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Abstract. In this paper we study a mathematical model for the dynamics of vesicle membranes in a 3D incompressible
viscous fluid. The system is in the Eulerian formulation, involving the coupling of the incompressible Navier–Stokes system
with a phase field equation. This equation models the vesicle deformations under external flow fields. We prove the local in
time existence and uniqueness of strong solutions. Moreover, we show that, given T > 0, for initial data which are small (in
terms of T ), these solutions are defined on [0, T ] (almost global existence).
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1. Some Background and Statement of the Main Results

The study of hydrodynamical properties of vesicle membranes is important for many applications, in
particular in biological and physiological subjects. A vesicle is an elastic membrane containing a liquid
and surrounded by another liquid. Such a vesicle can be found in nature or it can be created in laboratory.
They can store and/or transport substances. Modeling vesicles is also a first step in order to study and
understand the behavior of more complex cells such as red cells. Recent papers have been devoted to
both experimental studies, see for instance [7] or [8], to the modeling and finally to the mathematical
analysis of the obtained models, see for instance [3–6, 10].

To model the elastic deformation of the vesicle in the fluid is not an easy task. One possibility could
be to consider equations of elasticity for the membrane and the Navier–Stokes equations outside the
membrane. However this model could be very difficult to study and to simulate numerically due to the
free-boundary corresponding the interfaces between the fluid and the vesicle. Moreover, in this coupling,
the equations of elasticity are written in Lagrangian variables whereas the equations for the fluid are writ-
ten in Eulerian variables. Another approach to model this vesicle–fluid interaction is to use the phase-field
theory: the membrane of the vesicle is described by a phase field function ϕ. In this model, ϕ takes value
+1 inside the vesicle membrane and −1 outside, with a thin transition layer of width characterized by a
small positive parameter ε. The fluid is modeled by the incompressible Navier–Stokes equations written
in the whole domain containing the fluid and the vesicle.

We consider the model introduced in [3], based on a phase-field approach and which is described by the
following system of equations of unknowns u (the velocity of the fluid) and ϕ (the phase field function):

The work of the three authors was partially supported by ANR Grant BLAN07-2 202879 and by ANR Grant
09-BLAN-0213-02.



178 Y. Liu et al. JMFM

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut + u · ∇u = ∇p+ νΔu +W (ϕ)∇ϕ in [0, T ] × Ω,
∇ · u = 0 in [0, T ] × Ω,
ϕt + u · ∇ϕ = −γW (ϕ) in [0, T ] × Ω,
u(0, x) = u0(x) in Ω,
u(t, x) = 0 on [0, T ] × ∂Ω,
ϕ(0, x) = ϕ0(x) in Ω,
ϕ(t, x) = −1 on [0, T ] × ∂Ω,
Δϕ(t, x) = 0 on [0, T ] × ∂Ω.

(1.1)

In the above equations we denote:

W (ϕ) = kg(ϕ) +M1[V (ϕ) − α] +M2[B(ϕ) − β]f(ϕ),

= kεΔ2ϕ− k

ε
Δ(ϕ3) +

k

ε
Δϕ+

k

ε2
(3ϕ2 − 1)f(ϕ)

+M1[V (ϕ) − α] +M2[B(ϕ) − β]f(ϕ), (1.2)

with

V (ϕ) =
∫

Ω

ϕ dx, (1.3a)

B(ϕ) =
∫

Ω

(
ε

2
|Δϕ|2 +

1
4ε

(ϕ2 − 1)2
)

dx, (1.3b)

f(ϕ) = −εΔϕ+
1
ε
(ϕ2 − 1)ϕ, (1.3c)

g(ϕ) = −Δf(ϕ) +
1
ε2

(3ϕ2 − 1)f(ϕ). (1.3d)

where ε is a small positive parameter depending on the thickness of the membrane of the vesicle. The
constant k > 0 is the bending modulus of the vesicle. The constant α is defined by α =

∫

Ω
ϕ0dx. Note

that α < 0 if the vesicle is “small” compared to the remaining part of Ω. The constant β represents the
total surface area of the vesicle. Moreover, M1 and M2 are two penalty constants used to enforce the
volume and the surface of the vesicle to remain constant. More precisely, in this model, the energy of
the vesicle is

E(ϕ) :=
k

2ε

∫

Ω

|f(ϕ)|2 dx+
1
2
M1[V (ϕ) − α]2 +

1
2
M2[B(ϕ) − β]2,

where the first term in the right-hand side of the above formula
is an approximation of the Helfrich bending elasticity energy of the membrane, whereas B(ϕ) is an
approximation of the surface area of the vesicle. Formally, the term W (ϕ) is obtained by differentiating
E with respect to ϕ. For more details on the derivation of the above equations, see [3, 4].

The well-posedness of the system (1.1) has been first studied in [3]. In this work the authors have
obtained the existence of weak solutions by using Galerkin’s method, in the flavor of the classical tech-
niques introduced in [2]. In the same work, the uniqueness of solutions has been proved in a class smaller
than the one used for existence. The aim of the present work is to prove the local in time existence and
uniqueness of a stronger concept of solution. Note that our existence and uniqueness results are valid in
the same spaces. We also show the existence of almost global in time strong solutions provided that the
initial data and the constant (μ(Ω) + α)2 are small enough.

In order to give the precise statement of our main result, we need some notations. In the remaining
part of this work, Ω ⊂ R

3 is an open bounded set with smooth boundary ∂Ω. We set

E(t) = ‖u(t)‖2
H1(Ω) + ‖ϕ(t)‖2

H2+ 3
8 (Ω)

. (1.4)

Our first main result is:
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Theorem 1.1. (Local existence and uniqueness of strong solutions) Suppose that
{

u0 ∈ H1
0 (Ω), ∇ · u0 = 0 in Ω,

ϕ0 ∈ H̃2+ 3
8 (Ω).

(1.5)

Then there exists T = T
(
‖u0‖H1(Ω), ‖ϕ0‖

H2+ 3
8 (Ω)

)
> 0 such that (1.1) has a unique maximal strong

solution:
⎧
⎨

⎩

u ∈ L2(0, T ;H2(Ω)) ∩ C([0, T ];H1(Ω)) ∩H1(0, T ;L2(Ω)),
p ∈ L2(0, T ;H1(Ω)),
ϕ ∈ L2(0, T ; H̃4+ 3

8 (Ω)) ∩ C([0, T ]; H̃2+ 3
8 (Ω)) ∩H1(0, T ;H

3
8 (Ω)).

(1.6)

Moreover, one of the following results holds:

1. T = +∞,
2. lim

t→T −
E(t) = +∞.

The spaces H̃s(Ω) used above are closed subspaces of the classical Sobolev spaces Hs(Ω). We refer to
the next section for the precise definition of these spaces (see (2.4)).

Remark 1.2. The power 3/8 appearing in the spaces for ϕ comes from the estimates on the nonlinear
terms. More precisely, one of the most difficult terms to handle is Δ2ϕ∇ϕ, which appears in the right-
hand side of the Navier–Stokes equations. To obtain strong solutions we need L2 space-time estimates
for this term. This fact suggests to work with ϕ in

L2(0, T ; H̃4+s(Ω)) ∩ C([0, T ]; H̃2+s(Ω)) ∩H1(0, T ;Hs(Ω)),

with s ≥ 1
4 (see the proof of Lemma 4.3 and more precisely inequality (4.8)). In fact, to carry out the

fixed point procedure, we need s > 1
4 .

On the other hand, we can not consider s too large. In fact, to prove the existence of strong solution,
we use a fixed point strategy where all the nonlinear terms are put in the right-hand sides. Thus a first
step is to solve a linear problem with given right-hand sides: these are Corollaries 2.7 and 2.8. However
these right-hand sides coming from the nonlinear terms do not satisfy the compatibility conditions (at
the boundary) needed to obtain very regular solutions. In particular, the right-hand side for ϕ could not
be in L2(H̃s) for s ≥ 1

2 which implies the restriction s < 1
2 .

For all these considerations, it appears that we need to impose 1
4 < s < 1

2 . We take here s = 3
8 but all

the theory should work for s in the interval (1
4 ,

1
2 ).

Remark 1.3. In [3], the authors prove the existence of weak solution of (1.1) with the following regularity:

u ∈ L2(0, T ;V (Ω)) ∩W 1, 4
3 (0, T ;V (Ω)′)

and

ϕ ∈ L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)).

