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1. Introduction

Density-dependent incompressible Navier–Stokes equations occur in the mathematical modeling of the
motion for a viscous incompressible non-homogeneous fluid flow. In reality, flows are often affected by
external forces such as gravity. In this paper, we consider the two-dimensional density-dependent incom-
pressible Navier–Stokes equations driven by external forces, which express the momentum balance and
the conservation of mass as follows:

⎧
⎨

⎩

ρ(Ut + U · ∇U) + ∇P = μΔU + ρ�f,
ρt + U · ∇ρ = 0,
∇ · U = 0.

(1.1)

Here, U = (u1, u2) is the vector velocity field, ρ is the density, the constant μ > 0 models viscosity, and
�f stands for external forces.

In real world, flows often move in bounded domains with constraints from boundaries, where initial-
boundary value problems appear. Solutions to initial-boundary value problems usually exhibit different
behaviors and much richer phenomena comparing with the Cauchy problem. In this paper, we consider
system (1.1) on a bounded domain in 2-D. The system is supplemented by the following initial and
boundary conditions:

{
(U, ρ)(x, 0) = (U0, ρ0)(x), m ≤ ρ0(x) ≤ M, x ∈ Ω;
U |∂Ω = 0, t ≥ 0,

(1.2)

where Ω ⊂ R
2 is a bounded domain with smooth boundary ∂Ω, and m,M are positive constants.

System (1.1) has drawn the attention of applied mathematicians over the past decades because of its
physical background and mathematical feature. It generalizes the standard incompressible Navier–Stokes
to inhomogeneous fluid flows. Both Cauchy problem and initial-boundary value problems have been stud-
ied in the literature, regarding the existence, uniqueness and regularity of solutions to the model. We
refer the readers to [2–9,11–14] and references therein for details. However, the large-time asymptotic
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behavior of classical solutions to (1.1)–(1.2) has not been well-understood, especially in the presence of
large initial data and external forces. The major challenge encountered in the asymptotic analysis is the
coupling of the density function to the velocity equation by external forces, without which it is standard
to show the convergence of the velocity field. This characteristic feature hampers the investigation of the
large-time behavior of (1.1).

In this paper, we shall give a definite answer to the question of large-time behavior of (1.1). We shall
show that, due to viscosity and boundary effects, the kinetic energy will converge to zero as time tends
to infinity, in spite of the magnitudes of the initial data and external forces. The result improves the one
obtained by Danchin in [8], where the asymptotic behavior of (1.1) is proved under the assumption that
the initial velocity and external forces are small while the density fluctuation can be large.

Throughout this paper, ‖ · ‖Lp , ‖ · ‖L∞ and ‖ · ‖W s,p denote the norms of the usual Lebesgue measur-
able spaces Lp(Ω), L∞(Ω) and the usual Sobolev space W s,p(Ω), respectively. For p = 2, we denote
the norms ‖ · ‖L2 and ‖ · ‖W s,2 by ‖ · ‖ and ‖ · ‖Hs , respectively. The function spaces under con-
sideration are C([0, T ];Hs(Ω)) and L2([0, T ];Hs(Ω)), equipped with norms sup0≤t≤T ‖Ψ(·, t)‖Hs and

(
T∫

0

‖Ψ(·, τ)‖2
Hsdτ)1/2, respectively. Unless specified, ci will denote generic constants which are indepen-

dent of ρ, U and t, but may depend on Ω, μ,m,M, �f and initial data.
The main results of this paper are summarized in the following theorem.

