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1. Introduction

The purpose of the present paper is to study the compressible Euler equation

ρt + ∇ · (ρv) = 0

ρ(vt + v · ∇v) + ∇p = 0 in R3 × (0, T ). (1.1)

Here ρ = ρ(x, t), v = v(x, t), and p = p(x, t) stand for the mass density, velocity, and pressure, respectively.
Then we take the isentropic case

p = ργ , γ > 1. (1.2)

The second equation is reduced to

vt + v · ∇v + ∇γργ−1

γ − 1
= 0, (1.3)

assuming ρ > 0. Then by

v · ∇v = ∇1
2
|v|2 − v × b

b = ∇ × v, (1.4)

it holds that

vt + ∇
(

1
2
|v|2 +

γργ−1

γ − 1

)
= v × b. (1.5)

The flow is called irrotational if b = ∇×v = 0, or equivalently, the velocity v takes the scalar potential
denoted by ψ:

v = −∇ψ. (1.6)

By the vortex theorem of Helmholtz if the initial velocity is irrotational then this velocity is always
irrotational (see [1,3]).

One of the result obtained in this paper is the following theorem concerning non-existence of classical
irrotational flow (ρ, v) global-in-time, where (ρ0, v0) denotes the initial value

(ρ, v)|t=0 = (ρ0, v0). (1.7)
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Theorem 1.1. There is no global-in-time C1-solution (ρ, v) to (1.1)–(1.2) satisfying

e =
ρ

2
|v|2 +

ργ

γ − 1
∈ L1(R3 × (0, �))

lim sup
R↑+∞

sup
t∈[0,�)

‖(ρ, v)(·, t)‖L∞(R<|x|<2R) < +∞ (1.8)

for any � > 0, and

0 < ρ0 = ρ0(x) ∈ L1(R3, (1 + |x|2)dx)
E =

∫
R3

e(x, 0)dx < +∞ (1.9)

v0 = −∇ψ0, ψ0 ∈ L∞(R3).

This result holds also to

ρt + ∇ · (ρv) = 0 in Ω × (0, T )
ρ(vt + v · ∇v) + ∇p = 0 in Ω × (0, T )

ρv · ν = 0 on ∂Ω × (0, T )
(1.10)

with (1.2) and (1.7), where Ω = R3 \ O is the outer domain with bounded star-shaped obstacle O
(see Theorem 4.1).

Generally, if ρ0 is uniformly close to a positive constant, the decay property of the linear part is
dominant, which leads to the existence of the solution global-in-time [5,6,10]. Sideris [9], on the other
hand, showed non-existence of C1-solution global-in-time, assuming that ρ0 > 0 is constant near x = ∞
and v0 is out-going. Then Xin [12] studied arbitrary space dimension n and showed that if ρ0 has com-
pact support there is no non-trivial solution to (1.1)–(1.2) satisyfing (ρ, v) ∈ C1([0,∞),Hm(Rn)),m >
[n
2 ] + max(1, 4

γ−1 ). In these cases, C1-gap of ρ on its support boundary may be suspected.
Theorem 1.1 is an intermediate result of these cases, where ρ is positive everywhere but decays at

x = ∞. From the proof, on the other hand, C1-regularity of (ρ, v) is replaced by a weaker condition, (2.2)
below. Regarding these profiles, we may assume either discontinuity (i.e., shock) or blowup of L∞-norm
of ρ in Theorem 1.1. (In one-space dimension, we have shock, see [11].)

Theorem 1.1 holds even for the Beltrami flow (see Theorem 4.2). Theorem 1.1, however, does not
hold to (1.10) if Ω is a bounded domain. In fact, on bounded domain we have the stationary solution
ρ = constant > 0, v = 0. In accordance with this property we can prove directly that there is no stationary
solution satisfying the assumption of Theorem 1.1. In fact, such a stationary solution must satisfy

−Δψ = ∇ · v = 0, ψ ∈ L∞(R3),

and, hence ψ = constant by Liouville’s theorem. Then we obtain v = −∇ψ = 0 and hence ρ = constant >
0 by ∇p = 0. Therefore, it follows that

E ≡
∫
R3

e(x)dx = +∞,

a contradiction. Actually, non-existence of a non-trivial stationary solution arises in more general setting
(see Theorem 4.3 below).

The argument employed for the proof of Theorem 1.1 is valid to the above described case of [9], that
is, ρ0 is a constant and v0 = 0 near x = ∞. In this case conditions (1.8) concerning the behavior at
x = ∞ of the solution (ρ, v) are not necessary and the negativity of the deffect energy (1.12) takes place
of the out-going condition imposed by [9]. More precisely we have the following theorem.

Theorem 1.2. There is no global-in-time C1-solution (ρ, v) to (1.1)–(1.2) satisfying

v0(x) = 0, ρ0(x) = ρ for |x| � 1
∇ × v0 = 0, ρ0 = ρ0(x) > 0 in R3,

(1.11)
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and

E =
∫
R3

ρ0

2
|v0|2 +

ργ
0

γ − 1
− ργ

γ − 1
dx < 0, (1.12)

where ρ > 0 is a constant.