Our second main result states that if the initial data and the volume of the vesicle are small in a
certain sense, then we have almost global existence of strong solutions:

Theorem 1.4. (Almost global existence of strong solutions) Given T > 0, there exists q = q(T ) > 0
such that if

(μ(Ω) + α)2 + ‖u0‖2
H1(Ω) + ‖ϕ0‖2

H2+ 3
8 (Ω)

≤ q, (1.7)

then the maximal strong solution (see Theorem 1.1) associated with (u0, ϕ0) and α exists in the interval
[0, T ].
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Remark 1.5. We do not obtain a result of global in time existence. The main reason for this comes from
the definition of W (ϕ) and more precisely from the term M1 [V (ϕ) − α]. Indeed, when dealing with the a
priori estimates (Sect. 3), this term gives some constants in the right-hand side which can not be absorbed
by the viscous term as for the classical Navier–Stokes equations (see (3.10) for details).

2. Notation and Preliminaries

We first recall for later use some interpolation inequalities involving Sobolev spaces, see [9, pp.22–23].

Proposition 2.1. Assume s1 > 0, s2 > 0 and set s = (1 − ϑ)s1 + ϑs2 for ϑ ∈ (0, 1). Then there exists
C = C(ϑ, s1, s2,Ω) such that, for evey u in Hs1(Ω) ∩Hs2(Ω), we have

‖u‖Hs(Ω) ≤ C‖u‖1−ϑ
Hs1 (Ω)‖u‖ϑ

Hs2 (Ω).

Remark 2.2. In particular for s1 = 4 + 3
8 , s2 = 2 + 1

4 and ϑ = 16
17 , we obtain

‖φ‖H4(Ω) ≤ ‖φ‖
H4+ 1

4 (Ω)
≤ C‖φ‖ 16

17

H4+ 3
8 (Ω)

‖φ‖ 1
17

H2+ 1
4 (Ω)

. (2.1)

For s1 = 2, s2 = 1 and ϑ = 3
4 , we obtain

‖u‖
H1+ 3

4 (Ω)
≤ C‖u‖ 3

4
H2(Ω)‖u‖

1
4
H1(Ω) ≤ C‖u‖ 16

17
H2(Ω)‖u‖

1
17
H1(Ω). (2.2)

The following proposition will be used to estimate the nonlinear terms.

Proposition 2.3. (Banach Algebra) If s > 3
2 , then Hs(Ω) is a Banach Algebra. More precisely, there exists

a positive constant C = C(Ω) such that for all u ∈ Hs(Ω) and v ∈ Hs(Ω), we have uv ∈ Hs(Ω) and

‖uv‖Hs(Ω) ≤ C‖u‖Hs(Ω)‖v‖Hs(Ω).

For the proof of the above proposition, we refer to [9, pp.45–46].
Let A be the Dirichlet Laplacian in Ω, that is:

A : D(A) = H2(Ω) ∩H1
0 (Ω) → L2(Ω), u �→ −Δu. (2.3)

It is well-known that A is a positive self-adjoint operator and we set

H̃s(Ω) = D(A s
2 ).

Using classical results on A and on interpolation theory (see, for instance, [1, pp.111–115]), we have the
following characterization of H̃s(Ω), for s− 1

2 /∈ N:

H̃s(Ω) =
{

u ∈ Hs(Ω); (−Δ)ju = 0 on ∂Ω, for 0 ≤ 2j < s− 1
2
, j ∈ N

}

. (2.4)

In particular, we use in this paper the spaces

H̃
3
8 (Ω) = H

3
8 (Ω),

H̃2+ 3
8 (Ω) = H2+ 3

8 (Ω) ∩H1
0 (Ω),

H̃4+ 3
8 (Ω) =

{
u ∈ H4+ 3

8 (Ω) ; u = Δu = 0 on ∂Ω
}
.

Proposition 2.4. The space H̃s(Ω) is a closed subspace of Hs(Ω). Moreover, if we set

‖φ‖H̃s(Ω) :=
∥
∥A

s
2φ

∥
∥

L2(Ω)
,

then we have the following inequality

‖φ‖Hs(Ω) ≤ C‖φ‖H̃s(Ω) (φ ∈ H̃s(Ω)). (2.5)

For the proof of the above proposition, we refer, for instance, to [9, pp. 31–33]. The inequality (2.5)
comes from elliptic regularity of A and from classical interpolation theorems.
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Remark 2.5. If there is no confusion, we simply denote Hs(Ω) by Hs and H̃s(Ω) by H̃s. We also denote
L2(0, T ;Hs(Ω)) and C([0, T ];Hs(Ω)) by L2(Hs) and C(Hs), respectively.

We also recall some classical notations from [2]. Define

V (Ω) =
{
u ∈ (C∞

0 (Ω))3 | ∇ · u = 0
}
.

Let H(Ω) be the closure of V (Ω) in [L2(Ω)]3. We denote by V (Ω) the closure of V (Ω) in [H1
0 (Ω)]3. We

also denote by P the orthogonal projector from [L2(Ω)]3 onto H(Ω) (the Leray projector). Consider the
Stokes operator A : D(A) → H(Ω), where D(A) = V (Ω)∩H2(Ω), Au = −PΔu, ∀u ∈ D(A). If we apply
the projector P to the first equation in (1.1) and if we set φ = ϕ + 1, then we can rewrite (1.1) in the
following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut + νAu = −P (u · ∇u) + P (W (φ− 1)∇φ) in [0, T ] × Ω,
φt + kγεA2φ = −u · ∇φ− γL(φ− 1) in [0, T ] × Ω,
u(0, x) = u0(x) in Ω,
φ(0, x) = φ0(x) in Ω,
u(t, x) = 0 on [0, T ] × ∂Ω,
φ(t, x) = 0 on [0, T ] × ∂Ω,
Δφ(t, x) = 0 on [0, T ] × ∂Ω.

(2.6)

We write for later use W (φ) = kεΔ2φ+ L(φ), with L(φ) given by:

L(φ) = −k

ε
Δ(φ3) +

k

ε
Δφ+

k

ε2
(3φ2 − 1)f(φ)

+M1[V (φ) − α] +M2[B(φ) − β]f(φ)
= J1(φ) + J2(φ) + J3(φ) + J4(φ) + J5(φ). (2.7)

where J1(φ) = −k

ε
Δ(φ3), J2(φ) =

k

ε
Δφ, J3(φ) =

k

ε2
(3φ2 − 1)f(φ), J4(φ) = M1[V (φ) − α] and J5(φ) =

M2[B(φ) − β]f(φ).
We next recall some tools of functional analysis and semigroup theory. For the proof, see Lemma

3.3 and Theorem 3.1 of [1]. Denote by E a Hilbert space with inner product (·, ·) and norm ‖ · ‖. Let
A0 : D(A0) → E be a strictly positive operator (this means that A0 is self-adjoint and (A0φ, φ) ≥ c‖φ‖2

for some c > 0, ∀φ ∈ D(A0)).

Proposition 2.6. With the above notation, for every f ∈ L2(0, T ;E), u0 ∈ D(A
1
2
0 ), the abstract Cauchy

problem:

{
ut +A0u = f,
u(0) = u0.

(2.8)

has a unique solution u ∈ L2 (0, T ;D(A0)) ∩ C([0, T ];D(A
1
2
0 ) ∩ H1(0, T ;E). Moreover, there exists a

constant K > 0, such that:

‖u‖2
L2(0,T ;D(A0))

+ ‖u‖2

C([0,T ];D(A
1
2
0 ))

+ ‖u‖2
H1(0,T ;E)

≤ K

(

‖u0‖2

D(A
1
2
0 )

+ ‖f‖2
L2(0,T ;E)

)

.

As a consequence, we have:

Corollary 2.7. Suppose u0 ∈ V(Ω), f ∈ L2(0, T ;H(Ω)) and let A be the Stokes operator defined in Sect. 1.
Then the Cauchy problem

{
ut + νAu = f ,
u(0) = u0.

(2.9)
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has a unique solution u ∈ L2(0, T ;D(A))∩C([0, T ];V (Ω))∩H1(0, T ;H(Ω)). Moreover, there exists K > 0
such that:

‖u‖2
L2(0,T ;H2) + ‖u‖2

C([0,T ];H1) + ‖u‖2
H1(0,T ;H(Ω))

≤ K
(
‖u0‖2

H1 + ‖f‖2
L2(0,T ;L2)

)
. (2.10)

Proof. It suffices to notice that the operator A : D(A) → H is self-adjoint and strictly positive (see [2,
pp.31–34] for the proof) and to apply the above proposition. �

Corollary 2.8. Suppose φ0 ∈ H̃2+ 3
8 (Ω) and g ∈ L2(0, T ;H

3
8 (Ω)), then the Cauchy problem

{
φt + kγεA2φ = g,
φ(0, x) = φ0(x).

