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1. Introduction

We consider point singularities of very weak solutions of the 3D stationary Navier–Stokes equations in a
finite region Ω in R

3. The Navier–Stokes equations for the velocity u : Ω → R
3 and pressure p : Ω → R

with external force f : Ω → R
3 are

− Δu + (u · ∇)u + ∇p = f, div u = 0, (x ∈ Ω). (1.1)

A very weak solution is a vector function u in L2
loc(Ω) which satisfies (1.1) in distribution sense:∫

−u · Δϕ + ujui∂jϕi = 〈f, ϕ〉, ∀ϕ ∈ C∞
c,σ(Ω), (1.2)

and
∫

u · ∇h = 0 for any h ∈ C∞
c (Ω). Here the force f is allowed to be a distribution and

C∞
c,σ(Ω) = {ϕ ∈ C∞

c (Ω, R3) : div ϕ = 0}. (1.3)

In this definition the pressure is not needed. Denote BR = {x ∈ R
3 : |x| < R} and Bc

R = R
3\BR for

R > 0.
We are concerned with the behavior of very weak solutions which solve (1.1) in the punctured ball

B2\{0} with zero force, i.e., f = 0. There are a lot of studies on this problem [4,5,8,15,16]. A typical
result is to show that, under some conditions, the solution is a very weak solution across the origin with-
out singular forcing supported at the origin (removable singularity), and is regular, i.e., locally bounded,
under possibly more assumptions (regularity). Dyer–Edmunds [5] proved removable singularity and reg-
ularity assuming both u, p ∈ L3+ε(B2) for some ε > 0. Shapiro [15,16] proved removable singularity and
regularity assuming u ∈ L3+ε(B2) for some ε > 0 and u(x) = o(|x|−1) as x → 0, without assumption on
p. Choe and Kim [4] proved removable singularity assuming u ∈ L3(B2) or u(x) = o(|x|−1) as x → 0,
and regularity assuming u ∈ L3+ε(B2) for some ε > 0. Kim and Kozono [8] recently proved removable
singularity under the same assumptions as [4], and regularity assuming u ∈ L3(B2) or u is small in weak
L3. As mentioned in [8], their result is optimal in the sense that if their assumption is replaced by

|u(x)| ≤ C∗|x|−1 (1.4)
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for 0 < |x| < 2, then the singularity is not removable in general, due to the existence of Landau solutions,
which is the family of explicit singular solutions calculated by Landau [11], and can be found in standard
textbooks, see e.g., [12, p. 82] or [1, p. 206].

The purpose of this article is to characterize the singularity and to identify the leading order behavior
of very weak solutions satisfying the threshold assumption (1.4) when the constant C∗ is sufficiently
small. We show that it is given by Landau solutions.

We now recall Landau solutions in order to state our main theorems. Landau solutions can be param-
etrized by vectors b ∈ R

3 in the following way: For each b ∈ R
3 there exists a unique (−1)-homogeneous

solution U b of (1.1) together with an associated pressure P b which is (−2)-homogeneous, such that U b, P b

are smooth in R
3\{0} and they solve

− Δu + (u · ∇)u + ∇p = bδ, div u = 0, (1.5)

in R
3 in the sense of distributions, where δ denotes the Dirac δ function. When b = (0, 0, β)

with β ≥ 0, they have the following explicit formulas in spherical coordinates r, θ, φ with x =
(r sin θ cos φ, r sin θ sin φ, r cos θ):

U =
2
r

(
A2 − 1

(A − cos θ)2
− 1

)
er − 2 sin θ

r(A − cos θ)
eθ, P =

−4(A cos θ − 1)
r2(A − cos θ)2

(1.6)

where er = x
r and eθ = (cos θ cos φ, cos θ sin φ, − sin θ). The parameters β ≥ 0 and A ∈ (1,∞] are related

by the formula

β = 16π

(
A +

1
2
A2 log

A − 1
A + 1

+
4A

3(A2 − 1)

)
. (1.7)

The formulas for general b can be obtained from rotation. One checks directly that
∥∥rU b

∥∥
L∞ is monotone

in |b| and
∥∥rU b

∥∥
L∞ → 0 (or ∞) as |b| → 0 (or ∞). Recently Sverak [17] proved that Landau solutions

are the only solutions of (1.1) in R
3\{0} which are smooth and (−1)-homogeneous in R

3\{0}, without
assuming axisymmetry. See also [2,9,19] for related results.