Theorem 1.1. Suppose that �f is a potential flow and is independent of time, i.e., �f = ∇φ for some
function φ : Ω → R. In addition, suppose that ‖φ‖H2 ≤ F1 for some positive constant F1 < ∞. If
the initial data (ρ0, U0) ∈ H3(Ω) is compatible with the boundary condition, then there exists a unique
solution (ρ, U) to (1.1)–(1.2) globally in time such that ρ ∈ C([0, T );H3(Ω)), m ≤ ρ ≤ M , and U ∈
C([0, T );H3(Ω)) ∩ L2([0, T ;H4(Ω)) for any T ≥ 0. Moreover, it holds that

lim
t→∞ ‖U(·, t)‖2 = 0, lim

t→∞ ‖∇U(·, t)‖2 = 0, lim
t→∞ ‖Ut(·, t)‖2 = 0. (1.3)

Remark 1.2. In the results obtained above, no smallness assumption is made upon the initial data and
the external force. The external forcing term �f includes important applications such as �f = e2 = (0, 1)T,
which stands for the effect of gravitational force. The proof of the existence result can be found in the
literature, see for example [14], we will focus on the asymptotic behavior.

We prove Theorem 1.1 via the method of energy estimate. The main difficulties of the proof come
from the coupling between the velocity and density equations by convection, external force and boundary
effects. We overcome the barrier by recovering the free energy associated with the system. Current proof
involves applications of Sobolev and Ladyzhenskaya type inequalities, see Lemma 2.3, and results on
Stokes equations by Temam [16], see lemma 2.2. The temporal independence of the potential function φ
is crucial in our analysis, with whose help we will be able to recover the free energy formulation (entropy–
entropy flux pair) associated with the system. By combining this key ingredient with the L2 estimate
of U we will show that ‖U(·, t)‖2 ∈ W 1,1(0,∞), which implies ‖U(·, t)‖2 → 0 as t → ∞. For higher
order estimates, because of the lack of the spatial derivatives of the solution at the boundary, the energy
estimates proceed as follows: we first apply the standard energy estimate on the temporal derivatives of
the solution. We then apply the Temam’s results on Stokes equation to recover the spatial derivatives.
Such a process will be repeated twice, and then the coupled estimates will be composed into a desired one
leading to the decay of the first order derivatives of the velocity field. The result suggests that viscosity
is strong enough to compensate the effects of external forces and density fluctuation to cause the slowing
down of the flow.

The rest of the paper is organized as follows. In Sect. 2, we give some basic facts that will be used
throughout the paper. Then we establish the asymptotic behavior of the solution in Sect. 3.
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2. Preliminaries

In this section, we will list several facts which will be used in the proof of Theorem 1.1. First we recall
Poincaré inequality, which is standard (c.f. [10]).

Lemma 2.1. Let Ω be any bounded domain in R
2 with smooth boundary ∂Ω. For any function g ∈ H1

0 (Ω),
there exists a constant c0 = c0(Ω, p) such that

‖g‖2
Lp ≤ c0‖∇g‖2

Lp , ∀ 1 ≤ p < ∞.

Second, we recall some useful results from [16].

Lemma 2.2. Let Ω be any bounded domain in R
2 with smooth boundary ∂Ω. Consider the Stokes problem

⎧
⎨

⎩

−μΔU + ∇P = F in Ω
∇ · U = 0 in Ω
U = 0 on ∂Ω.

If F ∈ Wm,p, then U ∈ Wm+2,p, P ∈ Wm+1,p and there exists a constant c1 = c1(μ, p,m,Ω) such that

‖U‖W m+2,p + ‖P‖W m+1,p ≤ c1‖F‖W m,p

for any p ∈ (1,∞) and the integer m ≥ −1.

We also need the following Sobolev embeddings and Ladyzhenskaya inequalities which are well-known
and standard (c.f. [1,15]).

Lemma 2.3. Let Ω be any bounded domain in R
2 with smooth boundary ∂Ω. Then the following embeddings

and inequalities hold:
(i) ‖h‖2

Lp ≤ c2‖h‖2
H1 , ∀ 1 ≤ p < ∞, ∀ h ∈ H1(Ω);

(ii) ‖h‖2
L∞ ≤ c3‖h‖2

W 1,p , ∀ 2 < p < ∞, ∀ h ∈ W 1,p(Ω);
(iii) ‖h‖2

L4 ≤ c4‖h‖‖∇h‖, ∀ h ∈ H1
0 (Ω);

(iv) ‖h‖2
L4 ≤ c5

(‖h‖‖∇h‖ + ‖h‖2
)
, ∀ h ∈ H1(Ω),

for some constants ci, i = 2, . . . , 5, depending only on Ω and p.