(2.11)

has a unique solution

φ ∈ L2(0, T ; H̃4+ 3
8 (Ω)) ∩ C([0, T ]; H̃2+ 3

8 (Ω)) ∩H1(0, T ; H̃
3
8 (Ω))

with the following estimate:

‖φ‖2

L2(0,T ;H4+ 3
8 )

+ ‖φ‖2

C([0,T ];H2+ 3
8 )

+ ‖φ‖2

H1(0,T ;H
3
8 )

≤ K

(

‖φ0‖2

H̃2+ 3
8

+ ‖g‖2

L2(0,T ;H
3
8 )

)

. (2.12)

Proof. First let us recall that H
3
8 (Ω) = H̃

3
8 (Ω) (Proposition 2.4). We also recall that A is the Dirichlet

Laplacian defined by (2.3). By the definition of H̃s(Ω), we have:

A2 : D(A2+ 3
16 ) = H̃4+ 3

8 → D(A 3
16 ) = H̃

3
8 .

Applying Proposition 2.6 with A0 = A2 and E = H
3
8 (Ω), we have:

‖φ‖2

L2(0,T ;D(A2+ 3
16 ))

+ ‖φ‖2

C([0,T ];D(A1+ 3
16 ))

+ ‖φ‖2

H1(0,T ;D(A 3
16 ))

≤ K

(

‖φ0‖2

D(A1+ 3
16 )

+ ‖g‖2

L2(0,T ;D(A 3
16 )

)

. (2.13)

By Proposition 2.4, the above inequality implies

‖φ‖2

L2(0,T ;H4+ 3
8 )

+ ‖φ‖2

C([0,T ];H2+ 3
8 )

+ ‖φ‖2

H1(0,T ;H
3
8 )

≤ K

(

‖φ0‖2

H̃2+ 3
8

+ ‖g‖2

L2(0,T ;H
3
8 )

)

.

�

3. Proof of the Main Theorems

We first give some estimates of the nonlinear terms in (1.1). These estimates are essential in our fixed
point procedure and will be proved in the next sections. Suppose:

u ∈ L2(0, T ; [H2(Ω)]3) ∩ C([0, T ]; [H1(Ω)]3) ∩H1(0, T ; [L2(Ω)]3), (3.1)

φ ∈ L2(0, T ;H4+ 3
8 (Ω)) ∩ C([0, T ];H2+ 3

8 (Ω)) ∩H1(0, T ;H
3
8 (Ω)). (3.2)

Recall the definition of W (φ) and L(φ) from Sect. 1. We have the following two theorems.
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Theorem 3.1. Suppose ψ ∈ H4+ 3
8 (Ω) and v ∈ H2(Ω), then there exists a constant C = C(Ω, ε, k,M1,

M2, β, γ) such that:

‖W (ψ − 1)∇ψ‖L2 ≤ C
[
‖ψ‖

H2+ 3
8
(‖ψ‖

H2+ 3
8

+ 1)4‖ψ‖
H4+ 3

8

+ (‖ψ‖
H2+ 3

8
+ |α+ μ(Ω)|)7‖ψ‖

H2+ 3
8

]
, (3.3a)

‖v · ∇v‖L2 ≤ C‖v‖H1‖v‖H2 , (3.3b)
‖v · ∇ψ‖

H
3
8

≤ C‖v‖
H1+ 3

4
‖ψ‖

H2+ 3
8
, (3.3c)

‖L(ψ − 1)‖
H

3
8

≤ C
[
(‖ψ‖

H2+ 3
8

+ 1)6‖ψ‖
H2+ 3

8
+ ‖ψ‖2

H2‖ψ‖H4 + |α+ μ(Ω)|
]
. (3.3d)

Theorem 3.2. Under the assumptions (3.1), (3.2) and T ≤ 1, there exists a positive constant
C = C(Ω, ε, k,M1,M2, β, γ) such that:

‖W (φ− 1)∇φ‖
L

17
8 (0,T ;L2)

≤ C

(

‖φ‖
C

(
[0,T ];H2+ 3

8
) + ‖φ‖

L2
(
0,T ;H4+ 3

8
) + 1

)8

, (3.4a)

‖u · ∇u‖
L

17
8 (0,T ;L2)

≤ C
(‖u‖C([0,T ];H1) + ‖u‖L2(0,T ;H2)

)2
, (3.4b)

‖u · ∇φ‖
L

17
8

(
0,T ;H

3
8

) ≤ C‖φ‖
C

(
[0,T ];H2+ 3

8
)
(‖u‖C([0,T ];H1) + ‖u‖L2(0,T ;H2)

)
, (3.4c)

‖L(φ− 1)‖
L

17
8

(
0,T ;H

3
8

) ≤ C

(

‖φ‖
C

(
[0,T ];H2+ 3

8
) + ‖φ‖

L2(0,T ;H4+ 3
8 )

+ 1
)7

. (3.4d)

We also need the estimates of differences of the nonlinear terms. Let T ≤ 1 and let R > 1 be a
constant, which will be made precise later. We assume that

{
ui ∈ L2(0, T ;H2) ∩ C([0, T ];H1) ∩H1(0, T ;L2),
φi ∈ L2(0, T ;H4+ 3

8 ) ∩ C([0, T ];H2+ 3
8 ) ∩H1(0, T ;H

3
8 ).

(3.5)
{

max
{‖ui‖L2(0,T ;H2), ‖ui‖C([0,T ];H1), ‖ui‖H1(0,T ;L2)

} ≤ CR,

max
{

‖φi||
L2(0,T ;H4+ 3

8 )
, ||φi||

C([0,T ];H2+ 3
8 )
, ||φi||

H1(0,T ;H
3
8 )

}
≤ CR,

(3.6)

where C is a positive constant.
Set u = u1 − u2 and φ = φ1 − φ2. We have the following estimates:

Theorem 3.3. There exists a constant C = C(ε, k,Ω,M1,M2, β, γ) such that:

‖L(φ1) − L(φ2)‖
L

17
8 (0,T ;H

3
8 )

≤ CR6
(
‖φ‖

C([0,T ];H2+ 3
8 )

+ ‖φ‖
L2(0,T ;H4+ 3

8 )

)
, (3.7a)

‖L(φ1)∇φ1 − L(φ2)∇φ2‖
L

17
8 (0,T ;L2)

≤ CR7
(
‖φ‖

C([0,T ];H2+ 3
8 )

+ ‖φ‖
L2(0,T ;H4+ 3

8 )

)
, (3.7b)

‖Δ2φ1∇φ1 − Δ2φ2∇φ2‖
L

17
8 (0,T ;L2)

≤ CR
(
‖φ‖

C([0,T ];H2+ 1
4 )

+ ‖φ‖
L2(0,T ;H4+ 3

8 )

)
, (3.7c)

‖u1 · ∇u1 − u2 · ∇u2‖
L

17
8 (0,T ;L2)

≤ CR
(‖u‖L2(0,T ;H2) + ‖u‖C([0,T ];H1)

)
, (3.7d)

‖u1 · ∇φ1 − u2 · ∇φ2‖
L

17
8 (0,T ;H

3
8 )

≤ CR
(
‖u‖C([0,T ];H1) + ‖u‖L2(0,T ;H2) + ‖φ‖

C([0,T ];H2+ 3
8 )

)
. (3.7e)

Note that we have the same estimate for L(φ1 −1)−L(φ2 −1) as for L(φ1)−L(φ2) by applying (3.7a)
to φ1 − 1 and φ2 − 1. Since the proof of the above three theorems are technical, they are postponed at
Sects. 4 and 5. We use them to prove here our main results.
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Proof of Theorem 1.1. Without loss of generality, we can assume that T ≤ 1. By the classical results on
the Leray projector (see for instance Chapter 5 of [2]), we only need to prove that (2.6) has a unique
strong solution:

{
u ∈ L2(0, T ;H2(Ω)) ∩ C([0, T ];V (Ω)) ∩H1(0, T ;H(Ω)),
φ ∈ L2(0, T ; H̃4+ 3

8 (Ω)) ∩ C([0, T ]; H̃2+ 3
8 (Ω)) ∩H1(0, T ;H

3
8 (Ω)).

Consider the Hilbert space

E = H(Ω) ×H
3
8 (Ω),

and

B(0, R) =
{
v = (u, φ) ∈ L2(0, T ;E)

∣
∣ ‖v‖L2(0,T ;E) ≤ R

}
.

