
J. Math. Fluid Mech. 14 (2012), 355–361
c© 2011 Springer Basel AG
1422-6928/12/020355-7
DOI 10.1007/s00021-011-0073-y

Journal of Mathematical
Fluid Mechanics

Well-Posedness of the Hydrostatic MHD Equations

Michael Renardy

Communicated by G.P. Galdi

Abstract. The well-posedness of the equations of fluid mechanics in the hydrostatic limit is well known to be a difficult
problem. Partial results, both positive and negative, will be reviewed below. In this paper, it is shown that, for ideal mag-
netohydrodynamics, a magnetic field parallel to the flow direction can ensure well-posedness. The only condition required
is that the flow is subalfvenic. The result has some relevance to viscoelastic flows of the upper convected Maxwell fluid,
which, in the infinite Weissenberg number limit, is related to ideal MHD.
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1. Introduction

The hydrostatic approximation arises naturally when studying flows where the depth of the region of
interest is small compared to horizontal dimensions. Examples include atmospheric and oceanic flows,
boundary layers, and blood flow. Notwithstanding this in principle wide applicability, the hydrostatic
equations, without additional assumptions such as depth averaging or regularizing eddy viscosity, are not
widely used for analysis.

The reason for this is that these equations are, in general, not well-posed. Oliger and Sundström [12]
consider the imposition of inflow and outflow conditions for the hydrostatic Euler equations and find
that no local boundary condition is suitable for formulating a well-posed problem. However, even with-
out inflow boundaries, well-posedness need not hold. The boundary conditions are of crucial importance.
While the problem of flow between a wall and a free surface is well-posed [6,15], flow between two free
surfaces is always ill-posed [15]. The case of flow between two walls is more complicated. Brenier [1]
established local well-posedness provided Rayleigh’s stability criterion holds, i.e. if the velocity profile is
convex; see also the related work of Grenier [3,4]. On the other hand, it is shown in [14] that the equations
are ill-posed if the velocity profile satisfies the long wave instability criterion of Heisenberg [5], i.e. if the
equation

1∫

0

(U(x, y) − c)−2 dy = 0 (1)

has non-real roots.
Viscous effects do not restore the well-posedness of the hydrostatic equations; indeed, the Prandtl

equations have been found to be ill-posed even when the inviscid hydrostatic equations are well-posed
[2]! On the other hand, it has been noted that a longitudinal magnetic field can suppress inviscid shear
flow instabilities [7]. Since the high Weissenberg number limit of certain non-Newtonian flows is formally
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equivalent to ideal MHD [10,11], this effect is also of interest in viscoelastic flows [9,13]. I also refer to
[16] for a proof of linear stability of somewhat more general MHD flows with a magnetic field in the flow
direction.

The stabilizing effect of a magnetic field on shear flow raises the question whether this effect can also
restore well-posedness of the hydrostatic equations. In this paper, we shall prove an affirmative result for
two dimensional hydrostatic ideal MHD flows bounded by parallel walls. The only assumption required
on the data is that the flow is subalfvenic. The proof of well-posedness will be based on well-established
abstract results for hyperbolic PDEs [8], which become applicable after a suitable transformation of the
equations, which is based on Brenier’s [1] semi-Lagrangian description.

2. Formulation of the Problem

We consider ideal magnetohydrodynamic flow in the strip −∞ < x < ∞, 0 < y < ε. The governing
equations are

Ht + (u · ∇)H − (H · ∇)u = 0,
ut + (u · ∇)u − (H · ∇)H + ∇p = 0,

div u = 0. (2)

Here, u = (u, v) denotes the velocity, H denotes the magnetic field, p denotes the pressure, and we
have nondimensionalized such that the constant density and permeability become equal to 1. We impose
the nonpenetration condition of zero normal velocity, v = 0, on the walls. We shall also assume that
div H = 0 and that the normal component of H vanishes on the walls. These conditions need not be
“imposed,” they are automatically preserved if they hold for the initial data. We can then write H in
terms of a potential,

H = (ay,−ax), (3)

the potential a is then constant on the walls and satisfies the equation

at + (u · ∇)a = 0. (4)

The hydrostatic approximation is obtained by scaling y, v and a with ε and formally setting ε = 0. In
the rescaled variables, the flow domain is 0 < y < 1, and the equations become

at + uax + vay = 0,
ut + uux + vuy − ayaxy + axayy − px = 0,

py = 0,
ux + vy = 0. (5)

On the boundaries, we have v = 0. Moreover, we are interested in situations where the horizontal com-
ponent of the magnetic field is always positive, ay > 0. We can set a = 0 on the lower boundary, and
then a = A > 0 on the upper boundary.