For the proof of above theorems we shall provide a new formulation to the compressible irrotational
flow. It is a Hamilton system with the energy density acting as a Hamiltonian. Then the fundamental
properties of the solution, that is, the conservations of total mass and energy together with the decay of
total pressure imply the blowup of the solution in finite time.

This paper is organized as follows. In the next section we show that the above fundamental proper-
ties are valid under the assumption of (1.8). Then Theorem 1.1 is proven in Sect. 3. The final section
is devoted to auxiliary results described above, Theorems 1.2–4.3. Two fundamental equalities, one of
which is (1.4), are shown in Appendix.

2. Preliminaries

The classical solution (ρ, v) to (1.1) satisfies a weak form for

ρt + ∇ · (ρv) = 0
(ρv)t + ∇ · ρv ⊗ v + ∇p = 0 in Rn × (0, T ) (2.1)

for n = 3. In fact we have

ρv, ρ, p, e ∈ W 1,1
loc (Rn × [0,+∞)) (2.2)

with

t ∈ [0,+∞) 	→ (ρ(·, t), (ρv)) ∈ L1
loc(R

n) × L1
loc(R

n)n

locally weakly absolutely continuous and

ρv ⊗ v, p ∈ L∞
loc([0,+∞), L1

loc(R
n))

ρ|t=0 = ρ0, ρv|t=0 = ρ0v0,

and it holds that
d

dt

∫
Rn

ρϕ dx =
∫
Rn

ρv · ∇ϕ dx

d

dt

∫
Rn

ρv · ψ dx =
∫
Rn

ρv ⊗ v · ∇ψ + p∇ · ψ dx, a.e. t ∈ [0,+∞)

for any φ ∈ C∞
0 (Rn) and ψ ∈ C∞

0 (Rn)n.
In this section we use the above weak form of the solution (ρ, v) to (1.1)–(1.2) satisfying T = +∞ and

ρ = ρ(x, t) ≥ 0. From our results, condition (1.8) implies the total mass and energy conservations and
decay of the total pressure as t ↑ +∞. Here we do not need to assume ∇ × v = 0 nor ρ > 0. Even the
space dimension n can be arbitrary, although later we shall use the results mostly for n = 3. The second
assumption of (1.8), furthermore, can be replaced by the weaker condition

lim sup
R↑+∞

sup
t∈[0,�)

∥∥∥∥(
x

|x| · v)−(·, t)
∥∥∥∥

L∞(R<|x|<2R)

< +∞, (2.3)

where [a]− = max{0,−a}.
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First we show the total energy conservation.

Lemma 2.1. Assuming the first relation of (1.8) and (2.3), we have∫
Rn

e(x, t)dx = E, t ∈ [0, �). (2.4)

Proof. A direct calculation guarantees(
ρ

2
|v|2 +

p

γ − 1

)
t

+ ∇ ·
(
ρ

2
|v|2 +

γp

γ − 1

)
v = 0, in Rn × (0,+∞)

by (2.1) (see [4] for example). We take the cut-off function ϕR = ϕR(x), ϕR(x) = ϕ(x/R). Here, ϕ = ϕ(x)
is smooth, radially symmetric, and monotone decreasing in r = |x|, satisfying

0 ≤ ϕ ≤ 1 in Rn, |∇ϕ| ≤ C0ϕ
1/2 in Rn,

ϕ ≡ 1 in B(0, 1), supp ϕ ⊂ B(0, 2),

where C0 > 0 is a constant. Such ϕ = ϕ(x) is obtained as ϕ = ϕ̃2, where 0 ≤ ϕ̃ = ϕ̃(x) ≤ 1 is a radially
symmetric C∞-function decreasing in r = |x| with the support radius 2 and equal to 1 in B(0, 1). Then
it holds that

|∇ϕR| ≤ C0R
−1ϕ

1/2
R in Rn

supp |∇ϕR| ⊂ B(0, 2R)\B(0, R)

and

dER

dt
=

∫
Rn

(
ρ

2
|v|2 +

γp

γ − 1

)
v · ∇ϕR dx, (2.5)

where

ER(t) =
∫
Rn

e(x, t)ϕR(x)dx.

We obtain
∣∣∣∣dER

dt

∣∣∣∣ =

∣∣∣∣∣∣
∫
Rn

(
ρ

2
|v|2 +

γp

γ − 1

)
v · ∇ϕRdx

∣∣∣∣∣∣
≤ C0R

−1γ

∫
R<|x|<2R

e

[
v · x

|x|
]

−
dx

≤ C0R
−1γ

∥∥∥∥(
x

|x| · v)−

∥∥∥∥
L∞(R<|x|<2R)

∫
R<|x|<2R

e dx

and hence

sup
t∈[0,�)

|ER(t) − ER(0)| ≤ C0R
−1γ · sup

t∈[0,�)

∥∥∥∥(
x

|x| · v)−(·, t)
∥∥∥∥

L∞(R<|x|<2R)

·
�∫

0

‖e(·, t)‖L1(R<|x|<2R)dt.

