], that u − u0 ∈ Lq(R3) for all q > 2
(see also [7] p. 698 (last edition)), and the Liouville Theorem follows by a simple integration by parts
(see, e.g., [7, Theorem X.7.2]). Accordingly, Theorem 1.1 can be strengthened in the following way.

Theorem 1.2. Let u be a D-solution to the Navier–Stokes equations (1.2) in R
3. Assume that at least one

of the following two conditions is fulfilled:
(1) u0 �= 0;
(2) u is axially symmetric with no swirl. Then u ≡ const.

In addition, we prove some conditional Liouville type theorem for axial-symmetric solutions to the
Euler system (more precisely, under the assumption that the total head pressure is nonpositive, see
Theorem 2.1).

The paper is organized as follows: in Sect. 2.1 we discuss some integral identities for solutions to the
Euler equations, and in Sect. 2.2 we apply these results to prove Theorem 1.1.

2. Proofs of the Main Results

2.1. Some Identities for Solutions to the Euler System

For q ≥ 1 denote by Dk,q(Ω) the set of functions f ∈ W k,q
loc (Ω) such that ‖f‖Dk,q (Ω) = ‖∇kf‖Lq(Ω) < ∞.

Further, D1,2
0 (Ω) is the closure of the set C∞

0 (Ω) of all smooth functions having compact supports in
Ω with respect to the norm ‖ · ‖D1,2(Ω), and H(Ω) = {v ∈ D1,2

0 (Ω) : divv = 0}. Note that for
Ω = R

3,Ω = R
3
+ or an exterior domain Ω ⊂ R

3 with Lipschits boundary, elements from H(Ω) can be
approximated in the norm ‖ · ‖D1,2(Ω) by smooth divergence free vector fields with compact supports
(see [11,15]).

Assume that the following conditions are fulfilled:
(E) The axially symmetric functions v ∈ H(R3), p ∈ D1,3/2(Ω) satisfy the Euler system

⎧
⎪⎨

⎪⎩

(
v · ∇)

v + ∇p = 0 in R
3,

divv = 0 in R
3,

lim
|x|→+∞

v(x) = 0.
(2.1)
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By Sobolev Imbedding Theorem,
‖v‖L6(R3) < ∞. (2.2)

Adding some constant to p (if necessary), by virtue of the Sobolev inequality (see, e.g., [7] II.6), we may
assume without loss of generality that

‖p‖L3(R3) < ∞. (2.3)

We need also the following fact, which is a simple consequence of well-known results.

Lemma 2.1. (see, e.g., Lemma 4.2 from [12]) Let the conditions (E) be fulfilled. Then

p ∈ D2,1(R3) ∩ D1,3/2(R3). (2.4)

For reader’s convenience we reproduce the proof of this fact.

Proof. Clearly, p ∈ D1,3/2(R3) is the weak solution to the Poisson equation

Δp = −∇v · ∇v� in R
3. (2.5)

Let

G(x) =
1
4π

∫

Ω

(∇v · ∇v�)(y)
|x − y| dy.

By the results of [4], ∇v · ∇v� belongs to the Hardy space H1(R3). Hence by Calderón–Zygmund
theorem for Hardy’s spaces [19] G ∈ D2,1(R3) ∩ D1,3/2(R3). Consider the function p∗ = p − G. By
construction p∗ ∈ D1,3/2(R3) and Δp∗ = 0 in R

3. In particular, ∇p∗ ∈ L3/2(R3) is a harmonic (in the
sense of distributions) function. From the mean-value property it follows that p∗ ≡ const. Consequently,
p ∈ D2,1(R3). �

Let Φ(x) = p(x)+
1
2
|v(x)|2 be the total head pressure corresponding to the solution (v, p) of the Euler

equations (2.1). Suppose that Φ satisfies the inequality

Φ(x) ≤ 0. (2.6)

Because of axial symmetry condition, it is natural to consider the restriction of functions on the
half-plane P+ = {(0, x2, x3) : x2 > 0, x3 ∈ R}. Of course, on P+ the coordinates x2, x3 coincides with
coordinates r, z.

