
J. Math. Fluid Mech. 14 (2012), 295–309
c© 2011 Springer Basel AG
1422-6928/12/020295-15
DOI 10.1007/s00021-011-0057-y

Journal of Mathematical
Fluid Mechanics

On the 3D Steady Flow of a Second Grade Fluid Past an Obstacle

Pawe�l Konieczny and Ondřej Kreml
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1. Introduction

The flow of a second grade fluid is governed by the following system of equations.

ρ
∂v

∂t
+ ρv · ∇v + ∇p = div T + ρf

div v = 0

⎫
⎬

⎭
in (0, T ) × Ω, (1)

where v denotes the fluid velocity, p is the pressure, ρ is the constant density of the fluid, f stands for
the external force and T is the Cauchy stress tensor which for the second grade fluid is given by (see
e.g. [13])

T = 2μD + 2α1A1 + 4α2D2. (2)

Here μ is a constant viscosity, D = 1
2 (∇v+(∇v)T ) is the symmetric part of the velocity gradient, α1 > 0

and α2 are the stress moduli and A1 is given by

A1 =
∂

∂t
D + v · ∇D + (∇v)T D + D∇v. (3)

We will use in this paper the condition α1 + α2 = 0, see i.e. [2].

Remark 1. The question of signs and values of the stress moduli α1, α2 and especially of α1 + α2 in
this model is not clear. In [1] the authors show that the constraint α1 + α2 = 0 is not necessary for
the mathematical problem being well set. In [5] the authors show that for α1 < 0 the rest state of flow
of second grade fluid in exterior domain is instable. Our results can be easily adapted also for the case
α1 + α2 �= 0, however we keep this constraint for simplicity.

The work of the first author was partially supported by Polish grant No. N N201 547 438.
The second author was supported by the project LC06052 (Jindřich Nečas Center for Mathematical Modeling), by the
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We consider a steady flow past an obstacle B. Ω is an exterior domain R
3\B, where B is a simply

connected compact set. We assume that BκL(0) ⊂ B ⊂ BL(0) for some κ > 0 and L > 0. Plugging
(1)–(3) together we get

−μΔv − α1(v · ∇)Δv + ∇p = −ρ(v · ∇)v + ρf+

+α1div [(∇v)T (∇v + (∇v)T )]
div v = 0

⎫
⎪⎬

⎪⎭
in Ω

v = 0 on ∂Ω = ∂B
v → v∞ as |x| → ∞,

(4)

where v∞ is the prescribed constant velocity at infinity. Assuming v∞ �= 0 we can rotate the coordinate
system in such a way that v∞ = βe1 = (β, 0, 0) and denoting u = v − v∞ we get from (4)

−μΔu − α1(u · ∇)Δu − α1βΔ
∂u
∂x1

+ ρβ
∂u
∂x1

+ ∇p =

−ρ(u · ∇)u + ρf + α1div [(∇u)T (∇u + (∇u)T )]
div u = 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

in Ω

u = −v∞ = −βe1 on ∂Ω = ∂B
u → 0 as |x| → ∞.

(5)

Next we rewrite the equations in dimensionless form, i.e. we introduce new velocity U = u/β and new
independent variable X = x/L, where L is the diameter of the obstacle. We renormalize the pressure
P = p

ρβ2 and the external force F = fL
β2 . We introduce the Reynolds number R = ρβL

μ and the Weissenberg
number W = α1β

Lμ . However, for the sake of transparency, we keep writing small letters instead of capital
letters. After renormalization we end up with

−Δu − W(u · ∇)Δu − WΔ
∂u
∂x1

+ R ∂u
∂x1

+ R∇p =

−R(u · ∇)u + Rf + Wdiv [(∇u)T (∇u + (∇u)T )]
div u = 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

in Ω

u = −e1 on ∂Ω

u → 0 as |x| → ∞,

(6)

where the renormalized domain Ω = R
3\D and Bκ(0) ⊂ D ⊂ B1(0). Finally we follow the decomposition

procedure proposed in [8]. We introduce new pressure q as a solution to

q + W[(u + e1) · ∇]q = Rp (7)

and we denote

− Δu + R ∂u
∂x1

+ ∇q =: z. (8)

Then z satisfies

z + W[(u + e1) · ∇]z = Rf − R(u · ∇)u + Wdiv [(∇u)T (∇u + (∇u)T )]

−W(∇u)T ∇q + RW(u · ∇)
∂u
∂x1

+ RW ∂2u
∂x2

1

. (9)

Note that we still have the conditions

div u = 0 in Ω
u = −e1 on ∂Ω (10)
u → 0 as |x| → ∞,

Our main result is the following
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Theorem 1. Let f = div H,H ∈ W k,2(Ω), k ≥ 3. Let Ω ∈ Ck+1 be an exterior domain in R
3 and let

R0,W0 be sufficiently small. Then for any R ∈ (0,R0),W ∈ (0,W0) there exists a unique solution (u, q)
to the problem (7)–(10) for which the following estimate hold

R 1
4 ‖u‖4 + ‖∇u‖k,2 + ‖q‖k,2 ≤ K. (11)

If in addition f ,H ∈ Lp

(

Ω, μ
3
2 − 3

p ,2ω

1− 2
p

(·,R)
)

for some p > 6 and R and W are sufficiently small, the

previously obtained solution (u, q) has the following properties

u ∈ Lp

(

Ω, μ
1− 3

p ,ω

1− 2
p

(·,R)
)

∇u,∇2u ∈ Lp

(

Ω, μ
3
2 − 3

p ,ω

1− 2
p

(·,R)
)

(12)

q,∇q ∈ Lp

(

Ω, μ
1− 3

p ,ω
1
2 − 2

p

(·,R)
)

.

