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Abstract. We perform energy estimates for a sharp-interface model of two-dimensional, two-phase Darcy flow with surface
tension. A proof of well-posedness of the initial value problem follows from these estimates. In general, the time of existence
of these solutions will go to zero as the surface tension parameter vanishes. We then make two additional estimates, in the
case that a stability condition is satisfied by the initial data: we make an additional energy estimate which is uniform in the
surface tension parameter, and we make an estimate for the difference of two solutions with different values of the surface
tension parameter. These additional estimates allow the zero surface tension limit to be taken, showing that solutions of
the initial value problem in the absence of surface tension are the limit of solutions of the initial value problem with surface
tension as surface tension vanishes.

1. Introduction

We consider a sharp-interface model of two-phase incompressible fluid flow, in which the fluid velocities
are given by Darcy’s Law. There are two primary settings in which fluid velocities are modeled by Darcy’s
Law: flow in a porous medium, and Hele-Shaw flow (i.e., flow of fluid between two closely-spaced, parallel
sheets of glass) [14,16]. In the present contribution, we consider the effect of surface tension at the
interface, and we show that if a condition is satisfied by the initial data, then the flow without surface
tension can be recovered by taking the limit as surface tension vanishes.

The fluids are taken to be two-dimensional and of infinite vertical extent. For simplicity, we consider
periodic boundary conditions in the horizontal direction. In each fluid region, we have the following
expression for the velocity from Darcy’s Law:

vi(x1, x2, t) = − b2

12νi
∇ (p1(x1, x2, t) + ρigx2) .

Here, the subscript i indicates which fluid region is being described; we let i = 1 indicate the lower fluid
and i = 2 indicate the upper fluid. The point (x1, x2) is taken to be in fluid region i at time t. The fluid
viscosities are denoted by νi, and the fluid densities are denoted by ρi. For each fluid, pi is the pressure.
The constant g is the acceleration due to gravity. Finally, we mention that the constant b is a physical
parameter. When Darcy flow is taken as a model of flow in a porous medium, b is related to the porosity
and permeability of the medium. When Darcy flow instead describes flow in a Hele-Shaw cell, b is related
to the thickness of the gap between the plates of glass.

The case without surface tension is well-posed only if a stability condition is satisfied; if the fluids
had equal densities, or if gravity were not present, then the stability condition would state that the more
viscous fluid must displace the less viscous fluid. For the linearization of the flow, this condition was
introduced by Saffman and Taylor [44]. It was verified in [3] that the initial value problem is well-posed
if the nonlinear version of the stability condition is satisfied. If the stability condition is violated, then
the problem is known to be ill-posed [40,46].

The author gratefully acknowledges support from the National Science Foundation through grants DMS-1008387 and
DMS-1016267.
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Many authors have considered the well-posedness of interfacial Darcy flow problems previously, both
at short times and for all time. Furthermore, studies include the two-dimensional and three-dimensional
cases, the cases with and without surface tension, and the case of a single fluid and the case of two fluids.
The case with two fluids and without surface tension is sometimes known as the Muskat or Muskat-
Leibenzon problem. The Muskat problem is relevant to the current study, because when we show that we
are able to take the limit as surface tension vanishes, we will in the end have a new proof of existence of
solutions for the Muskat problem for short times. Some papers which treat the well-posedness question are
the work of Bailly, in which the short-time well-posedness is established in both two and three dimensions,
and the papers of Yi, in which the two-dimensional Muskat problem is shown to be well-posed for short
times and for all time (with a smallness condition for the global result) [12,54,55]. Another recent proof of
existence of global, small-data solutions for the Muskat problem is [20]. Aside from the Muskat problem,
for the one-phase problem or the problem with fixed, positive surface tension, solutions have been shown
to exist in papers by Duchon and Robert, Constantin and Pugh, Escher and Simonett, Kim, and Xie
[21,27,29–31,41,51].

Another paper proving existence of solutions for the Muskat problem is [25]. In this paper, the authors
prove existence of solutions in 2D, and a novel feature is how they treat the self-intersection condition for
the interface. In order to prove that classical solutions for the free-surface problem exist, it is necessary to
preclude self-intersections of the interface. This is typically done by ensuring that a chord-arc condition
is satisfied by the solution at all times; the chord-arc condition was used, for instance, in the landmark
papers of Wu proving well-posedness of the irrotational water wave problem in two and three spatial
dimensions [49,50]. This condition can be enforced by either “hard” or “soft” means, i.e., by either
establishing estimates, or by using theorems of functional analysis. Cordoba et al., in the paper [25] as
well as in other papers such as [22] and [23], choose a “hard” solution to this issue, proving an estimate
for the time evolution of the L∞-norm of the chord-arc quantity. We choose instead what is primarily
a “soft” solution to the issue, relying on a careful use of the Picard theorem to ensure that interfaces
we consider stay well away from self-intersections. Similarly, when studying flows for which the stability
condition is satisfied, since the related quantity is time-dependent, we again have a choice between “hard”
and “soft” methods. Cordoba et al. choose a “hard” approach, making estimates of the growth of the
relevant quantity, while we choose a “soft” approach, again relying primarily upon the Picard theorem.

All of the above papers either considered the case with surface tension or the case without surface
tension; we instead consider now the relationship between the two cases. This has been done previously for
other fluids problems. The author and Masmoudi have previously shown that the zero surface tension limit
of water waves can be taken [6,8]. For compressible free-boundary Euler flow in three spatial dimensions,
Coutand, Hole, and Shkoller have recently shown that the zero surface tension limit can be taken [26], and
Hadzic and Shkoller have shown that the zero surface tension limit can be taken for the Stefan problem
[34]. As in the present work, the essential element of these proofs is an estimate for the problem which is
uniform in the surface tension parameter.

Also, for the case of Darcy flow, the zero surface tension limit has been studied in some cases. Siegel,
Tanveer, and Dai studied the zero surface tension limit of Hele-Shaw flow in the unstable case [47,48]. In
this setting, the initial value problem is ill-posed, but some smooth solutions are known to exist. Given
a smooth solution of the problem without surface tension, Siegel, Tanveer, and Dai use the solution at
time zero as the initial condition for the problem with surface tension, and then study the limit of these
solutions as surface tension vanishes. They find that the effect of surface tension is singular, in that
the limit as surface tension vanishes is not the solution without surface tension with which they began
the process. The present result is complementary, in that we study a different case (in which the initial
data satisfies the stability condition), and reach the opposite conclusion. Ceniceros and Hou have made
additional studies of the unstable case, confirming that the zero surface tension limit is indeed singular
[17,18].

We formulate the evolution equations by following the approach of Hou, Lowengrub, and Shelley
(HLS). In [37] and [38], they developed and implemented a non-stiff numerical method for the solution
of the initial value problem for two-dimensional interfacial Darcy flow and vortex sheets with surface
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tension. The formulation involves describing the location of the free surface by using the tangent angle
that the interface forms with the horizontal and the arclength element of the curve, rather than the
Cartesian coordinates. Furthermore, an artificial tangential velocity is used in order to enforce a normal-
ized arclength parameterization, rather than using, for instance, a Lagrangian parameterization. While
these ideas were introduced for the purpose of removing the stiffness from numerical methods, they
have since found much use in analysis as well, for instance, in the papers [2,3,6,33,19,23,25,28,52], and
[53]. Although the current contribution addresses only the case of fluids in two spatial dimensions, we
mention that the HLS ideas have also been extended now to three-dimensional flows, both numerically
[43,39,9,10], and analytically [4,7,8,24].

In the HLS formulation, we write the evolution equations by isolating the leading-order terms, i.e., the
terms with the most derivatives. We also are careful to indicate which terms in the evolution equation
are present only because of the surface tension force, as opposed to terms which are present in any case.
These considerations lead to an extensive effort to rewrite the evolution equations. We then introduce
mollifiers into the evolution equations, so that we may use the Picard theorem for ordinary differential
equations on a Banach space to prove the existence of solutions. Energy estimates are then performed,
without assuming the stability condition is satisfied by the initial data. It is found that the growth of the
norm of the solutions to the mollified equations can be bounded, uniformly in the mollification parameter.
With this uniform control in hand, it is then possible to prove the existence of solutions for the original,
non-mollified initial value problem by sending the mollification parameter to zero. Additional, similar
energy estimates then imply that the solutions are unique and depend continuously on the initial data.

We then turn to the case in which the stability condition is satisfied by the initial data. In this case,
we are able to repeat the energy estimates, this time finding additionally that the estimates can also
be made uniformly with respect to the surface tension parameter. This additional uniformity allows the
limit to be taken as surface tension vanishes. The vanishing surface tension limit of interfacial Darcy flow
with surface tension is thus found to be the interfacial Darcy flow without surface tension.

While we have attempted to discuss the most relevant references above, it surely is not possible to
survey all of the prior literature on Hele-Shaw flows. We refer the reader to the bibliography developed
by Gillow and Howison, with over 600 references [32].

The remainder of this paper is organized as follows. In Sect. 2, we give a helpful model problem,
which demonstrates the spirit of the different energy estimates we will make for our physical problem.
In Sect. 3, we present the equations of motion for two-dimensional interfacial Darcy flow. In Sect. 4, we
develop a variety of estimates which will be useful many times. In Sect. 5, we prove well-posedness of
two-dimensional interfacial Darcy flow for a fixed, positive value of the surface tension coefficient, with
no assumption of the stability condition. Then, in Sect. 6, we show that when the stability condition is
satisfied by the initial data, the limit can be taken as surface tension vanishes, and the limiting flow is
the interfacial Darcy flow without surface tension. Finally, we make some concluding remarks in Sect. 7.

The author is grateful to Michael Siegel for helpful conversations.

2. An Instructive Example

Let τ ≥ 0 be a constant, let c1 ≥ 0 be a constant, and let c2 be a constant. Consider the linear equation

ut = −τΛ3(u) + c1τΛ2(u) + c2Λ(u), (1)

where Λ is the operator with symbol Λ̂ = |k|. (Note that now and in the remainder of the paper,
subscripts of the spatial or temporal variable imply differentiation, as ut here indicates ∂u/∂t.) We take
the equation with spatially periodic boundary conditions, and with initial data u(x, 0) = u0(x). Let u(x, t)
be the solution; note that the solution can easily be written down by using the Fourier series. Let s > 0 be
an integer; below, we will estimate the Hs norm of the solution. Note that the leading-order term in the
evolution equation (i.e., the term with Λ3) offers parabolic smoothing when τ > 0. In that case, the next-
order term (i.e., the term with Λ2) is, however, a backwards parabolic term, since τc1 ≥ 0. The lowest
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order term is either a forward parabolic term or a backward parabolic term, depending on the sign of c2.
For τ > 0, the problem is well-posed, since the leading-order term makes the entire problem a forward
parabolic problem, regardless of the sign of c2. If c2 > 0, however, we will need to use the leading-order
term to control the lowest-order term, and then the estimates will depend badly on τ ; solutions will blow
up as τ goes to zero. On the other hand, if c2 ≤ 0, then the estimates can be made uniformly in τ, and
the limit of the solutions could be taken as τ goes to zero. Furthermore, we mention that with c2 ≤ 0,
the initial value problem is well-posed in the case τ = 0, and an estimate for the solution could be made
in this case in its own right, without considering the limit τ → 0+.

We demonstrate these estimates, defining the energy to be

E(t) =
1
2

∫

X

u2(x, t) + (∂s
xu(x, t))2 dx, (2)

where X is the spatial domain (a periodic interval). Clearly, this energy is equivalent to the square of the
usual Hs norm of the solution.

Case 1 we start with the simplest case, τ = 0 and c2 ≤ 0. Then, it is elementary that

dE

dt
= c2

∫

X

(
Λ1/2(u)

)2

+
(
∂s

xΛ1/2(u)
)2

dx ≤ 0.

Notice that in addition to showing that solutions are bounded in Hs, if c2 < 0, this estimate can also be
used to show that solutions gain derivatives at positive times.

Case 2 the next case that we consider is τ > 0 and c2 ≤ 0. We still use (2), so we have

dE

dt
= τ

[∫

X

−
(
Λ3/2(u)

)2

−
(
∂s

xΛ3/2(u)
)2

+ c1 (Λ(u))2 + c1 (∂s
xΛ(u))2 dx

]

+c2

∫

X

(
Λ1/2(u)

)2

+
(
∂s

xΛ1/2(u)
)2

dx. (3)

We estimate this by again using c2 ≤ 0, and we also notice that (Λ(u))2 can be controlled by the energy,
since s is at least one:

dE

dt
≤ CτE + τ

[∫

X

−
(
∂s

xΛ3/2(u)
)2

+ c1(∂s
xΛ(u))2 dx

]
.

We let v = ∂s
xu, and we use the Plancherel theorem to rewrite the remaining integral as a sum:

dE

dt
≤ CτE + τ

[ ∞∑
k=−∞

(−|k|3 + c1k
2
) |v̂|2(k)

]
.

Since c1 is constant, there exists C̄ such that for all k, we have −|k|3 + c1k
2 ≤ C̄. Also, notice that∑ |v̂|2(k) ≤ 2E. We therefore conclude that there exists a constant C̃ such that

dE

dt
≤ C̃τE,

so we may conclude that for any t,

E(t) ≤ E(0)eC̃τt.

Clearly, as τ → 0+, this bound on the Hs norm of u is uniform with respect to τ.
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Case 3 we now consider our final case, τ > 0 and c2 > 0. We begin from (3), and we begin by estimating
the terms c1(Λ(u))2 and c2(Λ1/2(u))2 by the energy, and by using the inequality −(Λ3/2(u))2 ≤ 0:

dE

dt
≤ CτE + τ

[∫

X

−
(
∂s

xΛ3/2(u)
)2

+ c1 (∂s
xΛ(u))2 dx

]
+ c2

∫

X

(
∂s

xΛ1/2(u)
)2

dx.

We again use the Plancherel theorem, and we again denote v = ∂s
xu :

dE

dt
≤ CτE +

∞∑
k=−∞

(
− τ |k|3 + c1τk2 + c2|k|

)
|v̂(k)|2.

For fixed τ > 0, we can treat this as we did previously. That is, there exists a constant C̄ = C̄(τ) such
that for all k,

−τ |k|3 + c1τk2 + c2|k| ≤ C̄(τ),

so that
dE

dt
≤
(
Cτ + C̄(τ)

)
E,

and thus

E(t) ≤ E(0) exp
{(

Cτ + C̄(τ)
)
t
}

.

This estimate is not uniform in τ, however, since it is evident that limτ→0+ C̄(τ) = +∞.

Remark 1. In Case 3, it is not only true that we are unable to prove that there is a limit as τ → 0+, but
also that for many pieces of initial data, we can see that the limit definitely fails to exist. For example,
say the initial data is given by û0(k) = 1/|k|100, for k �= 0. Then, u0 is in Hs for many reasonable choices
of s, and the solution u(·, t) will also be in Hs at positive times, for any fixed, positive value of τ. An
explicit calculation of the solution, however, shows that the solutions blow up in Hs as τ → 0+, for any
t > 0.

Remark 2. After specifying the evolution equations for the interfacial Darcy flow in Sect. 3 below, a
substantial effort will be made to rewrite the equations in order to make them as similar as possible to
(1). The ultimate goal of this effort is to arrive at formula (58) below, in which θε

αα plays the role of u
(the variables θ and α will be defined in Sect. 3, and ε will be introduced in Sect. 5).