3. Asymptotic Analysis

In this section, we prove Theorem 1.1. The proof is based on several steps of energy estimates which are
stated as a sequence of lemmas. We start with the decay estimate of ‖U(·, t)‖.

3.1. Decay of ‖U(·, t)‖

First, since φ is independent of t, using the continuity equation we have

d

dt

⎛

⎝

∫

Ω

ρφdx

⎞

⎠ =
∫

Ω

ρtφdx = −
∫

Ω

∇ · (ρU)φdx.

Since U |∂Ω = 0, after integration by parts we have

d

dt

⎛

⎝

∫

Ω

ρφdx

⎞

⎠ =
∫

Ω

ρU · ∇φdx. (3.1)

Taking L2 inner product of (1.1)1 with U , after integration by parts we have
∫

Ω

ρ
d

dt

(|U |2) dx −
∫

Ω

∇ · (ρU)
(|U |2) dx + 2μ‖∇U‖2 = 2

∫

Ω

ρU · ∇φdx. (3.2)
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Using the continuity equation and (3.1) we update (3.2) as

d

dt

⎛

⎝

∫

Ω

ρ|U |2dx − 2
∫

Ω

ρφdx

⎞

⎠ + 2μ‖∇U‖2 = 0. (3.3)

We remark that (3.3) gives the free energy formulation of the original system.
Upon integrating (3.3) in time we have

∫

Ω

ρ|U |2dx − 2
∫

Ω

ρφdx + 2μ

t∫

0

‖∇U‖2dτ =
∫

Ω

ρ0|U0|2dx − 2
∫

Ω

ρ0φdx,

which implies that

∫

Ω

ρ|U |2dx + 2μ

t∫

0

‖∇U‖2dτ ≤
∫

Ω

ρ0|U0|2dx + 2 (‖ρ0‖L∞ + ‖ρ‖L∞) ‖φ‖L1 .

Since m ≤ ρ ≤ M , using the condition on φ we get from above that

∫

Ω

ρ|U |2dx + 2μ

t∫

0

‖∇U‖2dτ ≤ c6, ∀ t ≥ 0. (3.4)

Since U |∂Ω = 0, by Lemma 2.1 we have

t∫

0

∫

Ω

ρ|U |2dxdτ ≤ M

t∫

0

‖U‖2dτ ≤ c0M

t∫

0

‖∇U‖2dτ,

which, together with (3.4), implies that

t∫

0

∫

Ω

ρ|U |2dxdτ ≤ c7, ∀ t ≥ 0. (3.5)

Let

E1(t) ≡
∫

Ω

ρ|U |2dx.

Then, from (3.4) and (3.5) we see that

0 ≤ E1(t) ≤ c6,

t∫

0

E1(τ)dτ ≤ c7, ∀ t ≥ 0. (3.6)

Therefore
t∫

0

[E1(τ)]2 dτ ≤ c6c7, ∀ t ≥ 0. (3.7)

Moreover, from (3.3) and (3.1) we have

d

dt
E1(t) = 2

∫

Ω

ρU · ∇φdx − 2μ‖∇U‖2. (3.8)
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Using (3.4), (3.7)–(3.8) we have
t∫

0

∣
∣
∣
∣

d

dτ
[E1(τ)]2

∣
∣
∣
∣ dτ = 2

t∫

0

E1(τ)
∣
∣
∣
∣
d

dt
E1(τ)

∣
∣
∣
∣ dτ

≤ 2

t∫

0

E1(τ)