The trick in rewriting the equations is to use a as an independent variable instead of y. This is anal-
ogous to the approach used by Brenier [1], where the vorticity played the same role. Our problem is now
posed on the strip −∞ < x < ∞, 0 < a < A, and the vertical position y of a fluid particle is an unknown
function: y = Z(x, a, t). We shall use the notation c = ∂Z/∂a. Let φ(x, y, t) be a smooth function and let
ψ(x, a, t) be the corresponding function in the new variables, i.e. φ(x,Z(x, a, t), t) = ψ(x, a, t). Using the
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chain rule, we establish the following relations:

φy =
1
c
ψa,

φt = ψt − Zt

c
ψa, (6)

φx = ψx − Zx

c
ψa.

By using this in the first equation of (5), we obtain

v = Zt + uZx. (7)

Using these relationships in the second equation of (5), we find

ut + uux +
1
c3
cx + χ(x, t) = 0, (8)

where χ = px is unknown but independent of a. Here we have retained the notation u for the horizontal
velocity, but we regard it as a function of x, t and a, i.e. ut denotes the time derivative for fixed x and a,
not fixed x and y. Finally, we can show that, as in [1], we have the relation

ct + (uc)x = 0. (9)

We have now derived a system in which the independent variables are u and c, and derivatives are
only with respect to t and x. The dependence on a comes in only through the unknown function χ(x, t),
which is implicitly determined by the constraint

A∫

0

c(x, a, t) da = 1. (10)

To maintain this condition, it is clearly necessary that

A∫

0

u(x, a, t)c(x, a, t) da (11)

is independent of x. As in all channel flow problems, we are free to impose either a flow rate or an average
pressure gradient, and we choose the former. We thus fix (11) to equal a fixed constant Q. We now find it
convenient to make the substitution w = uc. After this substitution, we finally end up with the following
set of equations:

wt +
(
w2 − 1
c

)
x

+ χ(x, t)c = 0,

ct + wx = 0. (12)

Since
∫
wt da = 0, we can explicitly determine χ:

χ(x, t) =

∫ A

0

(
w2−1

c

)
x
da

∫ A

0
c da

. (13)

3. Statement of the Main Result

To state an existence theorem for solutions of (12), (13), we first define suitable function spaces. Since
we want to apply theorems which pertain to solutions taking values in linear spaces, we subtract the
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averages from w and c. Let r = w −Q/A, s = c− 1/A. We obtain the new equations

rt +
(

(r +Q/A)2 − 1
s+ 1/A

)
x

+ χ(x, t)(s+ 1/A) = 0,

st + rx = 0, (14)

where

χ(x, t) =

A∫

0

(
(r +Q/A)2 − 1

s+ 1/A

)
x

da. (15)

We impose periodic boundary conditions with a given period L in the x direction. All Sobolev spaces
shall refer to functions on IR× (0, A) with periodicity in the x direction. Let Xn be the space all functions
φ such that φ and its first n derivatives with respect to x lie in H1 (with respect to both x and a), so,
for instance φ ∈ X2 means that φ, φx, φxx, φxxx, φa, φxa and φxxa are square integrable. Our basic spaces
of functions are

Yn =

⎧⎨
⎩(r, s) ∈ (Xn)2 |

A∫

0

r(x, a) da =

A∫

0

s(x, a) da = 0

⎫⎬
⎭ . (16)

We shall prove the following existence result:

Theorem 1. Consider given initial data r(x, a, 0) = r0(x, a), s(x, a, 0) = s0(x, a) such that (r0, s0) ∈ Y2.
Assume, moreover, that s0+1/A > 0, (r0+Q/A)2 < 1. Then, for some time T > 0, there exists a solution
of (14), (15) such that (r, s) ∈ C([0, T ], Y2).