The right-hand side tends to 0 as R ↑ +∞ by the assumption, and hence (2.4) follows from the monotone
convergence theorem. �
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We turn to the total mass conservation described below.

Lemma 2.2. Under the assumption of the first relation of (1.8) and (2.3), it holds that

‖ρ(·, t)‖1 = M < +∞, t ∈ [0, �), (2.6)

where

M =
∫
Rn

ρ0(x)dx (2.7)

Proof. Since the first relation of (1.8) implies
√
ρv ∈ L2(Rn × (0, �)), we have

lim
R↑+∞

R−1

�∫
0

‖√
ρv(·, t)‖L2(R<|x|<2R)dt = 0. (2.8)

For MR = MR(t) defined by

MR(t) =
∫

Rn

ρ(x, t)ϕR(x)dx

it holds that
∣∣∣∣dMR

dt

∣∣∣∣ =

∣∣∣∣∣∣
∫
Rn

ρv · ∇ϕRdx

∣∣∣∣∣∣ ≤ C0R
−1

∫
Rn

(ρϕR)1/2√ρ|v| dx.

Then we have ∣∣∣∣dMR

dt

∣∣∣∣ ≤ C0R
−1M

1/2
R ‖√

ρv‖L2(R<|x|<2R)

or ∣∣∣∣∣
dM

1/2
R

dt

∣∣∣∣∣ ≤ C0R
−1

2
‖√

ρv‖L2(R<|x|<2R) ,

and hence

sup
t∈[0,�)

|MR(t)1/2 −MR(0)1/2| ≤ C0R
−1

2

�∫
0

‖(
√
ρv(·, t)‖L2(R<|x|<2R)dt.

Sending R ↑ +∞, we obtain (2.6) by (2.8) and the monotone convergence theorem. �

Finally, we show the decay of total pressure by the method of [12,7], using

(|x− tv|2ρ)t + ∇ · |x− tv|2ρv = ∇ ·
(

2txp− 2γt2

γ − 1
vp

)
−

(
2t2p
γ − 1

)
t

− 2
(
n− 2

γ − 1

)
tp (2.9)

derived from (1.1)–(1.2). The proof of (2.9) is given in appendix for completeness.

Lemma 2.3. Let the first relation of (1.8) and (2.3) hold for any �, and let

0 ≤ ρ0 = ρ0(x) ∈ L1(Rn, (1 + |x|2)dx). (2.10)

Then it holds that ∫
Rn

p(x, t) dx = O(t− min{2,2−α}), t ↑ +∞, (2.11)

where α = 2 − n(γ − 1).
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Proof. First, we have

d

dt

∫
Rn

(
|x− tv|2ρ+

2t2p
γ − 1

)
ϕR dx+

n(γ − 1) − 2
t

∫
Rn

2t2p
γ − 1

ϕR dx

=
∫

R<|x|<2R

(
−2tx+

2γt2

γ − 1
v

)
p · ∇ϕR + |x− tv|2ρv · ∇ϕR dx (2.12)

by (2.9). Let

AR(t) =
∫

Rn

(
|x− tv|2ρ+

2t2p
γ − 1

)
ϕR dx.

In the case of γ ≥ 1 + 2/n, it holds that

dAR

dt
≤ C0

{
2t+

2γt2

γ − 1

∥∥∥∥(
x

|x| · v)−

∥∥∥∥
L∞(R<|x|<2R)

} ∫
R<|x|<2R

p dx

+2
∫

R<|x|<2R

(|x|2 + t2|v|2)ρ[v · ∇ϕR]+dx, (2.13)

where [·]+ = max{0, ·}. Here the first term on the right-hand side is estimated above by

C0

{
2�+

2γ�2

γ − 1

∥∥∥∥(
x

|x| · v)−

∥∥∥∥
L∞(R<|x|<2R)

}
· (γ − 1)

∫
R<|x|<2R

e dx

for t ∈ [0, �). Then we use∫
R<|x|<2R

|x|2ρ[v · ∇ϕR]+dx

≤ 2C0

∥∥∥∥(
x

|x| · v)−

∥∥∥∥
L∞(R<|x|<2R)

∫
R<|x|<2R

|x|ρϕ1/2
R dx

≤ 2C0

∥∥∥∥(
x

|x| · v)−

∥∥∥∥
L∞(R<|x|<2R)

·M1/2 ·

⎧⎪⎨
⎪⎩

∫
R<|x|<2R

|x|2ρϕRdx

⎫⎪⎬
⎪⎭

1/2

,

and ∫
R<|x|<2R

|x|2ρϕRdx ≤ 2
∫

Rn

|x− tv|2ρϕRdx+ 2t2
∫

R<|x|<2R

|v|2ρ dx.