⎛

⎝2

∣
∣
∣
∣
∣
∣

∫

Ω

ρU · ∇φdx

∣
∣
∣
∣
∣
∣
+ 2μ‖∇U‖2

⎞

⎠ dτ

≤ 4

t∫

0

E1(τ)

∣
∣
∣
∣
∣
∣

∫

Ω

ρU · ∇φdx

∣
∣
∣
∣
∣
∣
dτ + 2c2

6. (3.9)

For the first term on the RHS of (3.9), using (3.4) and the condition on φ we have
∣
∣
∣
∣
∣
∣

∫

Ω

ρU · ∇φdx

∣
∣
∣
∣
∣
∣
≤ ‖√

ρU‖‖√
ρ‖∞‖∇φ‖ ≤

√
c6M‖∇φ‖ ≤ c8,

which implies, by (3.6) and (3.9), that
t∫

0

∣
∣
∣
∣

d

dτ
[E1(τ)]2

∣
∣
∣
∣ dτ ≤ 4c7c8 + 2c2

6 ≡ c9, ∀ t ≥ 0,

which, together with (3.7), yields

[E1(t)]
2 ∈ W 1,1(0,∞).

Therefore, we have

lim
t→∞

⎛

⎝

∫

Ω

ρ|U |2dx
⎞

⎠ (t) = lim
t→∞ E1(t) = 0.

Since ρ ≥ m, we conclude that

lim
t→∞ ‖U(·, t)‖2 = 0.

We summarize the above results in the following lemma.

Lemma 3.1. Under the assumptions of Theorem 1.1, there exists a constant α1 > 0 independent of t such
that

‖U(·, t)‖2 +

t∫

0

‖∇U(·, τ)‖2dτ ≤ α1, ∀ t ≥ 0, and lim
t→∞ ‖U(·, t)‖2 = 0.

Remark 3.2. It is well known that the 3-D version of (1.1) has a weak solution defined for all t ≥ 0
(c.f. [14]). We remark that, since the dimensionality does not affect the proof of the above results, by
repeating the arguments in Subsect. 3.1, one can show that Lemma 3.1 still holds for weak solutions for
the 3-D model.

3.2. Uniform Estimates

The uniform estimates established in this subsection will be used to prove the decay of the first order
derivatives of U .
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First, by taking L2 inner product of (1.1)1 with Ut we get

μ

2
d

dt
‖∇U‖2 +

∫

Ω

ρ|Ut|2dx =
∫

Ω

ρ∇φ · Utdx −
∫

Ω

ρ(U · ∇U) · Utdx. (3.10)

For the first term on the RHS of (3.10), since φ is independent of t, using (1.1)2 and (1.1)3 we have

∫

Ω

ρ∇φ · Utdx =
d

dt

⎛

⎝

∫

Ω

ρ∇φ · Udx

⎞

⎠ −
∫

Ω

ρt∇φ · Udx

=
d

dt

⎛

⎝

∫

Ω

ρ∇φ · Udx

⎞

⎠ +
∫

Ω

∇ · (ρU)(∇φ · U)dx

=
d

dt

⎛

⎝

∫

Ω

ρ∇φ · Udx

⎞

⎠ −
∫

Ω

ρU · ∇(∇φ · U)dx.

So we update (3.10) as

d

dt

⎛

⎝
μ

2
‖∇U‖2 −

∫

Ω

ρ∇φ · Udx

⎞

⎠ +
∫

Ω

ρ|Ut|2dx

= −
∫

Ω

ρU · ∇(∇φ · U)dx −
∫

Ω

ρ(U · ∇U) · Utdx. (3.11)

Using the condition on φ, Lemmas 2.1 and 2.3 we have
∣
∣
∣
∣
∣
∣
−

∫

Ω

ρU · ∇(∇φ · U)dx

∣
∣
∣
∣
∣
∣

≤ M

∫

Ω

(|U |2|D2φ| + |U ||∇φ||∇U |) dx

≤ M
(‖U‖2

L4‖D2φ‖ + ‖U‖2
L4‖∇φ‖2

L4 + ‖∇U‖2
)