In particular

u ∈ L∞
(

Ω, μ
1− 3

p ,ω

1− 2
p

(·,R)
)

. (13)

Remark 2. The weights μA,ω
B are defined in (32). As the power p can be chosen arbitrarily large, we get

almost the same asymptotic structure as for the fundamental solution O of the Oseen system.

Remark 3. Note that for f ∈ L∞(Ω, η
3
2
1 (x)) it holds

‖f‖
Lp

(

Ω,μ
3
2 − 3

p
,2ω

1− 2
p

(·,R)

) ≤ CR−2ω− 3
p ‖f‖

L∞(Ω,η
3
2
1 (·))

. (14)

Throughout this paper we shall assume W and R small. We introduce operator

M : (w, s) �→ z �→ (u, q), (15)

where for given (w, s), z is the solution to the transport equation

z + W[(w + e1) · ∇]z = Rf − R(w · ∇)w + Wdiv [(∇w)T (∇w + (∇w)T )]

−W(∇w)T ∇s + RW(w · ∇)
∂w
∂x1

+ RW ∂2w
∂x2

1

=: B(f ,w, s) in Ω (16)

and (u, q) is the solution to the Oseen problem

− Δu + R ∂u
∂x1

+ ∇q = z in Ω

div u = 0 in Ω (17)
u = −e1 on ∂Ω
u → 0 as |x| → ∞.

We have decomposed the original problem into the Oseen problem (17) and the steady transport
equation (16). Due to the presence of the Oseen problem we expect the structure of solutions to cor-
respond to the structure of the Oseen fundamental solution, especially the existence of the wake region
behind the obstacle (compare with [3,12] for incompressible Navier–Stokes equations and [10] for visco-
elastic fluid). Denoting s(x) = |x| − x1 one might expect the solution u to satisfy

|u(x)| ≤ C |x|−1 (1 + s(x))−1 (18)

for |x| sufficiently large. However we are only able to prove

|u(x)| ≤ C |x|−1+ε (1 + s(x))−1+ε (19)
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for arbitrarily small ε. This is due to the presence of the linear term RW ∂2u
∂x2

1
on the right-hand side of

the transport equation (16). This implies that the solution to the transport equation has the same decay
as ∇2w (quadratic terms decay faster). Moreover, for the Oseen system previously available estimates for
the second gradient (which were using techniques of fundamental solution) lose logarithmic factor in the
weight in the L∞ norm, Lp estimates lose ε in the weight, see [11]. Thus fixed point theorem argument
would not work. Fortunately due to recent results of Koch [6] we have at least Lp estimates without
mentioned ε loss in the weight and therefore fixed point argument works.

It is worth mentioning that in [10], where the model of viscoelastic fluid is considered, authors are able
to overcome these problems by introducing modified Oseen problem with the problematic term ∂2u

∂x1
being

included in the Oseen operator. Then all terms on the right hand side are quadratic and thus with better
decay. In our problem this cannot be repeated since this linear term appears in the transport equation.

The drawback of using Lp estimates is that in order to get L∞ estimate we have to use embedding
theorems and thus we are able to prove

|u(x)| ≤ C |x|−1+ε (1 + s(x))−1+ε

for arbitrarily small ε. Details will be specified in the proper part of the proof.

2. Preliminaries

Throughout this paper we will use standard notation for the Lebesgue spaces Lp(Ω) with the norm ‖·‖p,
the Sobolev spaces W k,p(Ω) with the norm ‖·‖k,p and the homogeneous Sobolev spaces Dk,p(Ω) with the
norm |·|k,p. Let g ∈ L1

loc(Ω) be a nonnegative weight. Then Lp(Ω, g) denotes the weighted Lp space with
the norm

‖u‖p,(g) = ‖ug‖p

for any p ∈ [1,∞]. Similarly, W k,p(Ω, g) denotes the weighted Sobolev space with the norm

‖u‖k,p,(g) = ‖ug‖k,p .

Note that if there is no confusion we sometimes omit writing the domain and instead of Lp(Ω, g) we write
simply Lp(g).

As we decomposed the original problem into an Oseen problem and a steady transport equation, we
shall mention several classical results about these problems in three dimensional exterior domains. Let
us start with the Oseen problem (17).

2.1. Oseen Problem. Existence and properties

We denote by (O, e) the fundamental solution to the Oseen problem. It can be shown (see for example
[11]) that

e(x) = ∇E(x), (20)

where E(x) is the fundamental solution to the Laplace equation. The tensor O(x,R) (here R denotes
the constant standing in front of ∂u

∂x1
in the equation) satisfies the following property

O(x,R) = RO(Rx, 1) (21)

and therefore it is sufficient to study the tensor O(x, 1). For |x| → ∞ we have

O(x, 1) ∼ |x|−1 (1 + s(x))−1

DαO(x, 1) ∼ |x|−1− |α|
2 (1 + s(x))−1− |α|

2 (22)

DαO(x, 1) ∼ |x|−1−α1− |α|−α1
2 (1 + s(x))−1− |α|−α1

2 ,
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i.e. the derivatives with respect to the first variable decay faster.
Next, we present some results for the general Oseen problem

− Δu + R ∂u
∂x1

+ ∇P = f = div G in Ω

div u = 0 in Ω (23)
u = u∗ on ∂Ω
u → 0 as |x| → ∞,

where Ω is an exterior domain.
The proof of the following classical theorem can be found in [4] or in [11].