It holds that ∫
R<|x|<2R

|x|2ρ[v · ∇ϕR]+dx ≤ 2
√

2C0

∥∥∥∥(
x

|x| · v)−

∥∥∥∥
L∞(R<|x|<2R)

M1/2

·

⎧⎪⎨
⎪⎩

∫
Rn

|x− tv|2ρϕR dx+ �2
∫

R<|x|<2R

|v|2ρ dx

⎫⎪⎬
⎪⎭

1/2



Vol. 15 (2013) Irrotational Blowup of the Solution to Compressible Euler Equation 623

with ⎧⎪⎨
⎪⎩

∫
Rn

|x− tv|2ρϕR dx+ �2
∫

R<|x|<2R

|v|2ρ dx

⎫⎪⎬
⎪⎭

1/2

≤
∫
Rn

|x− tv|2ρϕR dx+ 2�2
∫

R<|x|<2R

e dx+
1
4
.

It holds also that ∫
R<|x|<2R

|v|2ρ[v · ∇ϕR]+dx

≤ C0R
−1

∥∥∥∥(
x

|x| · v)−

∥∥∥∥
L∞(R<|x|<2R)

∫
R<|x|<2R

|v|2ρ dx

≤ 2C0R
−1

∥∥∥∥(
x

|x| · v)−

∥∥∥∥
L∞(R<|x|<2R)

∫
R<|x|<2R

e dx.

Summing up the above estimates, we obtain C = C(�) > 0 independent of R � 1 such that

dAR

dt
≤ C‖e‖L1(R<|x|<2R) +AR +

1
4
, 0 ≤ t < �

by (2.3). Then it follows that

e−� sup
t∈[0,�)

AR(t) ≤ AR(0) + C

�∫
0

‖e(·, t)‖L1(R<|x|<2R)dt+
�

4
.

Sending R ↑ +∞, we obtain

sup
t∈[0,�)

∫
Rn

|x− tv|2ρ+
2t2ρ
γ − 1

dx < +∞ (2.14)

by the monotone convergence theorem and the assumption (2.10), where � > 0 is arbitrary. Using (2.3),
Lemma 2.1, and (2.14), we have

lim
R↑+∞

�∫
0

dt

∫
R<|x|<2R

(|x|2 + t2|v|2)ρ[v · ∇ϕR]+dx = 0

by the dominated convergence theorem.
Now it holds that

dAR

dt
≤ C‖e‖L1(R<|x|<2R) +BR(t)

by (2.13), with BR = BR(t) satisfying

lim
R↑+∞

�∫
0

BR(t)dt = 0.

Thus we obtain

AR(t) ≤ AR(0) +

�∫
0

C‖e(·, t)‖L1(R<|x|<2R) +BR(t) dt, 0 ≤ t < �
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which implies

A(t) ≡
∫
Rn

|x− tv|2 +
2t2p
γ − 1

dx

≤ A(0) =
∫

Rn

|x|2ρ0dx < +∞, 0 ≤ t < �.

Hence it follows that ∫
Rn

p(x, t)dx ≤ γ − 1
2

t−2 ·
∫
Rn

|x|2ρ0 dx, t > 0.

In the other case of 1 < γ < 1 + 2
n , we use α = 2 − n(γ − 1) ∈ (0, 2). Then (2.12) reads

d

dt
t−α

∫
Rn

(
|x− tv|2ρ+

2t2p
γ − 1

)
ϕR dx

= t−α

∫
R<|x|<2R

(
−2tx+

2γt2

γ − 1
v

)
p · ∇ϕR + |x− tv|2ρv · ∇ϕR dx.

Translating t to t+ 1, now we obtain

d

dt
(t+ 1)−α

∫
Rn

(
|x− (t+ 1)v|2ρ+

2(t+ 1)2p
γ − 1

)
ϕR dx

= (t+ 1)−α

∫
R<|x|<2R

(
−2(t+ 1)x+

2γ(t+ 1)2

γ − 1
v

)
p · ∇ϕR

+|x− (t+ 1)v|2ρv · ∇ϕR dx

which implies

B(t+ 1) ≡ (t+ 1)−α

∫
Rn

(
|x− (t+ 1)v|2ρ+

2(t+ 1)2p
γ − 1

)
dx

≤ B(0) =
∫
Rn

|x− v0|2ρ0 +
2ργ

0

γ − 1
dx < +∞, t > 0

similarly. Then it follows that ∫
Rn

p(x, t)dx = O(tα−2)

and the proof is complete. �

The condition (2.3) may be weakend as

lim sup
R↑+∞

sup
t∈[0,T )

∥∥∥∥(
x

|x| · v)−(·, t)
∥∥∥∥

L∞(R<|x|<R+1)

< +∞

just for (2.4) or (2.6) to guarantee. In fact, we have only to use the cut-off function ϕR = ϕR(x) for
ϕR = ϕR(x), smooth, radially symmetric, and monotone decreasing in r = |x|, satisfying

0 ≤ ϕR ≤ 1 in Rn, |∇ϕR| ≤ C1 in Rn,

ϕR ≡ 1 in B(0, R), supp ϕR ⊂ B(0, R+ 1),
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where C1 > 0 is a constant. Also the condition e ∈ L1(Rn × (0, �)) may be replaced by

lim
R↑+∞

�∫
0

‖e(·, t)‖L1(R<|x|<2R)dt = 0

for Lemma 2.3 to hold.

