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1. Introduction

In this paper we address the regularity of an asymptotically smooth system arising in non-Newtonian
fluid mechanics, which is not smoothing in finite time, but admits a compact global attractor (in the
two-dimensional case). More precisely, we consider the system of visco-elastic second-grade fluids

∂t(u− α2Δu) − νΔu+ curl(u− α2Δu) × u+ ∇p = 0, (1.1)
div u = 0, (1.2)

u(0, x) = u0(x), (1.3)

where α > 0 is a material parameter, ν ≥ 0 is the kinematic viscosity, the vector field u represents
the velocity of the fluid, and the scalar field p represents the pressure. Here (x, t) ∈ T

d × [0,∞), where
T

d = [0, 2π]d is the d-dimensional torus, and d ∈ {2, 3}. Without loss of generality we consider velocities
that have zero-mean on T

d.
Fluids of second-grade are a particular class of non-Newtonian Rivlin–Ericksen fluids (cf. [48]) of

differential type, and the above precise form has been justified by Dunn and Fosdick [18]. The local exis-
tence in time, and the uniqueness of strong solutions of the Eqs. (1.1)–(1.3) in a two or three-dimensional
bounded domain with no slip boundary conditions has been addressed by Cioranescu and Ouazar [14].
Moreover, in the two-dimensional case, they obtained the global in time existence of solutions (see also
[13,24,25,29]). Moise et al. [40] have shown later that in two dimensions these equations admit a compact
global attractor Aα (see also [2,15,22,26,27,30,39,45,47]). The question of regularity and finite-dimen-
sional behavior of Aα was studied by Paicu et al. in [45], where it was shown that the compact global
attractor in H3(T2) is contained in any Sobolev space Hm(T2) provided that the material coefficient α is
small enough, and the forcing term is regular. Moreover, on the global attractor, the second-grade fluid
system can be reduced to a finite-dimensional system of ordinary differential equations with an infinite
delay. As a consequence, the existence of a finite number of determining modes for the equation of fluids
of grade two was established in [45].

Note that the Eqs. (1.1)–(1.3) essentially differ from the α-Navier–Stokes system (cf. Foias et al.
[20,21], and references therein). Indeed, the equations governing the second-grade fluids do not con-
tain the regularizing term −νΔ(u − α2Δu) (cf. [21]), but instead −νΔu, and thus the problem is not
semi-linear. Moreover, the dissipative term −νΔ is very weak—it behaves like a damping term—and
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the system is not smoothing in finite time, that is, for generic initial data in H3 the solution does not
become analytic in finite time (as opposed to parabolic equations [19,23,44]). The α-models are used, in
particular, as an alternative to the usual Navier–Stokes equations for numerical modeling of turbulence
phenomena in pipes and channels. Note that the physics underlying the second-grade fluid equations
and the α-models are quite different. There are numerous papers devoted to the asymptotic behavior
of the α-models, including Camassa–Holm equations, α-Navier–Stokes equations, α-Bardina equations
(cf. [9,20,21,34,37]).

In this paper we characterize the domain of analyticity and Gevrey-class regularity of solutions to the
second-grade fluids equation, and of the Euler equation with a damping term. We prove that if the initial
data u0 is of Gevrey-class s, with s ≥ 1, then the unique smooth solution u(t) remains of Gevrey-class s
for all t < T∗, where T∗ ∈ (0,∞] is the maximal time of existence in the Sobolev norm of the solution.

The main novelty of our result is that if ν > 0, and d = 2, or if d = 3 and u0 is small in a certain
norm (these are the cases when T∗ = ∞), then the lower bound on the radius of analyticity does not
vanish as t → ∞. Instead, it is bounded from below for all time by a constant that depends solely on ν, α,
the analytic norm, and the radius of analyticity of the initial data. In contrast, we note that the shear
flow example of DiPerna and Majda [17] (see also [5]) may be used to construct explicit solutions to the
incompressible two and three-dimensional Euler equations (in the absence of damping) whose radius of
analyticity is decaying for all time, and hence vanishes as t → ∞. We emphasize that when 0 ≤ α ≤ 1 our
lower bound on the radius of analyticity is independent of α, which gives the framework in which we prove
the convergence of analytic solutions to the second-grade fluid equations to those of the corresponding
Navier–Stokes equations, in the limit α → 0, when d = 2.

When d = 3 and the initial data is not small, the solution might a-priori blow up in finite time. Here we
obtain an explicit lower bound for the real-analyticity radius of the solution which for all ν, α > 0 decays
algebraically in exp(

∫ t

0
‖∇u(s)‖L∞ds). A similar lower bound on the analyticity radius for solutions to

the incompressible Euler equations was obtained by Kukavica and Vicol [32,33], but with an additional
algebraic decay in time (see also [1,3,4,6,36]).

The main results of our paper are given bellow (for the definitions see the following sections).

Theorem 1.1 (The two-dimensional case). Fix ν > 0, 0 ≤ α ≤ 1, and assume that u0 is of Gevrey-class
s for some s ≥ 1, with radius τ0 > 0. Then there exists a unique global in time Gevrey-class s solution
u(t) to (1.1)–(1.3), such that for all t ≥ 0 the radius of Gevrey-class regularity is bounded from below by

τ(t) ≥ τ0
1 + C0τ0

,

where C0 > 0 is a constant depending on ν and the initial data via (3.24) below.

Note that in this case we obtain the global in time control of the radius of analyticity, which is more-
over uniform in α. This allows us to prove the convergence as α → 0 of the solutions of the second-grade
fluid to solutions of the corresponding Navier–Stokes equations in analytic norms (cf. Sect. 3.3). The con-
vergence of solutions to the Euler-α equations to the corresponding Euler equations, in the limit α → 0,
has been addressed in [37]. The corresponding theorem for the damped Euler equations is given in Sect. 5.

Theorem 1.2 (The three-dimensional case). Fix ν, α > 0, and assume that ω0 is of Gevrey-class s, for
some s ≥ 1. Then the unique solution ω(t) ∈ C([0, T ∗);L2(T3)) to (2.6)–(2.8) is of Gevrey-class s for all
t < T ∗, where T ∗ ∈ (0,∞] is the maximal time of existence of the Sobolev solution. Moreover, the radius
τ(t) of Gevrey-class s regularity of the solution is bounded from below as

τ(t) ≥ τ0
C0
e−C

∫ t
0 ‖∇u(s)‖L∞ds,

where C > 0 is a dimensional constant, and C0 > 0 has additional explicit dependence on the initial data,
α, and ν via (4.24) below.

The proofs of the above theorems are based on the Fourier-based method introduced by Foias and
Temam [23] to study the analyticity of the Navier–Stokes equations, and which was further refined
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by Levermore and Oliver [36] for the Euler equations (see also [11,19,32,34,35,42–44]). We emphasize
that the technique of analytic estimates may be used to obtain the existence of global solutions for the
Navier–Stokes equation with some type of large initial data [12,46].

2. Preliminaries

In this section we introduce the notations that are used throughout the paper. We denote the usual
Lebesgue spaces by Lp(Td) = Lp, for 1 ≤ p ≤ ∞. The L2-inner product is denoted by 〈·, ·〉. The Sobolev
spaces Hr(Td) = Hr of mean-free functions are classically characterized in terms of the Fourier series

Hr(Td) =

⎧
⎨

⎩
v(x) =

∑

k∈Zd

v̂ke
ik·x : v̂k = v̂−k, v̂0 = 0,

‖v‖2
Hr = (2π)3

∑

k∈Zd

|k|2r|v̂k|2 < ∞
⎫
⎬

⎭
.

We let λ1 > 0 be the first positive eigenvalue of the Stokes operator, which in the periodic setting coincides
with −Δ [16,49]. For simplicity we consider T

d = [0, 2π]d, and hence λ1 = 1. The Poincaré inequality
then reads ‖v‖L2 ≤ ‖∇v‖L2 for all v ∈ H1. Throughout the paper we shall denote by Λ the operator
(−Δ)1/2, i.e., the Fourier multiplier operator with symbol |k|. We will denote by C a generic sufficiently
large positive dimensional constant, which does not depend on α, ν. Moreover, the curl of a vector field
v will be denoted by curl v = ∇ × v.

2.1. Dyadic Decompositions and Para-Differential Calculus

Fix a smooth nonnegative radial function χ with support in the ball
{|ξ| ≤ 4

3

}
, which is identically 1 in{|ξ| ≤ 3

4

}
, and such that the map r �→ χ(|r|) is non-increasing over R+. Let ϕ(ξ) = χ(ξ/2) − χ(ξ). We

classically have
∑

q∈Z

ϕ(2−qξ) = 1 for all ξ ∈ R
d\{0}. (2.1)

We define the spectral localization operators Δq and Sq (q ∈ Z) by

Δq u := ϕ(2−qD)u =
∑

k∈Zd

û(k)eikxϕ(2−q|k|)

and

Sq u := χ(2−qD)u =
∑

k∈Zd

û(k)eikxχ(2−q|k|).

We have the following quasi-orthogonality property:

ΔkΔqu ≡ 0 if |k − q| ≥ 2; and Δk(Sq−1uΔqv) ≡ 0 if |k − q| ≥ 5. (2.2)

We recall the very useful Bernstein inequality.