Theorem 2. Let Ω ⊂ R
3 be an exterior domain of class Ck+2. Let f ∈ D−1,q

0 (Ω) ∩ W k,2(Ω),
u∗ ∈ W k+ 3

2 ,2(∂Ω), q ∈
(

3
2 , 3
)
, k ≥ 0. Then there exists exactly one q-weak solution (i.e. weak solution

such that u ∈ W 1,q(Ω)) to (23). Moreover

u ∈ L
4q

4−q (Ω) and ∇u, P ∈ Lq(Ω) ∩ W k+1,2(Ω) (24)

and

a2 ‖u‖ 4q
4−q

+ |u|1,q + ‖∇u‖k+1,2 + ‖P‖q + ‖P‖k+1,2

≤ C(|f |−1,q + ‖f‖k,2 + ‖u∗‖k+ 3
2 ,2,∂Ω), (25)

where for R ∈ (0,R0] the constant C = C(k, q, Ω,R0) and a2 = min
{

1,R 1
4

}
.

We need the following integral representation of solutions to (23) to obtain weighted estimates.
Let us denote

Tij(u, P ) =
∂ui

∂xj
+

∂uj

∂xi
− Pδij

Tij(e) =
∂ei

∂xj
+

∂ej

∂xi
+ Re1δij (26)

Theorem 3. Let Ω ∈ C2 be an exterior domain, G ∈ C∞
0 (Ω) and (u, P ) be the unique solution to (23).

Let T be defined in (26) and (O, e) be the fundamental solution to the Oseen problem. Then

uj(x) =
∫

Ω

∂

∂xk
Oij(x − y,R)Gik(y)dy

+
∫

∂Ω

[−ROij(x − y,R)ui(y)δ1k + ui(y)Tik(O·j , ej)(x − y,R)

+ Oij(x − y,R)Tik(u, P )(y) + Oij(x − y,R)Gik(y)] nk(y)dS (27)

Dαuj(x) = −
∫

Ω

Dα ∂

∂xk
Oij(x − y,R)Gik(y)dy

+
∫

∂Ω

[−RDαOij(x − y,R)ui(y)δ1k + ui(y)DαTik(O·j , ej)(x − y,R)

+ DαOij(x − y,R)Tik(u, P )(y) + DαOij(x − y,R)Gik(y)] nk(y)dS (28)
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for |α| = 1 and

Dαuj(x) = v.p.

∫

Ω

DαOij(x − y,R)
∂

∂yk
Gik(y)dy + cijα1α2

∂Gik

∂xk
(x)

+
∫

∂Ω

[−RDαOij(x − y,R)ui(y)δ1k + ui(y)DαTik(O·j , ej)(x − y,R)

+ DαOij(x − y,R)Tik(u, P )(y)] nk(y)dS (29)

for |α| = 2.

Remark 4. The integral representation formulas hold for much larger classes of functions. For example it
holds for a.a. x ∈ Ω if u ∈ W 2,q

loc (Ω) and P ∈ W 1,q
loc (Ω) for some q ∈ (1,∞) and

• (27) if G ∈ Lq(Ω) and div G ∈ Lr
loc(Ω) for q ∈ (1, 4), r ∈ (1,∞),

• (28) if G ∈ Lq(Ω) and div G ∈ Lr
loc(Ω) for q, r ∈ (1,∞),

• (29) if div G ∈ Lr
loc(Ω) for r ∈ (1,∞).

For the pressure we have also integral representation formulas.

Theorem 4. Let Ω ∈ C2 be an exterior domain, G ∈ C∞
0 (Ω) and (u, P ) be the unique solution to (23).

Let Tij and Tij be defined in (26). Then

P (x) = v.p.

∫

Ω

∂

∂xk
ei(x − y)Gik(y)dy + cikGik(x)

+
∫

∂Ω

[−Rei(x − y)ui(y)δ1l + ui(y)Til(e)(x − y)

+ ei(x − y)Til(u, P )(y) + ei(x − y)Gil(y)] nl(y)dS (30)

DαP (x) = v.p.

∫

Ω

Dαei(x − y)
∂

∂yk
Gik(y)dy + cik

∂

∂xk
Gik(x)

+
∫

∂Ω

[−RDαei(x − y)ui(y)δ1l + ui(y)DαTil(e)(x − y)

+ Dαei(x − y)Til(u, P )(y)] nl(y)dS (31)

for |α| = 1.

Remark 5. The integral representation formulas for pressure hold also for much larger classes of functions.
For example it holds for a.a. x ∈ Ω if u ∈ W 2,q

loc (Ω) and P ∈ W 1,q
loc (Ω) for some q ∈ (1,∞) and

• (30) if G ∈ Lq(Ω) and div G ∈ Lr
loc(Ω) for q, r ∈ (1,∞),

• (31) if div G ∈ Lr
loc(Ω) for r ∈ (1,∞).

