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1. Introduction

This paper is concerned with steady, periodic, two-dimensional gravity-waves of permanent shape and
velocity. Famous among these are the Stokes waves; symmetric waves with a surface profile which rises
and falls once in every minimal period [2,30,32,39,42]. Of particular interest are waves with vorticity.
Vorticity plays a crucial role for wave-current interactions and in the formation of wind-generated waves
[17,37,40]. The first mathematical construction of a rotational free-surface fluid flow is due to Gerstner
in the beginning of the 19th century [4,24], but it was first with the pioneering investigation [12] that
a modern theory of both large and small rotational waves was established. This theory was extended to
deep water waves in [26], to small-amplitude waves with surface tension in [45], and to large-amplitude
waves with surface tension and stratification in [47].

Many properties inherent in irrotational periodic gravity waves, such as the symmetry of the surface
profile [35,43], the analyticity of the streamlines [31], and the Stokes conjecture [1,36], carry over to
rotational water waves [7,11,8,9,44]. A notable exception from this rule arises when one examines flows
with internal stagnation, i.e., points where the velocity of a fluid particle coincides with that of the wave
itself. Even when the vorticity is only constant, critical layers with cat’s-eye vortices arise [20]. Those
are horizontal layers of closed streamlines separating the fluid into two disjoint regions, a behaviour that
is not possible for irrotational waves [5]. Recently, the existence of such waves with one critical layer as
solutions of the full Euler equations was established [46] (see also [15] and, for a study of stagnation points
in rotational flows, [13]). This constituted an important connection between the mathematical research
on exact Stokes waves and the study of waves with critical layers within the wider field of fluid dynamics
(cf. [3,29,34,38,41]).

In the very recent investigation [18] the theory from [46] was extended to the case of an affine vorticity
distribution, yielding the existence of exact small-amplitude gravity waves with arbitrary many critical
layers. It is our aim to give a qualitative, and to some extent also a quantitative, description of those
waves ([18] also contains a proof for the existence of exact bichromatic waves with vorticity, but those
are not considered here). This is a natural continuation of a line of recent research on the qualitative
features of various free-surface flows (see, e.g., [21], and the references [6,10,14,16,22,23,25,27,28] from
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Fig. 1. The possible zeros Y0 of the background current U0 as a (multivalued) function of the laminar vorticity α0; those
are the levels of the critical layers in the limit ε → 0. For each pair (α0, Y0) in the shaded region, and only for those, there

exists λ such that the bifurcation condition is fulfilled and U0 has precisely one zero at Y0. As α0 → ∞ we have
max Y0 → 1, but for any given α0 the stagnation points are bounded away from the surface as ε → 0. In contrast,

stagnation at the flat bed is possible whenever α0 ≥ −π2. For α0 < −1 − π2 more zeros appear and the situation is not as
transparent

Fig. 2. Two scenarios for wave class 1. Solid lines are streamlines, dotted lines isoclines [∞-isocline green, 0-isocline red],
and fat dots critical points [centers red, saddle points green]. Left: an uppermost critical layer with horizontal streamlines
cutting through it as in Theorem 5.2 ii.b), and a lower critical layer as in Theorem 5.2 ii.a). Right: two critical layers as in

Theorem 5.2 ii.a) separated by a horizontal streamline. Note that the rotational flow near the bottom evolves under a
“rigid lid”

that survey). In particular, the results here obtained could be used to give a description of the particle
trajectories within linear waves with critical layers.

The focus of this paper is, however, slightly different. Since the construction in [18] is by bifurcation
from laminar flows, for small waves it is possible to investigate the flow and give exact estimates on the
error (see Proposition 3.2). It turns out that waves with an affine vorticity distribution can be naturally
divided into four wave classes, and we give the velocity fields and the bifurcation relations in the different
cases. Theorem 5.2 provides the qualitative description of the wave class with multiple critical layers.
Although there is a rich variety of flow configurations we discern two main scenarios (which, essentially,
can be seen in Fig. 2). An interesting feature is that, apart form the region closest to the free surface,
the fluid motion takes place in vertically disconnected, completely flat regions (which is not the case in
waves with a single critical layer). In Theorem 4.1 we are also able to give a quantitative description of
the levels at which stagnation points, and therefore critical layers, can arise. Those results are graphically
captured in Fig. 1.