If u, p is a solution of (1.1), we will denote by

Tij(u, p) = pδij + uiuj − ∂iuj − ∂jui (1.8)

the momentum flux density tensor in the fluid, which plays an important role to determine the equation
for (u, p) at 0. Our main result is the following.

Theorem 1.1. For any q ∈ (1, 3), there is a small C∗ = C∗(q) > 0 such that, if u is a very weak solution
of (1.1) with zero force in B2\{0} satisfying (1.4) in B2\{0}, then there is a scalar function p satisfying
|p(x)| ≤ C|x|−2, unique up to a constant, so that (u, p) satisfies (1.5) in B2 with bi =

∫
|x|=1

Tij(u, p)nj(x),
and ∥∥u − U b

∥∥
W 1,q(B1)

+ sup
x∈B1

|x|3/q−1|(u − U b)(x)| ≤ CC∗, (1.9)

where the constant C is independent of q and u.

The exponent q can be regarded as the degree of the approximation of u by U b. The closer q gets to
3, the less singular u − U b is. But in our theorem, C∗(q) shrinks to zero as q → 3−. Ideally, one would
like to prove that u − U b ∈ L∞. However, it seems quite subtle in view of the following model equation
for a scalar function,

− Δv + cv = 0, c = Δv/v. (1.10)

If we choose v = log |x|, then c(x) ∈ L3/2 and lim|x|→0 |x|2|c(x)| = 0, but v �∈ L∞. In Eq. (3.2) for the
difference w = u − U b, there is a term (w · ∇)U b which has similar behavior as cv above.

In fact, we have the following stronger result. Denote by Lr
wk the weak Lr spaces. We claim the same

conclusion as in Theorem 1.1 assuming only a small L3
wk bound of u but not the pointwise bound (1.4).
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Theorem 1.2. There is a small ε∗ > 0 such that, if u is a very weak solution of (1.1) with zero force in
Ω = B2.1\{0} satisfying ‖u‖L3

wk(Ω) =: ε ≤ ε∗, then u satisfies |u(x)| ≤ C1ε|x|−1 in B2\{0} for some C1.
Thus the conclusion of Theorem 1.1 holds if C1ε ≤ C∗(q).

Our results are closely related to the regularity problem of very weak solutions, which could be con-
sidered when u is only assumed to be in L2

loc. In fact, the problem with the assumption u being large in
L3

wk already exhibits a great difficulty. Recall the scaling property of (1.1): If (u, p) is a solution of (1.1),
then so is

(uλ, pλ)(x) = (λu(λx), λ2p(λx)), (λ > 0). (1.11)

The known methods are primarily perturbation arguments. Since L3
wk-quasi-norm is invariant under the

above scaling and does not become smaller when restricted to smaller regions, one would need to exploit
the structure of the Navier–Stokes equations in order to get a positive answer. Compare the recent result
[3] on axisymmetric solutions of nonstationary Navier–Stokes equations, which also considers a borderline
case under the natural scaling.

This work is inspired by Korolev–Sverak [9] in which they study the asymptotic as |x| → ∞ of solu-
tions of (1.1) satisfying (1.4) in R

3\B1, extending [13]. They show that the leading behavior is also given
by Landau solutions if C∗ is sufficiently small. Our theorem can be considered as a dual version of their
result. However, their proof is based on the uniqueness of solutions of the equation on R

3 satisfied by
v = ϕ(u−U b)+ζ where ϕ is a cut-off function supported near infinity and ζ is a suitable function chosen
to make div v = 0. If one tries the same approach for our problem, since one needs to remove the origin
as well as the region |x| ≥ 2 while extending u−U b, one needs to choose a sequence ϕk with the supports
of 1 − ϕk shrinking to the origin, which produce very singular force terms near the origin.

Specifically, let ϕ(x) be a smooth function which is 0 for |x| < 1.8 and 1 for |x| > 1.9, and let
ϕk(x) = ϕ(2kx). Let vk = (ϕ − ϕk)(u − U b) + ζk where ζk is chosen to make div vk = 0, and is supported
in Ek = {x : 1.7 ≤ |x| ≤ 2 or 1.7 · 2−k ≤ |x| ≤ 21−k}. The vector field vk satisfies an equation in R

3

with a force fk which is supported in Ek with zero average, and whose height is of order 23k. One tries
to construct a solution v of this equation in the class

|v(x)| ≤ CC∗(|x|δ + |x|)−1, (1.12)

with uniform in k constants δ ∈ (0, 1) and C > 0, and prove that it is equal to vk. This seems possible
but delicate.