In cylindrical coordinates for the axially symmetric solution the Euler system (2.1) can be written as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂p

∂z
+ vr

∂vz

∂r
+ vz

∂vz

∂z
= 0,

∂p

∂r
− (vθ)2

r
+ vr

∂vr

∂r
+ vz

∂vr

∂z
= 0,

vθvr

r
+ vr

∂vθ

∂r
+ vz

∂vθ

∂z
= 0,

1
r

∂(rvr)
∂r

+
∂vz

∂z
= 0,

lim
|x|→+∞

v(x) = 0

(2.7)

(these equations are fulfilled for almost all x ∈ P+ ).
First, we discuss the integrability properties of v, p on the half-plane P+. The standard formula

∫

R3

f dx =
∫∫

P+

rf dz dr
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holds for any axially symmetric function f ∈ L1(R3). Further, for every axially symmetric vector function
g = (gθ, gr, gz) we have

|∇g|2 =
|gθ|2
r2

+
|gr|2
r2

+ |∂rgr|2 + |∂zgr|2 + |∂rgθ|2

+ |∂zgθ|2 + |∂rgz|2 + |∂zgz|2. (2.8)

In particular,
|gr|
r

≤ |∇g|. Thus, by virtue of ∇2p ∈ L1(R3), we can apply the above formula to the

function g = ∇p = (∂rp, 0, ∂zp). Then we obtain that

|∂rp|
r

≤ |∇2p|,

consequently,
∂rp

r
∈ L1(R3), i.e.,

∂rp ∈ L1(P+). (2.9)
Since for each z ∈ R the convergence p(r, z) → 0 as r → ∞ holds,1 we have p(r, z) = − ∫ ∞

r
∂rp(ρ, z) dρ.

Therefore, by (2.9), we conclude that
p(r, ·) ∈ L1(R) (2.10)

for each r > 0. Moreover,
∫

R

p(t, z) dz = −
∞∫

t

∫

R

∂rp(r, z) dz dr → 0 as t → ∞. (2.11)

From the inequality Φ(x) ≤ 0 [see the Assumption (2.6)] it follows that

|v|2(r, ·) ∈ L1(R) (2.12)

for each r > 0. Further, (2.8) and ∇v ∈ L2(R3) imply

|vθ|2
r

+
|vr|2

r
∈ L1(P+). (2.13)

From the Euler system (2.1) it follows by direct calculation that for any smooth vector function g we
have

div[pg + (v · g)v] = p div g +
[
(v · ∇)g

] · v. (2.14)

We apply this formula two times for g = rer and g =
1
r
er, where er is the unit vector parallel to the

r-axis.
(I) Let g = rer. Then for axially symmetric v and p we get

div[pg + (v · g)v] = 2p + v2
θ + v2

r .

Integrating this identity over the three dimensional infinite cylinder Ct = {(x1, x2, x3) ∈ R
3 : r =√

x2
1 + x2

2 < t, x3 ∈ R}, we obtain

t2
∫

R

[p(t, z) + v2
r(t, z)] dz =

∫∫

Pt

r[2p + v2
θ + v2

r ] dz dr, (2.15)

where Pt = {(r, z) ∈ P+ : r < t}.

(II) Let g =
1
r
er. Then for axially symmetric functions the identity (2.14) takes the form

div[pg + (v · g)v] =
1
r2

(v2
θ − v2

r).

1 It follows from the formula p ∈ L3(R3) ∩ D2,1(R3) ∩ D1,3/2(R3).
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Since we have an essential singularity at r = 0, we need to integrate this identity over the cylindrical
annulus Ct0t = {(x1, x2, x3) ∈ R

3 : r =
√

x2
1 + x2

2 ∈ (t0, t), x3 ∈ R} to obtain
∫

R

[p(t, z) + v2
r(t, z)] dz −

∫

R

[p(t0, z) + v2
r(t0, z)] dz =

∫∫

Pt0t

[
1
r
(v2

θ − v2
r)

]

dz dr, (2.16)

where Pt0t = {(r, z) ∈ P+ : r ∈ (t0, t), z ∈ R}.

Since
∫

R
[p(t, z) + v2

r(t, z)] dz → 0 as t → +∞ and
∫∫

P+

∣
∣
∣
∣
1
r
(v2

θ − v2
r)

∣
∣
∣
∣ dz dr < ∞,

we obtain immediately from the above formulas that
∫

R

[p(t, z) + v2
r(t, z)] dz =

∫∫

Pt∞

[
1
r
(v2

r − v2
θ)

]

dz dr, (2.17)

where Pt∞ = {(r, z) ∈ P+ : r ∈ (t,+∞), z ∈ R}.
If v is axially symmetric with no swirl, then under the condition (2.6) the formulas (2.15) and (2.17)

imply v ≡ 0. Indeed, from (2.15) and the condition Φ(x) ≤ 0 it follows that
∫

R

[p(t, z) + v2
r(t, z)] dz ≤ 0, ∀t > 0,

while, if vθ(x) = 0, from (2.17) we get
∫

R

[p(t, z) + v2
r(t, z)] dz ≥ 0, ∀t > 0.