The disposition is as follows. Section 2 describes the governing equations, with Sect. 3 narrowing in
on laminar flows and the first-order perturbations thereof. In Sect. 4 we describe the four wave classes,
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Fig. 3. Numerical plots of wave class 1. Top left [α = −20, λ = 4.39, ε = 0.05]: the case of a common zero as in
Theorem 5.2 ii.b). The upper critical layer is magnified in the plot bottom left, where the three centers, the two saddle
points and the 0-isocline cutting through them are clearly visible. The bottom right plot shows the same flow near the
bottom with only two centers as in Theorem 5.2 ii.a). The situation is similar to that in Fig. 2, left, with the difference

that the ∞-isocline actually crosses the flat bed in this numerical plot. Right [α = −20, λ = 4.60, ε = 0.05]: as the zero of
the background current shifts, the horizontal 0-isocline climbs above the critical points in the upper critical layer and the

saddle nodes merge with one center each, turning the situation in Theorem 5.2 ii.b) to the one in Theorem 5.2 ii.a)
(colours indicate the strength of the velocity field)

and detail at which levels stagnation can occur in the different cases. Finally, Sect. 5 presents the main
structure of the interesting wave class with multiple critical layers, and some numerical examples are
given (cf. Fig. 2). For a quick glance at the waves, see Figs. 2 and 3.

2. Preliminaries

Let (x, y) be Cartesian position coordinates, and (u, v) = (ẋ, ẏ) the corresponding velocity field. Here

u := u(t, x, y), v := v(t, x, y),

are 2π-periodic in the x-variable and the vertical coordinate y ranges from the flat bed at y = 0 to the
(normalized) free water surface at y = 1 + η(t, x). Let p := p(t, x, y) denote the pressure, and g the gravi-
tational constant of acceleration. In the mathematical theory of steady waves it is common and physically
realistic to consider water as inviscid and of constant density [30,32]. The Euler equations

ut + uux + vuy = − px,

vt + uvx + vvy = − py − g,
(2.1a)
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then model the motion within the fluid. The equations

ux + vy = 0 and vx − uy = ω (2.1b)

additionally describes incompressibility and the vorticity ω, respectively.1 At the surface the conditions

p = p0 and v = ηt + uηx (2.1c)

separate the air from the water, p0 being the atmospheric pressure. Note that the second condition
in (2.1c) states that y(t) − η(t, x(t)) is constant over time, so that the same particles constitute the
interface at all times. Similarly, no water penetrates the flat bed, whence we have

v = 0 at y = 0. (2.1d)

The Equations (2.1) govern the motion of two-dimensional gravitational water waves on finite depth.
An important class of waves are travelling waves, propagating with constant shape and speed. Math-

ematically, such waves are solutions of (2.1) with an (x − ct)-dependence, where c > 0 is the constant
wavespeed, and we have restricted attention to waves travelling rightward with respect to the fixed
Cartesian frame. Since Dt(x− ct) = u− c, it is natural to introduce steady variables,

X := x− ct, U := u− c.

We shall also write Y for y and V for v to indicate when we are in the travelling frame. In the steady
variables the fluid occupies

Ωη := {(X,Y ) ∈ R
2 : 0 < Y < 1 + η(X)}. (2.2)

Define the relative pressure P through

p =: p0 + g(1 + P − Y ).

Since the term −gY measures the hydrostatic pressure distribution, the relative pressure is a measure of
the pressure perturbation induced by a passing wave. Altogether we obtain the governing equations

UUX + V UY = −gPX ,

UVX + V VY = −gPY ,

UX + VY = 0,
VX − UY = ω,

in Ωη (2.3a)

with boundary conditions

P = η,

V = UηX ,
on Y = 1 + η(X), (2.3b)

and

V = 0, on Y = 0. (2.3c)

The problem of finding (U, V, P, η) such that (2.3) is satisfied is known as the steady water-wave problem.
Since η is an a priori unknown, (2.3) is a free-boundary problem.