The proof of these representation formulas can be found in [4] or in [11].
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2.2. Results for Weighted Spaces

We introduce the following weights which will be useful in studying the asymptotic structure of solutions

ηA
B(x) = (1 + |x|)A(1 + s(x))B

νA
B(x) = |x|A (1 + s(x))B

μA,ω
B (x) = ηA−ω

B (x)νω
0 (x)

ηA
B(x,R) = (1 + |Rx|)A(1 + s(Rx))B (32)

νA
B(x,R) = |x|A (1 + s(Rx))B

μA,ω
B (x,R) = ηA−ω

B (x,R)νω
0 (x,R)

We recall that weight g belongs to the class Ap if there exists a constant C such that

sup
Q

⎡

⎢
⎣

⎛

⎝
1

|Q|

∫

Q

gp(x)dx

⎞

⎠

⎛

⎝
1

|Q|

∫

Q

g− p
p−1 (x)dx

⎞

⎠

p−1
⎤

⎥
⎦ ≤ C < ∞, (33)

where the supremum is taken over all cubes Q ⊂ R
3.

A basic property of the weight η−a
−b is the following condition

∫

R3

η−a
−b (x)dx < ∞ ⇔ a + min{1, b} > 3. (34)

For a proof of this and further properties we refer the reader to [11].
One of the main tools we use is the following theorem due to Koch [6]. We should mention that this

estimate is an essential improvement of what has been known about weighted estimates of the solutions
to the Oseen system. Without this result it was impossible to obtain weighted estimates for the model of
the second grade fluid or for Maxwell and Oldroyd-type fluids, see [11].

Theorem 5. (Koch) Let T be an integral operator with the kernel ∂2

∂xi∂xj
O on R

3. Then the following
estimate hold:

‖Tf‖p,(g),R3 ≤ C ‖f‖p,(g),R3 (35)

for p ∈ (1,∞) and g = ηA
B(x) for A,B satisfying

A,B ∈
(

−1
p
,

2(p − 1)
p

)

A + B > −1
p

(36)

2A − B, 2B − A <
2(p − 1) + 1

p

The proof of this theorem can be found in [6]. Note that in [6] the theorem is formulated only for the
case p = 2, nevertheless the proof is given for general p ∈ (1,∞). The same estimate holds also for the
case of an exterior domain.

Corollary 1. For the same operator T as in Theorem 5 we have

‖Tf‖p,(g1),Ω
≤ CRω ‖f‖p,(g2),Ω

, (37)

where g1 = μA,ω
B (x,R), g2 = μA,2ω

B (x,R), A,B satisfying (36) and ω ∈ [0, A
2 ).
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Proof. First we observe that for all x ∈ Ω it holds

μA,ω
B (x) ≤ ηA

B(x) ≤
(

1 +
1
κ

)ω

μA,ω
B (x), (38)

where κ was introduced earlier by condition Bκ(0) ⊂ D and Ω = R
3\D. In other words the weights ηA

B(x)
and μA,ω

B (x) are equivalent in Ω. The presence of the term Rω is an easy consequence of a rescaling
argument, because ∇2O(x,R) = R3∇2O(Rx, 1). �

The proofs of the following theorems can be found for example in [7] or in [11].

Theorem 6. Let T be an integral operator with the kernel |∇O| , T : f → |∇O| ∗ f and p ∈ (1,∞). Then
T is a well defined continuous operator:

Lp
(
R

3, η
A+ 1

2
B (·,R)

)
�→ Lp

(
R

3, ηA
B(·,R)

)
(39)

for B ∈
(

0, 3
2 − 3

2p

)
, A + B > − 1

p , A < 3
2 − 2

p , A − B < 1
2 − 1

p . Moreover we have for A,B specified above

‖|∇O(·,R)| ∗ f‖p,ηA
B(·,R),R3 ≤ CR−1 ‖f‖

p,η
A+ 1

2
B (·,R),R3

(40)

Corollary 2. For the same operator T as in Theorem 6 one has

‖Tf‖p,(g1),Ω
≤ CR−1+ω ‖f‖p,(g2),Ω

, (41)

where g1 = μA,ω
B (x,R), g2 = μA,2ω

B (x,R), A,B satisfy the assertions of Theorem 6 and ω ∈ [0, A
2 ).

Theorem 7. Let

Tf(x) =
∂

∂xi

∫

R3

ej(x − y)f(y)dy, i, j = 1, 2, 3, (42)

f ∈ C∞
0 (R3), p ∈ (1,∞) and let g stands for one of weights ηA

B, νA
B , μA,ω

B . Let A,B be such that g is an
Ap weight in R

3. Then T maps C∞
0 (R3) into Lp(R3, g) and

‖Tf‖p,(g),R3 ≤ C ‖f‖p,(g),R3 . (43)

Moreover T can be continuously extended onto Lp(R3, g).

Corollary 3. The same holds also for the case of an exterior domain Ω.

Theorem 8. • Let B ∈
(
− 1

p , p−1
p

)
and A + B ∈

(
− 3

p , 3(p−1)
p

)
. Then the weight ηA

B is an Ap weight

in R
3 for p ∈ (1,∞).

• Let moreover A ∈
(
− 3

p , 3(p−1)
p

)
and ω ∈ [0, A]. Then the weights νA

B and μA,ω
B are Ap weights in

R
3 for p ∈ (1,∞).