4. An Abstract Existence Result

Our proof will be based on the application of the following abstract existence theorem from [8]. This
result concerns evolution problems of the form

u̇ = A(t, u)u+ f(t, u), (17)

where u takes values in a Banach space, A(t, u) is the infinitesimal generator of a C0-semigroup, and
f is a “perturbation” term. We say that A ∈ G(X,M,ω) if

‖eAt‖L(X) ≤ Meωt. (18)

The construction of the solution is by an iteration of the form

u̇n+1 = A(t, un)un+1 + f(t, un), (19)

with fixed initial condition un(0) = u0.

Theorem 2. Let Y ⊂ Z ⊂ Z ′ ⊂ X be four real Banach spaces, all of them reflexive and separable, with
continuous and dense inclusions. We assume that

1. Z ′ is an interpolation space between Y and X (i.e. linear operators which are bounded on both Y
and X are also bounded on Z ′).

Let N(X) be the set of all norms on X equivalent to the given one. On N(X) we introduce a
distance function

d(‖ · ‖α, ‖ · ‖β) := ln max{sup
z �=0

‖z‖α/‖z‖β , sup
z �=0

‖z‖β/‖z‖α}. (20)

Let W be an open set in Y . We assume that there is a real number β and positive numbers λN , μN , . . .
such that the following hold for all t, t′ ∈ [0, T ] and w,w′ ∈ W .
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2. N(t, w) ∈ N(X), and

d(N(t, w), ‖ · ‖X) ≤ λN ,

d(N(t′, w′), N(t, w)) ≤ μN [|t′ − t| + ‖w′ − w‖Z ]. (21)

3. There is an isomorphism S(t, w) ∈ B(Y,X), with

‖S(t, w)‖Y,X ≤ λS , ‖S(t, w)−1‖X,Y ≤ λ′
S ,

‖S(t′, w′) − S(t, w)‖Y,X ≤ μS [|t′ − t| + ‖w′ − w‖Z ]. (22)

4. A(t, w) ∈ G(XN(t,w), 1, β).
5. S(t, w)A(t, w)S(t, w)−1 = A(t, w) + B(t, w), where B(t, w) is a bounded operator in X and

‖B(t, w)‖X ≤ λB.
6. A(t, w) ∈ B(Y,Z) with

‖A(t, w)‖Y,Z ≤ λA, ‖A(t, w′) −A(t, w)‖Y,Z′ ≤ μA‖w′ − w‖Z′ . (23)

Moreover, the mapping t → A(t, w) ∈ B(Y,X) is continuous in norm.
7. f(t, w) ∈ Y , with

‖f(t, w)‖Y ≤ λf , ‖f(t, w′) − f(t, w)‖Z′ ≤ μf‖w′ − w‖Z′ , (24)

and the mapping t → f(t, w) ∈ X is continuous.
If all of the above assumptions are satisfied, and u0 ∈ W ⊂ Y , then there is a T ′ ∈ (0, T ] such that

(17) has a unique solution u on [0, T ′] with u ∈ C([0, T ′];W ) ∩ C1([0, T ′];X). Here T ′ may depend on
all the constants involved in the assumptions and on the distance between u0 and the boundary of W .
The mapping u0 → u(t) is Lipschitz continuous in the Z ′-norm, uniformly for t ∈ [0, T ′]. The solution is
obtained by the iteration (19).

5. Proof of the Existence Theorem

To apply the abstract result, we set X = Y0, Z = Z ′ = Y1, and Y = Y2. Moreover, we define f = 0 and

A(ρ, σ)(r, s) =
(

2(ρ+Q/A)
σ + 1/A

rx − (ρ+Q/A)2 − 1
(σ + 1/A)2

sx − χ(x, t)(σ + 1/A), rx

)
, (25)

where

χ(x, t) =

A∫

0

2(ρ+Q/A)
σ + 1/A

rx − (ρ+Q/A)2 − 1
(σ + 1/A)2

sx da. (26)

We set S = ( ∂
∂x + λ)2, where λ is any non-imaginary number. Finally, the norm N is associated with the

inner product

〈〈(r, s), (r′, s′)〉〉 =
〈

1
σ + 1/A

r, r′
〉

+
〈

1 − (ρ+Q/A)2

(σ + 1/A)3
s, s′

〉
, (27)

where 〈·, ·〉 denotes the ordinary inner product in X0.
We now need to verify the assumptions of the abstract existence result from the previous section.