Instead, we first define the equation for (u, p) at the origin (Lemma 2.3). Since the equation for u is
same as U b near the origin for b = b(u), the δ-functions at the origin cancel in the equation for their dif-
ference. We then apply the approach of Kim–Kozono [8] to the difference equation, and prove its unique
existence in W 1,r

0 (B2) for 3/2 ≤ r < 3 and uniqueness in W 1,r
0 ∩L3

wk(B2) for 1 < r < 3/2, which improves
the regularity of the original difference. Above W 1,r

0 (B2) is the closure of C∞
c (B2) in the W 1,r(B2)-norm.

As an application, we give the following corollary. Recall uλ for λ > 0 is defined in (1.11). A solution
u on B2\{0} is called discretely self-similar if there is a λ1 ∈ (0, 1) so that uλ1 = u. Such a solution
is completely determined by its values in the annulus B1\Bλ1 since u(λk

1x) = λ−k
1 u(x). They contain

minus-one homogeneous solutions as a special subclass.

Corollary 1.3. If u satisfies the assumptions of Theorem 1.1 and furthermore u is discretely self-similar
in B2\{0}, then u ≡ U b.

This corollary also follows from [9] (with domain R
3\B1 and λ1 > 1). In the case of small C∗, this

corollary extends the result of Sverak [17] on minus-one homogeneous solutions. The classification of
discretely self-similar solutions with large C∗ is unknown.

As another application, we consider a conjecture by Sverak [17, Sect. 5]:

Conjecture 1.4. If u is a solution of the stationary Navier–Stokes equations (1.1) with zero force in R
3\{0}

satisfying (1.4) with some C∗ > 0. Then u is a Landau solution.

We give a partial answer for this problem.



36 H. Miura and T.-P. Tsai JMFM

Corollary 1.5. Conjecture 1.4 is true, provided the constant C∗ is sufficiently small.

The above corollary can be also shown to be true by either our main theorem or the result of Korolev-
Sverak [9], see Sect. 3.4. The corresponding conjecture for large C∗ is related to the regularity problem
of evolutionary Navier–Stokes equations via the usual blow-up procedures.

2. Preliminaries

In this section we collect some lemmas for the proof of Theorem 1.1. The first lemma recalls Hölder
and Sobolev type inequalities in Lorentz spaces. We denote the Lorentz spaces by Lp,q (1 < p < ∞,
1 ≤ q ≤ ∞). Note L3

wk = L3,∞.

Lemma 2.1. Let B = B2 ⊂ R
n, n ≥ 2.

(i) Let 1 < p1, p2 < ∞ with 1/p := 1/p1 + 1/p2 < 1 and let 1 ≤ r1, r2 ≤ ∞. For f ∈ Lp1,r1 and
g ∈ Lp2,r2 , we have

‖fg‖Lp,r(B) ≤ C‖f‖Lp1,r1 (B)‖g‖Lp2,r2 (B) for r := min{r1, r2}, (2.1)

where C = C(p1, r1, p2, r2).
(ii) Let 1 < r < n. For f ∈ W 1,r(B), we have

‖f‖
L

nr
n−r

,r
(B)

≤ C‖f‖W 1,r(B), (2.2)

where C = C(n, r).

Part (i) of Lemma 2.1 was proved in [14]. Part (ii) was proved in [14] for R
n and in [10,8] for bounded

domains.
By this lemma, when n = 3 and 1 < r < 3, we have

‖fg‖Lr(B) ≤ C ‖f‖L3
wk

‖g‖
L

3r
3−r

,r ≤ Cr ‖f‖L3
wk(B) ‖g‖W 1,r(B) . (2.3)

This estimate first appeared in [8] and plays an important role for our application.
The next lemma is on interior estimates for Stokes system with no assumption on the pressure.

Lemma 2.2. Assume v ∈ L1 is a distribution solution of the Stokes system

− Δvi + ∂ip = ∂jfij , div v = 0 in B2R (2.4)

and f ∈ Lr for some r ∈ (1,∞). Then v ∈ W 1,r
loc and, for some constant Cr independent of v and R,

‖∇v‖Lr(BR) ≤ Cr ‖f‖Lr(B2R) + CrR
−4+3/r ‖v‖L1(B2R) . (2.5)

This lemma is [18], Theorem 2.2. Although the statement in [18] assumes v ∈ W 1,r
loc , its proof only

requires v ∈ L1. This lemma can be also considered as [3, Lemma A.2] restricted to time-independent
functions.