Lemma 2.1. Let n ∈ N, q ∈ Z, 1 ≤ p1 ≤ p2 ≤ ∞, and ψ ∈ C∞
c (Rd). There exists a constant C depending

only on n, d and supψ such that

‖Dnψ(2−qD)u‖Lp2 ≤ C2qs‖ψ(2−qD)u‖Lp1 ,
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and

C−12qs‖ϕ(2−qD)u‖Lp1 ≤ sup
|α|=n

‖∂αϕ(2−qD)u‖Lp2 ≤ C2qs‖ϕ(2−qD)u‖Lp1 .

where s = n+ d (1/p1 − 1/p2).

In order to obtain optimal bounds on the nonlinear terms in a system, we use the paradifferential
calculus, a tool which was introduced by Bony in [7]. More precisely, the product of two functions f and
g may be decomposed according to

fg = Tfg + Tgf +R(f, g) (2.3)

where the paraproduct operator T is defined by the formula

Tfg :=
∑

q

Sq−1f Δqg,

and the remainder operator, R, by

R(f, g) :=
∑

q

ΔqfΔ̃qg with Δ̃q := Δq−1 + Δq + Δq+1.

2.2. Analytic and Gevrey-Class Norms

Classically, a C∞(Td) function v is in the Gevrey-class s, for some s > 0 if there exist M, τ > 0 such that

|∂βv(x)| ≤ M
β!s

τ |β| ,

for all x ∈ T
d, and all multi-indices β ∈ N

3
0. We will refer to τ as the radius of Gevrey-class regularity of

the function v. When s = 1 we recover the class of real-analytic functions, and the radius of analyticity τ
is (up to a dimensional constant) the radius of convergence of the Taylor series at each point. When s > 1
the Gevrey-classes consist of C∞ functions which are not analytic. It is however more convenient in PDEs
to use an equivalent characterization, introduced by Foias and Temam [23] to address the analyticity of
solutions of the Navier–Stokes equations. Namely, for all s ≥ 1 the Gevrey-class s is given by

⋃

τ>0

D(ΛreτΛ1/s

)

for any r ≥ 0, where

‖ΛreτΛ1/s

v‖2
L2 = (2π)3

∑

k∈Zd

|k|2re2τ |k|1/s |v̂k|2. (2.4)

See [16,19,23,31–33,36,44,49] and references therein for more details on Gevrey-classes. We emphasize
that the radius of analyticity gives an estimate on the minimal scale in the flow [28,31], and it also gives
the explicit rate of exponential decay of its Fourier coefficients [23].

2.3. Vorticity Formulation

It is convenient to consider the evolution of the vorticity ω, which is defined as

ω = curl(u− α2Δu) = (I − α2Δ) curlu. (2.5)

It follows from (1.1)–(1.2), that ω satisfies the initial value problem

∂tω − νΔ(I − α2Δ)−1ω + (u · ∇)ω = (ω · ∇)u, (2.6)
divω = 0, (2.7)

ω(0, x) = ω0(x) = curl(u0 − α2Δu0) (2.8)
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on T
d × (0,∞). Additionally, if d = 2, ω is a scalar, and the right side of (2.6) is zero. Denote by Rα the

operator

Rα = (−Δ)(I − α2Δ)−1. (2.9)

It follows from Plancherel’s theorem, that for all v ∈ L2 we have
1

1 + α
‖v‖L2 ≤ ‖Rαv‖L2 ≤ 1

α
‖v‖L2 . (2.10)

The velocity is obtained from the vorticity by solving the elliptic problem

div u = 0, curlu = (I − α2Δ)−1ω,

∫

T3

u = 0, (2.11)

which in turn classically gives that

u = K ∗ (I − α2Δ)−1ω = Kαω, (2.12)

where K is the periodic Biot–Savart kernel. Combined with (2.10), the above implies that

‖u‖H3 ≤ C

α
‖ω‖L2 , (2.13)

for some universal constant C > 0. Note that when α → 0 the above estimate becomes obsolete.

3. The Two-Dimensional Case

3.1. The Case α Large

In the two-dimensional case, the evolution equation (2.6) for ω does not include the term ω · ∇u, which
makes the problem tangible, in analogy to the two-dimensional Euler equations. The main result below
gives the global well-posedness of solutions evolving from Gevrey-class data, whose radius τ(t) does not
vanish as t → ∞.

Theorem 3.1. Fix ν, α > 0, and assume that ω0 ∈ D(eτ0Λ
1/s

), for some s ≥ 1, and τ0 > 0. Then there
exists a unique global in time Gevrey-class s solution ω(t) to (2.6)–(2.8), such that for all t ≥ 0 we have
ω(t) ∈ D(eτ(t)Λ1/s

), and moreover we have the lower bound

τ(t) ≥ τ0e
−CM0

∫ t
0 e−νs/(2+2α2)ds/α ≥ τ0e

−C(2+2α2)M0/(αν), (3.1)

where M0 = ‖eτ0Λ
1/s

ω0‖L2 , and C is a universal constant.

Proof of Theorem 3.1. We take the L2-inner product of ∂tω + νRαω + (u · ∇)ω = 0 with e2τΛ1/s

and
obtain

1
2
d

dt
‖eτΛ1/s

ω‖2
L2 − τ̇‖Λ1/2seτΛ1/s

ω‖2
L2 + 〈eτΛ1/sRαω, e

τΛ1/s

ω〉

= −〈eτΛ1/s

(u · ∇ω), eτΛ1/s

ω〉. (3.2)

Note that the Fourier multiplier symbol of the operator Rα is an increasing function of |k| ≥ 1, and
therefore by Plancherel’s theorem and Parseval’s identity we have

〈eτΛ1/sRαω,ΛeτΛ1/s

ω〉 = (2π)2
∑

k∈Z2\{0}

|k|2
1 + α2|k|2 |ω̂k|2e2τ |k|1/s

≥ (2π)2

1 + α2

∑

k∈Z2\{0}
|ω̂k|2e2τ |k|1/s

=
1

1 + α2
‖eτΛ1/s

ω‖2
L2 .
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We therefore have the a priori estimate

1
2
d

dt
‖eτΛ1/s

ω‖2
L2 − τ̇‖Λ1/2seτΛ1/s

ω‖2
L2 +

ν

1 + α2
‖eτΛ1/s

ω‖2
L2

≤ |〈u · ∇ω, e2τΛ1/s

ω〉|. (3.3)

The following lemma gives a bound on the convection term on the right of (3.3) above.

Lemma 3.2. For ω ∈ D(Λ1/2seτΛ1/s

), and divergence free u = Kαω, we have
∣
∣
∣〈u · ∇ω, e2τΛ1/s

ω〉
∣
∣
∣ ≤ Cτ

α
‖eτΛ1/s

ω‖L2‖Λ1/2seτΛ1/s

ω‖2
L2 , (3.4)

for some dimensional constant C > 0.

The proof of bound (3.4) is the same as the proof of estimate (4.4) below, which is in turn given in
the Appendix. Therefore, by (3.3) and (3.4), if we chose τ that satisfies

τ̇ +
Cτ

α
‖eτΛ1/s

ω‖L2 = 0, (3.5)

then we have
1
2
d

dt
‖ω‖2

Xs,τ
+

ν

1 + α2
‖ω‖2

Xs,τ
≤ 0,

and hence

‖eτ(t)Λ1/s

ω(t)‖L2 ≤ ‖eτ0Λ
1/s

ω0‖L2e−γt, (3.6)

where we have denoted γ = ν/(2 + 2α2). The above estimate and condition (3.5) show that

τ(t) ≥ τ0e
− C

α ‖eτ0Λ1/s
ω0‖L2

∫ t
0 e−γsds ≥ τ0e

−C(2+2α2)‖eτ0Λ1/s
ω0‖L2/(να), (3.7)

which concludes the proof of the theorem. The above a priori estimates are made rigorous using a classical
Fourier–Galerkin approximating sequence. We omit further details. �

3.2. The Case α Small

The lower bound (3.1) on the radius of Gevrey-class regularity converges to 0 as α → 0. In this section
we give a new estimate on τ(t), in the case when α is small.

Theorem 3.3. Fix ν > 0, 0 ≤ α < 1, and assume that curlu0 ∈ D(Δeτ0Λ
1/s

), for some s ≥ 1, and τ0 > 0.
Then there exists a unique global in time Gevrey-class s solution u(t) to (1.1)–(1.3), such that for all
t ≥ 0 we have u(t) ∈ D(eτ(t)Λ1/s

), and moreover we have the lower bound

τ(t) ≥ τ0
1 + C0τ0

, (3.8)

where C0 = C0(ν, ‖u0‖H3 , ‖Λeτ0Λ
1/s

curlu0‖L2 , ‖eτΛ1/s

curlΔu0‖L2) is given explicitly in (3.24).

Proof of Theorem 3.3. For simplicity of the presentation, we give the proof in the case s = 1. Taking the
L2-inner product of (1.1) with −e2τΛ curl Δu, we obtain

1
2
d

dt

(‖ΛeτΛ curlu‖2
L2 + α2‖eτΛ curlΔu‖2

L2

)
+ ν‖eτΛ curlΔu‖2

L2

− τ̇
(
‖Λ3/2eτΛ curlu‖2

L2 + α2‖Λ1/2eτΛ curlΔu‖2
L2

)
≤ T1 + T2, (3.9)

where

T1 = α2
∣
∣〈eτΛ ((u · ∇)Δ curlu) , eτΛΔcurlu〉∣∣ , (3.10)
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and

T2 =
∣
∣〈ΛeτΛ ((u · ∇) curlu) ,ΛeτΛ curlu〉∣∣ . (3.11)

The upper bounds for T1 and T2 are given in the following lemma.