Assumption 7 is vacuous and assumptions 1 and 3 are trivial. Next we note that X1 is a Banach algebra
and a multiplier in X0. From this we easily deduce assumptions 2 and 6. To see assumption 5, we note
that SAS−1 −A = (SA−AS)S−1, and an easy calculation shows that SA−AS is an operator involving
only derivatives with respect to x up to second order. Finally, an explicit calculation using integration
by parts in x and taking advantage of the fact that

∫
r da = 0 (and hence

∫ ∫
rχ da dx = 0) shows that

〈〈(r, s), A(ρ, σ)(r, s)〉〉 ≤ C〈〈(r, s), (r, s)〉〉. (28)

Assumption 4 now follows from the Lumer-Phillips theorem, once we establish that A(ρ, σ)+λ is onto for
λ large enough. This can be proved by a number of standard arguments. We can, for instance approximate
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A by operators Ah obtained by replacing the x derivative by a symmetric difference with step size h, and
then obtain uniform estimates for the resolvents of the approximate operators.

6. Other Boundary Conditions

So far, we have considered flows bounded by parallel walls. In this section, we shall see what happens
when one or both of the walls are replaced by free surfaces. Instead of a boundary condition of zero
normal velocity, we then have a boundary condition of zero pressure. We shall keep the requirement that
the normal component of H vanishes.

If one of the boundaries is a free surface, the pressure term vanishes from the horizontal momentum
balance. As a consequence, we obtain the system (12) without the term χ and without the integral con-
straint on c. This is simply a first order system which is well-posed if it is hyperbolic, and it turns out
to be always hyperbolic. For a full solution, we must, however, still recover the function Z(x, a, t). If one
boundary is a wall and the other a free surface, this is easy. Let us say the lower boundary is a wall, then
we simply have

Z(x, a, t) =

a∫

0

c(x, α, t) dα. (29)

If we have two free surfaces, then there is the pesky matter of how to determine the integration con-
stant. Indeed, it is this point where the problem may become ill-posed. The proper condition is obtained
by integrating the second component of the momentum equation: since the pressure is zero on both
surfaces, we should have ∫

vt + vvx + vvy + ayaxx − axaxy dy = 0. (30)

In the semi-Lagrangian variables, this condition becomes
A∫

0

c

(
∂

∂t
+ u

∂

∂x

)2

Z − Zxx

c
da = . . . (31)

where the dots indicate terms that are given in terms of c and first order derivatives of Z. We can now
set

Z(x, a, t) =

a∫

0

c(x, α, t) dα+ β(x, t), (32)

and for the integration constant β we obtain an equation of the form

βtt

A∫

0

c da+ 2βxt

A∫

0

uc da+ βxx

A∫

0

(u2c− 1
c
) da = . . . (33)

For a well-posed problem, we need this equation to be hyperbolic, i.e.⎛
⎝

A∫

0

c da

⎞
⎠

⎛
⎝

A∫

0

u2c− 1
c
da

⎞
⎠ <

⎛
⎝

A∫

0

uc da

⎞
⎠

2

. (34)

This is exactly the condition which guarantees stability in the special case of parallel shear flow [13]. In
the problem without magnetic field, the term 1/c is absent in the second integral on the left side, and
the Cauchy-Schwarz inequality guarantees that the equation is elliptic and the problem is ill-posed.

The case of free surface boundaries thus turns out to be much simpler, and we have a sharp charac-
terization of when the equations are well-posed. For the case of wall boundaries, our result is clearly not
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sharp; for instance, it does not imply Brenier’s result [1]. Indeed, in the simpler context of stability of par-
allel shear flow, Brenier’s result applies to the case where stability is guaranteed by Rayleigh’s criterion;
the result in this paper applies to the case where stability is guaranteed by Howard’s semicircle theorem.
Neither of them is a necessary condition for stability. A necessary condition is spectral stability, i.e. the
absence of unstable eigenvalues. This leads to Heisenberg’s criterion mentioned in the introduction, which
can easily be generalized to the MHD case [13]. However, even in the limited context of linear stability of
parallel shear flows, it is not well understood if, when and how spectral stability actually implies stability.
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