≤ M
(
cF1‖U‖2

L4 + ‖∇U‖2
)

≤ M
(
cF1c4‖U‖‖∇U‖ + ‖∇U‖2

)

≤ M(cF1c4c0 + 1)‖∇U‖2 ≡ c10‖∇U‖2, (3.12)

where cF1 is a constant depending only on F1.
Similarly, by Cauchy–Schwarz inequality we have

∣
∣
∣
∣
∣
∣
−

∫

Ω

ρ(U · ∇U) · Utdx

∣
∣
∣
∣
∣
∣
≤ 1

4

∫

Ω

ρ|Ut|2dx +
∫

Ω

ρ|U · ∇U |2dx

≤ 1
4

∫

Ω

ρ|Ut|2dx + M‖U‖2
L4‖∇U‖2

L4 . (3.13)

Plugging (3.12) and (3.13) into (3.11) we have

d

dt

⎛

⎝
μ

2
‖∇U‖2 −

∫

Ω

ρ∇φ · Udx

⎞

⎠ +
3
4

∫

Ω

ρ|Ut|2dx

≤ c10‖∇U‖2 + M‖U‖2
L4‖∇U‖2

L4 . (3.14)
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For the second term on the RHS of (3.14), using Lemmas 2.1, 2.3 and 3.1 we have

M‖U‖2
L4‖∇U‖2

L4 ≤ Mc4c5‖U‖‖∇U‖ (‖∇U‖‖D2U‖ + ‖∇U‖2
)

≤ c11‖∇U‖2‖D2U‖ + c12‖∇U‖4. (3.15)

Since U |∂Ω = 0, by Lemma 2.2 and (3.15) we have

‖U‖H2 ≤ √
c1 (‖ρUt‖ + ‖ρU · ∇U‖ + ‖ρ∇φ‖)

≤ √
c1

(√
M‖√

ρUt‖ + M‖U‖L4‖∇U‖L4 + ‖ρ‖L4‖∇φ‖L4

)

≤ c13‖√
ρUt‖ + c14‖∇U‖‖D2U‖1/2 + c15‖∇U‖2 + c16

≤ c13‖√
ρUt‖ + c16 + c17‖∇U‖2 +

1
2
‖U‖H2 . (3.16)

After rearranging terms we get from (3.16) that

‖U‖H2 ≤ c18‖√
ρUt‖ + c19‖∇U‖2 + c20. (3.17)

Plugging (3.17) into (3.15) we have

M‖U‖2
L4‖∇U‖2

L4

≤ c11‖∇U‖2
(
c18‖√

ρUt‖ + c19‖∇U‖2 + c20

)
+ c12‖∇U‖4

≤ c21‖∇U‖2‖√
ρUt‖ + c22‖∇U‖4 + c23‖∇U‖2

≤ 1
4
‖√

ρUt‖2 + c24‖∇U‖4 + c23‖∇U‖2. (3.18)

Combining (3.14) and (3.18) we have

d

dt

⎛

⎝
μ

2
‖∇U‖2 −

∫

Ω

ρ∇φ · Udx

⎞

⎠ +
1
2

∫

Ω

ρ|Ut|2dx

≤ c24‖∇U‖4 + c25‖∇U‖2. (3.19)

Multiplying (3.3) by c25/μ we have

d

dt

⎛

⎝
c25

μ

∫

Ω

ρ|U |2dx − 2c25

μ

∫

Ω

ρφdx

⎞

⎠ + 2c25‖∇U‖2 = 0. (3.20)

Combining (3.19) and (3.20) we have

d

dt
(E2(t)) +

1
2

‖√
ρUt‖2 + c25‖∇U‖2 ≤ c24‖∇U‖4. (3.21)

where

E2(t) =
μ

2
‖∇U‖2 +

c25

μ

∫

Ω

ρ|U |2dx −
∫

Ω

ρ∇φ · Udx − 2c25

μ

∫

Ω

ρφdx.