Lemma 3.4. Let ν, τ > 0, 0 ≤ α < 1, and u be such that curlu ∈ D(Λ5/2eτΛ). Then

T1 ≤ ν

4
‖eτΛ curlΔu‖2

L2 +
Cα4τ2

ν
‖Λ1/2eτΛ curl Δu‖2

L2‖eτΛ curl Δu‖2
L2 , (3.12)

and

T2 ≤ ν

4
‖eτΛΔcurlu‖2

L2 +
C

ν3
‖ curlu‖4

L2‖ΛeτΛ curlu‖2
L2

+
Cτ2

ν
‖Λ3/2eτΛ curlu‖2

L2‖ΛeτΛ curlu‖2
L2 , (3.13)

where C > 0 is a universal constant.

We give the proof of the above lemma in the Appendix (cf. Sect. 6.1). Assuming that estimates (3.12)
and (3.13) are proven, we obtain from (3.9) that

1
2
d

dt

(‖ΛeτΛ curlu‖2
L2 + α2‖eτΛ curlΔu‖2

L2

)
+
ν

2
‖eτΛ curl Δu‖2

L2

≤ C

ν3
‖ curlu‖4

L2‖ΛeτΛ curlu‖2
L2

+
(

τ̇ +
Cτ2

ν
‖ΛeτΛ curlu‖2

L2

)

‖Λ3/2eτΛ curlu‖2
L2

+α2

(

τ̇ + α2Cτ
2

ν
‖eτΛ curlΔu‖2

L2

)

‖Λ1/2eτΛ curl Δu‖2
L2 . (3.14)

Define

Z(t) = ‖ΛeτΛ curlu‖2
L2

and

W (t) = ‖eτΛ curl Δu‖2
L2 .

We let τ be decreasing fast enough so that

τ̇(t) +
Cτ(t)2

ν
W (t) = 0, (3.15)

which by the Poincaré inequality implies

τ̇ +
Cτ2

ν
‖ΛeτΛ curlu‖2

L2 ≤ 0,

and also

τ̇ + α2Cτ
2

ν
‖eτΛ curl Δu‖2

L2 ≤ 0,

since by assumption α ≤ 1. It follows from (3.14) that for all 0 ≤ α ≤ 1 we have

1
2
d

dt
(Z + α2W ) +

ν

2
W ≤ C

ν3
‖ curlu‖4

L2Z (3.16)

≤ C

ν3
‖ curlu‖4

L2(Z + α2W ). (3.17)

We recall that ω = curl(I − α2Δ)u solves the equation

∂tω + νRαω + (u · ∇)ω = 0 (3.18)
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which by the classical energy estimates implies
1
2
d

dt
‖ω(t)‖2

L2 +
ν

1 + α2
‖ω(t)‖2

L2 ≤ 0 (3.19)

and therefore

‖ω(t)‖2
L2 ≤ ‖ω0‖2

L2e−2γt (3.20)

where γ = ν/(2 + 2α2). Using that 0 ≤ α < 1 and

‖ω‖2
L2 = ‖ curlu‖2

L2 + 2α2‖Δu‖2
L2 + α4‖ curl Δu‖2

L2 (3.21)

we obtain the exponential decay rate

‖ curlu(t)‖L2 ≤ C‖u0‖H3e−γt. (3.22)

Combining (3.17) and (3.22), and using α ≤ 1, we get

Z(t) ≤ (Z(0) + α2W (0))e
C
ν3

∫ t
0 ‖ curl u(s)‖4

L2 ds

≤ (Z(0) + α2W (0))e
C

4γν ‖u0‖4
H3 ≤ (Z(0) +W (0))e

C
ν4 M4

0 , (3.23)

where we have denoted M0 = ‖u0‖H3 . Plugging the above bound in (3.16) and integrating in time, we
obtain

Z(t) + α2W (t) +
ν

2

t∫

0

W (s) ds

≤ (Z(0) +W (0))

⎛

⎝1 +
C

ν3
eCM4

0 /ν4

t∫

0

‖ curlu(s)‖4
L2 ds

⎞

⎠

≤ (Z(0) +W (0))
(

1
ν2

+
CM4

0

ν6
eCM4

0 /ν4
)

ν2 = C0ν
2, (3.24)

where C0 = C0(ν, ‖u0‖H3 , Z(0),W (0)) > 0 is a constant depending on the data. Thus, by the construction
of τ in (3.15) and the above estimate, by possibly enlarging C0, we have the lower bound

τ(t) =

⎛

⎝ 1
τ0

+
C

ν

t∫

0

W (s) ds

⎞

⎠

−1

≥ τ0
1 + τ0C0

, (3.25)

thereby proving (3.8). We note that this lower bound is independent of t ≥ 0, and 0 ≤ α ≤ 1. This con-
cludes the a priori estimates needed to prove Theorem 3.3. The formal construction of the real-analytic
solution is standard and we omit details. The proof of the theorem in the case s > 1 follows mutatis
mutandis. �

3.3. Convergence to the Navier–Stokes Equations as α → 0

In this section we compare in an analytic norm the solutions of the second-grade fluids equations with
those of the corresponding Navier–Stokes equations, in the limit as α goes to zero. The fact that the ana-
lyticity radius for the solutions of the second-grade fluids is bounded from bellow by a positive constant,
for all positive time, will play a fundamental role. We consider a > 0 and u0 such that eaΛu0 ∈ H3(T2).
We recall that the Navier–Stokes equations

∂tu− νΔu+ curlu× u+ ∇p = 0
div u = 0 (3.26)
u|t=0 = u0,
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have a unique global regular solution when u0 ∈ L2(T2). Moreover, this solution is analytic for every
t > 0, and if eδΛu0 ∈ H3 one can prove that eδΛu(t) ∈ H3 for all t > 0 (for example, one can use the
same proof as in the one in Sect. 5). Let uα denote the solution of the second-grade fluids equations.
Then z = uα − u is divergence free, satisfies

∂t(z − α2Δz) − νΔz + curl z × uα + curlu× z + ∇(pα − p)
= α2∂tΔu+ α2 curlΔuα × uα,

and the initial condition is z(·, 0) = 0. The following product Sobolev estimate (see [11]) will prove to be
very useful

‖eδΛ(ab)‖Hs1+s2−1(T2) ≤ ‖eδΛa‖Hs1 (T2)‖eδΛb‖Hs2 (T2), (3.27)

where s1 +s2 > 0, s1 < 1, s2 < 1. Applying eδΛ with 0 < δ < a fixed but small enough (given for example
by (3.25)) to the equation, denoting by zδ(t) = eδΛz(t), and considering the L2(T2) energy estimates,
using (3.27), the Young inequality, and the classical Sobolev inequalities, we obtain the following estimate

1
2
d

dt
(‖zδ‖2

L2 + α2‖∇zδ‖2
L2) + ν‖∇zδ‖2

L2

≤ Cα4

ν
‖∂t∇uδ‖2

L2 +
C

ν
‖uδ

α‖2

H
1
2
‖zδ‖2

H
1
2

+
ν

50
‖∇zδ‖2

L2

+α2‖ curl Δuδ
α‖L2‖uδ

α‖
H

1
2
‖zδ‖

H
1
2

+ ‖ curluδ‖L2‖zδ‖2

H
1
2

≤ Cα4

ν
‖∂t∇uδ‖2

L2 +
C

ν
‖uδ

α‖L2‖∇uδ
α‖L2‖zδ‖L2‖∇zδ‖L2 +

ν

50
‖∇zδ‖2

L2

+α2‖ curl Δuδ
α‖L2‖uδ

α‖ 1
2
L2‖∇uδ

α‖ 1
2
L2‖zδ‖ 1

2
L2‖∇zδ‖ 1

2
L2

+ ‖uδ‖H1‖zδ‖L2‖∇zδ‖L2

≤ Cα4

ν
‖∂t∇uδ‖2

L2 +
ν

4
‖∇zδ‖2

L2 +
C

ν2
‖uδ

α‖2
L2‖∇uδ

α‖2
L2‖zδ‖2

L2

+
Cα4

ν
‖ curl Δuδ

α‖2
L2‖uδ

α‖L2‖∇uδ
α‖L2 +

ν

4
‖zδ‖2

L2 +
C

ν
‖uδ‖2

H1‖zδ‖2
L2 .