3. The Equations of Motion

In this section, we present the exact equations of motion for the physical problem being studied, two-
dimensional interfacial Darcy flow with surface tension. In Fig. 1, we show a simple schematic of the
situation; the two fluids are separated by a sharp interface, are horizontally periodic, and are infinitely
deep.

The location of the interface is given by the parameterized curve (x(α, t), y(α, t)), where t is time and
α is the spatial parameter. This curve is 2π-periodic in the horizontal direction, meaning that for all α
and t, we have

x(α + 2π, t) = x(α, t) + 2π, y(α + 2π, t) = y(α, t).

We define the arclength element sα(α, t) =
(
x2

α(α, t) + y2
α(α, t)

)1/2
. We use the following unit tangent

and normal vectors:

t̂ =
(xα, yα)

sα
, n̂ =

(−yα, xα)
sα

.
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Fig. 1. A simple schematic of the geometry under consideration. The two fluids are separated by a sharp interface, which
is periodic in the horizontal direction. The fluids are of infinite vertical extent

It is also useful to introduce the tangent angle formed between the curve and the horizontal,

θ(α, t) = arctan
(

yα(α, t)
xα(α, t)

)
.

We can express t̂ and n̂ easily in terms of θ :

t̂ = (cos(θ), sin(θ)), n̂ = (− sin(θ), cos(θ)).

From this formula follows a version of the classical Frenet-Serret formulas,

t̂α = θαn̂, n̂ = −θαt̂. (4)

The motion of the curve is described by its normal velocity, U, and tangential velocity, V :

(x, y)t = U n̂ + V t̂. (5)

Using (5) and the definition of θ, we can infer the following evolution equation for θ:

θt =
Uα + V θα

sα
. (6)

The normal velocity is determined by the fluid dynamics, but we can choose the tangential velocity to
maintain a preferred parameterization.

We introduce some notation for the mean value of a function; for a given periodic function f, we let

〈〈f〉〉 =
1
2π

2π∫

0

f(α) dα.

Then, we define the projection P to be projection off the mean; for any periodic f, we have

Pf = f − 〈〈f〉〉.
Of course, letting I be the identity operator, we could write this as

〈〈f〉〉 = (I − P)f.

We also introduce the operator ∂−1
α , the zero-mean integration operator which acts on mean-zero periodic

functions. Given any n ≥ 1, we obviously have the estimate

‖∂−1
α f‖n+1 ≤ ‖f‖n.

For any f, we can write

f = 〈〈f〉〉 + ∂−1
α ∂αf. (7)

Remark 3. It is to be understood that if we ever write ∂−1
α applied to a function which does not necessarily

have zero mean, then there is an implicit application of P. That is, if f does not necessarily have zero
mean, and if we write ∂−1

α f, then this is to be understood as meaning ∂−1
α Pf.
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The parameterization which we prefer is a normalized arclength parameterization. Since we are con-
sidering flows which are periodic in the horizontal direction, we consider L, the length of one period of
the interface. This is defined by

L(t) =

2π∫

0

sα(α, t) dα.

We can infer the evolution equation for sα from the definition of sα and (5); we find the following:

sαt = Vα − θαU.

Using this, we calculate

Lt = −
2π∫

0

θαU dα = −2π〈〈θαU〉〉.

Since our preferred parameterization is a normalized arclength parameterization, we desire to have at all
times

sα(α, t) =
L(t)
2π

.

This is then achieved if sα(α, 0) = L(0)/2π for all α, and if

sαt =
Lt

2π
= − 1

2π

2π∫

0

θαU dα = −〈〈θαU〉〉.

Since sαt = Vα − θαU, this implies that the tangential velocity must be chosen so that

Vα = θαU − 〈〈θαU〉〉 = P(θαU).

To be definite, we define V to be the integral of Vα which has zero mean:

V = ∂−1
α P(θαU).

We will frequently find complex notation to be helpful. Towards this end, we introduce the mapping
Φ : R

2 → C defined by

Φ(a, b) = a + ib.

We let

z(α, t) = Φ(x(α, t), y(α, t)) = x(α, t) + iy(α, t).

We will denote the complex conjugate with ∗, as in Φ(a, b)∗ = a − ib or z∗ = x − iy.
The jump conditions for the velocity at the interface are that there is no jump in the normal component

of the velocity, but there can be a jump in the tangential component. Since the fluid velocity in the bulk
of each fluid is given by a gradient, at first glance one might think that this implies the flow is exactly
irrotational; however, since there is a jump in the tangential component of the velocity at the interface,
the vorticity is measure-valued (i.e., the vorticity is equal to the Dirac mass of the interface, multiplied
by some amplitude). All of this is to say that the interface is a vortex sheet. We call the vortex sheet
strength γ(α, t); this is the amplitude that multiplies the Dirac mass.

Related to the curve z, we introduce the shifted (or centered) curve zd, given by

zd(α, t) = z(α, t) − z(0, t).

We consider only interfaces which satisfy a non-self-intersection condition. In particular, as in many
papers in the field, such as [2,23,49], we insist that a chord-arc condition be satisfied. To this end, we
introduce the first divided difference of the interface, q1[zd](α, α′),

q1[zd](α, α′) =
zd(α) − zd(α′)

α − α′ . (8)
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The chord-arc condition that we will use is the condition that q1 be bounded away from zero, for all α
and α′. Obviously, this precludes self-intersections of the interface; it also precludes cusps and corners.
We will remark more on the definition of zd below, but note for now that q1 could have been defined in
terms of either z or zd with no difference; that is, notice that the value z(0, t) has no effect upon q1.

Since the interface is a vortex sheet, the normal velocity, U, must be the normal component of the
Birkhoff–Rott integral, W (see [45] for details). That is, U = W · n̂, with

Φ(W)∗(α, t) =
1

4πi
PV

2π∫

0

γ(α′, t) cot
(

1
2
(z(α, t) − z(α′, t))

)
dα′. (9)

We understand the Birkhoff–Rott integral, W, by considering it to be something like the Hilbert trans-
form. Given a periodic function f, the periodic Hilbert transform, H, is given by the following formula
(see [36] for more information):

Hf(α) =
1
2π

PV
∫

f(α′) cot
(

1
2
(α − α′)

)
dα′.

The Hilbert transform is a multiplier in Fourier space, with symbol Ĥ(k) = −isgn(k). As in [2], we have
the following useful formula for Wα:

Wα =
π

L
H(γα)n̂ − π

L
H(γθα)̂t + m. (10)

In order to give the definition of m, we first must define some relevant integral operators.
Given the curve z, we define the operator K[z] :

K[z]f(α) =
1

4πi

2π∫

0

f(α′)
[
cot

(
1
2
(z(α) − z(α′))

)
− 1

zα(α′)
cot

(
1
2
(α − α′)

)]
dα′. (11)

Notice that (assuming some regularity on z) the integral in (11) is not a singular integral, since each of
the two cotangents in brackets have the same singularity, which cancels upon subtracting. Also, notice
again that zd could have been used as easily as z; that is,

K[z] = K[zd].

We also need to define the commutator of the Hilbert transform and multiplication by a function,

[H,φ]f(α) = H(φf)(α) − φ(α)H(f)(α).

Using the definition of the Hilbert transform, we can see that this can be written as the following integral
operator:

[H,φ]f(α) =
1
2π

2π∫

0

f(α′)
[
(φ(α′) − φ(α)) cot

(
1
2
(α − α′)

)]
dα′.

Notice that (again, assuming some regularity on φ) this is not a singular integral, since the singularity
in the cotangent is canceled by the difference φ(α′) − φ(α). In Sect. 4.1 below, we will give estimates for
both K[z] and [H,φ], showing that these are both smoothing operators.

The formula for m can then be written as

Φ(m)∗ = zαK[z]
((

γ

zα

)
α

)
+

zα

2i

[
H,

1
z2
α

](
zα

(
γ

zα

)
α

)
. (12)

We have the following equation for γ, the vortex sheet strength [38]:

γ = τκα − Ryα − 2AμsαW · t̂. (13)

We note that the derivation of (13) uses the Laplace-Young jump condition, which states that the pressure
jump across the interface is equal to the curvature of the interface multiplied by the surface tension
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coefficient. Here, κ is the curvature of the interface, τ is the constant, non-negative coefficient of surface
tension, and R and Aμ are given by the formulas

R = (ρ1 − ρ2)g, Aμ =
μ1 − μ2

μ1 + μ2
.

The quantities ρi and μi are the density of fluid i and the viscosity of fluid i, respectively, for i ∈ {1, 2}.
Of course, g is the constant acceleration due to gravity. We rewrite (13) by using the formulas κ =
θα/sα, yα = sα sin(θ), and sα = L/2π :

γ =
2πτ

L
θαα − RL

2π
sin(θ) − AμL

π
W · t̂. (14)

Notice that this equation for γ is actually an integral equation for γ, since γ appears in the right-hand
side through the definition of W. This integral equation is known to be solvable [13]. We will discuss this
further in Sect. 4.1 below.

We now rewrite (6). To begin, we use the definition U = W · n̂, the Frenet equation n̂α = −θαt̂, and
the equation sα = L/2π, finding the following:

θt =
2π

L
Wα · n̂ +

2π

L

(
V − W · t̂) θα. (15)

We now use the formula (10) for Wα to substitute in the first term on the right-hand side of (15):

θt =
2π2

L2
H(γα) +

2π

L
(V − W · t̂)θα +

2π

L
m · n̂. (16)

We differentiate (14) with respect to α, finding

γα =
2πτ

L
θααα − RL

2π
θα cos(θ) − AμL

π

(
Wα · t̂ + θαU

)
. (17)

We substitute (17) into (16), arriving at the following:

θt =
(

4π3τ

L3

)
H(θααα)+

(
2π

L

)
H

({−R cos(θ)
2

−AμU

}
θα

)

−
(

2π2Aμ

L2

)
P(γθα)+

(
2π

L

)
(V −W · t̂)θα+

(
2π

L

)
m · n̂−

(
2π3Aμ

L3

)
H(m · t̂). (18)

This is almost our final form for the θt equation, however, since we want to carefully track dependence on
the surface tension coefficient, we want to rewrite several terms on the right-hand side of (18) to isolate
contributions from the surface tension term.

In particular, we write W = τWs.t. + W̃. We define Ws.t. to be the part of W which corresponds to
the contribution of 2πτ

L θαα from the equation for γ (having factored out the τ):

Φ(Ws.t.)∗(α, t) =
1

2iL
PV

2π∫

0

θαα(α′, t) cot
(

1
2
(z(α, t) − z(α′, t))

)
dα′.

The remainder, W̃, is simply defined as being the difference,

W̃ = W − τWs.t..

We then make the corresponding decomposition U = τU s.t. + Ũ , where

U s.t. = Ws.t. · n̂, Ũ = W̃ · n̂.

In the same way, we decompose V as V = τV s.t. + Ṽ , where

V s.t. = ∂−1
α P(θαU s.t.), Ṽ = ∂−1

α P(θαŨ).

Finally, we write Lt = τLs.t.
t + L̃t, where

Ls.t.
t = −2π〈〈θαU s.t.〉〉, L̃t = −2π〈〈θαŨ〉〉.
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We make these substitutions into (18). In particular, we rewrite the following terms from the right-
hand side of (18): (a) the term AμU that appears inside the Hilbert transform, (b) the γ that appears
inside the operator P, and (c) V − W · t̂. We also make the definition

k(α, t) = k[θ](α, t) =
2π

L

{−R cos(θ)
2

− AμŨ

}
. (19)

We note that P(θααθα) = θααθα, and that P(sin(θ)θα) = sin(θ)θα, since these are perfect derivatives. All
of these considerations yield the following:

θt =
(

4π3τ

L3

)
H(θααα) − τ

[
4π3Aμ

L3
θααθα +

2πAμ

L
H(U s.t.θα)

]

+

[
H(kθα) +

2πτ

L
(V s.t. − Ws.t. · t̂)θα +

2πA2
μτ

L
P(θαWs.t. · t̂)

]

+
πAμR

L
sin(θ)θα +

2πA2
μ

L
P(θαW̃ · t̂) +

2π

L
(Ṽ − W̃ · t̂)θα +

2π

L
m · n̂ − 2π3Aμ

L3
H(m · t̂).

(20)

For future reference, we note that the evolution equation without surface tension (i.e., in the case
τ = 0) is the following:

θt = H(kθα)+
πAμR

L
sin(θ)θα+

2πA2
μ

L
P(θαW̃ · t̂)+ 2π

L
(Ṽ −W̃ · t̂)θα+

2π

L
m̃ · n̂− 2π3Aμ

L3
H(m̃ · t̂).

(21)

4. Preliminary Estimates

In this section, we will present estimates which will be repeatedly useful throughout the sequel. We begin
by noting that we mainly use the L2-based Sobolev spaces, and we denote these by Hj , for j ≥ 0. The
associated norm is ‖ · ‖j . We denote the L∞ norm as | · |∞. We will need the following interpolation
inequality for Sobolev spaces: if f ∈ H�, and if m ∈ R such that  > m > 0, then there exists a positive
constant such that

‖f‖m ≤ c‖f‖m/�
� ‖f‖1−m/�

0 . (22)

This is a standard inequality and the proof may be found many places, one of which is [2].

Remark 4. We make a remark about our regularity assumptions. Throughout the sequel, beginning in
Sect. 4.2, we will be making estimates for the solution of the initial value problem in the space Hs. Here,
s ∈ N is fixed, and it is assumed to be “sufficiently large.” What this means is that there exists an
absolute constant, S̄, such that as long as s ≥ S̄, the arguments that we present will go through. The
reason that s must be sufficiently large is so that various results, such as the lemmas to be presented
in Sect. 4.1 below, or the Sobolev embedding theorem, may be invoked. We do not count the minimal
possible value of S̄, but surely s ≥ 6 is sufficient.

4.1. Estimates for Integral Operators

We begin by noting that when reconstructing z from θ, we are only able to find z up to a constant.
This constant, however, is irrelevant to the calculation of W, since only the difference z(α, t) − z(α′, t)
appears in the definition of W. Therefore, it is sufficient to know zd in order to calculate W, since
z(α, t) − z(α′, t) = zd(α, t) − zd(α′, t).
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The lemmas which will appear in this section have been proved, at least in closely related versions, in
previous works by the author and others, such as [1,2,15]. To begin, we have the following lemma, which
was proved as Lemma 3.5 of [2]:

Lemma 1. Let n ≥ 2 be an integer. Assume zd ∈ Hn. Then K[zd] : H1 → Hn−1 and K[zd] : H0 → Hn−2,
with the estimates

‖K[zd]f‖n−1 ≤ C1‖f‖1 exp {C2‖zd‖n} ,

‖K[zd]f‖n−2 ≤ C1‖f‖0 exp {C2‖zd‖n} .

Remark 5. The proof of Lemma 1 is based on the facts that the kernel of the integral operator K[zd]
is nonsingular, and is bounded in Hn−2 when zd is in Hn. If we were to have a more singular f, say
f ∈ H−2, then we could simply begin by integrating by parts, placing more derivatives on the kernel
before making estimates. Then, the kernel would still be nonsingular, and would just be less regular. As
a result, we find that K[zd] maps from H−2 to Hn−4, with the estimate

‖K[zd]f‖n−4 ≤ C1‖f‖−2 exp {C2‖zd‖n} . (23)

This will be relevant during the proof of Lemma 16 below.

We also need a Lipschitz estimate for K; this estimate was proved in [1].