1This sign convention for the vorticity is consistent with [18]. The reader should be advised that the vorticity may also
appear with the opposite sign in the literature.
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The α-Problem

When η ∈ C3(R), and u, v ∈ C2(Ωη), one can use the fact that the velocity field is divergence-free (cf.
(2.1b)) to introduce a stream function ψ ∈ C3(Ω) with

ψX := −V and ψY := U. (2.4)

Define the Poisson bracket {f, g} := fXgY − fY gX .

Proposition 2.1. (Stream-function formulation) The water-wave problem (2.3) is equivalent to that

Δψ = −ω, in Ωη,
{ψ,Δψ} = 0, in Ωη,

|∇ψ|2 + 2gy = C, on Y = 1 + η(X),
ψ = m1, on Y = 1 + η(X),
ψ = m0, on Y = 0,

(2.5)

for some constants m0,m1, and C.

Proof. Identify ψ with U and V through (2.4). Given the regularity assumptions and that Ωη is simply
connected, we see that UX + VY = 0 is equivalent to the existence of ψ. The relations P = η in (2.3b)
and V = 0 in (2.3c) mean that ψ is constant on the surface and on the flat bed, just as VX − UY = −ω
means that Δψ = −ω. It remains to show how the equations of motion relate to the Bernoulli surface
condition and the bracket condition.

Given (2.3) one can eliminate the relative pressure by taking the curl of the Euler equations. That
yields

UΔV − VΔU = 0. (2.6a)

Moreover, by differentiating the relation P = η along the surface, and using (2.3a), we find that

U2 + V 2 + 2gY = C, Y = 1 + η(X). (2.6b)

Hence (2.5) holds. Contrariwise, if (U, V ) fulfil (2.6a) and (2.6b), one can define P up to a constant
through (2.3a), and, with the right choice of constant, P satisfies (2.3b). �

Consider now the case when ψY may vanish, but ΔψY /ψY can be extended to a continuous function
on Ωη, i.e.,

α :=
ΔψY

ψY
∈ C0(Ωη) (2.7)

One can then exchange the bracket condition {ψ,Δψ} = 0 in (2.5) for

(Δ − α)∇ψ = 0. (2.8)

When α is a constant there exists an affine vorticity function γ with γ′ = −α, meaning that

Δψ = −γ(ψ) = αψ + β, β ∈ R.

Observe that this does not rule out the existence of stagnation points ∇ψ = 0. Without loss of generality
we may take β to be zero; changing it corresponds to changing m0 and m1. The choice α = 0 models
constant vorticity and was investigated in [20,46]. The next natural step is a constant but non-vanishing
α. That is the setting of this investigation.
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3. Laminar Flows and Their First-Order Perturbations

Laminar flows are solutions of the steady water-wave problem (2.3) that satisfy η(X) = 0. Those are the
running streams for which

U(X,Y ) = U0(Y ) and V = P = η = 0.

We shall require that U0 ∈ C2([0, 1],R). The function U0 is the (rotational) background current, upon
which we will impose a small disturbance: the system (2.3) will be linearized at a point (U, V, P, η) =
(U0, 0, 0, 0), and the solutions of the constructed linear problem analyzed. We thus assume that U, V, P
and η allow for expansions of the form

f = f0 + εf1 + O(ε2), as ε → 0. (3.1)

Here U0 is a background current as described above, and

V0 = P0 = η0 = 0.

By inserting these expansions into (2.3), and retaining only first-order terms in ε, we obtain the linearized
system

∂XU1 + ∂Y V1 = 0,
U0∂XU1 + V1∂Y U0 = −∂XP1,

U0∂XV1 = −∂Y P1,

in R × (0, 1) (3.2a)

with boundary conditions

V1 = U0∂Xη1,

P1 = η1,
on Y = 1, (3.2b)

as well as

V1 = 0 on Y = 0. (3.2c)

The following result allows us to eliminate the relative pressure from (3.2).