We define the following nonlinear map from B(0,R) to L2(0, T ;E):

F :
(

f
g

)

�−→
(−P (u · ∇u) + P (W (φ− 1)∇φ)

−u · ∇φ− γL(φ− 1)

)

,

where u and φ satisfy (2.9) and (2.11) respectively. To obtain the conclusion of this theorem we use
Propositions 3.4 and 3.5 below, which allow the application of the Banach fixed point theorem to obtain
the local in time existence of strong solutions. �

Proposition 3.4. There exists a positive constant C = C(Ω, k, ε, β, γ,M1,M2) such that, if we choose
R ≥ 1 + ‖φ0‖H3 + ‖u0‖H1 and T ≤ CR−238, then F maps B(0,R) into itself.

Proof. By using the estimates (3.4), (2.10) and (2.12) (since u and φ satisfy (2.9) and (2.11)) we have:

‖W (φ− 1)∇φ‖
L

17
8 (L2)

+ ‖u · ∇u‖
L

17
8 (L2)

+ ‖u · ∇φ‖
L

17
8 (H

3
8 )

+ ‖L(φ− 1)‖
L

17
8 (H

3
8 )

≤ C(‖u‖L2(H2) + ‖u‖C(H1) + ‖φ‖
L2(H4+ 3

8 )
+ ‖φ‖

C(H2+ 1
4 )

+ 1)8

≤ C(‖f‖L2(L2) + ‖g‖
L2(H

3
8 )

+ ‖φ0‖
H2+ 3

8
+ ‖u0‖H1 + 1)8.

If we choose R ≥ 1 + ‖φ0‖H3 + ‖u0‖H1 , then we have:

‖F (f , g)‖
L

17
8 (0,T ;E)

≤ CR8.

Applying Hölder inequality, we obtain:

‖F (f , g)‖L2(0,T ;E) ≤ T
1
34 ‖F (f , g)‖

L
17
8 (0,T ;E)

≤ T
1
34CR8.

Thus, if we choose T ≤ CR−238, then F actually maps B(0,R) into itself. �

Proposition 3.5. Assume that R ≥ 1 + ‖φ0‖H3 + ‖u0‖H1 . There exists a positive constant C = C(Ω, k, ε,
β, γ,M1,M2) such that, if we choose T ≤ CR−238, then F|B(0,R) is a contraction.

Proof. Assume (f1,g1), (f2, g2)∈ L2(0, T ;E), and consider the solution (u1,φ1) and (u2,φ2) of (2.9) and
(2.11) associated with (f1,g1) and (f2, g2). By using (2.10), (2.12) and that R ≥ 1 + ‖φ0‖H3 + ‖u0‖H1 ,
we deduce that (3.6) holds true.

We also have that the difference φ = φ1 − φ2 and u = u1 − u2 satisfy:
⎧
⎪⎪⎨

⎪⎪⎩

ut + νAu = f
φt + kγεA2φ = g
u(0, x) = 0
φ(0, x) = 0
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where f = f1 − f2 and g = g1 − g2. Using the estimates (2.10) and (2.12), we obtain,

‖u‖L2(H2) + ‖u‖C(H1) ≤ C‖f‖L2(L2),

‖φ‖
L2(H4+ 3

8 )
+ ‖φ‖

C(H2+ 3
8 )

≤ C‖g‖
L2(H

3
8 )
.

Applying (3.7) to (φ1 − 1, φ2 − 1), we obtain:

‖F (f1, g1) − F (f2, g2)‖
L

17
8 (E)

≤ ‖u1 · ∇u1 − u2 · ∇u2‖
L

17
8 (L2)

+ ‖W (φ1 − 1)∇φ1 −W (φ2 − 1)∇φ2‖
L

17
8 (L2)

+ ‖u1 · ∇φ1 − u2 · ∇φ2‖
L

17
8 (H

3
8 )

+ ‖L(φ1 − 1) − L(φ2 − 1)‖
L

17
8 (H

3
8 )

≤ CR7
(
‖u‖L2(H2) + ‖u‖C(H1) + ‖φ‖

L2(H4+ 3
8 )

+ ‖φ‖
C(H2+ 1

4 )

)

≤ CR7
(
‖f‖L2(L2) + ‖g‖

L2(H
3
8 )

)
.

We deduce from the above estimates that:

‖F (f1, g1) − F (f2, g2)‖L2(0,T ;E)

≤ T
1
34 ‖F (f1, g1) − F (f2, g2)‖

L
17
8 (0,T ;E)

≤ T
1
34CR7(‖f‖L2(L2) + ‖g‖

L2(H
3
8 )

)

= T
1
34CR7‖(f1, g1) − (f2, g2)‖L2(0,T ;E).

So if we choose T ≤ CR−238, then F is a contraction. �

Next we prove Theorem 1.4. We first prove the following proposition:

Proposition 3.6. Let u and φ be the strong solution constructed in Theorem 1.1, then there exists a positive
constant C > 0 which does not depend on T such that:

1
2
d

dt
‖u(t)‖2

H1 +
3
4
ν‖Au(t)‖2

L2 ≤ C‖u(t) · ∇u(t)‖2
L2 + C‖W (φ(t) − 1)∇φ(t)‖2

L2 , (3.8)

1
2
d

dt
‖φ(t)‖2

H2+ 3
8

+
3
4
kγε‖A2+ 3

16φ(t)‖2
L2 ≤ C‖u(t) · ∇φ(t)‖2

H
3
8

+ C‖L(φ(t) − 1)‖2

H
3
8
. (3.9)

Proof. Note that ut ∈ L2(0, T ;H), Au ∈ L2(0, T ;H). Taking the inner product in L2(Ω) of the first
equation in (2.6) by Au, we get:

< ut, Au > +ν < Au, Au >= − < u · ∇u, Au > + < W (φ− 1)∇φ,Au >.

Here we have denoted by < ·, · > the standard L2(Ω) inner product.
It follows from the above equation that:

1
2
d

dt
‖A 1

2 u‖2
L2 + ν‖Au‖2

L2

≤ ‖u · ∇u‖L2‖Au‖L2 + ‖W (φ− 1)∇φ‖L2‖Au‖L2

≤ 2
ν

‖u · ∇u‖2
L2 +

ν

8
‖Au‖2

L2 +
2
ν

‖W (φ− 1)∇φ‖2
L2 +

ν

8
‖Au‖2

L2 ,

which implies:
1
2
d

dt
‖A 1

2 u‖2
L2 +

3
4
ν‖Au‖2

L2 ≤ 2
ν

‖u · ∇u‖2
L2 +

2
ν

‖W (φ− 1)∇φ‖2
L2 .

We have proved (3.8).
To prove the other inequlity, we first recall that −A is the Dirichlet Laplacian and that there exists

a constant C such that

‖φ‖2

H4+ 3
8

≤ C‖A2+ 3
16φ‖2

L2 .
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According to (3.2), φt ∈ L2(0, T ;H
3
8 ) and A2+ 3

8φ ∈ L2(0, T ;H− 3
8 ). Taking the duality product

between the second equation in (2.6) and A2+ 3
8φ yields

(φt,A2+ 3
8φ) + kγε(A2φ,A2+ 3

8φ)

= −(u · ∇φ,A2+ 3
8φ) − γ(L(φ− 1),A2+ 3

8φ)

= − < A 3
16 (u · ∇φ),A2+ 3

16φ > −γ < A 3
16 (L(φ− 1)),A2+ 3

16φ >

≤ ‖u · ∇φ‖
H

3
8
‖φ‖

H4+ 3
8

+ γ‖L(φ− 1)‖
H

3
8
‖φ‖

H4+ 3
8

≤ kγε

8C
‖φ‖2

H4+ 3
8

+
2C
kγε

‖u · ∇φ‖2

H
3
8

+
kγε

8C
‖φ‖2

H4+ 3
8

+
2γC
kε

‖L(φ− 1)‖2

H
3
8
. (3.10)

Here we have denoted by (·, ·) the pairing of H3/8(Ω) and H−3/8(Ω).
Since 1

2
d
dt‖A1+ 3

16φ‖2
L2 = (φt,A2+ 3

8φ), we deduce from the above inequality that

1
2
d

dt
‖A1+ 3

16φ‖2
L2 +

3
4
kγε‖A2+ 3

16φ‖2
L2 ≤ 2C

kγε
‖u · ∇φ‖2

H
3
8

+
2γC
kε

‖L(φ− 1)‖2

H
3
8
. (3.11)

As a consequence, (3.9) is proved. �

Proof of Theorem 1.4. Using Theorem 1.1, we can consider a maximal strong solution (u, φ) of (1.1) on
the time interval [0, Tmax). Assume T > 0. We prove here that if we choose the initial data small enough,
then we have Tmax > T i.e. the solution exists on [0,T].