Lemma 2. Let θ and θ′ be in H1. Let L and L′ be the corresponding lengths of the associated curves zd

and z′
d, and let q1 and q′

1 be the associated chord-arc quantities. Assume there exists positive constants c̄1

and c̄2 such that L < c̄1 and L′ < c̄1, and for all α and α′,

|q1(α, α′)| > c̄2, |q′
1(α, α′)| > c̄2.

Then the following Lipschitz estimate holds, for any f ∈ H1 :

‖K[zd]f − K[z′
d]f‖1 ≤ c‖θ − θ′‖1‖f‖1.

We also have the following lemma, which was proved as Lemma 3.7 of [2]:

Lemma 3. Let n ≥ 1 be an integer. Let φ ∈ Hn be given. Then [H,φ] : H0 → Hn−1 and [H,φ] : H−1 →
Hn−2, with the estimates

‖[H,φ]f‖n−1 ≤ c‖φ‖n‖f‖0,

‖[H,φ]f‖n−2 ≤ c‖φ‖n‖f‖−1. (24)

Remark 6. As in Remark 5, we note that if f is less regular, then a version of the commutator estimate
still holds. This is true for the same reason as in Remark 5, namely that the operator [H,φ] is really an
integral operator with nonsingular kernel. In the case of an f with low regularity (such as f ∈ H−2),
we may first integrate by parts before making estimates. Indeed, this is exactly how (24) is proved, and
for f ∈ H−2, we need only integrate by parts once more than we did to find (24). This results in the
following estimate:

‖[H,φ]f‖n−3 ≤ c‖φ‖n‖f‖−2. (25)

Again, this will be useful during the proof of Lemma 16 below.

Notice that in Lemma 3, only low regularity of the function f is assumed. If f does have higher
regularity, then it can be used to conclude that [H,φ] actually maps into Hn when φ ∈ Hn. This is the
subject of the next lemma, which generalizes Corollary 3.8 of [2]:

Lemma 4. Let j ≥ 1 be an integer. Let n ≥ 2j be an integer. Let φ ∈ Hn be given. Then, [H,φ] : Hn−j →
Hn, with the estimate

‖[H,φ]f‖n ≤ c‖φ‖n‖f‖n−j .
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Proof. We apply ∂n
x , which we break up as ∂j

x∂n−j
x . We also use the product rule for ∂n−j

x . These con-
siderations yield the following:

∂n
x [H,φ]f = ∂j

x

(
∂n−j

x (H(φf) − φH(f))
)

= ∂j
x

n−j∑
�=0

(
n − j



)(
H
(
(∂�

xφ)(∂n−j−�
x f)

)

−(∂�
xφ)H(∂n−j−�

x f)
)
.

We further break this up, considering  < j and  ≥ j separately (notice that n − j ≥ j):

∂n
x [H,φ]f =

(
∂j

x

j−1∑
�=0

(
n − j



)[
H, ∂�

xφ
]
∂n−j−�

x f

)

+

⎛
⎝∂j

x

n−j∑
�=j

(
n − j



)
H
(
(∂�

xφ)(∂n−j−�
x f)

)
⎞
⎠−

⎛
⎝∂j

x

n−j∑
�=j

(
n − j



)
(∂�

xφ)H(∂n−j−�
x f)

⎞
⎠ .

(26)

For the second and third summations on the right-hand side of (26), we have ∂�
xφ ∈ Hj for all , and

∂n−j−�
x f ∈ Hj for all . Since j ≥ 1, we have that Hj is an algebra, so the summands in the second and

third summations are all in Hj . For the first summation, we have that ∂n−j−�
x f ∈ H0 for all , and since

φ ∈ Hn with n ≥ 2j, we also have ∂�
xφ ∈ Hj+1 for all . Therefore, Lemma 3 applies, and we find that

the summands in the first summation are all in Hj . Putting this all together, we conclude that ∂n
x [H,φ]f

is in H0, with the corresponding bound. This completes the proof. �

We must now introduce another integral operator, which we will call J . Because of the presence of
W on the right-hand side of (14), the equation is an integral equation for γ. If we define the operator J
by

J [zd]f(α) = −Re
{

izd,α(α)PV
∫

f(α′) cot
(

1
2
(zd(α) − zd(α′))

)
dα′

}
,

then (14) is of the form (
I +

Aμ

2π
J [zd]

)
γ = F,

for some F. Here, I is the identity operator.

Lemma 5. Assume zd ∈ Hn for n ≥ 3. The operator
(
I + Aµ

2π J [zd]
)−1

is bounded from H0 to H0, with
the estimate ∥∥∥∥∥

(
I +

Aμ

2π
J [zd]

)−1

F

∥∥∥∥∥
0

≤ c1exp{c2‖zd‖3}‖F‖0.

We do not prove this lemma here, but we refer the reader to the discussion in the papers [13] and [23].

4.2. Estimates and Formulas for Quantities Related to θ

Throughout the sequel, we will need a variety of estimates and formulas for quantities related to θ, such
as for W · t̂, as one example. We establish such estimates and formulas in this section

To begin, we define γ̃ = γ − 2πτ
L θαα. To be a bit more precise, using (14), we define γ̃ to be the

following quantity:

γ̃ = γ̃[θ] = −RL

2π
sin(θ) − AμL

π
W · t̂. (27)
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As the notation in (27) suggests, we view γ̃ to be an operator which acts on θ. This viewpoint will be
useful later, when we define a regularized version of the evolutionary problem.

Lemma 6. If θ ∈ Hs, then γ̃[θ] ∈ Hs.

Proof. We know from Lemma 5 that there exists γ ∈ H0 which satisfies (14). Inspecting the right-hand
side of (14), we see that in order to prove higher regularity of γ̃, it is sufficient to study the regularity of
W · t̂.

We add and subtract in (9), and we use that definition of K[z], to find

Φ(W)∗ =
1
2i

H

(
γ

zα

)
+ K[z](γ). (28)

We take the dot product of W with t̂ :

W · t̂ = Re
{

πzα

Li
H

(
γ

zα

)}
+ Re

{
2πzα

L
K[z](γ)

}
.

We pull the factor 1/zα outside the Hilbert transform, incurring a commutator; also, notice that
Re

{
π
LiH(γ)

}
= 0. This yields the following:

W · t̂ = Re
{

πzα

Li

[
H,

1
zα

]
γ

}
+ Re

{
2πzα

L
K[z](γ)

}
. (29)

Recall that zα = L
2π (cos(θ), sin(θ)), so we have zα ∈ Hs, and thus zd ∈ Hs+1. Furthermore, since

|zα| = L/2π ≥ 1, we have 1/zα ∈ Hs as well. From Lemmas 1 and 3, we can then find constants c1 and
c2 such that

‖W · t̂‖s−1 ≤ c1 exp{c2‖θ‖s}.

Since W · t̂ ∈ Hs−1, we conclude from (14) that γ ∈ Hs−2. Then, we look again at (29), and we can use
Lemma 1 again (in the same fashion as before), but we can now use Lemma 4, and we find W · t̂ ∈ Hs,
with

‖W · t̂‖s ≤ c1 exp{c2‖θ‖s}.

This completes the proof. �

Remark 7. Just as we bounded W · t̂ in the previous lemma, we have the following estimates:

‖Ws.t. · t̂‖s ≤ c1 exp{c2‖θ‖s},

‖W̃ · t̂‖s ≤ c1 exp{c2‖θ‖s}.

Notice that we have the following formulas:

(V − W · t̂)α =
Lt

2π
− Wα · t̂,

(V s.t. − Ws.t. · t̂)α =
Ls.t.

t

2π
− Ws.t.

α · t̂,

(Ṽ − W̃ · t̂)α =
L̃t

2π
− W̃α · t̂.

We also need to define ms.t. and m̃. Similarly to the previous definitions, we have m = τms.t. + m̃.
This decomposition comes about by using γ̃ to define m̃ :

Φ(m̃)∗ = zαK[z]
((

γ̃

zα

)
α

)
+

zα

2i

[
H,

1
z2
α

](
zα

(
γ̃

zα

)
α

)
. (30)

The definition of ms.t. is then given by

Φ(ms.t.)∗ =
2πzα

L
K[z]

((
θαα

zα

)
α

)
+

πzα

Li

[
H,

1
z2
α

](
zα

(
θαα

zα

)
α

)
. (31)
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By Lemmas 1 and 4, we see that each of ms.t. and m̃ are in Hs, with the estimates

‖ms.t.‖s ≤ c1 exp{c2‖θ‖s}, ‖m̃‖s ≤ c1 exp{c2‖θ‖s}. (32)

From (10), we see that

Wα · t̂ = −π

L
H(γθα) + m · t̂.

We have the corresponding formulas

Ws.t.
α · t̂ = −2π2

L2
H(θααθα) + ms.t. · t̂, (33)

W̃α · t̂ = −π

L
H(γ̃θα) + m̃ · t̂.

This allows us to rewrite the above formulas, so that we find

(V s.t. − Ws.t. · t̂)α =
Ls.t.

t

2π
+

2π2

L2
H(θααθα) − ms.t. · t̂,

(Ṽ − W̃ · t̂)α =
L̃t

2π
+

π

L
H(γ̃θα) − m̃ · t̂.

We note that it will be helpful in the sequel if we rewrite (33) by pulling θα through the Hilbert transform
in the first term on the right-hand side of (33):

Ws.t.
α · t̂ = −2π2

L2
θαH(θαα) + ms.t. · t̂ − 2π2

L2
[H, θα]θαα. (34)

We also want a helpful formula for U s.t.
α . Since U s.t. = Ws.t. · n̂, we clearly have U s.t.

α = Ws.t.
α · n̂ −

θα(Ws.t. · t̂). We also have

Ws.t.
α · n̂ =

2π2

L2
H(θααα) + ms.t. · n̂.

Combining these formulas, we find

U s.t.
α =

2π2

L2
H(θααα) − θα(Ws.t. · t̂) + ms.t. · n̂. (35)

Using (7) with (35), we see that

U s.t. = 〈〈U s.t.〉〉 +
2π2

L2
H(θαα) + ∂−1

α

(−θα(Ws.t. · t̂) + ms.t. · n̂) . (36)

We give the name Q to the lower-order terms on the right-hand side, so that

U s.t. =
2π2

L2
H(θαα) + Q. (37)

Remark 8. Strictly speaking, we will not need these formulas and estimates until Sect. 6.2 below. More
immediately, we introduce a mollified version of the evolution equations, and we establish formulas cor-
responding to those in the present section for the mollified problem. This will be done next, in Sect. 5.

5. Well-Posedness with Surface Tension

In this section, we establish the existence of solutions for the initial value problem in the presence of
surface tension. We also establish uniqueness of these solutions, and continuous dependence on the initial
data. We do this without assuming that the stability condition is satisfied by the initial data. We begin
by introducing mollifiers, forming an evolution equation for θε. We then rewrite this evolution equation,
differentiating twice to find the evolution equation for θε

αα. We continue by extracting the most singular
terms. The ultimate goal of this endeavor is to arrive at formula (58) below. We will then establish some
related auxiliary estimates; this will leave us ready to perform the energy estimate for the full problem
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which corresponds to the estimate of Case 3 of Sect. 2. We make this estimate in Sect. 5.4. Then, in Sect.
5.5, we establish existence of solutions. We subsequently discuss uniqueness and continuous dependence.

5.1. The Mollified Evolution Equation

In this section, we introduce the mollified problem. Earlier in this manuscript, we have introduced a variety
of nonlocal quantities, such as W, V, and so on. We will now define new versions of all of these quantities,
and these new versions will all depend, either explicitly or implicitly, on ε, our positive mollification
parameter. First, however, we must define the curve zε, which is determined from θε.

We need to be careful in defining zε because it is not the case that any 2π-periodic tangent angle
gives rise to a 2π-periodic curve. (However, for the exact evolution equation, if the tangent angle initially
corresponds to a 2π-periodic curve, then the tangent angle will correspond to a 2π-periodic curve at
positive times as well.) We begin with the observation that the value z(0) is irrelevant to the evolution
of θ; that is, the only way that z arises is either through zα or z(α) − z(α′). Therefore, we recall the
definition zd(α, t) = z(α, t) − z(0, t), and we notice that zα = zd,α and z(α) − z(α′) = zd(α) − zd(α′).
Also, z is 2π-periodic if and only if zd is 2π-periodic. So, we want to define zε

d based on θε. To begin,
we find a formula for the length of the curve in the non-mollified problem. From the periodicity, we have
(for any t)

2π = x(2π, t) − x(0, t) =

2π∫

0

xα(α, t) dα.

Since we have cos(θ) = xα/sα = 2πxα/L, we can write this as

2π =
L

2π

2π∫

0

cos(θ(α, t)) dα.

Solving this for L yields

L =
4π2

∫ 2π

0
cos(θ(α, t)) dα

, (38)

and we therefore make the definition

Lε(t) =
4π2

∫ 2π

0
cos(θε(α, t)) dα

.

Next, we define zε
d(α, t) by

zε
d(α, t) =

Lε

2π

α∫

0

cos(θε(α′, t)) + iP(sin(θε(α′, t))) dα′. (39)

With this definition of the curve, we clearly have zε
d(α+2π, t) = zε

d(α, t)+2π. We have the corresponding
unit tangent and normal vectors,

Φ(̂tε) =
zε
d,α

|zε
d,α| , Φ(n̂ε) =

izε
d,α

|zε
d,α| .

We will revisit this definition of zε
d below, as we will be able to eliminate the presence of the operator P

for solutions of the mollified evolution equation.
For ε > 0, we introduce the mollifier χε. This is a standard mollifier, and could be defined in a few

different ways. For instance, χεf could be the operator which truncates the Fourier series of f for modes
beyond 1/ε. To be definite, however, we specify that χε is the periodic convolution with an approximate
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Dirac mass, scaled so that the support of the approximate Dirac mass has width ε and the maximum
value is on the order of 1/ε.

We write the mollified evolution equation as

θε
t = Bε + με, (40)

where

Bε =
(

4π3τ

(Lε)3

)
χ2

εH(θε
ααα) − τχε

[
4π3Aμ

(Lε)3
(χεθ

ε
αα)(χεθ

ε
α) +

2πAμ

Lε
H(U s.t.,εχεθ

ε
α)
]

+χε

[
H (kεχεθ

ε
α) +

2πτ

Lε
(V s.t.,ε − Ws.t.,ε · t̂ε)χεθ

ε
α +

2πA2
μτ

Lε
P((χεθ

ε
α)Ws.t.,ε · t̂ε)

]

+
πAμR

Lε
χε (sin(χεθ

ε)χεθ
ε
α) +

2πA2
μ

Lε
χεP((χεθ

ε
α)W̃ε · t̂ε)

+
2π

Lε
χε

[
(Ṽ ε − W̃ε · t̂ε)χεθ

ε
α

]
+

2π

Lε
χε [mε · n̂ε] − 2π3Aμ

(Lε)3
χεH(mε · t̂ε). (41)

There are several terms above which have not yet been defined; they will be defined shortly, either in the
present subsection, or in Sect. 5.2 below. Notice that Bε is a mollified version of the right-hand side of
(20); for our later convenience, we also introduce the notation B to refer to the right-hand side of (20).
In (41), the placement of the operators χε may perhaps seem arbitrary or unusual, but they are carefully
placed so that the estimates we are about to undertake will work out. It would be reasonable to think that
there is no need for the additional term με, as Bε provides a mollified version of the evolution equation
for θ. However, it will be helpful if the evolution of θε maintains the property that P(sin(θε)) = sin(θε);
the term με enforces this condition. We note that με will depend only on t, and not on α.