Proposition 3.1. Let the background current U0 be given. Under the condition that
π∫

−π

η1(X) dX = 0 and

π∫

−π

U1(X,Y ) dX = 0, Y ∈ [0, 1], (3.3)

the solutions (U1, V1, P1, η1) of (3.2) are in one-to-one-correspondence with the solutions V1 of

U0ΔV1 = U ′′
0 V1, 0 < Y < 1,

(1 + U0U
′
0)V1 = U2

0∂Y V1, Y = 1,
V1 = 0, Y = 0.

(3.4)

Proof. Taking the curl of the linearized Euler equations, and differentiating p = η along the linearized
surface Y = 1 yields (3.4). If (U1, V1, P1, η1) is a solution of (3.2) then V1 fulfills (3.4), and if V1 is a
solution of (3.4), then one can find (U1, P1, η1) such that (3.2) holds. One defines U1 through the first
equation in (3.2a), and then P1 through the two last equations in (3.2a). The linear surface η1 can be
determined by (3.2b), and the boundary condition at Y = 1 in (3.4) guarantees that (3.2b) is consistent
with (3.2a). Notice, however, that for a given V1, a solution U1 is only determined modulo functions f(y),
and η1 up to a constant. We shall therefore require that the periodic mean of the first-order solution
equals that of the running stream, meaning that (3.3) holds. In particular, this implies that the solution
(U1, V1, P1, η1) of (3.2) is unique with respect to the solution V1 of (3.4). �
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Laminar Vorticity

Now, suppose that U ′′
0 /U0 can be extended to a continuous function on [0, 1], and introduce the laminar

vorticity

α0 :=
U ′′

0

U0
∈ C([0, 1],R). (3.5)

Let (cf. (3.4))

μ1 := 1 + U0(1)U ′
0(1) and μ2 := U2

0 (1).

According to Proposition 3.1 we may then consider the system

ΔV1 = α0V1, 0 < Y < 1,
μ1V1 = μ2∂Y V1, Y = 1,
V1 = 0, Y = 0.

(3.6)

In our case α = α0 ∈ R, and constant vorticity is captured by α0 = 0.

Relation to Exact Nonlinear Solutions

In what comes we will find and investigate four solution classes of (3.6) and thus of (3.2). Any exact solu-
tion of the steady water-wave problem (2.5) with Δψ = αψ that allows for an expansion as in (3.1) and
adheres to the normalization (3.3) will satisfy the velocity fields here investigated up to an error of order
ε2 in the appropriate space. A particular case (wave class 1 on page 414) corresponds to a class of solutions
found in [18] by linearizing around a running stream with background current U0(Y ) = a sin(θ0(Y −1)+λ).
Here θ0 =

√|α0| and λ ∈ R is a parameter. Those solutions do not necessarily satisfy the normalization
(3.3); while

∫ π

−π
η1 dX = 0 the strength of the first-order background current may change with ε. This is

the reason why a depends on ε in the following proposition, which is a consequence of the results from
[18]. In accordance with (2.2) we let, for any small and positive constant δ, the set Ω−δ denote the part
of the fluid domain where 0 < Y < 1 − δ.

Proposition 3.2. Let ε �→ (ψ, η) ∈ C2(Ωη) × C2(R) be a solution curve found in [18] by bifurcation
from a one-dimensional kernel of minimal period 2π. Pick 0 < δ � 1. For any ε small enough, there
exists a = a(ε) such that the velocity field (U, V ) = (ψY ,−ψX) coincides with that of wave class 1 with
U0(Y ) = a(ε) sin(θ0(Y − 1) + λ) up to addition of terms O(ε2) in C2(Ω−δ). The map ε �→ a(ε) is smooth
and a(0) fulfils the bifurcation condition (4.3).