2.3. Transport Equation

Next we consider the steady transport equation

z + w · ∇z = f in Ω. (44)

This equation is scalar, nevertheless all theorems below hold also for the vector case. The following
theorems are proved in [9] even for more complicated cases.
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Theorem 9. (i) Let Ω ∈ C0,1 be an exterior domain, w ∈ Ck−1(Ω),w · n = 0 on ∂Ω,∇kw ∈ L3(Ω),
f ∈ W k,q for q ∈ (1, 3), kq > 3. Then there exists α > 0 such that if

‖∇w‖Ck−2 +
∥
∥∇kw

∥
∥

3
< α, (45)

then there exists unique solution z ∈ W k,q(Ω) to (44) satisfying the estimate

‖z‖k,q ≤ C(α) ‖f‖k,q . (46)

(ii) Let Ω ∈ C0,1 be an exterior domain, w ∈ Ck(Ω),w · n = 0 on ∂Ω, f ∈ W k,q for kq > 3. Then there
exists α > 0 such that if

‖∇w‖Ck−1 < α, (47)

then there exists unique solution z ∈ W k,q(Ω) to (44) satisfying the estimate

‖z‖k,q ≤ C(α) ‖f‖k,q . (48)

Theorem 10. Let Ω, k, q,w and f satisfy the assumptions of Theorem 9 (ii). Moreover let g ∈ Ck(Ω) be
a positive weight such that W k,q(Ω, g) ⊂ W k,q(Ω) and let

‖w · ∇ ln g‖Ck−1 + |w · ∇ ln g|k,q (49)

be sufficiently small. Let f ∈ W k,q(Ω, g). Then z, the solution to (44), belongs to W k,q(Ω, g) and

‖z‖k,q,(g) ≤ C ‖f‖k,q,(g) . (50)

3. The Proof of Theorem 1

3.1. Existence of Solution

Here we briefly sketch the method of constructing the solution to the system (7)–(10). It is based on the
following version of the Banach fixed point theorem.

Theorem 11. Let X,Y be Banach spaces such that X is reflexive and X ↪→ Y . Let H be nonempty, closed,
convex and bounded subset of X and let M : H �→ H be a mapping such that

‖M(u) − M(v)‖Y ≤ δ ‖u − v‖Y ∀u, v ∈ H, (51)

δ ∈ [0, 1). Then M has a unique fixed point in H.

The proof of existence of solutions in Sobolev spaces is based on the method described for example in
[11] and [10]. The solution is obtained as a limit of successive approximations

(un+1, qn+1) = M(un, qn), n ≥ 0, (52)

where the mapping M was introduced in (15).

Theorem 12. Let Ω ∈ Ck+1 be an exterior domain in R
3 and let f = div H,H ∈ W k,2(Ω), k ≥ 3. Let

R0,W0 be sufficiently small. Then for any R ∈ (0,R0),W ∈ (0,W0) there exists (u, q) a solution to the
system (7)–(10) such that u ∈ L4(Ω) and ∇u, q ∈ W k,2(Ω).

Proof. We use Theorem 11 for the following choice of spaces: X = Vk, Y = Vk−1, where

Vk =
{

(u, q) : u ∈ L4(Ω),∇u, q ∈ W k,2(Ω)
}

(53)

with the norm

‖(u, q)‖Vk
= R 1

4 ‖u‖4 + ‖∇u‖k,2 + ‖q‖k,2 (54)



304 Pawe�l Konieczny and Ondřej Kreml JMFM

We use Theorems 2 and 9 for q = 2 and the observation that the right-hand side of the transport
equation (9) (we denote it by B(f ,w, s)) can be written in the divergence form as

B(f ,w, s) = div
[

RH − Rw ⊗ w + W(∇w)T (∇w + (∇w)T )

−W(∇w)T s + RW ∂w
∂x1

⊗ w + RW ∂w
∂x1

⊗ e1

]

=: div C(H,w, s) (55)

assuming f = div H. As a part of the proof we obtain the following estimates

R 1
4 ‖un‖4 + ‖∇un‖k,2 + ‖qn‖k,2 ≤ K

‖C(H,un, qn)‖k,2 ≤ K (56)

for all n ≥ 0, for some constant K > 0 depending only on R0,W0 and H. �

3.2. Weighted Estimates

In this section we study weighted estimates which are crucial to obtain asymptotic behavior of the solu-
tion. As we have used Theorem 11 to prove existence of solutions in Sobolev spaces, it is now sufficient
to prove that M maps sufficiently large balls in proper weighted spaces into themselves. Then choosing
(u1, q1) from this ball the solution, as the limit of the sequence (un, qn), belongs to the same ball. We
estimate the sequence in the following space

V =
{

(u, q) : u ∈ Lp

(

Ω, μ
1− 3

p ,ω

1− 2
p

(·,R)
)

,∇u,∇2u ∈ Lp

(

Ω, μ
3
2 − 3

p ,ω

1− 2
p

(·,R)
)

, q,

×∇q ∈ Lp

(

Ω, μ
3
2 − 3

p ,ω
1
2 − 2

p

(·,R)
)}

(57)

with the norm

‖(u, q)‖V = ‖u‖
p,μ

1− 3
p

,ω

1− 2
p

(·,R)),Ω
+
∥
∥∇u,∇2u

∥
∥

p,μ
3
2 − 3

p
,ω

1− 2
p

(·,R)),Ω
+ ‖q,∇q‖

p,μ
3
2 − 3

p
,ω

1
2 − 2

p

(·,R)),Ω
, (58)

where p is sufficiently large and ω < 1
2 − 3

2p .