To begin, we recall that under the exact, non-mollified evolution, we have θt = (Uα + V θα)/sα, and
Vα = sαt/sα + θαU. If we consider the evolution of

∫ 2π

0
sin(θ) dα, we have

d

dt

2π∫

0

sin(θ) dα =

2π∫

0

cos(θ)θt dα =
1
sα

2π∫

0

cos(θ)Uα + cos(θ)V θα dα.

We integrate both terms on the right-hand side by parts, noting that cos(θ)θα is a perfect derivative:

d

dt

2π∫

0

sin(θ) dα =
1
sα

2π∫

0

sin(θ)θαU − sin(θ)Vα dα.

We substitute for Vα and see an important cancellation; this leaves only

d

dt

2π∫

0

sin(θ) dα = −sαt

sα

2π∫

0

sin(θ) dα.

Clearly, then, for smooth solutions of the non-mollified equation, if initially 〈〈sin(θ)〉〉 = 0, then this
property is maintained by the evolution. For the mollified equation, we do not have the simple structure
that we used in the present calculation, and we must actively enforce this condition. We begin the above
calculation again, this time for a solution of the mollified evolution, and we use the fact that με is to be
independent of α :

d

dt

2π∫

0

sin(θε) dα =

2π∫

0

cos(θε)θε
t dα =

2π∫

0

cos(θε)Bε dα + με

2π∫

0

cos(θε) dα.
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Setting this equal to zero, and recalling the definition of Lε, we have the definition of με:

με = −
∫ 2π

0
cos(θε)Bε dα

4π2Lε
. (42)

We said previously that we would revisit the expression (39) for the curve to be reconstructed from
θε. We now give another, simpler such expression. By construction, because of the presence of με, if θε is
the solution of (40), then we have P(sin(θε)) = sin(θε). In light of this, we are able to state the definition
of zε

d without needing P :

zε
d(α, t) =

Lε

2π

α∫

0

cos(θε(α′, t)) + i sin(θε(α′, t)) dα′.

Note that the benefit of this is that we are able to write

zε
d,α =

Lε

2π
(cos(θε) + i sin(θε)), (43)

implying that |zε
d,α| is independent of α, as desired. The presence of the operator P would have complicated

this. An immediate consequence of (43) is that we can write

t̂ε = (cos(θε), sin(θε)), n̂ε = (− sin(θε), cos(θε)).

Another consequence is, since |zε
d,α| = Lε/2π, and since the curve is 2π-periodic, we must have

Lε ≥ 2π. (44)

Note that zε
d is bounded in terms of θε and Lε. This can be proved directly by using either formula

(39) or (43). The estimate one finds is, for θ ∈ Hs,

‖zε
d‖s+1 ≤ cL(1 + ‖θε‖s).

Of course, this is true without the superscripts of ε as well.

5.2. The Mollified Birkhoff–Rott Integral and Its Consequences

We need similar formulas to those previously established. To begin, we define Wε to be Wε = τWs.t.,ε +
W̃ε, with

Φ(Ws.t.,ε)∗(α, t) =
1

2iLε
PV

2π∫

0

χεθ
ε
αα(α′, t) cot

(
1
2
(zε

d(α, t) − zε
d(α

′, t))
)

dα′,

Φ(W̃ε)∗(α, t) =
1

4πi
PV

∫
γ̃[θε](α′) cot

(
1
2
(zε

d(α) − zε
d(α

′))
)

dα′.

We then define U s.t.,ε = Ws.t.,ε ·n̂ε and V s.t.,ε = ∂−1
α P(θε

αU s.t.,ε). Correspondingly, we define Ũε = W̃ε ·n̂ε

and Ṽ ε = ∂−1
α P(θε

αŨε). Now that we have defined Ũε, we may define kε :

kε =
2π

L

{
−R cos(θε)

2
− AμŨε

}
. (45)

Notice, however, that this is the same as saying the following:

kε = k[θε]. (46)
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We also will need definitions of ms.t.,ε and m̃ε. We define them as follows:

Φ(m̃ε)∗ = zε
d,αK[zε

d]

((
γ̃[θε]
zε
d,α

)

α

)
+

zε
d,α

2i

[
H,

1
(zε

d,α)2

](
zε
d,α

(
γ̃[θε]
zε
d,α

)

α

)
,

Φ(ms.t.,ε)∗ =
2πzε

d,α

Lε
K[zε

d]
((

χεθ
ε
αα

zd,α

)
α

)
+

πzε
d,α

Li

[
H,

1
(zε

d,α)2

](
zε
d,α

(
χεθ

ε
αα

zε
d,α

)

α

)
.

Of course, as before, we have the definition of mε given ms.t.,ε and m̃ε :

mε = τms.t.,ε + m̃ε.

We note that this was the final quantity from (41) which had been undefined; therefore, we have now
fully specified the mollified evolution.

Taking a derivative of U s.t.,ε, we clearly have

U s.t.,ε
α = Ws.t.,ε

α · n̂ε − θε
αWs.t.,ε · t̂ε.

We can write, similarly to the unmollified case, the following expression for Ws.t.,ε
α · n̂ε :

Ws.t.,ε
α · n̂ε =

2π2

(Lε)2
χεH(θε

ααα) + ms.t.,ε · n̂ε.

Putting these equations together, we arrive at our expression for U s.t.,ε
α :

U s.t.,ε
α =

2π2

(Lε)2
χεH(θε

ααα) − θε
αWs.t.,ε · t̂ε + ms.t.,ε · n̂ε. (47)

Integrating with respect to α, we find the corresponding expression for U s.t.,ε :

U s.t.,ε = 〈〈U s.t.,ε〉〉 +
2π2

(Lε)2
χεH(θε

αα) + ∂−1
α

(−θε
α(Ws.t.,ε · t̂ε) + ms.t.,ε · n̂ε

)
. (48)

We also have the following:

Ws.t.,ε
α · t̂ε = − 2π2

(Lε)2
θε

αχεH(θε
αα) + ms.t.,ε · t̂ε − 2π2

(Lε)2
[H, θε

α]χεθ
ε
αα. (49)

5.3. Higher Derivatives

It is helpful to apply one spatial derivative to (40). Notice that since με does not depend on α, it will
make no contribution, and we will simply have θε

α,t = Bε
α. Furthermore, we note that since ∂αP = ∂α, the

operator P will not appear in the differentiated equation. With these considerations in mind, applying
the derivative, we find

θε
α,t =

4π3τ

(Lε)3
χ2

εH∂4
α(θε) − τχε

[
4π3Aμ

(Lε)3
(χεθ

ε
α)(χεθ

ε
ααα) +

2πAμ

Lε
H(U s.t.,ε

α χεθ
ε
α)
]

−τχε

[
4π3Aμ

(Lε)3
(χεθ

ε
αα)2

]
− τχε

[
2πAμ

Lε
H(U s.t.,εχεθ

ε
αα)

]

+χεH(kεχεθ
ε
αα) + χεH(kε

αχεθ
ε
α) − 2πτ

Lε
χε

[
(Ws.t.,ε

α · t̂ε)χεθ
ε
α

]
+

τLs.t.,ε
t

Lε
χ2

εθ
ε
α

+
2πτ

Lε
χε

[
(V s.t.,ε − Ws.t.,ε · t̂ε)χεθ

ε
αα

]



Vol. 16 (2014) The Zero Surface Tension Limit of 2D Darcy Flow 123

+
2πA2

μτ

Lε
χε

[
(χεθ

ε
αα)Ws.t.,ε · t̂ε + (χεθ

ε
α)∂α(Ws.t.,ε · t̂ε)

]

+∂αχε

[
πAμR

Lε
sin(χεθ

ε)χεθ
ε
α +

2πA2
μ

Lε
(χεθ

ε
α)W̃ε · t̂ε

+
2π

Lε
(Ṽ ε − W̃ε · t̂ε)χεθ

ε
α +

2π

Lε
mε · n̂ε − 2π3Aμ

(Lε)3
H(mε · t̂ε)

]
. (50)

We continue to rearrange this, to isolate the terms which must be treated carefully in the energy
estimate. In particular, we use (49), (47), and (48) to substitute for Ws.t.,ε

α · t̂, U s.t.,ε
α , and U s.t.,ε in (50).

In addition, we make another substitution. Since the mean value of the Hilbert transform of any function
is zero, we can write

H(U s.t.,εχεθ
ε
αα) = ∂−1

α ∂αH(U s.t.,εχεθ
ε
αα) = ∂−1

α H(U s.t.,ε
α χεθ

ε
αα) + ∂−1

α H(U s.t.,εχεθ
ε
ααα).

(51)

We substitute (47) into the first term on the right-hand side of (51), and we pull U s.t.,ε through the
Hilbert transform in the second term on the right-hand side of (51), incurring a commutator. This yields
the following:

H(U s.t.,εχεθ
ε
αα) =

2π2

(Lε)2
∂−1

α H ((χεθ
ε
αα)H(χεθ

ε
ααα)) + ∂−1

α

(
U s.t.,εH(χεθ

ε
ααα)

)

+∂−1
α H

(
(χεθ

ε
αα)

(
− θε

α(Ws.t.,ε · t̂ε) + ms.t.,ε · n̂ε
))

+ ∂−1
α [H,U s.t.,ε]χεθ

ε
ααα.

(52)

We pull χεθ
ε
αα through the Hilbert transform in the first term on the right-hand side of (52), incurring

a commutator. We also use the fact that H2 = −I when applied to functions with zero mean. These
considerations yield the following:

H(U s.t.,εχεθ
ε
αα) = − 2π2

(Lε)2
∂−1

α ((χεθ
ε
αα)χεθ

ε
ααα) + ∂−1

α

(
U s.t.,εH(χεθ

ε
ααα)

)

+
2π2

(Lε)2
∂−1

α [H,χεθ
ε
αα]H(χεθ

ε
ααα) + ∂−1

α [H,U s.t.,ε]χεθ
ε
ααα

+∂−1
α H

(
(χεθ

ε
αα)

(
− θε

α(Ws.t.,ε · t̂ε) + ms.t.,ε · n̂ε
))

. (53)

Similarly to this calculation, but more simply, we want to use (47) to expand H(U s.t.,ε
α χεθ

ε
α). We have

H(U s.t.,ε
α χεθ

ε
α) =

2π2

(Lε)2
H ((χεθ

ε
α)H(χεθ

ε
ααα)) − H((χεθ

ε
α)θε

αWs.t.,ε · t̂ε) + H((χεθ
ε
α)ms.t.,ε · n̂ε).

In the first term on the right-hand side, we pull χεθ
ε
α through the Hilbert transform, incurring a commu-

tator. We also use the fact that H2 = −I for mean-zero functions. This yields the following:

H(U s.t.,ε
α χεθ

ε
α) = − 2π2

(Lε)2
(χεθ

ε
α)χεθ

ε
ααα − H((χεθ

ε
α)θε

αWs.t.,ε · t̂ε)

+H((χεθ
ε
α)ms.t.,ε · n̂ε) +

2π2

(Lε)2
[H,χεθ

ε
α]H(χεθ

ε
ααα). (54)

We rewrite (50) according to the above considerations. We find

θε
α,t = χε

[
4π3τ

(Lε)3
H∂4

α(χεθ
ε) + τΥε

1χεθ
ε
ααα + Υε

2 + Υε
3 + Υε

4

]
, (55)

where we will give formulas for the Υε
i shortly. We first mention that Υε

1 is clearly just the coefficient
of τχεθ

ε
ααα. Next, Υε

2 is essentially a collection of terms which include H(χεθ
ε
αα); it is not this simple,
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however, since we also include the term ∂−1
α (U s.t.,εH(χεθ

ε
ααα)) from (53). The distinction between Υε

3

and Υε
4 is that Υε

3 consists of transport terms, and Υε
4 consists of smooth terms; these are all routine

to estimate, but they need to be treated differently in the energy estimates, since the transport terms
require an integration by parts that the smooth terms do not.

Using (54), we find that the formula for Υε
1 is

Υε
1 = −4π3Aμ

(Lε)3
χεθ

ε
α +

4π3Aμ

(Lε)3
χεθ

ε
α = 0. (56)

Remark 9. Even if these two terms did not cancel, this would not be an obstacle to the rest of the proof.
The fact that Υε

1 is zero corresponds, in the example of Sect. 2, to having the value c1 = 0. In the example,
we were able to bound the relevant term even when c1 > 0, which is the more difficult case.

We write H(kεχεθ
ε
αα) = kεH(χεθ

ε
αα) + [H, kε]χεθ

ε
αα, and we use (53) and (49), collecting terms that

are essentially proportional to H(χεθ
ε
αα) into Υε

2 :

Υε
2 = kεH(χεθ

ε
αα) − 2πτAμ

Lε
∂−1

α (U s.t.,εH(χεθ
ε
ααα)) +

4π3τ

(Lε)3
(θε

αχεθ
ε
α)H(χεθ

ε
αα).

The term Υε
3 is the collection terms that are essentially transport terms:

Υε
3 = −4π3τAμ

(Lε)3
(χεθ

ε
αα)2 +

4π3τAμ

(Lε)3
∂−1

α ((χεθ
ε
αα)χεθ

ε
ααα) +

2πτ

Lε
(V s.t.,ε − Ws.t.,ε · t̂ε)χεθ

ε
αα

+
2πτA2

μ

Lε
(Ws.t.,ε · t̂ε)χεθ

ε
αα +

πAμR

Lε
sin(χεθ

ε)χεθ
ε
αα

+
2πA2

μ

Lε
(W̃ε · t̂ε)χεθ

ε
αα +

2π

Lε
(Ṽ ε − W̃ε · t̂ε)χεθ

ε
αα.

Of course, Υε
4 consists of all remaining terms:

Υε
4 =

2πτAμ

Lε
H((χεθ

ε
α)θε

αWs.t.,ε · t̂ε) − 2πτAμ

Lε
H((χεθ

ε
α)ms.t.,ε · n̂ε)

−4π3τAμ

(Lε)3
[H,χεθ

ε
α]H(χεθ

ε
ααα) − 4π3τAμ

(Lε)3
∂−1

α [H,χεθ
ε
αα]H(χεθ

ε
ααα)

−2πτAμ

Lε
∂−1

α H
(
(χεθ

ε
αα)(−θε

α(Ws.t.,ε · t̂ε) + ms.t.,ε · n̂ε)
)− 2πτAμ

Lε
∂−1

α [H,U s.t.,ε]χεθ
ε
ααα

+[H, kε]χεθ
ε
αα + H(kε

αχεθ
ε
α) − 2πτ

Lε
(χεθ

ε
α)ms.t.,ε · t̂ε +

4π3τ

(Lε)3
(χεθ

ε
α)[H, θε

α]χεθ
ε
αα

+
τLs.t.,ε

t

Lε
χ2

εθ
ε
α +

2πA2
μτ

Lε
(χεθ

ε
α)∂α(Ws.t.,ε · t̂ε) +

πAμR

Lε
(χεθ

ε
α)2 cos(χεθ

ε)

+
2πA2

μ

Lε
(χεθ

ε
α)(W̃ε · t̂ε)α +

2π

Lε
(χεθ

ε
α)(Ṽ ε − W̃ε · t̂ε)α +

2π

Lε
(mε · n̂ε)α − 2π3Aμ

(Lε)3
H(mε · t̂ε)α.