The following lemma shows the first part of Theorem 1.1, except (1.9). In particular, it shows that
(u, p) solves (1.5).

Lemma 2.3. If u is a very weak solution of (1.1) with zero force in B2\{0} satisfying (1.4) in B2\{0}
(with C∗ allowed to be large), there is a scalar function p satisfying |p(x)| ≤ CC∗|x|−2, unique up to
a constant, such that (u, p) satisfies (1.5) in B2 with bi =

∫
|x|=1

Tij(u, p)nj(x). Moreover, Tij satisfies
|Tij(x)| ≤ C ′C∗|x|−2 and u, p are smooth in B2\{0}. Here the positive constants C and C ′ depend on C∗
but not on (u, p). Their dependence on C∗ can be dropped if C∗ ∈ (0, 1).
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Proof. For each R ∈ (0, 1/2], u is a very weak solution in B2 − B̄R in L∞. Lemma 2.2 shows u is a weak
solution in W 1,2

loc . The usual theory shows that u is smooth and there is a scalar function pR, unique up
to a constant, so that (u, pR) solves (1.1) in B2 − B̄R, see e.g. [7]. By the scaling argument in Sverak-Tsai
[18] using Lemma 2.2, we have for x ∈ B3R − B2R,

|∇ku(x)| ≤ CkC∗
|x|k+1

for k = 1, 2, . . . , (2.6)

where Ck = Ck(C∗) are independent of R ∈ (0, 1/2] and its dependence on C∗ can be dropped if
C∗ ∈ (0, 1). Varying R, (2.6) is valid for x ∈ B3/2\{0}. For 0 < R < R′, by uniqueness of p′

R, the differ-
ence pR|B2−B̄R′ − pR′ is a constant. Thus we can fix the constant by requiring pR = p1/2 in B2\ B̄1/2,
and define p(x) = pR(x) for any x ∈ B2\{0} with R = |x|/2. By the equation, |∇p(x)| ≤ CC∗|x|−3.
Integrating from |x| = 1 we get |p(x)| ≤ CC∗|x|−2. In particular

|Tij(u, p)(x)| ≤ CC∗|x|−2 for x ∈ B3/2\{0}. (2.7)

Denote NS(u) = −Δu + (u · ∇)u + ∇p. We have NS(u)i = ∂jTij(u) in the sense of distributions.
Thus, by divergence theorem and NS(u) = 0 in B2\{0},

bi =
∫

|x|=1

Tij(u, p)nj(x) =
∫

|x|=R

Tij(u, p)nj(x) (2.8)

for any R ∈ (0, 2). Let φ be any test function in C∞
c (B1). For small ε > 0,

〈NS(u)i, φ〉 = −
∫

Tij(u)∂jφ

= −
∫

B1\Bε

Tij(u)∂jφ −
∫

Bε

Tij(u)∂jφ

=
∫

B1\Bε

∂jTij(u)φ +
∫

∂Bε

Tij(u)φnj −
∫

∂B1

Tij(u)φnj −
∫

Bε

Tij(u)∂jφ.

In the last line, the first integral is zero since NS(u) = 0 and the third integral is zero since φ = 0. By
the pointwise estimate (2.7), the last integral is bounded by Cε3−2. On the other hand, by (2.8),∫

∂Bε

Tij(u)φnj → biφ(0) as ε → 0. (2.9)

Thus (u, p) solves (1.5) and we have proved the lemma. �

It follows from the proof that |b| ≤ CC∗ for C∗ < 1. With this lemma, we have completely proved
Theorem 1.1 in the case q < 3/2. In the case 3/2 ≤ q < 3, it remains to prove (1.9).

3. Proof of Main Theorem

In this section, we present the proof of Theorem 1.1. We first prove that solutions belong to W 1,q. We
next apply this result to obtain the pointwise estimate. For what follows, denote

w = u − U, U = U b, (3.1)

where U b is the Landau solution with b given by (2.8).
By Lemma 2.3, there is a function p̃ such that (w, p̃) satisfies in B2 that

−Δw + U · ∇w + w · ∇(U + w) + ∇p̃ = 0, div w = 0,
(3.2)

|w(x)| ≤ CC∗
|x| , |p̃(x)| ≤ CC∗

|x|2 .
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Note that the δ-functions at the origin cancel. In order to check the estimate w, we use (1.7) to ex-
pand A = A(β) in (1.6) as A(β) = Cβ−1 + O(1) for small β > 0. By (1.6) and Lemma 2.3, we have
|U b(x)|� |b||x|−1 �C∗|x|−1 for small |b| > 0.