Remark 6. There exist a constant C depending only on Ω, A,B, ω such that for p > 3, A,B ≥ 0, ω ∈ [0, A]
and R ≤ 1

‖g‖L∞(Ω,μA,ω
B (·,R)) ≤ C

(
‖g‖Lp(Ω,μA,ω

B (·,R)) + ‖∇g‖Lp(Ω,μA,ω
B (·,R))

)
. (59)

This is an easy consequence of the Sobolev embedding theorem and the fact that there is a constant C
independent of R such that

‖g‖Lp(Ω,∇μA,ω
B (·,R)) ≤ C ‖g‖Lp(Ω,μA,ω

B (·,R)) . (60)

Let us mention that using this Remark we get u ∈ L∞
(

Ω, μ
1− 3

p ,ω

1− 2
p

(·,R)
)

with p arbitrarily large and

therefore almost the same asymptotic structure as O.
Let us assume

‖(w, s)‖V ≤ C0, (61)

where C0 is sufficiently large constant which will be determined later. It is important to mention that
this constant is determined by the estimates (56) and is independent of R and W.

Our aim is to prove that also

‖M(w, s)‖V = ‖(u, q)‖ ≤ C0. (62)

We recall that we also assume that (w, s) satisfy (56).
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Throughout the rest of this paper we will use the following notation to simplify things

Xω = Lp

(

Ω, μ
3
2 − 3

p ,ω

1− 2
p

(·,R)
)

(63)

We will estimate both B(f ,w, s) and C(H,w, s) in X2ω. Due to the presence of the Reynolds and
Weissenberg numbers in front of each term on the right hand side it is sufficient to show the presence of all
terms in X2ω, smallness of these terms is achieved by assuming R,W sufficiently small. We will proceed
term by term and denote the terms on the right hand side of (16) by B1, . . . , B6 and the corresponding
terms of C by C1, . . . , C6. First we use assumption

f ,H ∈ X2ω, (64)

which allows us to estimate B1, C1 in X2ω. We estimate B2 in the following way

‖w∇w‖p
X2ω ≤ ‖w‖p

L∞
(

Ω,μ
1− 3

p
,ω

1− 2
p

(·,R)

) ‖∇w‖p
Xω

∥
∥
∥η

3−p
2−p(·,R)

∥
∥
∥

L∞(Ω)
. (65)

The last term is finite for p > 3 and therefore using Remark 6

‖B2‖X2ω ≤ CRC2
0 . (66)

We proceed in the similar way also in the divergence form case. Here

‖w ⊗ w‖p
X2ω ≤ ‖w‖p

L∞
(

Ω,μ
1− 3

p
,ω

1− 2
p

(·,R)

) ‖w‖p

Lp

(

Ω,μ
1− 3

p
,ω

1− 2
p

(·,R)

)

∥
∥
∥η

3− p
2

2−p (·,R)
∥
∥
∥

L∞(Ω)
(67)

and therefore for p > 6 we get

‖C2‖X2ω ≤ CRC2
0 . (68)

Similar procedure works also for terms B3, B4, B5 and C3, C4, C5, we only show the estimates for B3 and
B4 which are most restrictive.

∥
∥∇2w∇w

∥
∥p

X2ω ≤ ‖∇w‖p

L∞
(

Ω,μ
3
2 − 3

p
,ω

1− 2
p

(·,R)

)
∥
∥∇2w

∥
∥p

Lp

(

Ω,μ
3
2 − 3

p
,ω

1− 2
p

(·,R)

)

∥
∥
∥η

3− 3p
2

2−p (·,R)
∥
∥
∥

L∞(Ω)
(69)

‖∇w∇s‖p
X2ω ≤ ‖∇w‖p

L∞
(

Ω,μ
3
2 − 3

p
,ω

1− 2
p

(·,R)

) ‖∇s‖p

Lp

(

Ω,μ
3
2 − 3

p
,ω

1
2 − 2

p

(·,R)

)

∥
∥
∥η

3− 3p
2

2− p
2

(·,R)
∥
∥
∥

L∞(Ω)
(70)

Linear terms B6, C6 are trivial. We get

‖B3, B4, C3, C4‖X2ω ≤ CWC2
0 ,

‖B5, C5‖X2ω ≤ CRWC2
0 , (71)

‖B6, C6‖X2ω ≤ R1−ωWC0

and putting all calculations together we end up with

‖B(f ,w, s)‖X2ω ≤ C((R + W)C2
0 + R1−ωWC0),

‖C(H,w, s)‖X2ω ≤ C((R + W)C2
0 + R1−ωWC0),

(72)

for p > 6. Now we can use Theorem 10 on the equation (16) to get

‖z‖X2ω ≤ C ‖B(f ,w, s)‖X2ω ≤ C((R + W)C2
0 + R1−ωWC0). (73)

Moreover we can write the equation (16) in the following form

z = div [C(H,w, s) − Wz ⊗ (w + e1)] (74)

since div (w + e1) = 0. Hence z = div Z for some tensor Z and

‖Z‖X2ω ≤ ‖C(H,w, s)‖X2ω + W ‖z‖X2ω ‖(w + e1)‖∞ ≤ C((R + W)C2
0 + R1−ωWC0). (75)
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Now we can proceed with the Oseen equation (17) with the right hand side z = div Z. We use the
integral representation formulas (27)–(29) and (30)–(31) to estimate (u, q) in V . We can split u into
u = uV + uS , where uV denotes the volume integral and uS denotes the surface integrals. Similarly we
split ∇u,∇2u, q and ∇q.