(57)

Now, we differentiate (55) with respect to α and we also use again the notation Λ = H∂α, arriving at
our desired formula,

θε
αα,t = χε

[
− 4π3τ

(Lε)3
Λ3(χεθ

ε
αα) + Υε

5Λ(χεθ
ε
αα) + Υε

6χεθ
ε
ααα + Υε

7

]
; (58)

we will give the definitions of Υε
5,Υ

ε
6, and Υε

7 next.
First, Υε

5 is deduced from the definition of Υε
2, and is given by

Υε
5 = kε − 2πτAμ

Lε
U s.t.,ε +

4π3τ

(Lε)3
θε

αχεθ
ε
α. (59)
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Next, we have the formula for Υε
6, which is deduced from Υε

3 :

Υε
6 = −4π3τAμ

(Lε)3
χεθ

ε
αα +

2πτ

Lε
(V s.t.,ε − Ws.t.,ε · t̂ε) +

2πτA2
μ

Lε
Ws.t.,ε · t̂ε

+
πAμR

Lε
sin(χεθ

ε) +
2πA2

μ

Lε
W̃ε · t̂ε +

2π

Lε
(Ṽ ε − W̃ε · t̂ε).

Once again, all of the remaining terms are incorporated into the final term, which is now Υε
7. The

remaining terms include the derivative of Υε
4, in addition to leftover terms from the derivatives of Υε

2 and
Υε

3 :

Υε
7 = Υε

4,α + kε
αH(χεθ

ε
αα) +

4π3τ

(Lε)3
(Hχεθ

ε
αα)∂α(θε

αχεθ
ε
α) +

2πτ

Lε
(χεθ

ε
αα)∂α(V s.t.,ε − Ws.t.,ε · t̂ε)

+
2πτA2

μ

Lε
(χεθ

ε
αα)∂α(Ws.t.,ε · t̂ε) +

πAμR

Lε
(χεθ

ε
αα)(χεθ

ε
α) cos(χεθ

ε)

+
2πA2

μ

Lε
(χεθ

ε
αα)∂α(W̃ε · t̂ε) +

2π

Lε
(χεθ

ε
αα)∂α(Ṽ ε − W̃ε · t̂ε).

5.4. The Energy Estimate with τ > 0

Let d̄1, d̄2, and d̄3 be positive numbers. Let the open set O ⊆ Hs(X) be defined as the subset of Hs(X)
such that for all θ ∈ O, the following conditions hold:

‖θ‖s < d̄1, L < d̄2, |q1[zd](α, α′)| =
∣∣∣∣zd[θ](α) − zd[θ](α′)

α − α′

∣∣∣∣ > d̄3, ∀α, α′. (60)

Notice that for a typical θ, it will not be the case that 〈〈sin(θ)〉〉 = 0, but we would like the curve which
we construct from θ to be 2π-periodic. Therefore, we use the method of constructing a curve outlined in
(39), which applies a projection in order to remove the mean of sin(θ). Also, the length L used in (60) is
the length defined by (38).

As in Sect. 2, for convenience, we will denote the domain for the spatial variable, α, by X. Of course,
X is the periodic interval [0, 2π].

Given this open set, we are able to use the Picard theorem to prove existence of solutions of the
initial value problem, with the solutions in the set O at each time. (Note that the particular version of
the Picard theorem being used is Theorem 3.1 from [42]; closely related versions of the Picard theorem
can be found, for instance, in [35] or [56].) To verify the hypotheses of the Picard theorem, we need to
know that the right-hand side of the evolution equation maps into the space Hs, and is Lipschitz. These
properties are not difficult to establish for the mollified equation, and we do not provide the details here.
The conclusion of our application of the Picard theorem is the following:

Lemma 7. Let τ > 0 and ε > 0 be given. Let θ0 ∈ O satisfying 〈〈sin(θ0)〉〉 = 0 be given. Then, there exists
T ε > 0 and θε ∈ C1((−T ε, T ε);O) such that for all t ∈ (−T ε, T ε), the equation (40) is satisfied by θε,
and such that θε(·, 0) = θ0.

We remark again that since these solutions θε satisfy (40), it is the case that 〈〈sin(θε)〉〉 = 0 at positive
times. We now seek to establish that these solutions θε all exist on a common time interval, and to this
end, we prove an energy estimate. Before doing this, it is helpful to have a lemma about the regularity
of the various Υi.

Lemma 8. Let θε in O be given, such that 〈〈sin(θε)〉〉 = 0. We have Υε
4 ∈ Hs−1, with the norm bounded

uniformly with respect to τ ∈ [0, 1] and ε ∈ [0, 1]. For i ∈ {5, 6, 7}, we have Υε
i ∈ Hs−2, with the norms

bounded uniformly with respect to τ ∈ [0, 1] and ε ∈ [0, 1].
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Proof. We will not carry out every detail of the proof of this lemma, but we will give the idea. We begin

by noting that
1
Lε

is bounded above, which can be seen from (44).

For Υε
4, the proof is lengthy, but straightforward. As can be seen in (57), there are many terms on

the right-hand side of the definition of Υε
4. Using (57), we write Υε

4 =
∑17

j=1 Ξj ; each of the 17 terms
corresponds to one of the terms on the right-hand side of (57) in the straightforward way.

To begin, we have from the Sobolev algebra property,

‖Ξ1‖s−1 =
∥∥∥∥2πτAμ

Lε
H((χεθ

ε
α)θε

αWs.t.,ε · t̂ε)
∥∥∥∥

s−1

≤ c‖θε‖2
s‖Ws.t.,ε · t̂ε‖s−1.

An estimate for Ws.t.,ε · t̂ε can be proved along the same lines as in Lemma 6 and Remark 7. This implies
that ‖Ξ1‖s−1 is bounded in terms of d̄1. For Ξ2, we have

‖Ξ2‖s−1 =
∥∥∥∥−2πτAμ

Lε
H((χεθ

ε
α)ms.t.,ε · n̂)ε

∥∥∥∥
s−1

≤ c‖θε‖s(1 + ‖θε‖s−1‖)ms.t.,ε‖s−1.

An estimate for ms.t,ε (and also an estimate for m̃ε, although it is not needed for Ξ2) can be proven
completely analogously to (32), and these imply that Ξ2 is bounded in Hs−1 in terms of d̄1.

For Ξ3 and Ξ4, we need to use the commutator estimates of Lemma 4. We begin with the estimate
for Ξ3 :

‖Ξ3‖s−1 =
∥∥∥∥−4π3τAμ

(Lε)3
[H,χεθ

ε
α]H(χεθ

ε
ααα)

∥∥∥∥
s−1

≤ c‖χεθ
ε
α‖s−1‖χεθ

ε
ααα‖s−3 ≤ c‖θε‖2

s ≤ cd̄2
1.

(Notice that we used Lemma 4 with n = s − 1 and k = 2; the lemma requires n ≥ 2k, so we must have
s ≥ 5.) We turn to Ξ4 :

‖Ξ4‖s−1 =
∥∥∥∥−4π3τAμ

(Lε)3
∂−1

α [H,χεθ
ε
αα]H(χεθ

ε
ααα)

∥∥∥∥
s−1

≤ c ‖[H,χεθ
ε
αα]H(χεθ

ε
ααα)‖s−2

≤ c‖χεθ
ε
αα‖s−2‖χεθ

ε
ααα‖s−3 ≤ cd̄2

1.

Here, we used Lemma 4 with n = s − 2 and k = 1.
We have the following definition of Ξ5 :

Ξ5 = −2πτAμ

Lε
∂−1

α H
(
(χεθ

ε
αα)(−θε

α(Ws.t.,ε · t̂ε) + ms.t.,ε · n̂ε)
)
.

This can be bounded in terms of d̄1 because of the presence of the ∂−1
α operator, and also because of the

previously discussed bounds for Ws.t.,ε · t̂ε and ms.t.,ε.
We next have the following, which again uses Lemma 4:

‖Ξ6‖s−1 =
∥∥∥∥−2πτAμ

Lε
∂−1

α [H,U s.t.,ε]χεθ
ε
αα

∥∥∥∥
s−1

≤ c
∥∥[H,U s.t.,ε]χεθ

ε
αα

∥∥
s−2

≤ c‖U s.t.,ε‖s−2‖θε‖s.

Using (48), we can easily bound ‖U s.t.,ε‖s−2 in terms of d̄1, so we can thus bound Ξ6 in terms of d̄1 as
well.

Both of Ξ7 and Ξ8 involve kε. To begin to estimate these, we note that we can write

Φ(W̃ε)∗ =
1
2i

H

(
γ̃[θε]
zε
d,α

)
+ K[zε

d](γ̃[θε]),

similarly to the formula (28). Using Lemmas 1 and 6, and the definition Ũε = W̃ε · n̂ε, we see that Ũε is
bounded in Hs in terms of d̄1. From (45), which is the definition of kε, we see then that kε is bounded
in Hs in terms of d̄1. For Ξ7, we can use Lemma 4 again, yielding the following:
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‖Ξ7‖s−1 = ‖[H, kε]χεθ
ε
αα‖s−1 ≤ c‖kε‖s−1‖θε‖s.

Given the above discussion on the boundedness of kε, we see that Ξ7 is bounded in terms of d̄1. Next, we
see from the above discussion and the following definition of Ξ8 that it is bounded in Hs−1 in terms of
d̄1 :

Ξ8 = H(kε
αχεθ

ε
α).

We will stop providing details at this point, but the rest of the proof for Υε
4, and indeed, the rest of

the proof of the lemma, follows in the same fashion. �
As in Sect. 2, we let the energy E be defined as

E(t) =
1
2

∫

X

(θε(α, t))2 + (∂s
αθε(α, t))2 dα.

Of course, this energy is the square of a norm for θε in the space Hs, and this norm is equivalent to the
usual one. We are now ready for the energy estimate:

Lemma 9. Let τ > 0 and ε > 0 be given. Let θε ∈ C([0, T ];O) solve (40), where T may depend on both
ε and τ. Then, there exists constants c1 > 0, c2 > 0, and c3 > 0 depending only on s, d̄1, d̄2, and d̄3, and
there exists C̄ > 0 which can also depend on τ, such that for all t ∈ [0, T ], we have

dE

dt
≤ c1 exp{c2E} + C̄E − c3τ

∫

X

(Λ3/2∂s
αχεθ

ε)2 dα. (61)

Proof. Clearly, we have
dE

dt
=
∫

X

θεθε
t + (∂s

αθε)∂s
αθε

t dα =
∫

X

θεθε
t + (∂s

αθε)∂s−2
α θε

αα,t dα.

Since s has been taken to be sufficiently large, we can see that ‖θε
t ‖0 is bounded in terms of the energy;

so, ∫

X

θεθε
t dα ≤ c1 exp{c2E}. (62)

Using (58), and using that fact that χε is self-adjoint, we calculate the following:∫

X

(∂s
αθε)∂s−2

α θε
αα,t dα = − 4π3τ

(Lε)3

∫

X

(∂s
αχεθ

ε)(∂s
αΛ3χεθ) dα +

∫

X

(∂s
αχεθ

ε)∂s−2
α (Υε

5Λ(χεθ
ε
αα)) dα

+
∫

X

(∂s
αχεθ

ε)∂s−2
α (Υε

6χεθ
ε
ααα) dα +

∫

X

(∂s
αχεθ

ε)∂s−2
α Υε

7 dα. (63)

We estimate each of the integrals on the right-hand side of (63). To begin, we notice from Lemma 8
that we can easily estimate the last integral on the right-hand side of (63):∫

X

(∂s
αχεθ

ε)∂s−2
α Υε

7 dα ≤ ‖θε‖s‖Υε
7‖s−2 ≤ c1 exp{c2E}. (64)

For the third integral on the right-hand side of (63), we use the product rule in order to expand
∂s−2

α (Υε
6χεθ

ε
ααα) :∫

X

(∂s
αχεθ

ε)∂s−2
α (Υε

6χεθ
ε
ααα) dα =

∫

X

Υε
6(∂

s
αχεθ

ε)(∂s+1
α χεθ

ε) dα

+
s−2∑
j=1

(
s − 2

j

)∫

X

(∂s
αχεθ

ε)(∂j
αΥε

6)(∂
s+1−j
α χεθ

ε) dα. (65)



128 D. M. Ambrose JMFM

The first integral on the right-hand side of (65) can be integrated by parts, since (∂s
αχεθ

ε)∂s+1
α χεθ

ε =
1
2∂α

(
(∂s

αχεθ
ε)2

)
. After performing this integration by parts, the resulting integral is bounded in terms

of the energy. Furthermore, all of the integrals in the sum on the right-hand side of (65) are bounded in
terms of the energy. For both of these bounds, we have used Lemma 8. So, we have established∫

X

(∂s
αχεθ

ε)∂s−2
α (Υε

6χεθ
ε
ααα) dα ≤ c1 exp{c2E}. (66)

The other two integrals on the right-hand side of (63) require more careful attention. We begin with
the second of these, which we again expand with the product rule:∫

X

(∂s
αχεθ

ε)∂s−2
α (Υε

5Λ(χεθ
ε
αα)) dα =

∫

X

Υε
5(∂

s
αχεθ

ε)Λ(∂s
αχεθ

ε) dα

+
s−2∑
j=1

(
s − 2

j

)∫

X

(∂s
αχεθ

ε)(∂j
αΥε

5)Λ(∂s−j
α χεθ

ε) dα. (67)

For the first integral on the right-hand side of (67), we estimate it with Young’s Inequality:∫

X

Υε
5(∂

s
αχεθ

ε)Λ(∂s
αχεθ

ε) dα ≤ 1
2

∫

X

(Υε
5)

2(∂s
αχεθ

ε)2 dα +
1
2

∫

X

(∂s+1
α χεθ

ε)2 dα.

By Lemma 8, the first of these is bounded in terms of the energy; furthermore, all of the integrals in the
sum on the right-hand side of (67) are bounded in terms of the energy. These considerations yield the
following bound:∫

X

(∂s
αχεθ

ε)∂s−2
α (Υε

5Λ(χεθ
ε
αα)) dα ≤ c1 exp{c2E} +

1
2

∫

X

(∂s+1
α χεθ

ε)2 dα. (68)

We now consider the first integral on the right-hand side of (63). We simply rewrite this integral, using
the fact that the operator Λ3/2 is self-adjoint:

− 4π3τ

(Lε)3

∫

X

(∂s
αχεθ

ε)∂s−2
α Λ3(χεθ

ε) dα = − 4π3τ

(Lε)3

∫

X

(Λ3/2∂s
αχεθ

ε)2 dα. (69)

We now add the inequalities (64), (66), (68), and (69), using these with (63). This yields the inequality
∫

X

(∂s
αθε)∂s−2

α θε
αα,t dα ≤ c1 exp{c2E} +

∫

X

(
− 4π3τ

(Lε)3
(Λ3/2(∂s

αχεθ
ε))2

)
+

1
2
(∂α∂s

αχεθ
ε)2 dα. (70)

Similarly to the estimate of Case 3 of the example in Sect. 2, we let v = ∂s
αχεθ

ε, and we rewrite the
integral on the right-hand side of (70) by using the Plancherel theorem. We also add (70) with (62):

dE

dt
≤ c1 exp{c2E} +

∞∑
ξ=−∞

(
− 4π3τ

(Lε)3
|ξ|3 +

1
2
|ξ|2

)
|v̂(ξ)|2.

From the definition of the open set O, we know Lε < d̄2, and therefore

− 4π3τ

(Lε)3
< −4π3τ

d̄3
2

.