4. Wave Classes

Even when α0 is a constant, the linear system (3.6) contains a rich variety of solutions, including asym-
metric ones (cf. [19]). We shall see that restricting attention to the first Fourier mode of V1 still produces
a wide range of linear waves. We thus search for a solution of the form

V1 = sin(X)f(Y ), f ∈ C2([0, 1],R). (4.1)

The ansatz (4.1) reduces the system (3.6) to a (trivial) Sturm–Liouville problem:

− f ′′ + (α0 + 1)f = 0,
μ1f(1) − μ2f

′(1) = 0, (4.2)
f(0) = 0,
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with α0 ∈ R, μ2
1 + μ2

2 > 0, and μ2 ≥ 0. Since the case α0 = 0 has already been treated in [20] we restrict
our attention to α0 �= 0, corresponding to non-constant vorticity. Define

θ0 :=
√

|α0| and θ1 :=
√

|α0 + 1|.
Using the Sturm–Liouville problem (4.2) to determine V , and then U via Proposition 3.1, we find that
the solutions belong to one of the following four classes:

Wave class 1 (Laminar vorticity α0 < −1). The solutions of (4.2) are generated by f(Y ) = sin(θ1Y ) with

U0(Y ) = a sin(θ0(Y − 1) + λ),
a−2 = sin2 (λ)(θ1 cot(θ1) − θ0 cot(λ)), (4.3)

λ ∈
(

arccot
(
θ1 cot(θ1)

θ0

)
, π

)
.

Up to the first order in ε,

U(X,Y ) = U0(Y ) + εθ1 cosX cos(θ1Y ),
(4.4)

V (X,Y ) = ε sinX sin(θ1Y ).

Wave class 2 (Laminar vorticity α0 = −1). The solutions of (4.2) are generated by f(Y ) = Y with

U0(Y ) = a sin(Y − 1 + λ),
(4.5)

a−2 = sin2(λ)(1 − cot(λ)), λ ∈
(π

4
, π

)
.

Up to the first order in ε,

U(X,Y ) = U0(Y ) + ε cos(X),
(4.6)

V (X,Y ) = εY sin(X).

Wave class 3 (Laminar vorticity −1 < α0 < 0). The solutions of (4.2) are generated by f(Y ) = sinh(θ1Y )
with

U0(Y ) = a sin(θ0(Y − 1) + λ),
a−2 = sin2 (λ)(θ1 coth(θ1) − θ0 cot(λ)), (4.7)

λ ∈
(

arccot
(
θ1 coth(θ1)

θ0

)
, π

)
.

Up to the first order in ε,

U(X,Y ) = U0(Y ) + εθ1 cosX cosh(θ1Y ),
(4.8)

V (X,Y ) = ε sinX sinh(θ1Y ).

Wave class 4 (Laminar vorticity α0 > 0). The solutions of (4.2) are generated by f(Y ) = sinh(θ1Y ) with

U0(Y ) = a sinh(θ0(Y − 1)) + λ cosh(θ0(Y − 1)),
(4.9)

a =
λ2θ1 coth(θ1) − 1

λθ0
, λ �= 0.

Up to the first order in ε,

U(X,Y ) = U0(Y ) + εθ1 cosX cosh(θ1Y ),
(4.10)

V (X,Y ) = ε sinX sinh(θ1Y ).
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Stagnation

The explicit solutions allow us to determine the possible levels of stagnation. From the following result
one obtains Fig. 1.

Theorem 4.1. (Stagnation) The following hold for the background current U0 for the wave classes 1–4:
W 1. For any Y0 ∈ [0, 1) there exist α0 < −1 and λ such that U0(Y0) = 0, and the number of zeros of U0

in [0, 1] can be made arbitrarily large with the appropriate choice of α0.
In the interval −1 − π2 < α0 < −1, the background current U0 has one zero at Y0 = 1 − λ/θ0 for
arccot(θ1 cot(θ1)/θ0) < λ ≤ θ0, and none for λ ∈ (θ0, π).