We start with the estimates of the volume parts. For the estimate of uV ∈ Lp

(

Ω, μ
1− 3

p ,ω

1− 2
p

(·,R)
)

we

use Theorem 6 and its Corollary and get
∥
∥uV

∥
∥

Lp

(

μ
1− 3

p
,ω

1− 2
p

(·,R)

) ≤ CR−1+ω ‖Z‖X2ω ≤ C((Rω + R−1+ωW)C2
0 + WC0), (76)

which can be made sufficiently small by choosing R,W small.
For the estimates of (∇u)V and (∇2u)V we use Theorem 5 and its Corollary and get

∥
∥(∇u)V

∥
∥

Lp

(

μ
3
2 − 3

p
,ω

1− 2
p

(·,R)

) ≤ CRω ‖Z‖X2ω ≤ C((R1+ω + RωW)C2
0 + RWC0) (77)

∥
∥(∇2u)V

∥
∥

Lp

(

μ
3
2 − 3

p
,ω

1− 2
p

(·,R)

) ≤ CRω ‖z‖X2ω ≤ C((R1+ω + RωW)C2
0 + RWC0) (78)

Again, terms on the right-hand sides can be made sufficiently small by choosing R,W small. For the
estimates of qV and (∇q)V we use Theorem 7 and its Corollary and we obtain

∥
∥qV

∥
∥

Lp

(

μ
3
2 − 3

p
,ω

1
2 − 2

p

(·,R)

) ≤ C ‖Z‖
Lp

(

μ
3
2 − 3

p
,ω

1
2 − 2

p

(·,R)

) ≤ C ‖Z‖X2ω ≤ C((R + W)C2
0 + R1−ωWC0) (79)

∥
∥(∇q)V

∥
∥

Lp

(

μ
3
2 − 3

p
,ω

1
2 − 2

p

(·,R)

) ≤ C ‖z‖
Lp

(

μ
3
2 − 3

p
,ω

1
2 − 2

p

(·,R)

) ≤ C ‖z‖X2ω ≤ C((R + W)C2
0 + R1−ωWC0) (80)

Again the right-hand sides can be made small same way as before.
Next we proceed with the surface integrals. Here we distinguish three cases

Ω1 = {x ∈ Ω, |x| ≤ 1}

Ω2 =
{

x ∈ Ω, 1 ≤ |x| ≤ 1
R

}

(81)

Ω3 =
{

x ∈ Ω, |x| ≥ 1
R

}

.

In the case Ω1 all our weights ∼ 1 and we do not use the integral representation formulas. We rather use
the following estimate

‖u‖Lp(Ω1)
≤ C(1 + ‖∇u‖W 1,2(Ω1)

) ≤ C(1 + ‖∇u‖W 1,2(Ω)) ≤ C(1 + K) (82)

which is due to Friedrichs inequality and (56). Arising term C(1 + K) can be made small in comparison
with C0 by choosing C0 large enough. Together with (76) we get

∥
∥uS

∥
∥

Lp

(

Ω1,μ
1− 3

p
,ω

1− 2
p

(·,R)

) ≤ C(1 + K) + C((Rω + R−1+ωW)C2
0 + WC0). (83)

We use analogous procedure also for ∇u,∇2u and get
∥
∥∇u,∇2u

∥
∥

Lp(Ω1)
≤ C(1 + ‖∇u‖W 3,2(Ω1)

) ≤ C(1 + ‖∇u‖W 3,2(Ω)) ≤ C(1 + K) (84)

and therefore
∥
∥(∇u)S , (∇2u)S

∥
∥

Lp

(

Ω1,μ
3
2 − 3

p
,ω

1− 2
p

(·,R)

) ≤ C(1 + K) + C((R1+ω + RωW)C2
0 + RWC0). (85)

Analogously for the pressure.
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Next we proceed with the case Ω2. We start with uS and denote four terms in the surface integral
(27) by uS,1, . . . , uS,4. For uS,1 we have

∣
∣uS,1(x)

∣
∣p |x|pω (1 + R|x|)p−3−pω(1 + s(Rx))p−2

≤ Rp |x|pω (1 + R|x|)p−3−pω(1 + s(Rx))p−2

∣
∣
∣
∣
∣
∣

∫

∂Ω

Oij(x − y,R)dy

∣
∣
∣
∣
∣
∣

p

≤ CRp |x|pω (1 + R|x|)p−3−pω(1 + s(Rx))p−2
∣
∣
∣Oij(x,R) + ∇Oij

(x
2

,R
)∣
∣
∣
p

≤ CRp(1 + R|x|)p−3−pω(1 + s(Rx))p−2

(
1

|x|p−pω +
1

|x|2p−pω

)

, (86)

where the crucial estimate is the following

∣
∣∇kO(x,R)

∣
∣ ≤ C

R k
2

|x|1+
k
2

(87)

for k ≥ 0. We use this estimate throughout the rest of the procedure in the case Ω2. Therefore

∥
∥uS,1

∥
∥p

Lp

(

Ω2,μ
1− 3

p
,ω

1− 2
p

(·,R)

) ≤ CRp

∫

Ω2

(
1

|x|p−pω +
1

|x|2p−pω

)

dx (88)

Arising functions are integrable and
∫

Ω2
|x|pω−p dx ≤ 4π

p−pω−3 ≤ 4π for p > 6 and ω < 1
2 − 3

2p , i.e. integrals
of such functions over Ω2 are bounded independently of R by universal constant 4π. Therefore this term
can be estimated choosing C0 large and at this point we do not require R to be small, even if we have
Rp at our disposal. This fact will play a role in estimating uS,2,uS,3 and uS,4, where there is no power
of R available.