Now, there exists C̄(τ) > 0 such that for all ξ ∈ Z, we have

−2π3τ

d̄3
2

|ξ|3 +
1
2
|ξ|2 ≤ C̄(τ).
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Notice that by the Plancherel theorem and the definition of E, and by the inequality ‖χεθ
ε‖s ≤ ‖θε‖s,

the sum
∑∞

ξ=−∞ |v̂(ξ)|2 is bounded by 2E. We use the Plancherel theorem once more, and we conclude
that we have proven that

dE

dt
≤ c1 exp{c2E} + 2C̄(τ)E − 2π3τ

d̄3
2

∫

X

(Λ3/2∂s
αχεθ

ε)2 dα.

This completes the proof of the lemma. �

Remark 10. While the constants c1 and c2 are independent of τ, it is clear that limτ→0+ C̄(τ) = +∞.
Therefore, the present estimate is certainly not uniform in τ.

Remark 11. The integral on the right-hand side of (61) demonstrates a version of the expected para-
bolic smoothing for this problem. By integrating (61) in time, because of the presence of this integral,
we see that the mollified solution of the approximate evolution equation, χεθ

ε, is in fact in the space
L2([0, T ];Hs+3/2), with the norm in this space bounded independently of ε. Of course, χεθ

ε is in the
space Hs+3/2 pointwise in time because of the presence of the mollifier, but without this estimate, the
norm in Hs+3/2 would depend badly on ε. (We mention that we have not yet shown that T can be taken
to be independent of ε, but we will do this next.)

5.5. Existence of Solutions with τ > 0

Thus far, we have proved the existence of a solution θε to the initial value problem associated to the
mollified evolution equation, for any ε > 0, and this solution exists on a time interval [0, T ε]. Furthermore,
we have proved that the time derivative of the Hs-norm of θε is bounded, independently of ε. Our next
task is to combine these facts to find that the solutions θε all exist on a common time interval; this is the
content of our next lemma.

Lemma 10. Let θε be as in Lemma 7. There exists T∗ > 0 such that for all ε > 0, θε is a solution of (40)
on the time interval [0, T∗], and θε ∈ C([0, T∗];O) ∩ C1([0, T∗];Hs−3).

Proof. By the continuation theorem for autonomous differential equations on Banach spaces (see Theorem
3.3 of [42]), the solution θε can be continued so long as it does not leave the set O. There are three
conditions in (60) defining the set O, and we must check that these cannot be violated arbitrarily quickly.

For any given ε > 0, define T ε
∗ to be the maximal time of existence for θε in the set O. Assume that

the solutions can leave the set O arbitrarily quickly. This means there exists a sequence εn > 0 such
that εn → 0 and such that T εn∗ → 0 as n → ∞. The uniform bound of the previous section, however,
immediately implies that ‖θε‖s cannot reach the value d̄1 arbitrarily fast (that is, if it could reach the
value d1 arbitrarily fast, then the time derivative of E would have to be able to become arbitrarily large,
which is ruled out by the estimate). Similarly, if Lε were to become equal to d̄2 arbitrarily fast, then
the time derivative, Lε

t , would need to be arbitrarily large, but again, this is not the case. Similarly, the
energy also controls the time derivative of the chord-arc quantity, q1, so the chord-arc condition in (60)
cannot be violated arbitrarily fast. Such a sequence εn is therefore seen to be impossible. We conclude
that there exists T∗ > 0 such that for all ε > 0, we have θε ∈ C([0, T∗],O). �

Remark 12. Following up on Remark 11, we see that the mollified solutions of the approximate evolution
equation, χεθ

ε, are bounded in L2([0, T∗];Hs+3/2), and the bound is uniform with respect to ε.

We are now able to prove the existence of a limiting solution, θ.

Theorem 11. Let θ0 ∈ O satisfy 〈〈sin(θ0)〉〉 = 0. Let T∗ > 0 be as in Lemma 10. Then there exists
θ ∈ C([0, T∗]; Ō) ∩ C1([0, T∗];Hs−3) such that θ(·, 0) = θ0 and such that θ satisfies (20).
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Proof. From the uniform bound on the Hs-norm of the solutions in the definition of O, we conclude that
|θε

t |∞ and |θε
α|∞ are uniformly bounded, with respect to both ε and t, over the interval [0, T∗]. Therefore,

θε forms an equicontinuous family. By the Arzela-Ascoli theorem, there exists a subsequence (which we do
not relabel) and a limit, θ, such that θε → θ in C(X × [0, T∗]). This implies θε → θ in C([0, T ];H0), and
using the uniform Hs-estimate together with the elementary interpolation inequality (22), this implies
θε → θ in C([0, T∗];Hs′

), for any s′ satisfying 0 ≤ s′ < s.
Next, we establish that the limiting solution satisfies the unmollified evolution equation. Recall that

Bε is defined in (41), and that B is defined to be the right-hand side of (20). We write

θε(α, t) = θ0(α) +

t∫

0

θε
t (α, s) ds = θ0(α) +

t∫

0

Bε(α, s) + με(s) ds.

Having established convergence in Hs′
for sufficiently large s′, we are able to pass to the limit in this

equation, finding

θ(α, t) = θ0(α) +

t∫

0

lim
ε→0

θε
t (α, s) ds = θ0(α) +

t∫

0

B + lim
ε→0

με ds.

We give the name μ to the limit of με; considering the discussion at the end of Sect. 5.1, we see that

μ = −
∫ 2π

0
cos(θ)B dα

4π2L
=

Lt

4π2L2

2π∫

0

sin(θ) dα.

As discussed at the end of Sect. 5.1, we recall that for all ε > 0, we have
∫ 2π

0
sin(θε) dα = 0. We can

thus pass to the limit to find
∫ 2π

0
sin(θ) dα = 0. We conclude that μ = 0. This implies that the limit, θ,

satisfies the appropriate evolution equation, θt = B.
Finally, we remark on the highest regularity. The solutions of the mollified equation are in the space

Hs at each time in [0, T∗], uniformly bounded with respect to ε. This means that at each time, there is
a subsequence which converges weakly in Hs, and this limit must be θ. Therefore, θ is in Hs pointwise
in time. What remains is to show that θ ∈ C([0, T ];Hs); we do not include the details, but this can be
done by adapting the corresponding argument for regularity of solutions for the Navier-Stokes equations
in Chapter 3 of [42]. The steps are to first show that θ is weakly continuous in time with values in Hs;
this follows easily from the uniform bound and the strong continuity in Hs′

. Then, it is shown that the
solution is strongly right-continuous in time at t = 0; this follows from the energy estimate and Fatou’s
Lemma. The final step is to use parabolic smoothing; in Remark 12, we see that χεθ

ε is uniformly bounded
in the space L2([0, T∗];Hs+3/2). Since this is a Hilbert space, we see that our subsequence of χεθ

ε has a
subsequence with a weak limit in this space, and this weak limit must be θ. The existence theory can then
be repeated in higher regularity spaces starting from almost any positive time, t, with initial data θ(·, t).
Using the uniqueness theorem (which is Theorem 12 below), the solution starting from time t and the
solution starting from time zero must be the same. It can then be concluded that the solution starting
from time t is continuous in Hs (since Hs would no longer be the highest regularity), and we are able to
do this for any arbitrarily small value of t. Together with the right-continuity at time zero, this argument
implies θ ∈ C([0, T∗];Hs). In addition to [42], we remark that the author has recently used this same
argument for highest regularity in the papers [5] and [11]. �

5.6. Uniqueness and Continuous Dependence with τ > 0

Theorem 12. Let θ0 ∈ O and θ1 ∈ O be given, and assume that 〈〈sin(θi)〉〉 = 0 for i ∈ {0, 1}. The solution
of the initial value problem (20) with θ(·, 0) = θ0 is unique. Moreover, if T > 0 such that θ ∈ C([0, T ];O)
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is the solution corresponding to data θ0 and if θ′ ∈ C([0, T ];O) is the solution corresponding to data θ1,
then there exists c > 0 such that

sup
t∈[0,T ]

‖θ − θ′‖1 ≤ c‖θ0 − θ1‖1.

Remark 13. The proof of this theorem is the same as the proof of Theorem 14 below, and so we do
not include it here. In Theorem 14, we prove an estimate for the difference of two solutions, where the
solutions correspond to two different values of the surface tension parameter. In the present case, the
solutions would correspond to two different pieces of initial data. The estimate of the proof of Theorem
14 is more general, and thus implies the present result. Theorem 14 is for the H1 norm of the difference of
two solutions; the continuous dependence result of Theorem 12 can easily be extended to higher regularity
by interpolation.

6. The Zero Surface Tension Limit

We revisit the energy estimate of Sect. 5.4 in the case that the stability condition is satisfied. This will
allow us to show that the solutions found above exist on a uniform time interval. We will then be able to
take the limit as τ vanishes.

6.1. Uniform Time of Existence

We define another open set, Ok; this will be a subset of our previous open set, O. We let d̄4 > 0 be given.
Then, we make the definition

Ok = {f ∈ O : ∀α, k[f ](α) < −d̄4}.

This inequality, that k be negative and uniformly bounded away from zero, is the stability condition
that we discussed in the introduction; it is the nonlinear generalization of the condition of Saffman and
Taylor [44]. We repeat the previous energy estimate, considering now θ ∈ Ok, and considering sufficiently
small τ. Let us be precise about the τ to be considered. For any f ∈ Ok, we have the bounds (60), since
Ok ⊆ O. Considering the formula (46) and the definition of Υε

5 in (59), we see that if θε ∈ Ok, then since
k[θε] < −d̄4, and since U s.t,ε is bounded in terms of θε (uniformly in ε) there exists τ∗ ∈ (0, 1) such that
for all τ ∈ (0, τ∗), we have the pointwise estimate Υε

5 < − d̄4
2 < 0.

Theorem 13. Let τ∗ be as above. Let θ0 ∈ Ok be given, such that 〈〈sin(θ0)〉〉 = 0. Then there exists T > 0
such that for all τ ∈ (0, τ∗), the solution θτ of the initial value problem given by (20) and the condition
θτ (·, 0) = θ0 exists on [0, T ], with θτ ∈ C([0, T ]; Ōk) ∩ C1([0, T ];Hs−3).

Proof. We perform the energy estimate in the same way as before, except for the term which includes
Υε

5. The exact nature of the difference is that previously, when estimating (67), we had used Young’s
Inequality, and now we will instead use the estimate Υε

5 < − d̄4
2 . We begin by naming the following integral

I, and by using the formula Λ = H∂α:

I =
∫

X

Υε
5(∂

s
αχεθ

ε)Λ(∂s
αχεθ

ε) dα =
∫

X

Υε
5(∂

s
αχεθ

ε)∂αH(∂s
αχεθ

ε) dα.

Now, we write Υε
5 = − (√−Υε

5

)2
:

I = −
∫

X

(√−Υε
5∂

s
αχεθ

ε
)(√−Υε

5∂αH∂s
αχεθ

ε
)

dα.
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We bring a factor of
√−Υε

5 through ∂α :

I = −
∫

X

(√−Υε
5∂

s
αχεθ

ε
)
∂α

(√−Υε
5H∂s

αχεθ
ε
)

dα − 1
2

∫

X

Υε
5,α(∂s

αχεθ
ε)(H∂s

αχεθ
ε) dα.

Notice that the second integral on the right-hand side is bounded in terms of the energy. For the first
integral on the right-hand side, we now pull a factor of

√−Υε
5 through the Hilbert transform as well:

I = −
∫

X

(√−Υε
5∂

s
αχεθ

ε
)
Λ
(√−Υε

5∂
s
αχεθ

ε
)

dα +
∫

X

(√−Υε
5∂

s
αχεθ

ε
)
∂α[H,

√−Υε
5](∂

s
αχεθ

ε) dα

−1
2

∫

X

Υε
5,α(∂s

αχεθ
ε)(H∂s

αχεθ
ε) dα.

Now, the second integral on the right-hand side is also bounded in terms of the energy, because of the
smoothing properties of these commutators. The first integral on the right-hand side, meanwhile, is non-
positive; this is an important change from the previous estimate. Therefore, we are able to estimate I
as

I ≤ c1 exp{c2E} −
∫

X

(
Λ1/2

(√−Υε
5∂

s
αχεθ

ε
))2

dα.

This estimate completely obviates the need for Young’s inequality, and (70) is replaced by∫

X

(∂s
αθε)∂s−2

α θε
αα,t dα ≤ c1 exp{c2E} −

∫

X

4π3τ

(Lε)3
(Λ3/2(∂s

αχεθ
ε))2 dα

−
∫

X

(
Λ1/2

(√−Υε
5∂

s
αχεθ

ε
))2

dα.

As before, since Lε < d̄2, we have the simple inequality

− 4π3

(Lε)3
< −4π3

d̄3
2

.

We therefore conclude that
dE

dt
≤ c1 exp{c2E} − 4π3τ

d̄3
2

∫

X

(Λ3/2∂s
αχεθ

ε)2 dα −
∫

X

(
Λ1/2

(√−Υε
5∂

s
αχεθ

ε
))2

dα, (71)

where c1 and c2 are independent of τ ∈ (0, τ∗). �

Remark 14. As in Remarks 11 and 12, we can see parabolic smoothing from this estimate, although we now
have two different ways to see this. With τ > 0, we consider the first integral on the right-hand side of (71),
and we conclude that χεθ

ε is in L2([0, T∗];Hs+3/2), with the norm in this space bounded independently
of ε. Our estimate of this norm depends badly on τ. We are able to see smoothing independent of τ,
however, if we use the second integral on the right-hand side of (71). We can conclude that χεθ

ε is in
L2([0, T∗];Hs+1/2), with the norm in this space bounded independently of ε and independently of τ.

6.2. Cauchy Sequence as τ → 0

We now consider the behavior of solutions as τ vanishes. We therefore need to consider solutions with
different values of the parameter τ, and we will use superscripts for this purpose. That is, given some
τ > 0, the solution of the initial value problem for the non-mollified equation (20) will be denoted by θτ ,
and related quantites based on θτ will be denoted, for example, as Wτ or Lτ . In our next theorem, we
demonstrate that as τ vanishes, any sequence of θτ forms a Cauchy sequence in the space C([0, T ];H1).
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Theorem 14. Let θ0 ∈ Ok be given, such that 〈〈sin(θ0)〉〉 = 0. Let T > 0 be as in Theorem 13. Let τ and
τ ′ be in (0, τ∗). Let θτ and θτ ′

be the corresponding solutions of the initial value problem (20) with initial
data θ0, with the solutions valid over the time interval [0, T ], as in Theorem 13. For any η > 0, there
exists δ > 0 such that if |τ − τ ′| < δ, then

sup
t∈[0,T ]

‖θτ − θτ ′‖1 < η.

Proof. We need to show that we can make ‖θτ (·, t) − θτ ′
(·, t)‖1 arbitrarily small, uniformly in t ∈ [0, T ],

by taking τ and τ ′ sufficiently close together. In order to estimate ‖θτ − θτ ′‖1, we first need a good
expression for (θτ − θτ ′

)t. To this end, we begin by substituting from (18), and we write the result as

(θτ − θτ ′
)t = B1 + B2 + B3 + B4 + B5 + B6;

each of these Bi correspond to one of the six terms on the right-hand side of (18). We will now write each
of these out and manipulate each to get it to a useful form.

We begin with B1. We have

B1 = − 4π3τ

(Lτ )3
Λ3(θτ ) +

4π3τ ′

(Lτ ′)3
Λ3(θτ ′

).

We add and subtract:

B1 = −4π3(τ − τ ′)
(Lτ )3

Λ3(θτ ) − 4π3τ ′
(

1
(Lτ )3

− 1
(Lτ ′)3

)
Λ3(θτ ) − 4π3τ ′

(Lτ ′)3
Λ3(θτ − θτ ′

).