W 2. U0 has one zero at Y0 = 1 − λ for λ ∈ (π/4, 1] and none for λ ∈ (1, π).
W 3. U0 has one zero at Y0 = 1 − λ/θ0 for arccot(θ1 coth(θ1)/θ0) < λ ≤ θ0 and none for λ ∈ (θ0, π).
W 4. U0 has one zero at Y0 = 1−θ−1

0 arctanh
(

λ2θ0
λ2θ1 coth(θ1)−1

)
for λ2 ≥ (θ1 coth(θ1)−θ0 coth(θ0))−1 and

none for other λ �= 0.

Proof. The analysis is carried out separately for each wave class.
W 1. The function

α0 �→ θ1 cot(θ1)
θ0

,

spans the real numbers (it blows up at α0 = −1 − n2π2, n ∈ N). We thus see from (4.3) that the set
(arccot(θ1 cot(θ1)/θ0), π) may be empty. But for any ε > 0 and n ∈ N, there exists δ > 0 such that if
α0 < −1 −n2π2 < α0 + δ, then (4.3) is solvable for all λ ∈ (ε, π). The number of zeros is at least as large
as 
θ0/π� → ∞ as α0 → −∞. The last proposition then follows by checking that U0 can have at most
one zero Y0 for −1 − π2 < α < −1.

W 2. Consider (4.5). The function

λ �→ sin(λ)(sin(λ) − cos(λ)) > 0 exactly when
π

4
< λ < π,

and since it is bounded, the amplitude a is bounded away from 0. There thus exist λ and Y0 ∈ [0, 1] such
that U0(Y0) = 0 if and only if Y0 = 1 − λ ∈ [0, 1 − π

4 ].
W 3. The right-hand side of (4.7) is positive when

arctan
(

θ0
θ1 coth(θ1)

)
< λ < π. (4.11)

To have Y0 ∈ [0, 1] with U0(Y0) = 0 necessarily λ ∈ [0, θ0]. The assertion follows from that θ0 is strictly
larger than the lower bound in (4.11).

W 4. The background current has at most one zero, and to see what zeros there are in [0, 1] we consider

tanh(θ0(Y − 1)) = −λ

a
=

λ2θ0
1 − λ2θ1 coth(θ1)

.

For Y0 ∈ [0, 1) the left-hand side is negative, so that we must at least have λ2 > (θ1 coth(θ1))−1, and a
closer look yields that λ2 ≥ (θ1 coth(θ1)− θ0 coth(θ0))−1 is required to match Y ≥ 0. The right-hand side
is then an increasing function of λ2, and

− tanh(θ0) <
λ2θ0

1 − λ2θ1 coth(θ1)
≤ −θ0
θ1 coth(θ1)

.

Since also arctanh is an increasing function, the question reduces to whether

0 ≤ Y0 < 1 − 1
θ0

arctanh
(

θ0
θ1 coth(θ1)

)
.

The right-hand side is positive, strictly increasing in α0, and tends to 1 as α0 → ∞. �
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5. Hamiltonian Formulation and Phase-portrait Analysis

In the analysis to come the region of interest is

0 ≤ Y ≤ 1 ± O(ε) cos(X),

where the sign indicates that for each of the wave classes 1–4 one finds that X = 0 may be either a crest
or a trough, depending on the signs of a and λ. Recall that (u, v) = (ẋ, ẏ). In view of that X = x − ct
and U = u− c, one similarly obtains

(Ẋ, Ẏ ) = (U, V ).

The paths (X(t), Y (t)) describe the particle trajectories in the steady variables, and any such solution is
entirely contained in one streamline.

Proposition 5.1. (Hamiltonian formulation) The wave classes 1–4 all admit a Hamiltonian

H(X,Y ) := ε cos(X)G(Y ) +

Y∫

0

U0(s) ds, (5.1)

with

G(Y ) :=

⎧⎪⎨
⎪⎩

sin(θ1Y ), for wave class 1,
Y, for wave class 2,
sinh(θ1Y ), for wave classes 3–4.

(5.2)

The classes 2–4 can be dealt with as the class α = 0 (constant vorticity) in [20,46], and do not yield
any new qualitative results. Indeed, their appearance and the analysis thereof is captured within that of
the interesting class 1.