Assume by contradiction that Tmax ≤ T , Adding (3.8) to (3.9) and using (3.3), we obtain:

1
2
d

dt
(‖u‖2

H1 + ‖φ‖2

H2+ 3
8
) +

3
4
ν‖u‖2

H2 +
3
4
kγε‖φ‖2

H4+ 3
8

≤ C‖u(t) · ∇u(t)‖2
L2 + C‖W (φ− 1)∇φ(t)‖2

L2 + C‖u(t) · ∇φ(t)‖2

H
3
8

+ C‖L(φ− 1)‖
H

3
8

≤ C‖u‖2
H1‖u‖2

H2 + C‖φ‖2

H2+ 3
8
(‖φ‖

H2+ 3
8

+ 1)8‖φ‖2

H4+ 3
8

+C(‖φ‖
H2+ 3

8
+ |α+ μ(Ω)|)14‖φ‖2

H2+ 3
8

+ C‖u‖2
H2‖φ‖2

H2+ 3
8

+C(‖φ‖
H2+ 3

8
+ 1)12‖φ‖2

H2+ 3
8

+ C‖φ‖4
H2‖φ‖2

H4 + C(α+ μ(Ω))2

≤ C
(
‖u‖2

H1 + ‖φ‖2

H2+ 3
8

)
‖u‖2

H2 + C‖φ‖2

H2+ 3
8
(‖φ‖

H2+ 3
8

+ 1)8‖φ‖2

H4+ 3
8

+C(‖φ‖
H2+ 3

8
+ |α+ μ(Ω)|)14‖φ‖2

H2+ 3
8

+ C(α+ μ(Ω))2. (3.12)

Here the constant C does not depend on α and which will be fixed for the end of the proof. We also
consider q > 0 small enough so that

q ≤ ν

4C
, q(

√
q + 1)8 ≤ kγε

4C
(3.13)

We recall that E is defined by (1.4) and we set G =
{
t ∈ [0, Tmax)| sup[0,t]E ≤ q

}
. We prove below that

if we assume

E(0) + 2TC
(
(
√
q + |α+ μ(Ω)|)14 q + (α+ μ(Ω))2

)
< q, (3.14)

then G = [0, Tmax). To prove this, we use a connectedness argument: we verify the following three
properties:

1. 0 ∈ G,
2. G is closed in [0, Tmax),
3. G is open in [0, Tmax).
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Conditions 1. and 2. are easy to check so we skip their proof and we only prove Condition 3. Assume
t1 ∈ G then from (3.13), we deduce that for t ∈ [0, t1]

⎧
⎨

⎩

C(‖u(t)‖2
H1 + ‖φ(t)‖2

H2+ 3
8
) ≤ ν

4
,

C‖φ(t)‖2

H2+ 3
8
(‖φ(t)‖

H2+ 3
8

+ 1)8 ≤ kγε
4 .

With these inequalities, (3.12) can be written as:

1
2
d

dt
(‖u(t)‖2

H1 + ‖φ(t)‖2

H2+ 3
8
) +

1
2
ν‖u(t)‖2

H2 +
1
2
kγε‖φ(t)‖2

H4+ 3
8

≤ C(
√
q + |α+ μ(Ω)|)14q + C(α+ μ(Ω))2. (3.15)

Relation (3.15) implies that for t ∈ [0, t1]:

d

dt
E(t) ≤ 2C

(
(
√
q + |α+ μ(Ω)|)14 q + (α+ μ(Ω))2

)

Using (3.14), the above relation implies

E(t1) ≤ E(0) + 2C
(
(
√
q + |α+ μ(Ω)|)14 q + (α+ μ(Ω))2

)
T < q.

It follows that there exists δ > 0 such that E(t′) ≤ q, ∀t′ ∈ (−δ + t1, δ + t1). Consequently G is open in
[0, Tmax). Since [0, Tmax) is a connected set, we have G = [0, Tmax). On the other hand, by the definition
of G, we have E(t) is bounded on [0, Tmax), which contradicts Theorem 1.1. We thus have Tmax > T ,
which proves Theorem 1.4. �

Remark 3.7. In the inequality (3.10), one can see the obstacle to get the global existence for small data
as for the Navier–Stokes equations. In fact, contrary to the Navier–Stokes equations, the estimates of the
nonlinear terms

C
(
‖u‖2

H1 + ‖φ‖2

H2+ 3
8

)
‖u‖2

H2 + C‖φ‖2

H2+ 3
8
(‖φ‖

H2+ 3
8

+ 1)8‖φ‖2

H4+ 3
8

+C(‖φ‖
H2+ 3

8
+ |α+ μ(Ω)|)14‖φ‖2

H2+ 3
8

+ C(α+ μ(Ω))2.

can not be absorbed by the viscous term 3
4ν‖u‖2

H2 + 3
4kγε‖φ‖2

H4+ 3
8
, even for ‖u‖H1 and ‖φ‖

H2+ 3
8

small.
We can control the two first terms of the right-hand side of (3.10) by using this strategy but the two
other terms and in particular C(α+ μ(Ω))2 have no reason to be smaller than the viscous term.

4. Proof of Theorems 3.1 and 3.2

In this part, we will detail the proof of the estimates of the nonlinear terms defined by (1.2). We use the
notation C for any positive constant depending on Ω and physical parameters ε, γ, β, k,Ω,M1,M2, ν (but
not depending on α).

We first estimate f(φ), B(φ) defined by (1.3):

Lemma 4.1. There exists a constant C = C(Ω, ε) such that:

max {B(ψ), B(ψ − 1)} ≤ C(‖ψ‖4
H2 + 1), (4.1)

max
{

‖f(ψ)‖
H

3
8
, ‖f(ψ − 1)‖

H
3
8

}
≤ C

(
‖ψ‖

H2+ 3
8

+ ‖ψ‖3

H2+ 3
8

)
, (4.2)

for ψ ∈ H4(Ω). Furthermore, we have

max {‖f(ψ)‖H2 , ‖f(ψ − 1)‖H2} ≤ C(‖ψ‖H4 + ‖ψ‖3
H2), ψ ∈ H4(Ω). (4.3)
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Proof. The proof is essentially based on the fact that H2(Ω) is a Banach Algebra. Since the proof of the
four estimates are similar, we only prove (4.2). We have:

‖f(ψ)‖
H

3
8

≤ ε‖Δψ‖
H

3
8

+
1
ε
‖ψ3‖

H
3
8

+
1
ε
‖ψ‖

H
3
8

≤ C
(
‖ψ‖

H2+ 3
8

+ ‖ψ‖3

H2+ 3
8

)
.

Since

f(ψ − 1) = −εΔψ +
1
ε
(ψ3 − 3ψ2 + 2ψ),

we have the same estimate for f(ψ − 1). �

We next estimate the term W (φ)∇φ = kεΔ2φ∇φ+ L(φ)∇φ, where L(φ) is defined by (2.7).

Proposition 4.2. We have:

‖W (ψ − 1)∇ψ‖L2 ≤ C‖ψ‖
H2+ 3

8
(‖ψ‖

H2+ 3
8

+ 1)4‖ψ‖
H4+ 3

8

+C(‖ψ‖
H2+ 3

8
+ |α+ μ(Ω)|)7‖ψ‖

H2+ 3
8
, (4.4)

for every ψ ∈ H4+ 3
8 (Ω). Moreover, for every φ satisfying (3.2) and T ≤ 1, we have:

‖W (φ− 1)∇φ‖
L

17
8 (L2)

≤ C
(
‖φ‖

C(H2+ 3
8 )

+ ‖φ‖
L2(H4+ 3

8 )
+ 1

)8

. (4.5)

The proof of the above proposition will be split into six lemmas.