We turn to B2. We write the second term on the right-hand side of (18) as

2π

L
H

({
−R cos(θ)

2
− AμU

}
θα

)
= H(kθα) − 2πτAμ

L
H(U s.t.θα).

We then have our first expression for B2, namely

B2 = H(kτθτ
α) − H(kτ ′

θτ ′
α ) − 2πτAμ

Lτ
H(U s.t.,τθτ

α) +
2πτ ′Aμ

Lτ ′ H(U s.t.,τ ′
θτ ′

α ).

Of course, we add and subtract:

B2 = H((kτ − kτ ′
)θτ

α) + H(kτ ′
(θτ

α − θτ ′
α ))

−2π(τ − τ ′)Aμ

Lτ
H(U s.t.,τθτ

α) − 2πτ ′Aμ

(
1

Lτ
− 1

Lτ ′

)
H(U s.t.,τθτ

α)

−2πτ ′Aμ

Lτ ′ H((U s.t.,τ − U s.t.,τ ′
)θτ

α) − 2πτ ′Aμ

Lτ ′ H(U s.t.,τ ′
(θτ

α − θτ ′
α )).

We rewrite the term with U s.t.,τ − U s.t.,τ ′
by using (37):

B2 = H((kτ − kτ ′
)θτ

α) + H(kτ ′
(θτ

α − θτ ′
α ))

−2π(τ − τ ′)Aμ

Lτ
H(U s.t.,τθτ

α) − 2πτ ′Aμ

(
1

Lτ
− 1

Lτ ′

)
H(U s.t.,τθτ

α)

−2πτ ′Aμ

Lτ ′ H(U s.t.,τ ′
(θτ

α − θτ ′
α )) − 2πτ ′Aμ

Lτ ′ H((Qτ − Qτ ′
)θτ

α)

−4π3τ ′Aμ

Lτ ′

(
1

(Lτ )2
− 1

(Lτ ′)2

)
H(θτ

αH(θτ
αα)) − 4π3τ ′Aμ

(Lτ ′)3
H(θτ

αH(θτ
αα − θτ ′

αα)).
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To get our final form for B2, we now pull some factors through Hilbert transforms, incurring commutators:

B2 = H((kτ − kτ ′
)θτ

α) + kτ ′
H(θτ

α − θτ ′
α )

−2π(τ − τ ′)Aμ

Lτ
H(U s.t.,τθτ

α) − 2πτ ′Aμ

(
1

Lτ
− 1

Lτ ′

)
H(U s.t.,τθτ

α)

−2πτ ′Aμ

Lτ ′ U s.t.,τ ′
H(θτ

α − θτ ′
α ) − 2πτ ′Aμ

Lτ ′ H((Qτ − Qτ ′
)θτ

α)

−4π3τ ′Aμ

Lτ ′

(
1

(Lτ )2
− 1

(Lτ ′)2

)
H(θτ

αH(θτ
αα)) +

4π3τ ′Aμ

(Lτ ′)3
θτ

α(θτ
αα − θτ ′

αα)

+[H, kτ ′
](θτ

α − θτ ′
α ) − 2πτ ′Aμ

Lτ ′ [H,U s.t.,τ ′
](θτ

α − θτ ′
α ) − 4π3τ ′Aμ

(Lτ ′)3
[H, θτ

α]H(θτ
αα − θτ ′

αα).

For B3, we begin by recalling the definition

γ =
2πτ

L
θαα + γ̃.

Using this, we can write

−2π2Aμ

L2
P(γθα) = −4π3Aμτ

L3
P(θααθα) − 2π2Aμ

L2
P(γ̃θα),

and we note that the mean of θααθα is zero (since it is a perfect derivative). So, we have the following
for B3 :

B3 = −4π3Aμτ

(Lτ )3
θτ

αθτ
αα +

4π3Aμτ ′

(Lτ ′)3
θτ ′

α θτ ′
αα − 2π2Aμ

(Lτ )2
P(γ̃τθτ

α) +
2π2Aμ

(Lτ ′)2
P(γ̃τ ′

θτ ′
α ).

Once again, we add and subtract:

B3 = −4π3Aμ(τ − τ ′)
(Lτ )3

θτ
αθτ

αα − 4π3Aμτ ′
(

1
(Lτ )3

− 1
(Lτ ′)3

)
θτ

αθτ
αα

−4π3Aμτ ′

(Lτ ′)3
(θτ

α − θτ ′
α )θτ

αα − 4π3Aμτ ′

(Lτ ′)3
θτ ′

α (θτ
αα − θτ ′

αα) − 2π2Aμ

(
1

(Lτ )2
− 1

(Lτ ′)2

)
P(γ̃τθτ

α)

−2π2Aμ

(Lτ ′)2
P((γ̃τ − γ̃τ ′

)θτ
α) − 2π2Aμ

(Lτ ′)2
P(γ̃τ ′

(θτ
α − θτ ′

α )).

We rewrite the last term on the right-hand side, by using the formula Pf = f − 〈〈f〉〉:

B3 = −4π3Aμ(τ − τ ′)
(Lτ )3

θτ
αθτ

αα − 4π3Aμτ ′
(

1
(Lτ )3

− 1
(Lτ ′)3

)
θτ

αθτ
αα

−4π3Aμτ ′

(Lτ ′)3
(θτ

α − θτ ′
α )θτ

αα − 4π3Aμτ ′

(Lτ ′)3
θτ ′

α (θτ
αα − θτ ′

αα) − 2π2Aμ

(
1

(Lτ )2
− 1

(Lτ ′)2

)
P(γ̃τθτ

α)

−2π2Aμ

(Lτ ′)2
P((γ̃τ − γ̃τ ′

)θτ
α) − 2π2Aμ

(Lτ ′)2
γ̃τ ′

(θτ
α − θτ ′

α ) +
2π2Aμ

(Lτ ′)2
〈〈γ̃τ ′

(θτ
α − θτ ′

α )〉〉.

It is helpful to rewrite V − W · t̂ before beginning to give the formula for B4. We use (7) for this,
finding

V − W · t̂ = 〈〈V − W · t̂〉〉 + ∂−1
α

(
Lt

2π
− Wα · t̂

)
.

From previous considerations, we have the formula

Wα · t̂ = −2π2τ

L2
H(θααθα) − π

L
H(γ̃θα) + m · t̂.
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We observe that we can calculate ∂−1
α H(θααθα) exactly, and we find

V − W · t̂ = 〈〈V − W · t̂〉〉 +
π2τ

L2
H(θ2

α) + ∂−1
α

(
Lt

2π
+

π

L
H(γ̃θα) − m · t̂

)
.

We then write B4 as

B4 =
2π

Lτ
(V − W · t̂)τθτ

α − 2π

Lτ ′ (V − W · t̂)τ ′
θτ ′

α

= 2π

(
1

Lτ
− 1

Lτ ′

)
(V − W · t̂)τθτ

α +
2π

Lτ ′

(
〈〈V − W · t̂〉〉τ − 〈〈V − W · t̂〉〉τ ′)

θτ
α

+
2π

Lτ ′ · π2(τ − τ ′)
(Lτ )2

(H((θτ
α)2))θτ

α +
2π3τ ′

Lτ ′

(
1

(Lτ )2
− 1

(Lτ ′)2

)
(H((θτ

α)2))θτ
α

+
2π3τ ′

(Lτ ′)3
(
H
(
(θτ

α)2 − (θτ ′
α )2

))
θτ

α

+
2π

Lτ ′ ∂
−1
α

[(
Lt

2π
+

π

L
H(γ̃θα) − m · t̂

)τ

−
(

Lt

2π
+

π

L
H(γ̃θα) − m · t̂

)τ ′]
θτ

α

+
2π

Lτ ′ (V − W · t̂)τ ′
(θτ

α − θτ ′
α ).

We rewrite this by factoring (θτ
α)2 − (θτ ′

α )2, and then pulling θτ
α + θτ ′

α through the Hilbert transform:

B4 = 2π

(
1

Lτ
− 1

Lτ ′

)
(V − W · t̂)τθτ

α +
2π

Lτ ′

(
〈〈V − W · t̂〉〉τ − 〈〈V − W · t̂〉〉τ ′)

θτ
α

+
2π

Lτ ′ · π2(τ − τ ′)
(Lτ )2

(H((θτ
α)2))θτ

α +
2π3τ ′

Lτ ′

(
1

(Lτ )2
− 1

(Lτ ′)2

)
(H((θτ

α)2))θτ
α

+
2π3τ ′

(Lτ ′)3
θτ

α(θτ
α + θτ ′

α )H
(
θτ

α − θτ ′
α

)

+
2π

Lτ ′ ∂
−1
α

[(
Lt

2π
+

π

L
H(γ̃θα) − m · t̂

)τ

−
(

Lt

2π
+

π

L
H(γ̃θα) − m · t̂

)τ ′]
θτ

α

+
2π

Lτ ′ (V − W · t̂)τ ′
(θτ

α − θτ ′
α ) +

2π3τ ′

(Lτ ′)3
θτ

α[H, θτ
α + θτ ′

α ](θτ
α − θτ ′

α ).

We simply write B5 and B6 as follows:

B5 =
2π

Lτ
mτ · n̂τ − 2π

Lτ ′ m
τ ′ · n̂τ ′

,

B6 = −2π3Aμ

(Lτ )3
H(mτ · t̂τ ) +

2π3Aμ

(Lτ ′)3
H(mτ ′ · t̂τ ′

).

We now want to collect those terms which have a similar character together. In particular, we want
to write (θτ − θτ ′

)t as

(θτ − θτ ′
)t = − 4π3τ ′

(Lτ ′)3
Λ3(θτ − θτ ′

) + τ ′Υ8(θτ
αα − θτ ′

αα) + Υ9Λ(θτ − θτ ′
)

+Υ10(θτ
α − θτ ′

α ) + (τ − τ ′)Υ11 + Υ12. (72)

We now give the formulas for each of Υ8,Υ9,Υ10,Υ11, and Υ12. To begin, we see that there is one term
from B2 and one term from B3 which constitute Υ8:

Υ8 =
4π3Aμ

(Lτ ′)3
θτ

α − 4π3Aμ

(Lτ ′)3
θτ ′

α =
4π3Aμ

(Lτ ′)3
(θτ

α − θτ ′
α ).
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For Υ9, we collect two terms from B2 and one term from B4:

Υ9 = kτ ′ − 2πτ ′Aμ

Lτ ′ U s.t.,τ ′
+

2π3τ ′

(Lτ ′)3
θτ

α(θτ
α + θτ ′

α ).

For Υ10, we collect two terms from B3 and one term from B4:

Υ10 = −4π3Aμτ ′

(Lτ ′)3
θτ

αα − 2π2Aμ

(Lτ ′)2
γ̃τ ′

+
2π

Lτ ′ (V − W · t̂)τ ′
.

For Υ11, we collect one term each from B1, B2, B3, and B4:

Υ11 = − 4π3

(Lτ )3
Λ3(θτ ) − 2πAμ

Lτ
H(U s.t.,τθτ

α) − 4π3Aμ

(Lτ )3
θτ

αθτ
αα +

2π3

Lτ ′(Lτ )2
θτ

αH((θτ
α)2).

Since θτ and θτ ′
are both in the set Ok, and since s is sufficiently large, we see that there exists M > 0

such that for i ∈ {8, 9, 10, 11} and for j ∈ {0, 1, 2}, we have the estimate

|∂j
αΥi|∞ ≤ M.

Of course, this M is related to the constant d̄1 from (60).
Of course, Υ12 consists of all remaining terms; we will not list them explicitly now, but we do write

out the definition below in (79). We need to establish the following estimate for Υ12 :

‖Υ12‖1 ≤ c‖θτ − θτ ′‖1. (73)

In order to establish this bound, we need to establish corresponding bounds for related quantities, such
as Lτ − Lτ ′

, kτ − kτ ′
, and so on. We will establish (73) in Lemma 16 following the current proof; for the

moment, we will assume that it holds.
We next differentiate (72), finding the following:

(θτ − θτ ′
)α,t = − 4π3τ ′

(Lτ ′)3
Λ3(θτ

α − θτ ′
α ) + τ ′Υ8(θτ

ααα − θτ ′
ααα) + Υ9Λ(θτ

α − θτ ′
α )

+(Υ10+τ ′Υ8,α)(θτ
αα−θτ ′

αα)+Υ9,αΛ(θτ −θτ ′
)+Υ10,α(θτ

α−θτ ′
α )+(τ −τ ′)Υ11,α+Υ12,α.

(74)

We are ready to make our estimate. Define Ed = 1
2‖θτ − θτ ′‖2

1,

Ed =
1
2

∫

X

(θτ − θτ ′
)2 + (θτ

α − θτ ′
α )2 dα.

We differentiate this with respect to time:
dEd

dt
=
∫

X

(θτ − θτ ′
)(θτ − θτ ′

)t + (θτ
α − θτ ′

α )(θτ
α,t − θτ ′

α,t) dα.

We first use (74), and we write∫

X

(θτ
α − θτ ′

α )(θτ
α,t − θτ ′

α,t) dα = Z1 + Z2 + Z3 + Z4 + Z5 + Z6 + Z7 + Z8,

where each of the Zi terms corresponds to one of the eight terms on the right-hand side of (74).
We can immediately bound Z5, Z6, and Z8 (using (73) for Z8):

Z5 + Z6 + Z8 ≤ cEd.

We also can immediately bound Z7 :

Z7 ≤ c|τ − τ ′|E1/2
d .

To bound Z4, we simply integrate by parts once, and we then find

Z4 ≤ cEd.



Vol. 16 (2014) The Zero Surface Tension Limit of 2D Darcy Flow 137

Of course, Z1, Z2, and Z3 must be treated more carefully. We begin by rearranging Z1 using the
self-adjointedness of powers of Λ:

Z1 = − 4π3τ ′

(Lτ ′)3

∫

X

(Λ3/2(θτ
α − θτ ′

α ))2 dα.

By the Plancherel theorem, and using Lτ ′
< d̄2, we write this as

Z1 = − 4π3τ ′

(Lτ ′)3

∞∑
ξ=−∞

|ξ|3|v̂(ξ)|2 ≤ −4π3τ ′

d̄3
2

∞∑
ξ=−∞

|ξ|3|v̂(ξ)|2, (75)

where v = θτ
α − θτ ′

α .
For Z2, we integrate by parts once:

Z2 = −τ ′
∫

X

Υ8(θτ
αα − θτ ′

αα)2 dα − τ ′
∫

X

Υ8,α(θτ
α − θτ ′

α )(θτ
αα − θτ ′

αα) dα.

We integrate the second integral on the right hand side by parts once more:

Z2 = −τ ′
∫

X

Υ8(θτ
αα − θτ ′

αα)2 dα +
τ ′

2

∫

X

Υ8,αα(θτ
α − θτ ′

α )2 dα.

Note that the second integral on the right-hand side can be bounded by cEd, and that Υ8 is bounded by
a constant uniformly in time. Therefore, we may conclude

Z2 ≤ cEd + C2τ
′
∫

X

(θτ
αα − θτ ′

αα)2 dα.

By the Plancherel theorem, we can write this as

Z2 ≤ cEd + C2τ
′

∞∑
ξ=−∞

|ξ|2|v̂(ξ)|2, (76)

where again v = θτ
α − θτ ′

α .
We add (75) and (76), finding the following:

Z1 + Z2 ≤ cEd + τ ′
∞∑

ξ=−∞

(
−4π3

d̄3
2

|ξ|3 + C2|ξ|2
)

|v̂(ξ)|2.