Next, we shall apply Gronwall inequality to (3.21). For this purpose, we observe that
∣
∣
∣
∣
∣
∣
−

∫

Ω

ρ∇φ · Udx − 2c25

μ

∫

Ω

ρφdx

∣
∣
∣
∣
∣
∣

≤ c25

2μ

∫

Ω

ρ|U |2dx + c26M‖∇φ‖2 +
2c25M

μ
‖φ‖L1

≤ c25

2μ

∫

Ω

ρ|U |2dx + c27.
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We remark that the constant c27 does not depend on t. Therefore, we have

E2(t) + c27 ≥ μ

2
‖∇U‖2 +

c25

2μ

∫

Ω

ρ|U |2dx. (3.22)

Using (3.22) we update (3.21) as

d

dt
(E2(t) + c27) +

1
2
‖√

ρUt‖2 + c25‖∇U‖2 ≤ c28‖∇U‖2 (E2(t) + c27). (3.23)

Applying Gronwall inequality to (3.23) and using Lemma 3.1 we have

(E2(t) + c27) ≤ c29, and

t∫

0

‖√
ρUt‖2 + ‖∇U‖2dτ ≤ c30.

In particular, by (3.22) we have

Lemma 3.3. Under the assumptions of Theorem 1.1, there exists a constant α2 > 0 independent of t such
that

‖∇U(·, t)‖2 +

t∫

0

‖Ut(·, τ)‖2dτ ≤ α2, ∀ t ≥ 0. (3.24)

3.3. Decay of ‖∇U(·, t)‖ and ‖Ut(·, t)‖

The proof of the decay of ‖∇U(·, t)‖ and ‖Ut(·, t)‖ is based on applications of Lemmas 2.3 and 3.3. First,
by taking temporal derivative of (1.1)1 we have

ρUtt + ρU · ∇Ut + ρUt · ∇U + ρt (Ut + U · ∇U) + ∇Pt = μΔUt + ρt∇φ. (3.25)

Taking L2 inner product of (3.25) with Ut and using (1.1)2 we have

1
2

d

dt
‖√

ρUt‖2 + μ‖∇Ut‖2

=
∫

Ω

ρt∇φ · Utdx −
∫

Ω

ρ(Ut · ∇U) · Utdx −
∫

Ω

ρt|Ut|2dx −
∫

Ω

ρt(U · ∇U) · Utdx

≡
4∑

i=1

Ri.
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Since Ut|∂Ω = 0, using (1.1)2, Lemmas 2.1 and 2.3 we estimate R1 as

|R1| =

∣
∣
∣
∣
∣
∣

∫

Ω

∇ · (ρU)∇φ · Utdx

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∫

Ω

ρU · ∇(∇φ · Ut)dx

∣
∣
∣
∣
∣
∣

≤ c31

⎛

⎝

∫

Ω

|U ||D2φ||Ut|dx +
∫

Ω

|U ||∇φ||∇Ut|dx
⎞

⎠

≤ c32‖D2φ‖‖U‖L4‖Ut‖L4 + c33(ε)‖U‖2
L4‖∇φ‖2

L4 + ε‖∇Ut‖2

≤ c34‖U‖H1‖Ut‖H1 + c35(ε)‖U‖2
H1 + ε‖∇Ut‖2

≤ c36‖∇U‖‖∇Ut‖ + c37(ε)‖∇U‖2 + ε‖∇Ut‖2

≤ c38(ε)‖∇U‖2 + 2ε‖∇Ut‖2.

In a similar fashion, for R2, using Lemma 3.3 we have

|R2| =

∣
∣
∣
∣
∣
∣

∫

Ω

ρ(Ut · ∇U) · Utdx

∣
∣
∣
∣
∣
∣

≤ M‖∇U‖‖Ut‖2
L4

≤ c39‖Ut‖‖∇Ut‖
≤ c40(ε)‖Ut‖2 + ε‖∇Ut‖2.