Lemma 4.3. We have:

‖Δ2ψ ∇ψ‖L2(Ω) ≤ C‖ψ‖
H4+ 3

8
‖ψ‖

H2+ 3
8
, ψ ∈ H4+ 3

8 (Ω). (4.6)

Moreover, for T ≤ 1 and φ satisfying (3.2), we have

‖Δ2φ ∇φ‖
L

17
8 (L2)

≤ C‖φ‖ 16
17

L2(H4+ 3
8 )

‖φ‖ 18
17

C(H2+ 1
4 )
. (4.7)

Proof. By Hölder’s inequality and Sobolev inequality, we have:

‖Δ2ψ ∇ψ‖L2(Ω) ≤ ‖Δ2ψ‖
L

12
5

‖∇ψ‖L12 ≤ C‖Δ2ψ‖
H

1
4
‖∇ψ‖

H
5
4

≤ C‖ψ‖
H4+ 1

4
‖ψ‖

H2+ 1
4
, (4.8)

which implies (4.6). Using next (2.1), we have:

‖Δ2ψ ∇ψ‖L2(Ω) ≤ C‖ψ‖ 16
17

H4+ 3
8
‖ψ‖ 1

17

H2+ 1
4
‖ψ‖

H2+ 1
4

= C‖ψ‖ 16
17

H4+ 3
8
‖ψ‖ 18

17

H2+ 1
4
. (4.9)

Applying next (4.9) with ψ = φ(t, ·), we have:

‖Δ2φ(t) ∇φ(t)‖L2(Ω) ≤ C‖φ(t)‖ 16
17

H4+ 3
8
‖φ(t)‖ 18

17

H2+ 1
4
, t ∈ [0, T ] a.e.

This implies (4.7). �

Recall from (2.7) that J1(φ) = −k

ε
Δ(φ3).

Lemma 4.4. We have:

‖J1(ψ − 1) ∇ψ‖L2(Ω) ≤ C‖ψ‖4

H2+ 1
4

+ C‖ψ‖3

H2+ 1
4
, ψ ∈ H2+ 1

4 (Ω). (4.10)

Moreover, for φ ∈ C([0, T ];H2+ 1
4 (Ω)) and T ≤ 1 we have:

‖J1(φ− 1) ∇φ‖
L

17
8 (L2)

≤ C‖φ‖4

C(H2+ 1
4 )

+ C‖φ‖3

C(H2+ 1
4 )
. (4.11)
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Proof. Using Hölder’s inequality, Sobolev inequality and the fact that H2+ 1
4 (Ω) is a Banach Algebra, we

have:

‖Δ(ψ − 1)3 ∇ψ‖L2 ≤ ‖Δ(ψ3 + 3ψ2 + 3ψ)‖
L

12
5

‖∇ψ‖L12

≤ C
(
‖ψ‖3

H2+ 1
4

+ 1
)

‖ψ‖
H2+ 1

4
,

which proves (4.10). Applying it with ψ = φ(t, ·), we have:

‖J1(φ− 1) ∇φ‖L2 ≤ C
(
‖φ‖3

H2+ 1
4

+ 1
)

‖φ‖
H2+ 1

4
, t ∈ [0, T ] a.e.

which clearly implies (4.11). �

Recall from (2.7) that J2(φ) =
k

ε
Δφ, where f(φ) is defined by (1.3c).

Lemma 4.5. We have

‖J2(ψ − 1) ∇ψ‖L2 ≤ C‖ψ‖2

H2+ 1
4
, ψ ∈ H2+ 1

4 (Ω). (4.12)

Moreover, for every φ ∈ C([0, T ];H2+ 1
4 (Ω)), we have

‖J2(φ− 1)∇φ‖C(L2) ≤ C‖φ‖2

C(H2+ 1
4 )
. (4.13)

Proof. With the same arguments as in Lemma 4.4, we have:

‖Δψ ∇ψ‖L2 ≤ ‖Δψ‖
L

12
5

‖∇ψ‖L12 ≤ C‖Δψ‖
H

1
4
‖∇ψ‖

H
5
4

≤ C‖ψ‖2

H2+ 1
4
,

which clearly implies (4.12) and (4.13). �

Recall from (2.7) that J3(φ) =
k

ε2
(3φ2 − 1)f(φ).

Lemma 4.6. We have:

‖J3(ψ − 1)∇ψ‖L2 ≤ C
(
‖ψ‖3

H2+ 3
8

+ ‖ψ‖
H2+ 3

8

)2

, ψ ∈ H4+ 3
8 (Ω). (4.14)

Moreover, for φ satisfying (3.2) and T ≤ 1, we have

‖J3(φ− 1)∇φ‖
L

17
8 (L2)

≤ C

(

‖φ‖3

C([0,T ];H2+ 3
8 )

+ ‖φ‖
C([0,T ];H2+ 3

8 )

)2

. (4.15)

Proof. We only prove (4.14) since it easily leads to (4.15). By Sobolev inequality, we have:

‖f(ψ − 1)(3(ψ − 1)2 − 1)∇ψ‖L2 ≤ ‖f(ψ − 1)‖
L

8
3
‖∇((ψ − 1)3 − ψ + 1)‖L8

≤ C‖f(ψ − 1)‖
H

3
8
‖ψ3 − 3ψ2 + 2ψ‖

H2+ 3
8
.

then (4.14) is proved by applying (4.2) and the fact that H2+ 3
8 (Ω) is a Banach algebra. �

Recall from (2.7) that J4(φ) = M1[V (φ) − α], the following lemma holds:

Lemma 4.7. We have

‖J4(ψ − 1)∇ψ‖L2(Ω) ≤ C(‖ψ‖L2 + |μ(Ω) + α|)‖ψ‖H1 , (ψ ∈ H1(Ω)).

Moreover, for every φ satisfying (3.2) and T ≤ 1, we have

‖J4(φ− 1)∇φ‖
L

17
8 (L2)

≤ C‖φ‖C(H1)(‖φ‖C(L2) + |μ(Ω) + α|).

Proof. The proofs are similar to the proofs of the lemmas above, so we skip them. �

Recall from (2.7) that J5(ψ) = M2 (B(ψ) − β) f(ψ).
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Lemma 4.8. We have

‖J5(ψ − 1)∇ψ‖L2 ≤ C
(
‖ψ‖8

H2+ 3
8

+ ‖ψ‖2

H2+ 3
8

)
, ψ ∈ H2+ 3

8 (Ω). (4.16)

Moreover, for φ satisfying (3.2) and T ≤ 1, we have

‖J5(φ− 1)∇φ‖
L

17
8 (L2)

≤ C

(

‖ψ‖8

C([0,T ];H2+ 3
8 )

+ ‖ψ‖2

C([0,T ];H2+ 3
8 )

)

. (4.17)

Proof. Inequality (4.17) can be easily derived from (4.16). Therefore we have just to check (4.16). By
Hölder’s inequality and Sobolev inequality:

‖(B(ψ − 1) − β)f(ψ − 1) · ∇ψ‖L2 ≤ |B(ψ − 1) − β| ‖f(ψ − 1)‖
L

8
3
‖∇ψ‖L8

≤ |B(ψ − 1) − β| ‖f(ψ − 1)‖
H

3
8
‖∇ψ‖

H
9
8
.

By (4.1) and (4.2), we have:

‖J5(ψ − 1)∇ψ‖L2 ≤ C
(‖ψ‖4

H2 + 1
) (

‖ψ‖
H2+ 3

8
+ ‖ψ‖3

H2+ 3
8

)
‖ψ‖

H2+ 3
8
,

which implies (4.16) and, consequently, (4.17). �

We next recall some classical estimates.

Proposition 4.9. We have

‖v1 · ∇v2‖L2 ≤ C‖v1‖H1‖v2‖H2 , (v1,v2 ∈ [H2(Ω)]3). (4.18)

Moreover, for every u1,u2 satisfying (3.1), we have

‖u1 · ∇u2‖
L

17
8 (L2)

≤ C‖u1‖C(H1)

(‖u1‖C(H1) + ‖u2‖L2(H2)

)
. (4.19)

Proof. By Hölder’s inequality, Sobolev inequality and (2.2), we have

‖v1 · ∇v2‖L2 ≤ ‖v1‖L4‖∇v2‖L4 ≤ C‖v1‖H1‖v2‖
H1+ 3

4

≤ C‖v1‖H1‖v2‖
1
17
H1‖v2‖

16
17
H2 ,

which implies (4.18). Estimate (4.19) is proved by applying the above estimate with v1 = u1(t, ·) and
v2 = u2(t, ·). �

We next estimate the term u · ∇φ.