From the above estimate and the Poincaré inequality, we deduce that

d

dt
(‖zδ‖2

L2 + α2‖∇zδ‖2
L2) + γ

(‖zδ‖2
L2 + α2‖∇zδ‖2

L2

)

≤
(
C

ν
‖uδ‖2

H1 +
C

ν2
‖uδ

α‖2
L2‖∇uδ

α‖2
L2

)

‖zδ‖2
L2

+
Cα4

ν

(‖∂t∇uδ‖2
L2 + ‖ curl Δuδ

α‖2
L2‖uδ

α‖L2‖∇uδ
α‖L2

)
,

holds for t > 0, where we let γ = ν/(2 + 2α2) > 0. Integrating this inequality from 0 to t and using the
Grönwall inequality, we obtain

‖zδ(t)‖2
L2 + α2‖∇zδ(t)‖2

L2

≤
t∫

0

(
C

ν
‖uδ‖2

H1 +
C

ν2
‖uδ

α‖2
L2‖∇uδ

α‖2
L2

)

‖zδ‖2
L2 ds

+
Cα4

ν

t∫

0

eγ(s−t)
(‖∂t∇uδ(s)‖2

L2 + ‖ curl Δuδ
α‖2

L2‖uδ
α‖L2‖∇uδ

α‖L2

)
ds.
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Using one more time the Grönwall lemma, we deduce from the above estimate that, for t ≥ 0

‖zδ(t)‖2
L2 + α2‖∇zδ(t)‖2

L2

≤ exp

⎛

⎝
t∫

0

(
C

ν
‖uδ‖2

H1 +
C

ν2
‖uδ

α‖2
L2‖∇uδ

α‖2
L2

)

ds

⎞

⎠

×Cα4

ν

t∫

0

eγ(s−t)
(‖∂t∇uδ(s)‖2

L2 + ‖ curl Δuδ
α‖2

L2‖uδ
α‖L2‖∇uδ

α‖L2

)
ds. (3.28)

We recall the estimate (3.24) on uδ
α, which gives

‖Δuδ
α‖2

L2 + α2‖ curl Δuδ
α‖2

L2 + ν

t∫

0

‖ curl Δuδ
α‖2

L2 ≤ M0. (3.29)

The equation on uα gives that

∂tuα = (I − α2Δ)−1[νΔuα − P(curl(uα − α2Δuα) × uα)].

Using estimates (3.27), (3.29), and the fact that the operator α∇(I − α2Δ)−1 is uniformly bounded on
L2(T2), we obtain that α‖∂t∇uδ

α‖L2 ≤ CM0. When α ≤ 1, inequality (3.28) together with the above
uniform bounds and the corresponding property for the Navier–Stokes equation, namely

∫ t

0
‖uδ‖2

H1 ≤ M ,
implies that

‖zδ(t)‖2
L2 + α‖∇zδ(t)‖2

L2 ≤ α2K0e
K
1 , (3.30)

where K0 and K1 are positive constants depending only on ‖eaΛu0‖H3 . Thus, we obtain the convergence
in the analytic norm as α → 0 of the solution of the second-grade fluid to the solutions of Navier–Stokes
equations, with same analytic initial data u0, such that eaΛu0 ∈ H3.

4. The Three-Dimensional Case

4.1. Global in Time Results for Small Initial Data

In this section we state our main result in the case ν > 0, with small initial data: There exists a global
in time solution whose Gevrey-class radius is bounded from below by a positive constant for all time. A
similar result for small data is obtained in [41].

Theorem 4.1. Fix ν, α > 0, and assume that ω0 ∈ D(Λ1/2seτ0Λ
1/s

), for some s ≥ 1, and τ0 > 0. There
exists a positive sufficiently large dimensional constant κ, such that if

κ‖ω0‖L2 ≤ να

2(1 + α2)
, (4.1)

then there exists a unique global in time Gevrey-class s solution ω(t) to (2.6)–(2.8), such that for all t ≥ 0
we have ω(t) ∈ D(eτ(t)Λ1/s

), and moreover we have the lower bound

τ(t) ≥ τ0e
−κ(4+4α2)M0/(να) (4.2)

for all t ≥ 0, where M0 = ‖eτ0Λ
1/s

ω0‖L2 .

The smallness condition (4.1) ensures that ‖ω(t)‖L2 decays exponentially in time, and hence by the
Sobolev and Poincaré inequalities the same decay holds for ‖∇u(t)‖L∞ . Therefore, as opposed to the
case of large initial data treated in Sect. 4.2, in this case there is no loss in expressing the radius of
Gevrey-class regularity in terms of the vorticity ω(t). It is thus more transparent to prove Theorem 4.1
by just using the operator Λ (cf. [36]), instead of using the operators Λm (cf. [32]) which are used to
prove Theorem 4.3 below.
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Proof of Theorem 4.1. Similarly to (3.3), we have the a priori estimate

1
2
d

dt
‖eτΛ1/s

ω‖2
L2 +

ν

1 + α2
‖eτΛ1/s

ω‖2
L2

≤ τ̇‖Λ1/2seτΛ1/s

ω‖2
L2 + |(u · ∇ω, e2τΛ1/s

ω)| + |(ω · ∇u, e2τΛ1/s

ω)|. (4.3)

The convection term and the vorticity stretching term are estimated in the following lemma.

Lemma 4.2. There exists a positive dimensional constant C such that for ω ∈ Ys,τ , and u = Kα is
divergence-free, we have

|(u · ∇ω, e2τΛ1/s

ω)| ≤ Cτ

α
‖eτΛ1/s

ω‖L2‖Λ1/2seτΛ1/s

ω‖2
L2 , (4.4)

and

|(ω · ∇u, e2τΛ1/s

ω)| ≤ C

α
‖ω‖L2‖eτΛ1/s

ω‖2
L2

+
Cτ

α
‖eτΛ1/s

ω‖L2‖Λ1/2seτΛ1/s

ω‖2
L2 . (4.5)

The proof of the above lemma is similar to [36, Lemma 8], but for the sake of completeness a sketch
is given in the Appendix (cf. Sect. 6.2).

The smallness condition (4.1) implies via the Sobolev and Poincaré inequalities that ‖∇u0‖L∞ ≤
ν/(2+2α2), if κ is chosen sufficiently large. Let γ = ν/(2+2α2). It follows from standard energy inequal-
ities that ‖ω(t)‖L2 ≤ ‖ω0‖L2e−γt/2 ≤ ‖ω0‖L2 . Combining this estimate with (4.3), (4.4), and (4.5), we
obtain

1
2
d

dt
‖eτΛ1/s

ω‖2
L2 + γ‖eτΛ1/s

ω‖2
L2 ≤

(

τ̇ +
Cτ

α
‖eτΛ1/s

ω‖L2

)

‖Λ1/2seτΛ1/s

ω‖2
L2 , (4.6)

where we have used that κ was chosen sufficiently large, i.e., κ ≥ C. The above a-priori estimate gives
the global in time Gevrey-class s solution ω(t) ∈ D(eτ(t)Λ1/s

), if the radius of Gevrey-class regularity τ(t)
is chosen such that

τ̇ +
Cτ

α
‖eτΛ1/s

ω‖L2 ≤ 0. (4.7)

Since under this condition we have

‖eτ(t)Λ1/s

ω(t)‖L2 ≤ ‖eτ0Λ
1/s

ω0‖L2e−γt/2

for all t ≥ 0, it is sufficient to let τ(t) be such that τ̇ + CM0e
−γt/2τ/α = 0, where we let M0 =

‖eτ0Λ
1/s

ω0‖L2 . We obtain

τ(t) = τ0e
−CM0

∫ t
0 e−γs/2ds/α, (4.8)

and in particular the radius of analyticity does not vanish as t → ∞, since it is bounded as

τ(t) ≥ τ0e
−2CM0/(γα) = τ0e

−CM0(4+4α2)/(να), (4.9)

for all t ≥ 0, thereby concluding the proof of Theorem 4.1. �

4.2. Large Initial Data

The main theorem of this section deals with the case of large initial data, where only the local in time
existence of solutions is known (cf. [13,14]). We prove the persistence of Gevrey-class regularity: as long
as the solution exists and does not blow-up in the Sobolev norm, it does not blow-up in the Gevrey-class
norm. Similarly to the Euler equations, the finite time blow-up remains an open problem.
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Theorem 4.3. Fix ν, α > 0, and assume that ω0 is of Gevrey-class s, for some s ≥ 1. Then the unique
solution ω(t) ∈ C([0, T ∗);L2(T3)) to (2.6)–(2.8) is of Gevrey-class s for all t < T ∗, where T ∗ ∈ (0,∞]
is the maximal time of existence of the Sobolev solution. Moreover, the radius τ(t) of Gevrey-class s
regularity of the solution is bounded from below as

τ(t) ≥ τ0
C0
e−C

∫ t
0 ‖∇u(s)‖L∞ds, (4.10)

where C > 0 is a dimensional constant, and C0 > 0 has additional explicit dependence on the initial data,
α, and ν via (4.24) below.

We note that the radius of Gevrey-class regularity is expressed in terms of ‖∇u‖L∞ , as opposed to
an exponential in terms of higher Sobolev norms of the velocity. Hence Theorem 4.3 may be viewed as a
blow-up criterion: if the initial data is of Gevrey-class s (its Fourier coefficients decay at the exponential
rate e−τ0|k|1/s

), and at time T∗ the Fourier coefficients of the solution u(T∗) do not decay sufficiently fast,
then the Sobolev norm of the solution must blow up at T∗.