There exists a constant, C̄, which is independent of τ and τ ′, such that for all ξ,(
−4π3

d̄3
2

|ξ|3 + C2|ξ|2
)

≤ C̄.

Note also that ‖v‖2
0 ≤ Ed. These considerations, and another use of the Plancherel theorem, imply

Z1 + Z2 ≤ (c + τ ′C̄)Ed;

we rename constants to simply write this as Z1 + Z2 ≤ cEd.
We rewrite Z3 by adding and subtracting Υτ ′

5 :

Z3 =
∫

X

Υτ ′
5 (θτ

α − θτ ′
α )Λ(θτ

α − θτ ′
α ) dα +

∫

X

(Υ9 − Υτ ′
5 )(θτ

α − θτ ′
α )Λ(θτ

α − θτ ′
α ) dα. (77)

Of course, Υτ ′
5 refers to the quantity defined by (59), with τ ′ as the surface tension parameter, but in the

case ε = 0; to be perfectly clear, we write this out:

Υτ ′
5 = kτ ′ − 2πτ ′Aμ

Lτ
U s.t.,τ ′

+
4π3τ ′

(Lτ ′)3
(θτ ′

α )2.
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To estimate the second integral on the right-hand side of (77), we will use the uniform bound on Λ(θτ
α−θτ ′

α ),
and we will also need the following estimate:

‖Υ9 − Υτ ′
5 ‖0 ≤ cE

1/2
d . (78)

To show this, we simply write out

Υ9 − Υτ ′
5 =

2π3τ ′

(Lτ ′)3
(
(θτ

α)2 + θτ
αθτ ′

α − 2(θτ ′
α )2

)
.

The right-hand side can clearly be bounded in H0 by the H1 norm of θτ − θτ ′
. This implies that the

second integral on the right-hand side of (77) can be bounded by cEd.

For the first integral on the right-hand side of (77), we again write Υτ ′
5 = −(

√
−Υτ ′

5 )2. As before, we
pass a factor of

√
−Υτ ′

5 through each of ∂α and H, in turn:∫

X

Υτ ′
5 (θτ

α − θτ ′
α )Λ(θτ

α − θτ ′
α ) dα = −

∫

X

(√
−Υτ ′

5 (θτ
α − θτ ′

α )
)(√

−Υτ ′
5 ∂αH(θτ

α − θτ ′
α′)

)
dα

= −
∫

X

(√
−Υτ ′

5 (θτ
α − θτ ′

α )
)

∂α

(√
−Υτ ′

5 H(θτ
α − θτ ′

α′)
)

dα

−1
2

∫

X

(θτ
α − θτ ′

α )(Υτ ′
5,α)H(θτ

α − θτ ′
α ) dα

= −
∫

X

(√
−Υτ ′

5 (θτ
α − θτ ′

α )
)

Λ
(√

−Υτ ′
5 (θτ

α − θτ ′
α′)

)
dα

+
∫

X

(√
−Υτ ′

5 (θτ
α − θτ ′

α )
)

∂α

[
H,

√
−Υτ ′

5

]
(θτ

α − θτ ′
α ) dα

−1
2

∫

X

(θτ
α − θτ ′

α )(Υτ ′
5,α)H(θτ

α − θτ ′
α ) dα.

Of the three integrals on the right-hand side, the first is non-positive, while the second and third can be
bounded immediately in terms of the energy. We conclude

Z3 ≤ cEd.

Adding our estimates for all of the Zi, we conclude that there exist positive constants c1 and c2 such
that

d

dt

1
2

∫

X

(θτ
α − θτ ′

α )2 dα ≤ c1Ed + c2|τ − τ ′|E1/2
d .

We could carry out the same estimates, using (72) instead of (74), and we would find that

d

dt

1
2

∫

X

(θτ − θτ ′
)2 dα ≤ c1Ed + c2|τ − τ ′|E1/2

d .

Together, these estimates imply
dEd

dt
≤ c1Ed + c2|τ − τ ′|E1/2

d .

Solving this differential inequality, we see that

Ed ≤ Ed(0)ec1t +
c2|τ − τ ′|(ec1t − 1)

c1
.

Together with the initial condition Ed(0) = 0, this immediately implies the conclusion of the theorem. �
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We are now able to prove the main result of the present work, which is that the limit as surface tension
vanishes for Darcy flow with surface tension is the Darcy flow without surface tension, when the stability
condition is satisfied by the initial data.

Theorem 15. Let θ0 ∈ Ok be given, such that 〈〈sin(θ0)〉〉 = 0. Let T > 0 be as in Theorem 13. For
all τ ∈ (0, τ∗), let θτ be as in Theorem 13. Let s′ be given such that 0 ≤ s′ < s. There exists θ ∈
C([0, T ]; Ōk) ∩ C1([0, T ];Hs−1) such that

lim
τ→0

sup
t∈[0,T ]

‖θτ − θ‖s′ = 0.

This θ is the solution of the initial value problem (21), with initial data θ0.

Proof. From Theorem 14, we see that θτ forms a Cauchy sequence in H1 as τ → 0+. Since the solutions
θτ are bounded in Hs independently of τ, the Sobolev interpolation inequality (22) implies that the
sequence θτ is in fact a Cauchy sequence in Hs′

. Therefore, there exists a limit, θ ∈ C([0, T ]; Ōk), such
that θτ → θ in Hs′

as τ → 0+.
Next, we see that θ solves the initial value problem with τ = 0. We call the right-hand side of (20) by

the name Bτ , and we call the right-hand side of (21) by the name B(τ=0). Since s is sufficiently large,
and since θτ → θ in C([0, T ];Hs′′

) for s′′ arbitrarily close to s, we see that Bτ converges uniformly to
B(τ=0). We integrate (20) in time, using the initial condition, finding

θτ (·, t) = θ0 +

t∫

0

Bτ (·, s) ds.

Because of the uniform convergence, we can pass to the limit as τ → 0+, finding

θ(·, t) = θ0 +

t∫

0

B(τ=0)(·, s) ds.

This implies that θ solves the initial value problem (21) with initial data θ0.
Finally, we address the highest regularity of θ. As in the proof of Theorem 11, we do not provide the

details, but the same argument works here. In particular, we are able to use parabolic smoothing; the
observations made in Remark 14 allow us to conclude that the solutions θτ are uniformly bounded in
C([0, T ];Hs) ∩ L2([0, T ];Hs+1/2). This is enough regularity with which to apply the argument of [42], as
discussed in Theorem 11 (As an alternative, the highest regularity also follows from the well-posedness
result for the problem without surface tension [3].). �

All that remains is to prove the bound (73).

Lemma 16. The estimate (73) holds.

Proof. We are attempting to show that ‖Υ12‖1 can be bounded by cE
1/2
d . To begin, we write out the

whole formula for Υ12:

Υ12 = −4π3τ ′
(

1
(Lτ )3

− 1
(Lτ ′)3

)
Λ3(θτ ) + H

(
(kτ − kτ ′

)θτ
α

)
− 2πτ ′Aμ

(
1

Lτ
− 1

Lτ ′

)
H(U s.t.,τθτ

α)

−2πτ ′Aμ

Lτ ′ H
(
(Qτ −Qτ ′

)θτ
α

)
− 4π3τ ′Aμ

Lτ ′

(
1

(Lτ )2
− 1

(Lτ ′)2

)
H (θτ

αH(θτ
αα))+[H, kτ ′

](θτ
α − θτ ′

α )

−2πτ ′Aμ

Lτ ′
[
H,U s.t.,τ

]
(θτ

α − θτ ′
α )

−4π3τ ′Aμ

(Lτ ′)3
[
H, θτ ′

α

]
H(θτ

αα − θτ ′
αα) − 4π3Aμτ ′

(
1

(Lτ )3
− 1

(Lτ ′)3

)
θτ

αθτ
αα

−2π2Aμ

(
1

(Lτ )2
− 1

(Lτ ′)2

)
P(γ̃τθτ

α) − 2π2Aμ

(Lτ ′)2
P

(
(γ̃τ − γ̃τ ′

)θτ
α

)
+

2π2Aμ

(Lτ ′)2
〈〈γ̃τ ′

(θτ
α − θτ ′

α )〉〉
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+2π

(
1

Lτ
− 1

Lτ ′

)
(V − W · t̂)τθτ

α +
2π

Lτ ′

(
〈〈V − W · t̂〉〉τ − 〈〈V − W · t̂〉〉τ ′)

θτ
α

+
2π3τ ′

Lτ ′

(
1

(Lτ )2
− 1

(Lτ ′)2

)
(H((θτ

α)2))θτ
α +

2π3τ ′

(Lτ ′)3
θτ

α

[
H, θτ

α + θτ ′
α

]
(θτ

α − θτ ′
α )

+
2π

Lτ ′ ∂
−1
α

[(
Lt

2π
+

π

L
H(γ̃θα) − m · t̂

)τ

−
(

Lt

2π
+

π

L
H(γ̃θα) − m · t̂

)τ ′]
θτ

α + B5 + B6. (79)

There are nineteen terms on the right-hand side of (79). Each of these nineteen terms includes the
difference between some τ -quantity and the corresponding τ ′-quantity. In order to prove the lemma, we
will need to establish estimates for these differences. To begin, we notice that many of the terms on the
right-hand side of (79) include a difference Lτ − Lτ ′

. The estimate

|Lτ − Lτ ′ | ≤ cE
1/2
d

follows from (38).
Next, we establish the following:

‖mτ − mτ ′‖1 ≤ cE
1/2
d . (80)

We use (12) to write out mτ − mτ ′
, adding and subtracting several times:

Φ(mτ − mτ ′
)∗ = (zτ

α − zτ ′
α )K[zτ

d ]
((

γτ

zτ
α

)
α

)
+ zτ ′

α

(
K[zτ

d ] − K[zτ ′
d ]
)((γτ

zτ
α

)
α

)

+zτ ′
α K[zτ ′

d ]

((
γτ

zτ
α

)
α

−
(

γτ ′

zτ ′
α

)

α

)

+
(zτ

α − zτ ′
α )

2i

[
H,

1
(zτ

α)2

](
zτ
α

(
γτ

zτ
α

)
α

)
zτ ′
α

2i

[
H,

1
(zτ

α)2
− 1

(zτ ′
α )2

](
zτ
α

(
γτ

zτ
α

)
α

)

+
zτ ′
α

2i

[
H,

1
(zτ ′

α )2

](
zτ
α

(
γτ

zτ
α

)
α

− zτ ′
α

(
γτ ′

zτ ′
α

)

α

)

:= T1 + T2 + T3 + T4 + T5 + T6.

For each value of j from 1 through 6, we need to show ‖Tj‖1 ≤ cE
1/2
d . For T1 and T4, this estimate is an

immediate consequence of the formula zα = Leiθ/2π and the Lipschitz estimate for the exponential. The
estimate for T5 is also immediate, for the same reason, and we just note that for this term, we do not
need to use the smoothing properties of the commutator at all. The estimate for T2 follows by applying
Lemma 2. The estimate for T3 follows from (23). The estimate for T6 follows from (25). Thus, we have
proven (80).

Using the same tools as for mτ − mτ ′
, we see from (29) that we have the following estimate:

‖(W · t̂)τ − (W · t̂)τ ′‖1 ≤ cE
1/2
d .

Then, using the definition of γ̃ in (27), we have the corresponding bound for the difference γ̃τ − γ̃τ ′
:

‖γ̃τ − γ̃τ ′‖1 ≤ cE
1/2
d .

For the same reasons, using the definition of Q in (36) and (37), we have

‖Qτ − Qτ ′‖1 ≤ cE
1/2
d .
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To prove an estimate for
∣∣∣Lτ

t − Lτ ′
t

∣∣∣ , we begin by finding a helpful expression for Lτ
t and Lτ ′

t . We

have established that Lτ
t = −2π〈〈θτ

αUτ 〉〉, and we also have written Uτ = τU s.t.,τ + Ũτ . We also have the
equation (37) as an expression for U s.t,τ . Combining these ingredients yields the following:

Lτ
t = − 4π3τ

(Lτ )2
〈〈θτ

αH(θτ
αα)〉〉 − 2πτ〈〈θτ

αQτ 〉〉 − 2π〈〈θτ
αŨτ 〉〉,

and of course we have the exactly corresponding formula with τ ′. The most interesting piece of the
estimate for |Lτ

t − Lτ ′
t | is then the following:∣∣∣〈〈θτ

αH(θτ
αα)〉〉 − 〈〈θτ ′

α H(θτ ′
αα)〉〉

∣∣∣ ≤
∣∣∣〈〈(θτ

α − θτ ′
α )H(θτ

αα)〉〉
∣∣∣+

∣∣∣〈〈θτ ′
α H(θτ

αα − θτ ′
αα)〉〉

∣∣∣ .
Since we are able to integrate by parts here (recall that the notation 〈〈·〉〉 indicates an integral), we are
able to bound this by cE

1/2
d .

We omit the remaining details, but the rest of the proof follows similar, and perhaps simpler, lines. �

7. Conclusion

We have demonstrated estimates for the two-dimensional interfacial Darcy flow problem, in two cases.
First, we have estimated the norm of the solution in the case that surface tension is present. Second,
in the case that the stability condition (k is negative and bounded away from zero) is satisfied, we also
demonstrated energy estimates. We actually demonstrated the estimates in both cases not for the solutions
of the physical problem, but instead for an approximate solution (i.e., the solution of the initial value
problem for an equation with mollifiers), since this is what was needed for the proofs of our theorems.

Using these energy estimates, we first proved that for fixed, positive surface tension (τ > 0), the
initial value problem is well-posed in sufficiently regular Sobolev spaces. Then, we studied the behavior
of these solutions as τ vanishes in the case that the stability condition is satisfied. There is work in the
literature (see the introduction for the references) that strongly indicates that when the stability condition
is violated, the solutions with surface tension do not converge to the solution without surface tension as
surface tension vanishes. We reach the opposite conclusion by making an estimate of the difference of the
solutions corresponding to two different values of the surface tension parameter, and showing that the
solutions form a Cauchy sequence as τ vanishes. This gives a new proof of existence of solutions for the
problem without surface tension.

The first energy estimate relied strongly on the presence of the surface tension, and if this were the
only energy estimate, then the limit would not be able to be taken as surface tension vanished. The second
energy estimate, which was still for solutions of the problem in the case that surface tension is present,
was uniform in the surface tension parameter. The energy estimates also allow the parabolic nature of
the Darcy problem to be shown; the problem with surface tension gains 3/2 of a spatial derivative at any
positive time. Additionally, in the case that the stability condition is satisfied, there is a gain of 1/2 of a
spatial derivative with a bound independent of the surface tension parameter.

There is a third kind of estimate which is available for 2D interfacial Darcy flow, and that is the
estimate for the problem without surface tension. We mention this in order to make the remark that
it is not necessary to consider the case with surface tension in order to show existence of solutions for
the problem without surface tension. The paper [3] by the author demonstrates energy estimates for the
problem without surface tension, and the well-posedness argument is sketched. We note that the sketched
argument is essentially the same as the present argument in the τ > 0 case, and this is also essentially
the same as the argument used by the author previously in [2] for the vortex sheet with surface tension.
If one were to combine the full well-posedness argument of the present work with the estimates of [3]
(which is to say, if one were to carry out the details of the well-posedness proof as sketched in [3]), one
would indeed arrive at a complete well-posedness proof for the τ = 0 case.
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