Proposition 4.10. We have

‖v · ∇ψ‖
H

3
8

≤ C‖v‖
H1+ 3

4
‖ψ‖

H2+ 3
8
, v ∈ [H2(Ω)]3, ψ ∈ H2+ 3

8 (Ω). (4.20)

Moreover, for u, φ satisfying (3.1) and (3.2) respectively, we have

‖u · ∇φ‖
L

17
8 (H

3
8 )

≤ C‖φ‖
C(H2+ 3

8 )

(‖u‖C(H1) + ‖u‖L2(H2)

)
. (4.21)

Proof. Denote v = (v1, v2, v3) and u = (u1, u2, u3). By Hölder’s inequality, Sobolev inequality and (2.2),
we have for i, j, k ∈ {1, 2, 3},

‖vk∂i∂jψ‖L2 ≤ ‖vk‖L8‖∂i∂jψ‖
L

8
3

≤ C‖v‖
H

9
8
‖ψ‖

H2+ 3
8
. (4.22)

‖∂ivj∂kψ‖L2 ≤ ‖∂ivj‖
L

12
5

‖∂kψ‖L12 ≤ C‖v‖
H1+ 3

4
‖ψ‖

H2+ 1
4
. (4.23)

We also have

‖vi∂jψ‖L2 ≤ ‖vi‖L4‖∂jψ‖L4 ≤ C‖v‖H1‖ψ‖H2 .

By the Leibnitz formula, ∂k(vi∂jψ) = ∂kvi∂jψ + vi∂k∂jψ. With the above estimates, we have:

‖vk∂jψ‖H1 ≤ ‖vk∂jψ‖L2 +
3∑

i=1

‖∂i(vk∂jψ)‖L2 ≤ C‖v‖
H1+ 3

4
‖ψ‖

H2+ 3
8
,
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which clearly implies (4.20). Applying (2.2) to (4.22) and (4.23), we obtain

‖vk∂i∂jψ‖L2 ≤ C‖v‖ 16
17
H2‖v‖ 1

17
H1‖ψ‖

H2+ 3
8
,

‖∂ivj∂kψ‖L2 ≤ C‖v‖ 16
17
H2‖v‖ 1

17
H1‖ψ‖

H2+ 1
4
.

Applying to v = u(t, ·) and ψ = φ(t, ·) we have

‖ui∂j∂kφ‖
L

17
8 (L2)

≤ C‖u‖ 1
17
C(H1)‖u‖ 16

17
L2(H2)‖φ‖

C(H2+ 3
8 )
,

‖∂iuj∂kφ‖
L

17
8 (L2)

≤ C‖u‖ 1
17
C(H1)‖u‖ 16

17
L2(H2)‖φ‖

C(H2+ 1
4 )
,

which implies (4.21). �

We next estimate the term L(φ) defined by (2.7).

Proposition 4.11. We have

‖L(ψ − 1)‖
H

3
8

≤ C(‖ψ‖
H2+ 3

8
+ 1)6‖ψ‖

H2+ 3
8

+ C‖ψ‖2
H2‖ψ‖H4 + C |μ(Ω) + α| , (4.24)

for ψ ∈ H4(Ω). Moreover, for every φ satisfying (3.2) and T ≤ 1, we have

‖L(φ− 1)‖
L

17
8 (H

3
8 )

≤ C
(
‖φ‖

C(H2+ 3
8 )

+ ‖φ‖
L2(H4+ 3

8 )
+ 1

)7

. (4.25)

Proof. By the fact that H2+ 3
8 (Ω) is a Banach Algebra, we have for J1(ψ − 1):

‖J1(ψ − 1)‖
H

3
8

= C‖Δ(ψ − 1)3‖
H

3
8

≤ C‖ψ‖3

H2+ 3
8

+ C‖ψ‖
H2+ 3

8
. (4.26)

For J2(ψ − 1), we have

‖J2(ψ − 1)‖
H

3
8

≤ C‖ψ‖
H2+ 3

8
. (4.27)

By using (4.2) and the Banach algebra property of H2(Ω), we obtain

‖(3(ψ − 1)2 − 1)f(ψ − 1)‖
H

3
8

≤ 3‖ψ2f(ψ − 1)‖H2 + C‖f(ψ − 1)‖
H

3
8

≤ 3‖ψ2‖H2‖f(ψ − 1)‖H2 + C‖f(ψ − 1)‖
H

3
8

≤ C‖ψ‖2
H2

(‖ψ‖H4 + ‖ψ‖3
H2

)
+ C‖f(ψ − 1)‖

H
3
8
,

which implies:

‖J3(ψ − 1)‖
H

3
8

≤ C‖ψ‖2
H2

(‖ψ‖H4 + ‖ψ‖3
H2

)
+ C‖ψ‖

H2+ 3
8

+ C‖ψ‖3

H2+ 3
8
. (4.28)

For J4(ψ − 1), we have

‖J4(ψ − 1)‖
H

3
8

≤ C(‖ψ‖H1 + |α+ μ(Ω)|). (4.29)

Similarly we have the following:

‖J5(ψ − 1)‖
H

3
8

≤ C|B(ψ − 1) − β| · ‖f(ψ − 1)‖
H

3
8

≤ C
(‖ψ‖4

H2 + 1
) (

‖ψ‖
H2+ 3

8
+ ‖ψ‖3

H2+ 3
8

)
. (4.30)

Then (4.24) is proved by adding inequalities (4.26)–(4.30). Applying (4.26), (4.27) and (4.29) with ψ =
φ(t, ·), we obtain:

‖J1(φ− 1)‖
C(H

3
8 )

≤ C‖φ‖
C(H2+ 3

8 )

(‖φ‖2

C(H2+ 3
8 )

+ 1
)
, (4.31a)

‖J2(φ− 1)‖
C(H

3
8 )

≤ C‖φ‖
C(H2+ 3

8 )
, (4.31b)

‖J4(φ− 1)‖
C(H

3
8 )

≤ C(‖φ‖C(H1) + |α+ μ(Ω)|). (4.31c)
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Applying (4.28) with ψ = φ(t, ·), we have the following

‖J3(φ− 1)‖
L

17
8 (H

3
8 )

≤ C‖φ‖2
C(H2)

(

‖φ‖ 16
17

L2(H4+ 3
8 )

‖φ‖ 1
17

C(H2+ 1
4 )

+ ‖φ‖3
C(H2)

)

+C‖φ‖
C(H2+ 3

8 )
+ C‖φ‖3

C(H2+ 3
8 )

≤ C

(

‖φ‖2

C(H2+ 3
8 )

+ 1
) (

‖φ‖ 16
17

L2(H4+ 3
8 )

‖φ‖ 1
17

C(H2+ 1
4 )

+ ‖φ‖3

C(H2+ 3
8 )

)

(4.32)

By (4.30), we have

‖J5(φ− 1)‖
C(H

3
8 )

≤ C(‖ψ‖4
C(H2) + 1)

(

‖ψ‖
C(H2+ 3

8 )
+ ‖ψ‖3

C(H2+ 3
8 )

)

. (4.33)

Then (4.25) is proved by adding (4.31), (4.32) and (4.33) together. �

5. Proof of Theorem 3.3

In this section, we detail the proof of Theorem 3.3. We begin with a lemma. Recall the definitions of f(φ)
and B(φ) from (1.3), we have the following result.

Lemma 5.1. For ψ1, ψ2 ∈ H4(Ω), we have

‖Δ(ψ3
1) − Δ(ψ3

2)‖
H

3
8

≤ C‖ψ‖3

H2+ 3
8

+ C‖ψ1‖
H2+ 3

8
‖ψ2‖

H2+ 3
8
‖ψ‖

H2+ 3
8
, (5.1)

‖f(ψ1) − f(ψ2)‖H2 ≤ C
(‖ψ‖H4 + ‖ψ‖2

H2 + ‖ψ1‖H2‖ψ2‖H2‖ψ‖H2

)
, (5.2)

|B(ψ1) −B(ψ2)| ≤ C
(‖ψ1‖3

H2 + ‖ψ2‖3
H2 + 1

) ‖ψ‖H2 . (5.3)

where ψ = ψ1 − ψ2.

Proof. we have:

‖Δ(ψ3
1) − Δ(ψ3

2)‖
H

3
8

≤ ‖ψ3
1 − ψ3

1‖
H2+ 3

8

≤ ‖(ψ1 − ψ2)3‖
H2+ 3

8
+ 3‖ψ1ψ2(ψ1 − ψ2)‖

H2+ 3
8
.

Then (5.1) is proved by the fact that Hs(Ω) is a Banach Algebra if s > 3
2 . For f(ψ) we have

‖f(ψ1) − f(ψ2)‖H2 ≤ C‖Δψ‖H2 + C‖ψ3
1 − ψ3

2‖H2 ,

which implies (5.2). Estimate (5.3) can be proved similarly, so we skip the details. �

We next estimate the leading order term Δ2φ∇φ.