To prove Theorem 4.3, let us first introduce the functional setting. For fixed s ≥ 1, τ ≥ 0, and
m ∈ {1, 2, 3}, we define via the Fourier transform the space

D(Λme
τΛ1/s

m ) =

⎧
⎨

⎩
ω ∈ C∞(Td) : divω = 0,

∫

Td

ω = 0,

∥
∥
∥Λme

τΛ1/s
m ω

∥
∥
∥

2

L2
= (2π)d

∑

k∈Zd

|km|2e2τ |km|1/s |ω̂k|2 < ∞
⎫
⎬

⎭
,

where ω̂k is the kth Fourier coefficient of ω, and Λm is the Fourier-multiplier operator with symbol |km|.
For s, τ as before, also define the normed spaces Ys,τ ⊂ Xs,τ by

Xs,τ =
3⋂

m=1

D(Λme
τΛ1/s

m ), ‖ω‖2
Xs,τ

=
3∑

m=1

∥
∥
∥Λme

τΛ1/s
m ω

∥
∥
∥

2

L2
, (4.11)

and

Ys,τ =
3⋂

m=1

D(Λ1+s/2
m eτΛ1/s

m ), ‖ω‖2
Ys,τ

=
3∑

m=1

∥
∥
∥Λ1+s/2

m eτΛ1/s
m ω

∥
∥
∥

2

L2
, (4.12)

It follows from the triangle inequality that if ω ∈ Xs,τ then ω is a function of Gevrey-class s, with radius
proportional to τ (up to a dimensional constant). If instead of the Xs,τ norm we use ‖ΛeτΛ1/s

ω‖L2 (cf.
[16,36]), then the lower bound for the radius of Gevrey-class regularity will decay exponentially in ‖ω‖H1

(i.e., a higher Sobolev norm of the velocity). It was shown in [32] that using the spaces Xs,τ it is possible
give lower bounds on τ that depend algebraically on the higher Sobolev norms of u, and exponentially
on ‖∇u(t)‖L∞ , which in turn gives a better estimate on the analyticity radius.

Proof of Theorem 4.3. Assume that the initial datum ω0 is of Gevrey-class s, for some s ≥ 1, with
ω0 ∈ Ys,τ0 , for some τ0 = τ(0) > 0. We take the L2-inner product of (2.6) with Λ2

me
2τ(t)Λ1/s

m ω(t) and
obtain

(∂tω,Λ2
me

2τΛ1/s
m ω) + ν(Rαω,Λ2

me
2τΛ1/s

m ω)

= −(u · ∇ω,Λ2
me

2τΛ1/s
m ω) + (ω · ∇u,Λ2

me
2τΛ1/s

m ω).

For simplicity, we omit the t-dependence of τ and ω. The above implies

(∂tΛme
τΛ1/s

m ω,Λme
τΛ1/s

m ω)

−τ̇(Λ1+s/2
m eτΛ1/s

m ω,Λ1+s/2
m eτΛ1/s

m ω) + ν(RαΛme
τΛ1/s

m ω,Λme
τΛ1/s

m ω)

= −(u · ∇ω,Λ2
me

2τΛ1/s
m ω) + (ω · ∇u,Λ2

me
2τΛ1/s

m ω). (4.13)
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Note that the Fourier multiplier symbol of the operator Rα is an increasing function of |k| ≥ 1, and
therefore by Plancherel’s theorem and Parseval’s identity we have

(RαΛme
τΛ1/s

m ω,Λme
τΛ1/s

m ω) = (2π)3
∑

k∈Z3\{0}

|k|2
1 + α2|k|2 |km|2|ω̂k|2e2τ |k|s

≥ (2π)3

1 + α2

∑

k∈Z3\{0}
|km|2|ω̂k|2e2τ |k|s =

1
1 + α2

‖Λme
τΛ1/s

m ω‖2
L2 .

The above estimate combined with (4.13) gives for all m ∈ {1, 2, 3}, the a-priori estimate

1
2
d

dt
‖Λme

τΛ1/s
m ω‖2

L2 +
ν

1 + α2
‖Λme

τΛ1/s
m ω‖2

L2 − τ̇‖Λ1+s/2
m eτΛ1/s

m ω‖2
L2

≤ T1 + T2, (4.14)

where we have denoted

T1 =
∣
∣
∣(u · ∇ω,Λ2

me
2τΛ1/s

m ω)
∣
∣
∣ , and T2 =

∣
∣
∣(ω · ∇u,Λ2

me
2τΛ1/s

m ω)
∣
∣
∣ . (4.15)

The convection term T1, and the vorticity stretching term T2 are estimated using the fact that div u = 0,
and that u = Kαω.

Lemma 4.4. For all m ∈ {1, 2, 3} and ω ∈ Ys,τ , we have

T1 + T2 ≤ C ‖∇u‖L∞ ‖ω‖2
Xs,τ

+
C

α
(1 + τ) ‖ω‖2

H1 ‖ω‖Xs,τ

+
(

Cτ ‖∇u‖L∞ +
Cτ2

α
‖ω‖H1 +

Cτ2

α
‖ω‖Xs,τ

)

‖ω‖2
Ys,τ

, (4.16)

where C > 0 is a dimensional constant.

This lemma in the context of the Euler equations was proven by Kukavica and Vicol [32, Lemma 2.5],
but for the sake of completeness we sketch the proof in the Appendix (cf. Sect. 6.3). The novelty of this
lemma is that the term ‖∇u‖L∞ is paired with τ , while the term ‖ω‖H1 is paired with τ2. This gives
the exponential dependence on the gradient norm and the algebraic dependence of the Sobolev norm. By
summing over m = 1, 2, 3 in (4.14), and using (4.16), we have proven the a-priori estimate

1
2
d

dt
‖ω‖2

Xs,τ
+

ν

1 + α2
‖ω‖2

Xs,τ

≤ C‖∇u‖L∞‖ω‖2
Xs,τ

+
C

α
(1 + τ) ‖ω‖2

H1 ‖ω‖Xs,τ

+
(

τ̇ + Cτ ‖∇u‖L∞ +
Cτ2

α
‖ω‖H1 +

Cτ2

α
‖ω‖Xs,τ

)

‖ω‖2
Ys,τ

. (4.17)

Therefore, if the radius of Gevrey-class regularity is chosen to decay fast enough so that

τ̇ + Cτ ‖∇u‖L∞ +
Cτ2

α
‖ω‖H1 +

Cτ2

α
‖ω‖Xs,τ

≤ 0, (4.18)

then for all ν > 0 we have
d

dt
‖ω‖Xs,τ

+ 2γ‖ω‖Xs,τ
≤ C‖∇u‖L∞‖ω‖Xs,τ

+
C

α
(1 + τ0) ‖ω‖2

H1 , (4.19)

where as before γ = ν/(2 + 2α2). Hence by Grönwall’s inequality

‖ω(t)‖Xs,τ(t) ≤ M(t)e−2γt

×
⎛

⎝‖ω0‖Xs,τ0
+
C

α
(1 + τ0)

t∫

0

‖ω(s)‖2
H1e2γsM(s)−1ds

⎞

⎠.
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where for the sake of compactness we have denoted

M(t) = eC
∫ t
0 ‖∇u(s)‖L∞ds.

Thus it is sufficient to consider the Gevrey-class radius τ(t) that solves

0 = τ̇(t) + Cτ(t) ‖∇u(t)‖L∞ +
Cτ2(t)
α

‖ω(t)‖H1

+
Cτ2(t)
α

M(t)e−2γt

⎛

⎝‖ω0‖Xs,τ0
+
C

α
(1 + τ0)

t∫

0

‖ω(s)‖2
H1e2γsM(s)−1ds

⎞

⎠ (4.20)

The explicit dependence of τ is hence algebraically on ‖ω‖H1 and exponentially on ‖∇u‖L∞ via

τ(t) = M(t)−1

⎛

⎝ 1
τ0

+
C(1 + τ0)

α2

t∫

0

e−2γs

s∫

0

‖ω(s′)‖2
H1M(s′)−1e2γs′

ds′ ds

+
C

α

t∫

0

‖ω(s)‖H1M(s)−1 + e−2γs‖ω0‖Xs,τ0
ds

⎞

⎠

−1

. (4.21)

A more compact lower bound for τ(t) is obtained by noting that if ν ≥ 0 we have

‖ω(t)‖2
H1 ≤ M(t)e−2γt‖ω0‖2

H1 (4.22)

for all t ≥ 0. Assuming (4.22) holds, if ν > 0 (and hence γ > 0), then

τ(t) ≥ M(t)−1

(
1
τ0

+ C
‖ω0‖H1 + ‖ω0‖Xs,τ0

αγ
+ C

(1 + τ0)‖ω0‖2
H1

4α2γ2

)−1

≥ τ0
C0
M(t)−1 (4.23)

where the constant C0 = C0(ν, α, τ0, ω0) is given explicitly by

C0 = 1 + Cτ0(‖ω0‖H1 + ‖ω0‖Xs,τ0
)
1 + α2

να
+ Cτ0(1 + τ0)‖ω0‖2

H1
(1 + α2)2

ν2α2
. (4.24)

The proof of the theorem is hence complete, modulo the proof of estimate (4.22), which is given in the
Appendix (cf. Sect. 6.4). �

5. Applications to the Damped Euler Equations

The initial value problem for the damped Euler equations in terms of the vorticity ω = curlu is

∂tω + νω + (u · ∇)ω = (ω · ∇)u (5.1)
u = Kd ∗ ω (5.2)

ω(0) = ω0 = curlu0, (5.3)

where Kd is the T
d-periodic Biot–Savart kernel, and ν ≥ 0 is a fixed positive parameter. Here u and ω are

T
d-periodic functions with

∫
Td u = 0, and d = 2, 3. When d = 2 the vorticity is a scalar and the term on

the right of (5.1) is absent. It is a classical result that if d = 2, and for any ν ≥ 0, the initial value problem
(5.1)–(5.3) has a global in time smooth solution in the Sobolev space Hr, with r > 2. We refer the reader
to [10,38] for details. Moreover, in the case d = 3, and ν > 0, if the initial data satisfies ‖∇u0‖L∞ < ν/κ
for some sufficiently large positive dimensional constant κ, it follows from standard energy estimates that
(5.1)–(5.3) has a global in time smooth solution in Hr, with r > 5/2.