3. Proof of Theorem 1.1

We come back to the irrotational, global-in-time C1-solution to (1.1)–(1.2). First, the positivity of ρ =
ρ(x, t) follows from the first equation of (1.1) (see [2], for example).

Lemma 3.1. If ρ0 = ρ0(x) > 0 in R3 then it holds that ρ = ρ(x, t) > 0 in R3 × (0, T ).

The second equation of (1.1) is now reduced to (1.5), and hence we obtain

ρt + ∇ · (ρv) = 0

vt + ∇
(

1
2
|v|2 +

γργ−1

γ − 1

)
= 0 in R3 × (0, T ) (3.1)

by b = ∇ × v = 0. Theorem 1.1 is thus obtained by the following lemma.

Lemma 3.2. There is no global-in-time C1-solution to (3.1) with ρ ≥ 0, satisfying (1.8), (2.4), (2.6), and
(2.11).

First,

ψ =

t∫
0

1
2
|v|2 +

γργ−1

γ − 1
dt′ + ψ0 ∈ W 1,1

loc (R3 × [0,+∞))) (3.2)

satisfies

∇ψt = −vt

and hence

v = −∇ψ (3.3)

holds by the last equality of (1.9). Adding a constant to ψ0, recalling (1.9), we may assume

ψt =
1
2
|v|2 +

γργ−1

γ − 1
ψ|t=0 = ψ0 ≥ 0

(3.4)

and then ψ = ψ(x, t) ≥ 0 follows everywhere. We have, finally,

lim sup
R↑+∞

sup
t∈[0,�)

‖ψ(·, t)‖L∞(R<|x|<2R) < +∞ (3.5)

for any � > 0 by the second requirement of (1.8) and the definition (3.2) of ψ. Now we take the following
lemma.

Lemma 3.3. Under the assumption of Theorem 3.2 it holds that

‖(ρψ)(·, t)‖1 ≤ ‖ρ0‖1‖ψ0‖∞ +

t∫
0

[
−E +

γ + 1
γ − 1

‖p(·, t′)‖1

]
dt′ (3.6)

as t ↑ +∞.
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Proof. From the first equation of (3.1), (3.3), and (3.4), it follows that

d

dt

∫
R3

(ρψ)ϕR dx =
∫
Rn

(ρtψ + ρψt)ϕR dx

=
∫
R3

ρv · ∇(ψϕR) + ρ

[
1
2
|v|2 +

γ

γ − 1
ργ−1

]
ϕR dx

=
∫
Rn

[
−ρ

2
|v|2 +

γ

γ − 1
ργ

]
ϕR + ρv · ψ∇ϕR dx. (3.7)

Then we argue similarly to the proof of Lemma 2.3, putting

DR(t) =
∫
R3

(ρψϕR)(x, t)dx.

Thus, first, we have

dDR

dt
=

∫
R3

[
−ρ

2
|v|2 +

γ

γ − 1
ργ

]
ϕR + ρv · ψ∇ϕRdx

with ∫
R3

[
−ρ

2
|v|2 +

γ

γ − 1
ργ

]
ϕRdx =

∫
Rn

[
−e+

γ + 1
γ − 1

p

]
ϕRdx

∫
R3

ρv · ψ∇ϕRdx ≤
∥∥∥∥∥
(
x

|x| · v
)

−

∥∥∥∥∥
L∞(R<|x|<2R)

· ‖ψ‖L∞(R<|x|<2R) · 1
R

∫
R<|x|<2R

ρ dx.

Then, operating
∫ t

0
dt′· and sending R ↑ +∞ in (3.7), we end up with

∫
Rn

ρψ dx =
∫
Rn

ρ0ψ0 dx+

t∫
0

dt′
∫
Rn

−ρ

2
|v|2 +

γ

γ − 1
ργ dx

=
∫
Rn

ρ0ψ0 dx+

t∫
0

dt′
∫
Rn

−e+
γ + 1
γ − 1

p dx.

Then (3.6) follows from ρψ ≥ 0. �

Now we are able to give the following proof.

Proof of Theorem 3.2. Since E > 0 the right-hand side of (3.6) is negative for t � 1 by (2.11), a contra-
diction. �

4. Proof of Theorem 1.2 and Other Results

In this section we show the auxiliary results described in Sect. 1 and prove also Theorem 1.2.
First, the proof of Lemmas 2.1 and 2.2 is valid even to (1.10), Ω = R3\ O with bounded domain O.