Theorem 5.2. (Wave class 1) The following hold for small-amplitude waves of wave class 1 (ε sufficiently
small).
i. The fluid motion is divided into vertical layers, each separated from the others by flat sets of stream-

lines {(X,Y∗) : sin(θ1Y∗) = 0}.
ii. For each Y∗ with U0(Y∗) = 0 there is a smooth connected part of the ∞-isocline passing through

all points (π/2 + nπ, Y∗), n ∈ Z, along which centers (cats-eye vortices) and saddle points alternate
in one of the following ways:
a) when Y∗ is not a common zero of U0 and sin(θ1·) centers appear at every other X = nπ and

saddle points at every other (n+ 1)π;
b) when Y∗ is a common zero of U0 and sin(θ1·) centers appear at X = nπ and saddle points at

π/2 + nπ.

Remark 5.3. Starting with the situation in ii.b) one might fix ε and α, and then vary the zero of the back-
ground flow. The saddle point at X = π/2 then continuously and monotonically approaches the center at
either X = 0 or X = π, eventually merging with it and wiping it out.

Proof. It follows from (5.1) that the fluid motion is 2π-periodic and symmetric around the vertical X = 0
axis. It therefore suffices to investigate the strip 0 ≤ X ≤ π.

i) The velocity field is

Ẋ = U0(Y ) + εθ1 cos(X) cos(θ1Y ),

Ẏ = ε sin(X) sin(θ1Y ),

whence the 0-isocline, defined as the set where Ẏ = 0, is given by the vertical axes X = 0 mod π
and the horizontal lines where sin(θ1Y ) = 0.
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ii) Let Y∗ be a zero of U0. Then (π/2, Y∗) belongs to the ∞-isocline {(X,Y ) : Ẋ = 0}. Since U ′
0(Y∗) =

aθ0 �= 0, we have that

DY Ẋ = U ′
0(Y ) − εθ21 cos(X) sin(θ1Y )

is nonzero at (π/2, Y∗). The implicit function theorem allows us to locally parameterize the ∞-isocline as
the graph of a smooth function Y∞(X) with slope

DX Y∞ =
εθ1 sin(X) cos(θ1Y )

U ′
0(Y ) − εθ21 cos(X) sin(θ1Y )

. (5.3)

A continuity argument yields that, for ε small enough, Y∞ extends to a 2π periodic function on R,
strictly rising and falling between the zeros of sin(X), and with |Y∞ − Y∗| = O(ε). Hence U ′

0(Y∞) �= 0.
At X = nπ, n ∈ Z, the graph of Y∞ intersects the 0-isocline. At those critical points, the Hessian of the
Hamiltonian is given by

D2H(nπ, Y∞|X=nπ) =
[

(−1)n+1ε sin(θ1Y∞) 0
0 (−1)n+1εθ21 sin(θ1Y∞) + U ′

0(Y∞)

]∣∣∣∣
X=nπ

, (5.4)

There are now two cases.

a) When sin(θ1·) and U0 have No Common Zero

From |Y∞ − Y∗| = O(ε) we find that sin(θ1Y∞) is non-vanishing and thus of constant sign. For ε small
enough, the Hessian (5.4) thus has one negative and one positive eigenvalue at every other X = nπ, and
two of the same sign at every other X = (n + 1)π in between. The assertion ii.a) then follows from the
Morse lemma [33].

b) When sin(θ1·) and U0 have a Common Zero

In this case there are additional critical points at X = π/2+nπ, n ∈ Z, all similar to the one at X = π/2.
There

D2H(π/2, Y∗) =
[

0 −εθ1 cos(θ1Y∗)
−εθ1 cos(θ1Y∗) U ′

0(Y∗)

]
,

with one strictly positive and one strictly negative eigenvalue. Hence, the critical point (π/2, Y∗) is always
a saddle point.