For results concerning the analyticity and Gevrey-class regularity of (5.1)–(5.3), with ν = 0, i.e. the
classical incompressible Euler equations, we refer the reader to [1,3,4,6,32,36]. Note that in this case one
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can construct explicit solutions (cf. [5,17]) to (5.1)–(5.3) whose radius of analyticity is decaying for all
time and hence vanishes as t → ∞, both for d = 2 and d = 3. In this section we show that if ν > 0, and
either d = 2, or if d = 3 and the initial data is small compared to ν, then this is not possible: there exists
a positive constant such that the radius of analyticity of the solution never drops below it. The following
is our main result.

Theorem 5.1. Assume that ν > 0, and that the divergence-free ω0 is of Gevrey-class s, for some s ≥ 1.
If additionally, one of the following conditions is satisfied,
1. d = 2
2. d = 3 and ‖∇u0‖L∞ ≤ ν/κ, for some sufficiently large positive constant κ,

then there exists a unique global in time Gevrey-class s solution to (5.1)–(5.3), with ω(t) ∈ D(Λreτ(t)Λ1/s

)
for all t ≥ 0, and moreover we have the lower bound

τ(t) ≥ τ(0)e−C̄
∫ t
0 e−νs/2ds ≥ τ(0)e−2C̄/ν , (5.4)

where C̄ > 0 is a constant depending only on ω0.

Proof of Theorem 5.1. Let us first treat the case when d = 2, with ν > 0 fixed. Since div u = 0, it
classically follows from (5.1) that for all 1 ≤ p ≤ ∞ we have

‖ω(t)‖Lp ≤ ‖ω0‖Lpe−νt, (5.5)

t ≥ 0, and for any r > 0 the Sobolev energy inequality holds

1
2
d

dt
‖ω(t)‖2

Hr + ν‖ω(t)‖2
Hr ≤ C‖∇u(t)‖L∞‖ω(t)‖2

Hr , (5.6)

where C is a positive dimensional constant depending on r. Moreover, if r > 1 the classical potential
estimate(cf. [8,38])

‖∇u‖L∞ ≤ C‖ω‖L2 + C‖ω‖L∞ + C‖ω‖L∞ log
(

1 +
‖ω‖Hr

‖ω‖L∞

)

combined with (5.5) shows that

‖∇u(t)‖L∞ ≤ Ce−νt

(

‖ω0‖L2 + ‖ω0‖L∞ + ‖ω0‖L∞ log
(

1 +
eνt‖ω(t)‖Hr

‖ω0‖L∞

))

≤ CC0e
−νt

(
2 + log

(
1 + eνt‖ω(t)‖Hr/C0

))
, (5.7)

where C0 = max{‖ω0‖L2 , ‖ω0‖L∞} > 0. Multiplying (5.6) by eνt and combining with the above estimate
(5.7), upon letting y(t) = eνt‖ω(t)‖Hr/C0, we obtain

ẏ(t) ≤ Ce−νty(t) (2 + log(1 + y(t))).

By Grönwall’s inequality, the above implies that there exists a positive constant C1 = C(C0, ν, ‖ω0‖Hr )
such that y(t) ≤ C1/C0 for all t ≥ 0, and therefore by the definition of y(t) we have

‖ω(t)‖Hr ≤ C1e
−νt, (5.8)

for all t ≥ 0. Similarly, by (5.7), there exists C2 = C(C0, C1) > 0 such that for all t ≥ 0 we have

‖∇u(t)‖L∞ ≤ C2e
−νt. (5.9)

We now turn to the corresponding Gevrey-class estimates. For r > 5/2, and initial vorticity satisfying
‖Λr+1/2seτ0Λ

1/s

ω0‖L2 < ∞, the following estimate can be deduced from [36]

1
2
d

dt
‖ΛreτΛ1/s

ω‖2
L2 + ν‖ΛreτΛ1/s

ω‖2
L2

≤ C‖ω‖3
Hr +

(
τ̇ + Cτ‖ΛreτΛ1/s

ω‖L2

)
‖Λr+1/2seτΛ1/s

ω‖2
L2 . (5.10)



548 M. Paicu and V. Vicol JMFM

Therefore, if τ(t) decays fast enough so that τ̇(t) +Cτ(t)‖Λreτ(t)Λ1/s

ω(t)‖L2 ≤ 0 for all t ≥ 0, then using
(5.8) we have

1
2
d

dt
‖Λreτ(t)Λ1/s

ω(t)‖2
L2 + ν‖Λreτ(t)Λ1/s

ω(t)‖2
L2 ≤ CC3

1e
−3νt, (5.11)

and hence there exists a positive constant C3 = C(C1, ν, ‖Λreτ0Λ
1/s

ω0‖L2) such that for all t ≥ 0

‖Λreτ(t)Λ1/s

ω(t)‖L2 ≤ C3e
−νt/2. (5.12)

Then it is sufficient to impose

τ̇(t) + CC3τ(t)e−νt/2 = 0, (5.13)

and hence we obtain the lower bound for the radius of Gevrey-class regularity

τ(t) ≥ τ0e
−CC3

∫ t
0 e−νs/2ds. (5.14)

In particular it follows that for all t ≥ 0,

τ(t) ≥ τ0e
−2CC3/ν , (5.15)

which proves the first part of the theorem. The case d = 3 is treated similarly: the estimate (5.10) holds
also if d = 3, so the missing ingredient is the exponential decay of the Sobolev norms. But as noted
earlier, the smallness condition on ‖∇u‖L∞ , not only gives the global in time existence of Hr solutions,
but also their exponential decay. We omit further details. �

6. Appendix

6.1. Proof of Lemma 3.4

Proof of (3.12). Recall that we need to bound the quantity

T1 = α2
∣
∣〈eτΛ ((u · ∇)Δ curlu) , eτΛΔcurlu〉∣∣

= α2
∣
∣〈eτΛ ((u · ∇)Δ curlu) (u · ∇)eτΛΔcurlu, eτΛΔcurlu〉∣∣ , (6.1)

since div u = 0. By Plancherel’s theorem we have

T1 ≤ Cα2
∑

j+k=l; j,k,l �=0

(
eτ |l| − eτ |k|

)
|ûj · j||k|2|k × ûk||l|2|l × ûl|eτ |l|. (6.2)

Since |eτ |l| − eτ |k|| ≤ Cτ |j|emax{|k|,|l|}, we obtain

T1 ≤ Cα2τ
∑

j+k=l; j,k,l �=0

|j|2|ûj |eτ |j||k|2|k × ûk|eτ |k||l|2|l × ûl|eτ |l|

≤ Cα2τ
∑

j+k=l; j,k,l �=0; |l|≥|k|
|j|3/2|ûj |eτ |j||k|2|k × ûk|eτ |k||l|5/2|l × ûl|eτ |l|

≤ Cα2τ‖Λ1/2eτΛ curl Δu‖L2‖eτΛ curl Δu‖L2

∑

j �=0

|j|3/2|ûj |eτ |j|

≤ Cα2τ‖Λ1/2eτΛ curl Δu‖L2‖eτΛ curl Δu‖2
L2 . (6.3)

In the above we have used the triangle inequality |j|1/2 ≤ |k|1/2 + |l|1/2, the Cauchy–Schwartz inequality,
and the fact that in the two-dimensional case we have

∑
j∈Z2\{0} |j|−3 < ∞. By estimating the right side

of (6.3) as

ν

4
‖eτΛ curlΔu‖2

L2 +
Cα4τ2

ν
‖Λ1/2eτΛ curlΔu‖2

L2‖eτΛ curlΔu‖2
L2 ,

the proof of (3.12) is concluded. �
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Proof of (3.13). Recall that we need to bound the quantity T2, which can be written as

T2 =
∣
∣〈ΛeτΛ ((u · ∇) curlu) ,ΛeτΛ curlu〉 − 〈(u · ∇)ΛeτΛ curlu,ΛeτΛ curlu〉∣∣ , (6.4)

using the fact that div u = 0. By Plancherel’s theorem we have

T2 ≤ C
∑

j+k=l; j,k,l �=0

(
|l|eτ |l| − |k|eτ |k|

)
|ûj · j||k × ûk||l||l × ûl|eτ |l|. (6.5)