The argument in the proof of Lemma 2.3 works also if O is star-shaped. To confirm this fact we just note
that (2.9) implies formally
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d

dt

∫
Ω

|x− tv|2ρ+
2t2p
γ − 1

dx+
∫
Ω

n(γ − 1) − 2
t

· 2t2p
γ − 1

dx

= −
∫

∂O
2t(x · ν)p dS ≤ 0

which is justified by the cut-off argument in the previous section. Thus we obtain the following theorem.

Theorem 4.1. Let Ω = R3\O with the star-shaped bounded domain O. Then there is no global-in-time
C1-solution (ρ, v) to (1.10) with (1.2) satisfying

e =
ρ

2
|v|2 +

ργ

γ − 1
∈ L1(Ω × (0, �))

lim sup
R↑+∞

sup
t∈[0,�)

‖(ρ, v)(·, t)‖L∞(R<|x|<2R) < +∞

for any � > 0 and

0 < ρ0 = ρ0(x) ∈ L1(Ω, (1 + |x|2)dx)
E =

∫
Ω

e(x, 0)dx < +∞

v0 = −∇ψ0, ψ0 ∈ L∞(Ω).

The irrotational condition v = −∇ψ can be replaced by the assumption

v × b = 0 (4.1)

for b = ∇ × v in the Proof of Theorem 1.1. If (4.1) is the case, this fluid is called the Beltrami flow. Any
flow is the Beltrami if the space dimension n is equal to 1 or 2.

If (4.1) is the case and

v0 = −∇ψ0 + ∇ × ξ0 (4.2)

denotes the Helmholtz decomposition, system (3.1) implies, instead of (3.3),

v = −∇ψ + ∇ × ξ0.

Then (3.7) is replaced by

d

dt

∫
R3

(ρψ)ϕR dx =
∫
R3

(ρtψ + ρψt)ϕR dx

=
∫
R3

[
−ρ

2
|v|2 +

γ

γ − 1
ργ + ρv · ∇ × ξ0

]
ϕR + ρv · ψ∇ϕR dx.

Here, it holds that

−ρ

2
|v|2 +

γ

γ − 1
ργ + ρv · ∇ × ξ0

≤
(

−1
2

+ ε

)
ρ|v|2 +

ρ

4ε
|∇ × ξ0|2 +

γργ

γ − 1

= −(1 − 2ε)e+
ρ

4ε
|∇ × ξ0|2 +

1 − 2ε+ γ

γ − 1
ργ ,

and, hence

‖(ρψ)(·, t)‖1 ≤ ‖ρ0‖1‖ψ0‖∞ +

t∫
0

[
−(1 − 2ε)E +

M

4ε
‖∇ × ξ0‖2

∞ +
γ + 1
γ − 1

‖p(·, t′)‖1

]
dt′,
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where ε > 0 is arbitrary. Adjusting ε > 0 so that

−(1 − 2ε)E +
M

4ε
‖∇ × ξ0‖2

∞ < 0,

we obtain the following theorem.

Theorem 4.2. There is no global-in-time C1-Beltrami flow (ρ, v) to (1.1)–(1.2) satisfying (1.8), (4.2) and

0 < ρ0 ∈ L1(R3, (1 + |x|2)dx)
ψ0 ∈ L∞(R3)

E/M > 2‖∇ × ξ0‖2
∞,

where

E =
∫
R3

ρ0

2
|v0|2 +

ργ
0

γ − 1
dx

M =
∫
R3

ρ0 dx.

The argument in Sect. 2, on the other hand, is applicable to the classical stationary flow. Thus if (ρ, v)
is such a flow satisfying

0 ≤ ρ ∈ L1(Rn)

E =
∫

Rn

ρ

2
|v|2 +

ργ

γ − 1
dx < +∞ (4.3)

lim sup
R↑+∞

∥∥∥∥∥
(
x

|x| · v
)

−

∥∥∥∥∥
L∞(R<|x|<2R)

< +∞,

then it holds that ‖p‖1 = 0 by Lemma 2.3. Hence we obtain the following theorem valid to any n, where
the flow may not be irrotational.

Theorem 4.3. There is no non-trivial stationary C1-solution to (1.1)–(1.2) satisfying (4.3).

We conclude this section with the following proof.