3.1. W 1,q Regularity

In this subsection we will show w ∈ W 1,q(B1). Fix a cut off function ϕ with ϕ = 1 in B9/8 and ϕ = 0 in
Bc

11/8. We localize w by introducing

v = ϕw + ζ (3.3)

where ζ is a solution of the problem div ζ = −∇ϕ · w. By Galdi [6, Ch. 3] Theorem 3.1, there exists such
a ζ satisfying

supp ζ ⊂ B3/2\B1, ‖∇ζ‖L100 ≤ C‖∇ϕ · w‖L100 ≤ CC∗. (3.4)

The vector v is supported in B̄3/2, satisfies v ∈ W 1,r ∩ L3
wk for r < 3/2 by (1.4), (2.6) and (3.4), and

− Δv + U · ∇v + v · ∇(U + v) + ∇π = f, div v = 0, (3.5)

where π = ϕp̃, and

f = −2(∇ϕ · ∇)w − (Δϕ)w + (U · ∇ϕ)w + (ϕ2 − ϕ)w · ∇w + (w · ∇ϕ)w
+ p̃∇ϕ − Δζ + (U · ∇)ζ + ζ · ∇(U + ϕw + ζ) + ϕw · ∇ζ (3.6)

is supported in the annulus B̄3/2\B1. One verifies directly that, for some C1,

sup
1≤r≤100

‖f‖W −1,r
0 (B2)

≤ C1C∗. (3.7)

Our proof is based on the following lemmas.

Lemma 3.1 (Unique existence). For any 3/2 ≤ r < 3, for sufficiently small C∗ = C∗(r) > 0, there is a
unique solution v of (3.5) and (3.7) in the set

V = {v ∈ W 1,r
0 (B2), ‖v‖V := ‖v‖W 1,r

0 (B2)
≤ C2C∗} (3.8)

for some C2 > 0 independent of C∗ and r ∈ [3/2, 3).

Lemma 3.2 (Uniqueness). Let 1 < r < 3/2. If both v1 and v2 are solutions of (3.5) and (3.7) in W 1,r
0 ∩L3

wk

and C∗ + ‖v1‖L3
wk

+ ‖v2‖L3
wk

is sufficiently small, then v1 = v2.

Assuming the above lemmas, we get W 1,q regularity as follows. First we have a solution ṽ of (3.5)
in W 1,q

0 (B2) by Lemma 3.1. On the other hand, both v = ϕw + ζ and ṽ are small solutions of (3.5) in
W 1,r

0 ∩ L3
wk(B2) for r = 5/4, and thus v = ṽ by Lemma 3.2. Thus v ∈ W 1,q

0 (B2) and w ∈ W 1,q(B1).

Proof of Lemma 3.1. Consider the following mapping Φ: For each v ∈ V , let v̄ = Φv be the unique
solution in W 1,r

0 (B2) of the Stokes system

− Δv + ∇π̄ = f − ∇ · (U ⊗ v + v ⊗ (U + v)), div v = 0. (3.9)

By estimates for the Stokes system, see Galdi [6, Ch.4] Theorem 6.1, in particular (6.9), for 1 < r < ∞,
we have

‖v̄‖W 1,r
0 (B2)

≤ Nr‖f‖W −1,r
0

+ Nr‖∇ · (U ⊗ v + v ⊗ (U + v))‖W −1,r
0

(3.10)

for some constant Nr > 0 which is uniformly bounded for r in any compact regions of (1,∞). By (3.7)
and Lemma 2.1, in particular (2.3), for 1 < r < 3,

‖v̄‖W 1,r
0 (B2)

≤ NrC1C∗ + Nr‖U ⊗ v + v ⊗ (U + v)‖Lr

≤ NrC1C∗ + NrCr(‖U‖L3
wk

+ ‖v‖L3
wk

)‖v‖V . (3.11)
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We now choose C2 = 2(C1 + 1) sup3/2≤r<3 Nr. Since V ⊂ L3
wk if r ≥ 3/2, we get v̄ = Φv ∈ V if C∗ is

sufficiently small.
We next consider the difference estimate. Let v1, v2 ∈ V , v̄1 = Φv1, and v̄2 = Φv2. Then

‖Φv1 − Φv2‖W 1,r ≤ CCr(‖U‖L3
wk

+ ‖v1‖L3
wk

+ ‖v2‖L3
wk

)‖v1 − v2‖W 1,r . (3.12)

Taking C∗ sufficiently small for 3/2 ≤ r < 3, we get ‖Φv1 − Φv2‖V ≤ 1
2 ‖v1 − v2‖V , which shows that Φ

is a contraction mapping in V and thus has a unique fixed point. We have proved the unique existence
of the solution for (3.5)–(3.7) in V . �

Remark. Since the constant Cr from Lemma 2.1 (ii) blows up as r → 3−, our C∗ shrinks to zero as
r → 3−.