By the mean value theorem
∣
∣
∣|l|eτ |l| − |k|eτ |k|

∣
∣
∣ ≤ |j|(1 + τ max{|l|, |k|})eτ max{|l|,|k|},

and therefore by the triangle inequality we obtain

T2 ≤ C
∑

j+k=l; j,k,l �=0

|ûj ||j|2eτ |j||k × ûk|eτ |k||l||l × ûl|eτ |l|

+Cτ
∑

j+k=l; j,k,l �=0

|ûj ||j|2eτ |j|(|j| + |k|)|k × ûk|eτ |k||l||l × ûl|eτ |l|. (6.6)

By symmetry, and using ex ≤ 1 + xex for all x ≥ 0, we get

T2 ≤ C
∑

j+k=l; j,k,l �=0; |j|≤|l|
|ûj ||j|eτ |j||k × ûk||l|2|l × ûl|eτ |l|

+Cτ
∑

j+k=l; j,k,l �=0; |j|≤|k|,|l|
|ûj ||j|1/2eτ |j||k|3/2|k × ûk|eτ |k||l|2|l × ûl|eτ |l|,

and by the Cauchy–Schwartz inequality, it follows that

T2 ≤ C‖ curlu‖L2‖eτΛ curlΔu‖L2

∑

j �=0

|ûj ||j|eτ |j|

+Cτ‖Λ3/2eτΛ curlu‖L2‖eτΛ curl Δu‖L2

∑

j �=0

|ûj ||j|1/2eτ |j|. (6.7)

Note that in the two-dimensional case, by the Cauchy–Schwartz inequality we have
∑

j �=0

|ûj ||j|eτ |j| =
∑

j �=0

(
|j||ûj |1/2eτ |j|/2

) (
|j|3/2|ûj |1/2eτ |j|/2

)
|j|−3/2

≤ C‖ΛeτΛ curlu‖1/2
L2 ‖eτΛ curl Δu‖1/2

L2 . (6.8)

Similarly,
∑

j �=0

|j|1/2|ûj |eτ |j| ≤
∑

j �=0

|j|2|ûj |eτ |j||j|−3/2 ≤ C‖ΛeτΛ curlu‖L2 , (6.9)

and therefore

T2 ≤ C‖ curlu‖L2‖ΛeτΛ curlu‖1/2
L2 ‖eτΛ curlΔu‖3/2

L2

+Cτ‖Λ3/2eτΛ curlu‖L2‖ΛeτΛ curlu‖L2‖eτΛ curl Δu‖L2 . (6.10)

The above estimate and Young’s inequality concludes the proof of (3.13). �
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6.2. Proof of Lemma 4.2

For convenience of notation we let ζ = 1/s, so that ζ ∈ (0, 1]. Since div u = 0, cf. [32,36] we have
(u · ∇eτΛζ

ω, eτΛζ

ω) = 0, and therefore

T1 =
∣
∣
∣(u · ∇ω, e2τΛζ

ω)
∣
∣
∣ =

∣
∣
∣(u · ∇ω, e2τΛζ

ω) − (u · ∇eτΛζ

ω, eτΛζ

ω)
∣
∣
∣ .

As in [23,32,36], using Plancherel’s theorem we write the above term as

T1 =

∣
∣
∣
∣
∣
∣
(2π)3i

∑

j+k=l

(ûj · k)(ω̂k · ¯̂ωl)eτ |l|ζ
(
eτ |l|ζ − eτ |k|ζ

)
∣
∣
∣
∣
∣
∣
, (6.11)

where the sum is taken over all j, k, l ∈ Z
3\{0}. Using the inequality ex − 1 ≤ xex for x ≥ 0, the

mean-value theorem, and the triangle inequality |k + j|ζ ≤ |k|ζ + |j|ζ , we estimate

∣
∣
∣eτ |l|ζ − eτ |k|ζ

∣
∣
∣ ≤ τ

∣
∣|l|ζ − |k|ζ∣∣ eτ max{|l|ζ ,|k|ζ} ≤ Cτ

|j|
|k|1−ζ + |l|1−ζ

eτ |j|ζeτ |k|ζ ,

for all ζ ∈ (0, 1], where C > 0 is a dimensional constant. By (6.11), the triangle inequality, and the
Cauchy–Schwartz inequality we obtain

T1 ≤ Cτ
∑

j+k=l

|j||ûj |eτ |j|ζ |ω̂k|eτ |k|ζ |ω̂l|eτ |l|ζ |k|
|k|1−ζ + |l|1−ζ

≤ Cτ
∑

j+k=l

|j||ûj |eτ |j|ζ |ω̂k|eτ |k|ζ |ω̂l|eτ |l|ζ |k|ζ/2
(
|j|ζ/2 + |l|ζ/2

)

≤ Cτ‖eτΛζ

ω‖L2‖Λζ/2eτΛζ

ω‖L2

∑

j �=0

|j|1+ζ/2|ûj |eτ |j|ζ

+Cτ‖Λζ/2eτΛζ

ω‖2
L2

∑

j �=0

|j||ûj |eτ |j|ζ

≤ Cτ‖eτΛζ

ω‖L2‖Λζ/2eτΛζ

ω‖L2‖Λ3+ζ/2eτΛζ

u‖L2

+Cτ‖Λζ/2eτΛζ

ω‖2
L2‖Λ3eτΛζ

u‖L2 (6.12)

In the above we used the fact that
∑

j �=0, j∈Z3 |j|−4 < ∞. We recall that by (2.12) we have u = Kαω, and
therefore for α > 0 we have

‖Λ3u‖L2 ≤ C

α
‖ω‖L2 ,

and similarly

‖Λ3eτΛζ

u‖L2 ≤ C

α
‖eτΛζ

ω‖L2 , and ‖Λ3+ζ/2eτΛζ

u‖L2 ≤ C

α
‖Λζ/2eτΛζ

ω‖L2 . (6.13)

By combining (6.12) and (6.13) above, we obtain for all τ ≥ 0, and ζ ∈ (0, 1] that

T1 ≤ Cτ

α
‖eτΛζ

ω‖L2‖Λζ/2eτΛζ

ω‖2
L2 , (6.14)

for some sufficiently large dimensional constant C, thereby proving (4.4), since ζ = 1/s.
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The estimate for the vorticity stretching term is similar. By the triangle inequality and the the estimate
ex ≤ 1 + xex for all x ≥ 0, we have

T2 =
∣
∣
∣(ω · u, e2τΛζ

ω)
∣
∣
∣ =

∣
∣
∣
∣
∣
∣
(2π)3i

∑

j+k=l

(ω̂j · k)(ûk · ¯̂ωl)e2τ |l|ζ
∣
∣
∣
∣
∣
∣

≤ C
∑

j+k=l

|ω̂j |eτ |j|ζ |k||ûk|eτ |k|ζ |ω̂l|eτ |l|ζ

≤ C
∑

j+k=l

|ω̂j |eτ |j|ζ |k||ûk||ω̂l|eτ |l|ζ

+Cτ
∑

j+k=l

|ω̂j |eτ |j|ζ |k|1+ζ |ûk|eτ |k|ζ |ω̂l|eτ |l|ζ

≤ C

α
‖ω‖L2‖eτΛζ

ω‖2
L2 +

Cτ

α
‖eτΛζ

ω‖L2‖Λζ/2eτΛζ

ω‖2
L2 . (6.15)

In the last inequality above we also used ‖Λ3u‖L2 ≤ C‖ω‖L2/α. This proves (4.5) and hence concludes
the proof of the lemma.

6.3. Proof of Lemma 4.4

For ease of notation we let ζ = 1/s, so that ζ ∈ (0, 1]. Following notations in Sect. 4, for any m ∈ {1, 2, 3},
we need to estimate

T1 = (u · ∇ω,Λ2
me

2τΛζ
mω), (6.16)

and

T2 = (ω · ∇u,Λ2
me

2τΛζ
mω). (6.17)

First we bound the term T1. Note that since div u = 0, we have

(u · ∇Λme
τΛζ

mω,Λme
τΛζ

mω) = 0,

and therefore by Plancherel’s theorem (see also [32]) we obtain

T1 = (u · ∇ω,Λ2
me

2τΛζ
mω) − (u · ∇Λme

τΛζ
mω,Λme

τΛζ
mω)

= i(2π)3
∑

j+k=l

(
|lm|eτ |lm|ζ − |km|eτ |lm|ζ

)
(ûj · k)(ω̂k · ¯̂ωl)|lm|eτ |lm|ζ (6.18)

where the summation is taken over all j, k, l ∈ Z
3\{0}. We split the Fourier symbol arising from the

commutator, namely |lm|eτ |lm|ζ − |km|eτ |lm|ζ , in four parts (cf. [32]) by letting

T11 = i(2π)3
∑

j+k=l

(|lm| − |km|) eτ |km|ζ (ûj · k)(ω̂k · ¯̂ωl)|lm|eτ |lm|ζ ,

T12 = i(2π)3
∑

j+k=l

|lm|eτ |km|ζ
(
eτ(|lm|ζ−|km|ζ) − 1 − τ(|lm|ζ − |km|ζ)

)

×(ûj · k)(ω̂k · ¯̂ωl)|lm|eτ |lm|ζ ,

T13 = i(2π)3
∑

j+k=l

τ |km|1−ζ/2eτ |km|ζ (|lm|ζ − |km|ζ)

×(ûj · k)(ω̂k · ¯̂ωl)|lm|1+ζ/2eτ |lm|ζ ,
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T14 = i(2π)3
∑

j+k=l

τ(|lm| − |km|)eτ |km|ζ
(
|lm|1−ζ/2 − |km|1−ζ/2

)

×(ûj · k)(ω̂k · ¯̂ωl)|lm|1+ζ/2eτ |lm|ζ .