Proposition 5.2. Under the condition (3.6), there exists a constant C = C(Ω) such that:

‖Δ2φ1∇φ1 − Δ2φ2∇φ2‖
L

17
8 (L2)

≤ CR
(
‖φ‖

L2(H4+ 3
8 )

+ ‖φ‖
C(H2+ 1

4 )

)
.

Proof. Since Δ2φ1∇φ1 − Δ2φ2∇φ2 = Δ2φ∇φ1 + Δ2φ2∇φ, the lemma is proved by applying (4.7). �

Recall the definition of L(φ) from (2.7) We have

Proposition 5.3. Under the assumption (3.6), there exists a constant C depending on parameters
ε, k,Ω,M1,M2, β such that:

‖L(φ1)∇φ1 − L(φ2)∇φ2‖
L

17
8 (0,T ;L2)

≤ CR7(‖φ‖
C([0,T ];H2+ 3

8 )
+ ‖φ‖

L2(0,T ;H4+ 3
8 )

).
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Proof.

L(φ1)∇φ1 − L(φ2)∇φ2 =
5∑

i=1

[Ji(φ1)∇φ1 − Ji(φ2)∇φ2]

We will estimate term by term. Recall from (2.7) the definition of J1,

‖Δ(φ3
1)∇φ1 − Δ(φ3

2)∇φ2‖L2 ≤ ‖[Δ(φ3
1) − Δ(φ3

2)]∇φ2 + Δ(φ3
1)(∇(φ))‖L2 .

By Hölder’s inequality and Sobolev inequality,

‖Δ(φ3
1)∇φ1 − Δ(φ3

2)∇φ2‖L2

≤ ‖(Δ(φ3
1) − Δ(φ3

2))∇φ2 + Δ(φ3
1)(∇(φ))‖L2

≤ ‖Δ(φ3
1) − Δ(φ3

2)‖L
8
3
‖∇φ2‖L8 + ‖Δ(φ3

1)‖L
8
3
‖∇φ‖L8

≤ C‖Δ(φ3
1) − Δ(φ3

2)‖H
3
8
‖φ2‖H2 + C‖φ3

1‖H
3
8
‖φ‖H2 .

By the Banach algebra property of Hs(Ω) and (5.1),

‖Δ(φ3
1)∇φ1 − Δ(φ3

2)∇φ2‖L2

≤ C
(
‖φ‖3

H2+ 3
8

+ ‖φ1‖
H2+ 3

8
‖φ2‖

H2+ 3
8
‖φ‖

H2+ 3
8

)
‖φ2‖

H2+ 3
8

+C‖φ1‖3

H2+ 3
8
‖φ‖

H2+ 3
8
, (5.4)

which clearly implies

‖J1(φ1)∇φ1 − J1(φ2)∇φ2‖
L

17
8 (L2)

≤ CR3‖φ‖
C(H2+ 3

8 )
. (5.5)

Recall from (2.7) for the definition of J3. By Sobolev inequality, (4.3) and (5.2),

‖(3φ2
1 − 1)f(φ1) · ∇φ1 − (3φ2

2 − 1)f(φ2) · ∇φ2‖L2

≤ ‖f(φ1) − f(φ2)‖H2‖∇(φ3
1 − φ1)‖L2 + ‖∇(φ3

1 − φ1) − ∇(φ3
2 − φ2)‖L2‖f(φ2)‖H2

≤ C
(‖φ‖H4 + ‖φ‖2

H2 + ‖φ1‖H2‖φ2‖H2‖φ‖H2

) (‖φ1‖3
H2 + ‖φ1‖H2

)

+C
(‖φ‖3

H2 + ‖φ1‖H2‖φ2‖H2‖φ‖H2 + ‖φ‖H2

) (‖φ2‖3
H2 + ‖φ2‖H4

)
.

Using (2.1) to deal with the term with H4(Ω) norm,

‖J3(φ1)∇φ1 − J3(φ2)∇φ2‖L2(Ω)

≤ C

(

‖φ‖ 16
17

H4+ 3
8 (Ω)

‖φ‖ 1
17

H2+ 1
4 (Ω)

+ ‖φ‖2
H2 + ‖φ1‖H2‖φ2‖H2‖φ‖H2

)

×(‖φ1‖3
H2 + ‖φ1‖H2) + C(‖φ‖3

H2 + ‖φ1‖H2‖φ2‖H2‖φ‖H2 + ‖φ‖H2)

×
(

‖φ2‖3
H2 + ‖φ2‖

16
17

H4+ 3
8 (Ω)

‖φ2‖
1
17

H2+ 1
4 (Ω)

)

.

(5.6)

By (3.6) we have:

‖J3(φ1)∇φ1 − J3(φ2)∇φ2‖
L

17
8 (L2)

≤ CR5
(
‖φ‖

L2(H4+ 3
8 )

+ ‖φ‖
C(H2+ 1

4 )

)
. (5.7)

Recall from (2.7) for the definition of J5. Note that

M−1
2 [J5(φ1)∇φ1 − J5(φ2)∇φ2]
= [B(φ1) − β]f(φ1)∇φ1 − [B(φ2) − β]f(φ2)∇φ2

= [B(φ1) − β]
{
[f(φ1) − f(φ2)]∇φ1 + f(φ2)∇φ

}
+ [B(φ1) −B(φ2)] f(φ2)∇φ2.
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From the above formula and the Sobolev inequality, it follows that:

M−1
2 ‖J5(φ1)∇φ1 − J5(φ2)∇φ2‖L2(Ω)

≤ |B(φ1) − β| {‖f(φ1) − f(φ2)‖L∞‖∇φ1‖L2 + ‖f(φ2)‖L∞‖∇φ‖L2}
+|B(φ1) −B(φ2)|‖f(φ2)‖L∞‖∇φ2‖L2

≤ |B(φ1) − β| [‖f(φ1) − f(φ2)‖H2‖φ1‖H1 + ‖f(φ2)‖H2‖φ‖H1 ]
+|B(φ1) −B(φ2)|‖f(φ2)‖H2‖φ2‖H1 ,

By (4.1), (4.3), (5.2) and (5.3) we have:

‖J5(φ1)∇φ1 − J5(φ2)∇φ2‖L2(Ω) ≤ C(‖φ1‖4
H2 + 1)C

(‖φ‖H4 + ‖φ‖2
H2 + ‖φ1‖H2‖φ2‖H2‖φ‖H2

)

+C
(‖φ1‖3

H2 + ‖φ2‖3
H2 + 1

) ‖φ‖H2(‖φ2‖H2 + ‖φ2‖3
H2)‖φ2‖H1 ,

Using the same steps as those used to derive (5.6) we obtain

‖J5(φ1)∇φ1 − J5(φ2)∇φ2‖
L

17
8 (L2)

≤ CR7
(
‖φ‖

L2(H4+ 3
8 )

+ ‖φ‖
C(H2+ 1

4 )

)
. (5.8)

Since the terms J2 and J4 are of lower order and thus easier, we don’t detail the proofs of the corresponding
estimates,

‖J2(φ1)∇φ1 − J2(φ1)∇φ1‖
C(H2+ 3

8 )
≤ CR‖φ‖

C(H2+ 3
8 )

(5.9)

‖J4(φ1)∇φ1 − J4(φ1)∇φ1‖
C(H2+ 3

8 )
≤ CR‖φ‖

C(H2+ 3
8 )

(5.10)

Then the proposition is proved by combining (5.5), (5.7), (5.8), (5.9) and (5.10). �

The proof of the following proposition is similar to the previous proposition, so we skip the details.

Proposition 5.4. Under the condition (3.6), there exists a constant C = C(ε, β, k,Ω,M1,M2) such that
we have the following estimates:

‖L(φ1) − L(φ2)‖
L

17
8 (H

3
8 )

≤ CR6
(
‖φ‖

L2(H4+ 3
8 )

+ ‖φ‖
C(H2+ 3

8 )

)
.

The following proposition can be easily derived from (4.19) and (4.21).

Proposition 5.5. Under the assumption (3.6), there exists a constant C = C(Ω) such that

‖u1 · ∇u1 − u2 · ∇u2‖
L

17
8 (0,T ;L2)

≤ CR(‖u‖L2(0,T ;H2) + ‖u‖C([0,T ];H1)). (5.11)

‖u1 · ∇φ1 − u2 · ∇φ2‖
L

17
8 (0,T ;H

3
8 )

≤ CR
(
‖u‖C([0,T ];H1) + ‖u‖L2(0,T ;H2) + ‖φ‖

C([0,T ];H2+ 3
8 )

)
. (5.12)
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