The estimate of R3 also follows in a similar fashion

|R3| =

∣
∣
∣
∣
∣
∣

∫

Ω

ρt|Ut|2dx
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∫

Ω

ρU · ∇(|Ut|2)dx
∣
∣
∣
∣
∣
∣

≤ c41‖∇Ut‖‖U‖L4‖Ut‖L4

≤ c42(ε)‖U‖2
L4‖Ut‖2

L4 + ε‖∇Ut‖2

≤ c43(ε)‖Ut‖‖∇Ut‖ + ε‖∇Ut‖2

≤ c44(ε)‖Ut‖2 + 2ε‖∇Ut‖2.

Lastly, we estimate R4 as follows:

|R4| =

∣
∣
∣
∣
∣
∣

∫

Ω

ρt(U · ∇U) · Utdx

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∫

Ω

ρU · ∇ ((U · ∇U) · Ut) dx

∣
∣
∣
∣
∣
∣
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≤ M

⎛

⎝

∫

Ω

|U ||∇U |2|Ut|dx +
∫

Ω

|U |2|D2U ||Ut|dx+

∫

Ω

|U |2|∇U ||∇Ut|dx
⎞

⎠. (3.26)

Using (3.17) and (3.24) we estimate the first term on the RHS of (3.26) as

M

∫

Ω

|U ||∇U |2|Ut|dx

≤ M‖∇U‖2
L4‖U‖L4‖Ut‖L4

≤ c45

(‖∇U‖‖D2U‖ + ‖∇U‖2
) ‖∇U‖‖∇Ut‖

≤ c46

(‖√
ρUt‖ + ‖∇U‖2 + 1

) ‖∇U‖‖∇Ut‖
≤ c47‖√

ρUt‖‖∇U‖‖∇Ut‖ + c48‖∇U‖‖∇Ut‖
≤ c49(ε)‖√

ρUt‖2‖∇U‖2 + c50(ε)‖∇U‖2 + ε‖∇Ut‖2. (3.27)

For the second term we have

M

∫

Ω

|U |2|D2U ||Ut|dx

≤ M‖D2U‖‖U‖2
L8‖Ut‖L4

≤ c51

(‖√
ρUt‖ + ‖∇U‖2 + 1

) ‖∇U‖2‖∇Ut‖
≤ c52‖√

ρUt‖‖∇U‖‖∇Ut‖ + c53‖∇U‖‖∇Ut‖
≤ c54(ε)‖√

ρUt‖2‖∇U‖2 + c55(ε)‖∇U‖2 + ε‖∇Ut‖2, (3.28)

where we have used the Sobolev embedding H1(Ω) ↪→ Lp(Ω) (1 ≤ p < ∞) in 2-D. Finally, we have

M

∫

Ω

|U |2|∇U ||∇Ut|dx

≤ c56(ε)‖∇U‖2
L4‖U‖4

L8 + ε‖∇Ut‖2

≤ c57(ε)
(‖∇U‖‖D2U‖ + ‖∇U‖2

) ‖∇U‖4 + ε‖∇Ut‖2

≤ c58(ε)‖√
ρUt‖2‖∇U‖2 + c59(ε)‖∇U‖2 + ε‖∇Ut‖2. (3.29)

Plugging (3.27)–(3.29) into (3.26) we have

|R4| ≤ c60(ε)‖∇U‖2‖√
ρUt‖2 + c61(ε)‖∇U‖2 + 3ε‖∇Ut‖2.

Collecting the estimates for Ri and plugging them into (3.25) we have

1
2

d

dt
‖√

ρUt‖2 + μ‖∇Ut‖2

≤ c62(ε)‖∇U‖2‖√
ρUt‖2 + c63(ε)

(‖∇U‖2 + ‖Ut‖2
)

+ 8ε‖∇Ut‖2.