To isolate the term ‖∇u‖L∞ arising from T11 and T13, we need to use the inverse Fourier transform and
hence may not directly bound these two terms in absolute value. The key idea is to use the one-dimensional
identity (cf. [32])

|jm + km| − |km| = jm sgn(km) + 2(jm + km) sgn(jm)χ{sgn(km+jm) sgn(km)=−1}, (6.19)

an notice that on the region {sgn(km + jm) sgn(km) = −1}, we have 0 ≤ |km| ≤ |jm|. Define the opera-
tor Hm as the fourier multiplier with symbol sgn(km), which is hence bounded on L2. From (6.18), the
definition of T11, and (6.19), it follows that

T11 = (∂mu · ∇Hme
τΛζ

mω,Λme
τΛζ

mω)

+ i(2π)3
∑

j+k=l;{sgn(km+jm) sgn(km)=−1}
2(jm + km) sgn(jm)eτ |km|ζ

×(ûj · k)(ω̂k · ¯̂ωl)|lm|eτ |lm|ζ . (6.20)

The first term in the above equality is bounded by the Hölder inequality from above by ‖∇u‖L∞‖ω‖2
Xs,τ

.

The second term is bounded in absolute value, by making use of eτ |km|ζ ≤ e + τ2|km|2ζeτ |km|ζ , and of
|km| ≤ |jm|, by the quantity

C‖ω‖H1‖ω‖Xs,τ

⎛

⎝
∑

j �=0

|jm||ûj |
⎞

⎠ + Cτ2‖ω‖2
Ys,τ

⎛

⎝
∑

j �=0

|jm|1+ζ |ûj |
⎞

⎠. (6.21)

By the Cauchy–Schwartz inequality, and the fact that 2(ζ − 3) < −3 for all ζ ∈ (0, 1], we have
∑

j �=0

|jm|1+ζ |ûj | =
∑

j �=0

|jm|1+ζ |j|3−ζ |ûj ||j|−3+ζ

≤ C‖Λ1+ζ
m Λ3−ζu‖L2 ≤ C‖ω‖H1/α, (6.22)

and similarly
∑

j �=0 |jm||ûj | ≤ C‖ω‖H1/α. Therefore

|T11| ≤ C‖∇u‖L∞‖ω‖2
Xs,τ

+
C

α
‖ω‖2

H1‖ω‖Xs,τ
+
C

α
τ2‖ω‖H1‖ω‖2

Ys,τ
. (6.23)

To bound T13 one proceeds exactly the same if s = ζ = 1. If ζ ∈ (0, 1), (6.19) may not be applied directly
to |lm|ζ −|km|ζ . In this case, by the mean value theorem, for any |lm|, |km| ≥ 0, there exists θm,k,l ∈ (0, 1)
such that

|lm|ζ − |km|ζ = ζ(|lm| − |km|)|km|ζ−1

+ ζ(|lm| − |km|) (
(θm,k,l|km| + (1 − θm,k,l)|lm|)ζ−1 − |km|ζ−1

)
. (6.24)

We apply (6.19) to the first term in the above identity, while the second term is bounded in absolute
value by ζ(1 − ζ)|jm|2|km|ζ−1/min{|km|, |lm|}. The rest of the T13 estimate is the same as the one for
T11 and one similarly obtains

|T13| ≤ C‖∇u‖L∞‖ω‖2
Xs,τ

+
C

α
‖ω‖2

H1‖ω‖Xs,τ
+
C

α
τ2‖ω‖H1‖ω‖2

Ys,τ
. (6.25)

The term T12 is estimated in absolute value, by making use of the inequality |ex − 1 − x| ≤ x2e|x|, and
of ||lm|ζ − |km|ζ | ≤ C|jm|/(|km|1−ζ + |lm|1−ζ). It follows from the Cauchy–Schwartz inequality applied
in the Fourier variables that
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|T12| ≤ C

α
τ2‖ω‖Xs,τ

‖ω‖2
Ys,τ

. (6.26)

Similarly, by using that ex − 1 ≤ xex for all x ≥ 0, it follows that

|T14| ≤ C

α
τ‖ω‖2

H1‖ω‖Xs,τ
+
C

α
τ2‖ω‖H1‖ω‖2

Ys,τ
. (6.27)

Combining the estimates (6.23), (6.26), (6.25), and (6.27), and using that τ(t) ≤ τ(0) ≤ C, we obtain the
desired estimate on T1. To estimate T2, we proceed similarly. Here we do not have a commutator, and all
terms are estimated in absolute value in Fourier space. We omit details and refer the interested reader to
[32, Proof of Lemma 2.5].

6.4. Proof of Estimate (4.22)

If we take the inner product of (2.6) with ω, and then with Δω, using the fact that
∫
u∇ωΔω =

− ∫
∂kui ∂iωj ∂kωj by integrating by parts, we obtain

d

2dt
‖ω‖2

H1 +
ν

1 + α2
‖ω‖2

H1 ≤ C‖∇u‖L∞‖ω‖2
H1 + |〈∂k(ω · ∇u), ∂kω〉|. (6.28)

The proof of (4.22) follows from the above estimate by using Hölder’s inequality and Grönwall’s inequality
and assuming that we have

‖ω · ∇u‖H1 ≤ C‖∇u‖L∞‖ω‖H1 . (6.29)

The latter can be proved by using the Bony’s para-differential calculus [10]. This inequality is equivalent
to proving that

‖Δq(ω · ∇u)‖L2 ≤ C2−qaq‖∇u‖L∞‖ω‖H1 ,

for some 0 ≤ aq ∈ �2(N) with
∑
a2

q ≤ 1. Let Δq(ab) = ΔqTab+ ΔqTba+ ΔqR(a, b), where

ΔqR(a, b) =
∑

q′>q−3

Δq(Δq′aΔ̃q′b),

and

ΔqTab =
∑

|q−q′|≤4

Δq(Sq′−1bΔq′a).

We have Δq(ω∇u) = ΔqTω∇u+ ΔqT∇uω + ΔqR(∇u, ω). Using a Bernstein type inequality we have

‖Sq′−1ω‖L∞ ≤ C22q′‖∇u‖L∞

and also

‖Δq′∇u‖L2 ≤ C2−2q′
sup

|α|=2

‖Δq′∂α∇u‖L2 ≤ Cα−12−2q‖Δq′ω‖L2 .

So, we obtain

‖ΔqTω∇u‖L2 ≤ C‖∇u‖L∞‖Δq′ω‖L2 ≤ C2−qaq‖∇u‖L∞‖ω‖H1 ,

where aq ∈ �2(N). Similarly, we have

‖ΔqT∇uω‖L2 ≤ C‖∇u‖L∞‖Δq′ω‖L2 ≤ C2−qaq‖∇u‖L∞‖ω‖H1 .
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Concerning the rest term, we have

‖ΔqR(ω,∇u)‖L2 ≤
∑

q′>q−3

‖Δq′ω‖L∞‖Δ̃q′∇u‖L2

≤
∑

q′>q−3

‖∇u‖L∞‖Δq′ω‖L2

≤ C
∑

q′>q−3

2−q′
aq′‖∇u‖L∞‖ω‖H1 ≤ C2−qãq‖∇u‖L∞‖ω‖H1 (6.30)

where ãq =
∑

q′>q−3 2−(q′−q)aq′ ∈ �2(N). This completes the proof.
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Equations and Their Applications. Collége de France seminar, vol. VI (Paris, 1982/1983), pp. 178–197. Res. Notes in
Math., vol. 109. Pitman, Boston (1984)

[15] Cockburn, B., Jones, D., Titi, E.S.: Estimating the number of asymptotic degrees of freedom for nonlinear dissipative
systems. Math. Comput. 66, 1073–1087 (1997)

[16] Constantin, P., Foias, C.: Navier–Stokes equations. In: Chicago Lectures in Mathematics. University of Chicago Press,
Chicago (1988)

[17] DiPerna, R., Majda, A.: Oscillations and concentrations in weak solutions of the incompressible fluid equations. Comm.
Math. Phys. 108(4), 667–689 (1987)

[18] Dunn, J.E., Fosdick, R.L.: Thermodynamics, stability and boundedness of fluids of complexity 2 and fluids of second-
grade. Arch. Ration. Mech. Anal. 56, 191–252 (1974)

[19] Ferrari, A.B., Titi, E.S.: Gevrey regularity for nonlinear analytic parabolic equations. Comm. Partial Differ. Equ.
23(1–2), 1–16 (1998)

[20] Foias, C., Holm, D., Titi, E.S.: The three dimensional viscous Camassa-Holm equations and their relation to the
Navier-Stokes equations and turbulence theory. J. Dyn. Differ. Equ. 14(1), 1–35 (2002)

[21] Foias, C., Holm, D., Titi, E.S.: The Navier-Stokes-alpha model of fluid turbulence. Advances in nonlinear mathematics
and science. Phy. D 152/153, 505–519 (2001)

[22] Foias, C., Prodi, G.: Sur le comportement global des solutions non stationnaires des équations de Navier-Stokes en
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