Proof of Lemma 3.2. By the difference estimate (3.12), we have

‖v1 − v2‖W 1,r ≤ C(‖U‖L3
wk

+ ‖v1‖L3
wk

+ ‖v2‖L3
wk

)‖v1 − v2‖W 1,r . (3.13)

Thus, if C(‖U‖L3
wk

+ ‖v1‖L3
wk

+ ‖v2‖L3
wk

) < 1, we conclude v1 = v2. �

3.2. Pointwise Bound

In this subsection, we will prove pointwise bound of w using ‖w‖W 1,q � C∗.
For any fixed x0 ∈ B1/2\{0}, let R = |x0|/4 and Ek = B(x0, kR), k = 1, 2.
Note q∗ ∈ (3,∞). Let s be the dual exponent of q∗, 1/s + 1/q∗ = 1. We have

‖w‖L1(E2)
� ‖w‖Lq∗ (E2)

‖1‖Ls(E2)
�C∗R4−3/q. (3.14)

By the interior estimate Lemma 2.2,

‖∇w‖Lq∗ (E1)
� ‖f‖Lq∗ (E2)

+ R−4+3/q∗ ‖w‖L1(E2)
(3.15)

where f = U ⊗ w + w ⊗ (U + w). Since |U | + |w|� C∗|x|−1 � C∗R−1 in E2,

‖f‖Lq∗ (E2)
�C∗R−1 ‖w‖Lq∗ (E2)

� C2
∗R−1. (3.16)

We also have R−4+3/q∗ ‖w‖L1(E2)
�R−4+3/q∗

C∗R4−3/q = C∗R−1. Thus

‖∇w‖Lq∗ (E1)
� C∗R−1. (3.17)

By Gagliardo-Nirenberg inequality in E1,

‖w‖L∞(E1)
� ‖w‖1−θ

Lq∗ (E1)
‖∇w‖θ

Lq∗ (E1)
+ R−3 ‖w‖L1(E1)

, (3.18)

where 1/∞ = (1 − θ)/q∗ + θ(1/q∗ − 1/3) and thus θ = 3/q − 1. We conclude ‖w‖L∞(E1)
≤ C∗R−θ. Since

x0 is arbitrary, we have proved the pointwise bound, and completed the proof of Theorem 1.1.

Remark. Equivalently, one can define v(x) = u(x0 + Rx), find the equation of v, estimate v in L∞(B1),
and then derive the bound for w(x0).

3.3. Proof of Theorem 1.2

In this subsection we prove Theorem 1.2. For any x0 ∈ B2\{0}, let v(x) = λu(λx + x0) with λ =
min(0.1, |x0|)/2. By our choice of λ, v is a very weak solution in B2 and ‖v‖L3

wk(B2)
≤ ε = ‖u‖L3

wk(B2.1\{0}).
By [8], we have ‖v‖L∞(B1)

≤ C2ε for some constant C2 if ε is sufficiently small. Thus |u(x0)| ≤ C2ελ
−1 ≤

40C2ε|x0|−1.
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3.4. Proof of Corollary 1.5

In this subsection we prove Corollary 1.5. Suppose u satisfies (1.4) with C∗ = C∗(q), q = 2, given in
Theorem 1.1. Let b be given by (2.8), U = U b and w = u − U . Let uλ = λu(λx) be the rescaled solution
and wλ(x) = λw(λx). Note U is scaling-invariant. Then uλ = U + wλ also satisfies (1.4) with same C∗.
By Theorem 1.1 with q = 2, we have the bound

|wλ(x)| ≤ CC∗|x|−1/2, |x| < 1, (3.19)

which is uniform in λ. In terms of w and y = λx, we get

|w(y)| ≤ CC∗λ−1|λ−1y|−1/2, |y| ≤ λ. (3.20)

Now fix y and let λ → ∞. We conclude w ≡ 0.

Remark. Note Corollary 1.5 assumes (1.4) in entire space, not just B2, and thus does not imply u = U b

in Theorem 1.1.
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