Proof of Theorem 1.2. First, we have ρ > 0 in R3 × (0, T ) by ρ0(x) > 0 in R3. Hence (2.1) is written as

ρt + ∇ · (ρv) = 0
(ρv)t + ∇ · ρ−1ρv ⊗ ρv + ∇(p− p) = 0 in R3 × (0, T ),

where p = ργ . It forms a system of conservation law concerning u = (ρ̂, (ρ̂+ ρ)v) denoted by

ut + ∇ · f(u) = 0, f(0) = 0

where ρ̂ = ρ− ρ.
Since Proposition of [8] is applicable to this system, the propagtion speed of the support of (ρ̂, (ρ̂+ρ0)v)

is finite and hence v(·, t), ρ(·, t) − ρ keeps 0 near x = ∞. More precisely, if

v0(x) = 0, ρ0(x) = ρ, |x| > R

is the case then it holds that

v(x, t) = 0, ρ(x, t) = ρ, |x| > R+ σt, (4.4)

where σ = (γργ−1)1/2 (see [9]).
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The well-definedness and the time invariance of

E =
∫
R3

ρ

2
|v|2 +

ργ

γ − 1
− ργ

γ − 1
dx

M =
∫
R3

ρ− ρ dx

arise without assuming (1.8) by (4.4). Inequality (2.11), furthermore, is replaced by∫
R3

p− p dx = O(t− min{2,2−α}), t ↑ +∞,

which is proven by

(|x− tv|2ρ)t + ∇ · |x− tv|2ρv = ∇ ·
(

2tx(p− p) − 2γt2

γ − 1
vp

)
−

(
2t2(p− p)
γ − 1

)
t

− 2
(
n− 2

γ − 1

)
t(p− p).

Hence it holds that ∫
|x|<R+σt

ργdx =
∫
R3

ργ − ργdx+
∫

|x|<R+σt

ργdx

=
∫

|x|<R+σt

ργdx+ o(1) (4.5)

and

E =
∫
R3

ρ

2
|v|2 +

ργ

γ − 1
− ργ

γ − 1
dx =

∫
R3

ρ

2
|v|2dx+ o(1). (4.6)

From ρ > 0 and ∇ × v = 0, we have

ρt + ∇ · ρv = 0

ψt =
1
2
|v|2 +

γργ−1

γ − 1
(4.7)

v = −∇ψ in R3 × (0, T )

similarly to the previous section. We may assume ψ0 = 0 for |x| > R, and then it holds that

ψ =
γργ−1

γ − 1
t, |x| > R+ σt. (4.8)

We have, furthermore,

d

dt

∫
R3

ρ(ψ − γργ−1

γ − 1
t) dx

=
∫
R3

−ψ∇ · ρv + ρ(
1
2
|v|2 +

γργ−1

γ − 1
− γργ−1

γ − 1
) dx

=
∫
R3

−ρ

2
|v|2 +

γρ

γ − 1
(ργ−1 − ργ−1) dx

= −E +
∫
R3

γργ−1

γ − 1
(ρ− ρ) dx+ o(1)

= −E − γργ−1

γ − 1
M + o(1)



630 T. Suzuki JMFM

by (4.7) and (4.6) which implies

−Et+ o(t) =
∫
R3

ρ(ψ − γργ−1

γ − 1
t) dx+

γργ−1

γ − 1
Mt

=
∫

|x|<R+σt

ρ(ψ − γργ−1

γ − 1
t) +

γργ−1

γ − 1
(ρ− ρ)t dx

=
∫

|x|<R+σt

ρψ − γργ−1

γ − 1
t dx. (4.9)

recalling (4.4) and (4.8).
Here we use

ψt ≥ γργ−1

γ − 1

derived from (4.7). It follows that

ψtρt ≥ γργ

γ − 1
t

and hence

ρψ − γργ

γ − 1
t ≥ ρψ − ψtρt = 2ρψ − ∂

∂t
(ψρt) + ψρtt

= 2ρψ − ∂

∂t
{ψ(ρ− ρ)t} − ρ

∂

∂t
(ψt) + ψρtt

= 2ρψ − ∂

∂t
{ψ(ρ− ρ)t} − ρ

∂

∂t
{(ψ − γργ−1

γ − 1
t)t} − 2t

γργ

γ − 1
+ ψρtt.

Then we have ∫
|x|<R+σt

ρψ − γργ

γ − 1
t dx ≥ 2

∫
|x|<R+σt

ρψ − γργ

γ − 1
t dx

+
∫
R3

− ∂

∂t
{ψ(ρ− ρ)t+ ρ(ψ − γργ−1

γ − 1
t)t} + ψρtt dx

= 2
∫

|x|<R+σt

ρψ − γργ

γ − 1
t dx+

∫
R3

− ∂

∂t
{ψ(ρ− ρ)t

+ρ(ψ − γργ−1

γ − 1
t)t} + ψρtt dx+ o(t)

by (4.5) which means
∫

|x|<R+σt

ρψ − γργ

γ − 1
t dx

≤
∫
R3

∂

∂t

{
ψ (ρ− ρ) t+ ρ

(
ψ − γργ−1

γ − 1
t

)
t

}
− ψρtt dx+ o(t)
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=
d

dt

∫
R3

ψ (ρ− ρ) t+ ρ

(
ψ − γργ−1

γ − 1
t

)
t dx+ t

∫
R3

ρ|v|2 dx+ o(t)

=
d

dt

∫
R3

(
ψρ− γργ

γ − 1
t

)
t dx+ t

∫
R3

ρ|v|2 dx+ o(t),

recalling ρt = −∇ · ρv and v = −∇ψ. By (4.6) and (4.5) we thus obtain

∫
|x|<R+σt

ρψ − γργ

γ − 1
t dx

≤ d

dt

∫
R3

(
ψρ− γργ

γ − 1
t

)
t dx+ 2tE + o(t)

=
∫
R3

ψρ− γργ

γ − 1
t dx+ t

d

dt

∫
R3

ψρ− γργ

γ − 1
t dx+ 2tE + o(t).