We want to show that the Hessian (5.4) has two eigenvalues of the same sign at all critical points
(nπ, Y∞|X=nπ). Since the slope of Y∞ changes direction exactly at X = nπ it follows that also in the case
when U0(Y∗) = sin(θ1Y∗) = 0 we have sin(θ1Y∞|x=nπ) �= 0, but with

sgn sin(θ1Y∞|X=nπ) = − sgn sin(θ1Y∞|X=nπ),

all given that ε is small enough. We now claim that −ε sin(θ1Y∞|X=0) and U ′
0(Y∞|X=0) have the same

sign (cf. (5.4)). The slope of Y∞|X∈(0,π) is determined by the sign of cos(θ1Y∞)/U ′
0(Y∞) in the same

interval. We have cos(θ1·) > 0 when sin(θ1·) is increasing, and contrariwise. The assertion now follows
from that sin(θ1Y∗) = 0. �
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[35] Okamoto, H., Shōji, M.: The Mathematical Theory of Permanent Progressive Water-Waves vol. 20 of Advanced Series

in Nonlinear Dynamics. World Scientific Publishing, River Edge (2001)
[36] Plotnikov, P.I.: Proof of the Stokes conjecture in the theory of surface waves. Dinamika Sploshn. Sredy 57, 41—76

(1982) (in Russian); English transl.: Stud. Appl. Math. 108, 217–244 (2002)
[37] Saffman, P.G.: Dynamics of vorticity. J. Fluid Mech. 106, 49–58 (1981)
[38] Saffman, P.G.: Vortex Dynamics. Cambridge University Press, London (1995)
[39] Stokes, G.G.: On the theory of oscillatory waves. Trans. Cambr. Phil. Soc. 8, 441–455 (1847)



Vol. 14 (2012) Critical-Layer Water Waves 419

[40] Thomas, G., Klopman, G.: (1997) Wave-current interactions in the near-shore region. In: J. Hunt (eds.) Gravity Waves
in Water of Finite Depth. Advances in Fluid Mechanics, Computational Mechanics Publications, Southhampton,
pp 255–319 (1997)

[41] Thorpe, S.A.: An experimental study of critical layers. J. Fluid Mech. 103, 321–344 (1981)
[42] Toland, J.F.:Stokes waves. Topol. Methods Nonlinear Anal. 7 [8] 1–48 [412–414] (1996 [1997])
[43] Toland, J.F.: On the symmetry theory for Stokes waves of finite and infinite depth. in Trends in applications of math-

ematics to mechanics (Nice, 1998). Chapman & Hall/CRC Monogr. In: Surv. Pure Appl. Math., vol. 106, Chapman &
Hall/CRC, Boca Raton, FL, 2000, pp. 207–217

[44] Varvaruca, E.: On the existence of extreme waves and the Stokes conjecture with vorticity. J. Differ. Equ. 246,
4043–4076 (2009)

[45] Wahlén, E.: Steady periodic capillary-gravity waves with vorticity. SIAM J. Math. Anal. 38, 921–943 (2006)
[46] Wahlén, E.: Steady water waves with a critical layer. J. Differ. Equ. 246, 2468–2483 (2009)
[47] Walsh, S.: Steady periodic gravity waves with surface tension. (2009). arXiv:0911.1375

Mats Ehrnström, Joachim Escher
Institut für Angewandte Mathematik
Leibniz Universität Hannover
Welfengarten 1
30167 Hannover
Germany
e-mail: ehrnstrom@ifam.uni-hannover.de
e-mail: escher@ifam.uni-hannover.de

Gabriele Villari
Dipartimento di Matematica
Viale Morgagni 67/A
50134 Firenze
Italy
e-mail: villari@math.unifi.it

(accepted: April 10, 2011; published online: August 13, 2011)


	Steady Water Waves with Multiple Critical Layers: Interior Dynamics
	1. Introduction
	2. Preliminaries
	The α-Problem

	3. Laminar Flows and Their First-Order Perturbations
	Laminar Vorticity
	Relation to Exact Nonlinear Solutions

	4. Wave Classes
	Stagnation

	5. Hamiltonian Formulation and Phase-portrait Analysis
	a) When   and U0 have No Common Zero
	b) When sin(theta1cdot) and U0 have a Common Zero

	Acknowledgments
	References