Choosing ε = μ/16 we have

1
2

d

dt
‖√

ρUt‖2 +
μ

2
‖∇Ut‖2

≤ c64‖∇U‖2‖√
ρUt‖2 + c65

(‖∇U‖2 + ‖Ut‖2
)
. (3.30)
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Applying Gronwall inequality to (3.30) and using Lemmas 3.1 and 3.3 we have

‖Ut(·, t)‖2 ≤ c66, and

t∫

0

‖∇Ut(·, τ)‖2dτ ≤ c67, ∀ t ≥ 0. (3.31)

Since
t∫

0

∣
∣
∣
∣

d

dτ
‖∇U(·, τ)‖2

∣
∣
∣
∣ dτ ≤ 2

t∫

0

‖∇U(·, τ)‖‖∇Ut(·, τ)‖dτ

≤
t∫

0

‖∇U(·, τ)‖2 + ‖∇Ut(·, τ)‖2dτ,

by (3.4) and (3.31) we have

t∫

0

∣
∣
∣
∣

d

dτ
‖∇U(·, τ)‖2

∣
∣
∣
∣ dτ ≤ c68, ∀ t ≥ 0,

which, together with (3.4), implies that

‖∇U(·, t)‖2 ∈ W 1,1(0,∞).

Hence, we have

lim
t→∞ ‖∇U(·, t)‖2 = 0.

From Poincaré inequality and (3.31) we have

t∫

0

‖Ut(·, τ)‖2dτ ≤ c69, ∀ t ≥ 0, (3.32)

which implies that
t∫

0

‖√
ρUt(·, τ)‖2dτ ≤ c70, ∀ t ≥ 0. (3.33)

It is easy to see from (3.30)–(3.31), (3.32)–(3.33) and Lemmas 3.1–3.3 that

t∫

0

∣
∣
∣
∣

d

dτ
‖√

ρUt(·, τ)‖2

∣
∣
∣
∣ dτ ≤ c71.

Therefore, we have

‖√
ρUt(·, t)‖2 ∈ W 1,1(0,∞),

which implies that

lim
t→∞ ‖√

ρUt(·, t)‖2 = 0.

Since ρ ≥ m, it thus holds that

lim
t→∞ ‖Ut(·, t)‖2 = 0.

Collecting the above results we conclude
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Lemma 3.4. Under the assumptions of Theorem 1.1, there exists a constant α3 > 0 independent of t such
that

‖Ut(·, t)‖2 +

t∫

0

‖∇Ut(·, τ)‖2dτ ≤ α3, ∀ t ≥ 0, and

lim
t→∞ ‖∇U(·, t)‖2 = 0, lim

t→∞ ‖Ut(·, t)‖2 = 0.

Lemmas 3.1–3.4 conclude our main result, Theorem 1.1.

4. Discussion

In this paper, we showed that the velocity field and its first order derivatives, associated with the 2-D
density-dependent incompressible Navier–Stokes equations driven by external forces on a bounded
domain, tend to zero as time goes to infinity due to viscosity and boundary effects, under the assumption
that the external forcing term is a time-independent gradient flow. The result holds for large amplitudes of
initial data and external forces, which improves previous results regarding large-time asymptotic behavior
of solutions to the modeling equations. We proved the result by the method of energy estimate involving
two major ingredients: (1) recovery of the free energy formulation associated with the system, and (2)
the fact that f(t) ∈ W 1,1(0,∞) ⇒ limt→∞ f(t) = 0. However, there are still many unanswered questions
regarding (1.1). For example: (1) it is not clear whether Theorem 1.1 holds if the density is not strictly
bounded from below, or the problem is set on the whole space; (2) the explicit decay rate of the velocity
is not identified; (3) the long-time dynamics of the density is unknown based on our analysis. We leave
the investigations for the future.
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