Here, the first term on the right-hand side is equal to

∫
|x|<R+σt

ψρ− γργ

γ − 1
t dx+ o(t)

by (4.4), (4.8), and (4.5). Hence it follows that

∫
|x|<R+σt

ρψ − γργ

γ − 1
t dx

≤
∫

|x|<R+σt

ψρ− γργ

γ − 1
t dx+ t

d

dt

∫
R3

ψρ− γργ

γ − 1
t dx+ 2tE + o(t),

or equivalently,

−2E + o(1) ≤ d

dt

∫
R3

ψρ− γργ

γ − 1
t dx.

Then, we have

−2Et+ o(t) ≤
∫
R3

ψρ− γργ

γ − 1
t dx+ o(t)

=
∫

|x|<R+σt

ψρ− γργ

γ − 1
t dx+ o(t) = −Et+ o(t)

by (4.9). It thus follows that E ≥ o(1), and hence E ≥ 0 from T = +∞, a contradiction. �
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Appendix A. Proof of (1.4)

Writing v = (vj)j and x = (xi)i, we have

v · ∇v − ∇
(

1
2
|v|2

)
=

⎛
⎝∑

j

vj

(
∂vi

∂xj
− ∂vj

∂xi

)⎞
⎠

i

=

⎛
⎜⎜⎜⎜⎝

v2
(

∂v1

∂x2
− ∂v2

∂x1

)
+ v3

(
∂v1

∂x3
− ∂v3

∂x1

)

v1
(

∂v2

∂x1
− ∂v1

∂x2

)
+ v3

(
∂v2

∂x3
− ∂v3

∂x2

)

v1
(

∂v3

∂x1
− ∂v1

∂x3

)
+ v2

(
∂v3

∂x2
− ∂v2

∂x3

)

⎞
⎟⎟⎟⎟⎠

= −
⎛
⎝ v1

v2

v3

⎞
⎠ ×

⎛
⎜⎝

∂v3

∂x2
− ∂v2

∂x3
∂v1

∂x3
− ∂v3

∂x1
∂v2

∂x1
− ∂v1

∂x2

⎞
⎟⎠

which means (1.4).

Appendix B. Proof of (2.9)

Since

(|x− tv|2ρ)t = |x− tv|2ρt + 2(x− tv) · (x− tv)tρ

= |x− tv|2ρt − 2(x− tv) · (v + tvt)ρ

and

∇ · (|x− tv|2ρv) = |x− tv|2∇ · (ρv) +
∑
i,j

ρvj∂j(xi − tvi)2

= |x− tv|2∇ · (ρv) + 2
∑
i,j

ρvj(xi − tvi)(δij − t∂jv
i)

= |x− tv|2∇ · (ρv) + 2(x− tv) · (v − t(v · ∇)v)ρ

it holds that

(|x− tv|2ρ)t + ∇ · (|x− tv|2ρv)
= |x− tv|2(ρt + ∇ · (ρv)) − 2(x− tv) · {(v + tvt)ρ− (v − t(v · ∇)v)ρ}
= −2t(x− tv) · {ρ(vt + (v · ∇)v)}
= 2t(x− tv) · ∇p. (B.1)

Here we have

(x · ∇)p = ∇ · (xp) − (∇ · x)p = ∇ · (xp) − np, (B.2)

while

(v · ∇)p = γργ−1(v · ∇)ρ = γργ−1(∇ · (ρv) − ρ∇ · v)
= −γργ−1ρt − γp∇ · v = −pt − γ∇ · (pv) + γ(v · ∇)p,

implies

(v · ∇)p =
pt

γ − 1
+

γ

γ − 1
∇ · (pv). (B.3)
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Equalities (B.2)–(B.3) imply

2t(x− tv) · ∇p
= 2t∇ · (xp) − 2npt− 2t2pt

γ − 1
− 2γt2

γ − 1
∇ · (vp)

= ∇ ·
(

2txp− 2γt2

γ − 1
vp

)
− 2t2

γ − 1
pt − 2npt

= ∇ ·
(

2txp− 2γt2

γ − 1
vp

)
− 2

(
n− 2

γ − 1

)
tp−

(
2t2p
γ − 1

)
t

. (B.4)

Then we obtain (2.9) by (B.1) and (B.4).
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