Next for uS,2 we proceed similarly
∣
∣uS,2(x)

∣
∣p |x|pω (1 + R|x|)p−3−pω(1 + s(Rx))p−2

≤ C |x|pω (1 + R|x|)p−3−pω(1 + s(Rx))p−2

×
∣
∣
∣∇Oij(x,R) + ∇2Oij

(x
2

,R
)

+ ei(x) + ∇ei

(x
2

)∣
∣
∣
p

≤ C(1 + R|x|)p−3−pω(1 + s(Rx))p−2

(
1

|x|2p−pω +
1

|x|3p−pω

)

(89)

and therefore

∥
∥uS,2

∥
∥p

Lp

(

Ω2,μ
1− 3

p
,ω

1− 2
p

(·,R)

) ≤ C

∫

Ω2

(
1

|x|2p−pω +
1

|x|3p−pω

)

dx (90)

and we are in similar situation as in the case uS,1.
We treat uS,3 and uS,4 together

∣
∣uS,3 + uS,4(x)

∣
∣p |x|pω (1 + R|x|)p−3−pω(1 + s(Rx))p−2

≤ C |x|pω (1 + R|x|)p−3−pω(1 + s(Rx))p−2
∣
∣
∣Oij(x,R) + ∇Oij

(x
2

,R
)∣
∣
∣
p

×
(
‖∇u‖W 1,2(Ω) + ‖q‖W 1,2(Ω) + ‖Z‖W 1,2(Ω)

)

≤ CK(1 + R|x|)p−3−pω(1 + s(Rx))p−2

(
1

|x|p−pω +
1

|x|2p−pω

)

(91)
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and therefore

∥
∥uS,3 + uS,4

∥
∥p

Lp

(

Ω2,μ
1− 3

p
,ω

1− 2
p

(·,R)

) ≤ CK

∫

Ω2

(
1

|x|p−pω +
1

|x|2p−pω

)

dx. (92)

Here we have used also (56).
For higher gradients of u and pressure and its gradient we use similar procedure, in this case higher

gradients are even easier to estimate.
We finish with the case Ω3. Here the situation is a little different. We have

∣
∣uS,1(x)

∣
∣p |x|pω (1 + R|x|)p−3−pω(1 + s(Rx))p−2

≤ Rp |x|pω (1 + R|x|)p−3−pω(1 + s(Rx))p−2

∣
∣
∣
∣
∣
∣

∫

∂Ω

Oij(x − y,R)dy

∣
∣
∣
∣
∣
∣

p

≤ CRp |x|pω (1 + R|x|)p−3−pω(1 + s(Rx))p−2
∣
∣
∣Oij(x,R) + ∇Oij(

x
2

,R)
∣
∣
∣
p

≤ CRp |x|pω (1 + R|x|)p−3−pω(1 + s(Rx))p−2

×
(

Rp

|Rx|p (1 + s(Rx))p
+

R2p

|Rx|
3p
2 (1 + s(Rx))

3p
2

)

. (93)

Here we have used that
∣
∣∇kO(x,R)

∣
∣ ≤ C

R k
2

|x|1+
k
2 (1 + s(Rx))1+

k
2

(94)

for k ≥ 0. Therefore
∥
∥uS,1

∥
∥p

Lp

(

Ω3,μ
1− 3

p
,ω

1− 2
p

(·,R)

) ≤ CR2p−pω

∫

Ω3

(
1

(1 + |Rx|)3(1 + s(Rx))2

)

dx

+CR3p−pω

∫

Ω3

(
1

(1 + |Rx|)3+ p
2

1
(1 + s(Rx))2+

p
2

)

dx

≤ CR2p−pω−3

∫

R3

η−3
−2(y)dy + CR3p−pω−3

∫

R3

η
−3− p

2
−2− p

2
(y)dy (95)

Arising integrals are finite due to (34).
For uS,2 we obtain in the similar way

∥
∥uS,2

∥
∥p

Lp

(

Ω3,μ
1− 3

p
,ω

1− 2
p

(·,R)

)

≤ CR2p−pω

∫

Ω3

(
1

(1 + |Rx|)3+ p
2

1
(1 + s(Rx))2+

p
2

)

dx

+CR2p−pω

∫

Ω3

(
1

(1 + |Rx|)3+p

1
(1 + s(Rx))2−p

)

dx

+CR3p−pω

∫

Ω3

(
1

(1 + |Rx|)3+p

1
(1 + s(Rx))2+p

)

dx

+CR3p−pω

∫

Ω3

(
1

(1 + |Rx|)3+2p

1
(1 + s(Rx))2−p

)

dx. (96)
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Treating uS,3 and uS,4 together we get
∥
∥uS,3 + uS,4

∥
∥p

Lp

(

Ω3,μ
1− 3

p
,ω

1− 2
p

(·,R)

)

≤ CRp−pω

∫

Ω3

(
1

(1 + |Rx|)3
1

(1 + s(Rx))2

)

dx

+CR2p−pω

∫

Ω3

(
1

(1 + |Rx|)3+ p
2

1
(1 + s(Rx))2+

p
2

)

dx

≤ CRp−pω−3

∫

R3

η−3
−2(y)dy + CR2p−pω−3

∫

R3

η
−3− p

2
−2− p

2
(y)dy. (97)

Again, we proceed similarly with the estimates of gradients of u and pressure and its gradient. Putting
all calculations together, choosing first C0 sufficiently large and then R,W sufficiently small we finally
end up with

‖(u, q)‖V < C0 (98)

and the proof of Theorem 1 is finished.
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