From the last two inequalities it follows that
∫

R

[p(t, z) + v2
r(t, z)] dz ≡ 0 for all t > 0, and thus, by virtue

of (2.17) and vθ(x) = 0, we obtain vr ≡ 0. Therefore, by (2.7)4 we conclude that vz ≡ 0.
Thus, we have proved the following conditional theorem.

Theorem 2.1. Let (v, p) be an axially symmetric D-solution to (2.1) in R
3. If v has no swirl and the

corresponding head pressure Φ ∈ L3(R3) satisfies the condition (2.6) (Φ(x) ≤ 0), then v ≡ 0.

Remark 2.1. This theorem is only conditional because we cannot prove the assumption (2.6) for an
arbitrary D-solution of the Euler equations vanishing at infinity. However, as we will see below, this
condition is valid for solutions to the Navier–Stokes equations.

2.2. Proof of the Liouville Theorem for the Navier–Stokes System

Let u ∈ H(R3) be a D-solution to the Navier–Stokes system in the whole space R
3:

⎧
⎪⎪⎨

⎪⎪⎩

−νΔu +
(
u · ∇)

u + ∇p = 0 in R
3,

div u = 0 in R
3,

lim
|x|→+∞

u(x) = 0.

(2.18)

By Sobolev Imbedding theorem u ∈ L6(R3) and by the Hölder inequality
(
u·∇)

u ∈ L3/2(R3). Then, using
the standard estimates for the solutions of the Stokes system (see, e.g., the Lemma 2.2 and Corollary 2.1
from [12]), we have

‖∇p‖L3/2(R3) < ∞. (2.19)
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Adding a constant to p (if necessary), by Sobolev inequality, we may assume without loss of generality
that

‖p‖L3(R3) < ∞. (2.20)

Denote by Φ the total head pressure Φ = p + 1
2 |u|2 corresponding to the Navier–Stokes equations (2.18).

It is well-known that Φ satisfies the classical identity

ΔΦ = ω2 +
1
ν

div(Φu), (2.21)

where ω(x) = | curlu|. Suppose u �= 0. Since u(x) → 0, p(x) → 0 uniformly as |x| → ∞ (see, e.g., the
works of Finn [6] and Ladyzhenskaya [13,14]), by (2.21) and Hopf maximum principle (see, e.g., [16]) we
have the inequality

Φ(x) < 0 ∀x ∈ R
3. (2.22)

For the solution (u, p) of the Navier–Stokes system (2.18) we can repeat “word by word” the proof of
Lemma 2.1 and we again conclude that

p ∈ D2,1(R3) ∩ D1,3/2(R3). (2.23)

In particular, ∂rp ∈ L1(P+) and, consequently,

p(r, ·) ∈ L1(R), |u(r, ·)|2 ∈ L1(R) (2.24)

for each r > 0 (see the previous subsection).
From (2.18) it follows by direct calculation that for any smooth function g we have

div[pg + (u · g)u] = p div g +
[
(u · ∇)g

] · u − νg · curlω, (2.25)

where ω = (ωθ, ωr, ωz) = curlu.
If a function g is of type g = g(r)er, where er is the unit vector parallel to the r-axis, then by direct

calculation

−νg · curl ω = νg(r)
∂ωθ

∂z
.

Consequently, for any cylindrical annulus Ct0t = {(x1, x2, x3) ∈ R
3 : r =

√
x2

1 + x2
2 ∈ (t0, t)} we have

∫

Ct0t

g · curlω dx = 0.

Therefore, identities (2.15) and (2.17) will be still fulfilled if we replace the solution v of the Euler
equations (2.1) by the solution u of the Navier–Stokes equations (2.18). Now we can obtain a contradiction
in the same way as in the previous subsection: from (2.22), (2.15) it follows for u �≡ 0 that

∫

R

[p(t, z) + u2
r(t, z)] dz < 0 ∀t > 0,

However, if uθ ≡ 0, then the equality (2.17) implies
∫

R

[p(t, z) + u2
r(t, z)] dz ≥ 0.

Thus, u(x) ≡ 0 and Theorem 1.1 is proved. �
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